liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -1,7 +1,11 @@
|
|
|
1
1
|
import torch
|
|
2
2
|
import triton
|
|
3
3
|
|
|
4
|
-
from liger_kernel.ops.cross_entropy import
|
|
4
|
+
from liger_kernel.ops.cross_entropy import liger_cross_entropy_kernel
|
|
5
|
+
from liger_kernel.ops.utils import amp_custom_bwd
|
|
6
|
+
from liger_kernel.ops.utils import amp_custom_fwd
|
|
7
|
+
from liger_kernel.ops.utils import element_mul_kernel
|
|
8
|
+
from liger_kernel.ops.utils import is_hip
|
|
5
9
|
|
|
6
10
|
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576 https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
|
|
7
11
|
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
|
|
@@ -9,153 +13,363 @@ from liger_kernel.ops.cross_entropy import element_mul, liger_cross_entropy_kern
|
|
|
9
13
|
MAX_FUSED_SIZE = 65536 // 2
|
|
10
14
|
|
|
11
15
|
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
16
|
+
def fused_linear_cross_entropy_forward(
|
|
17
|
+
_input,
|
|
18
|
+
weight,
|
|
19
|
+
target,
|
|
20
|
+
ce_weight=None,
|
|
21
|
+
bias=None,
|
|
22
|
+
ignore_index=-100,
|
|
23
|
+
lse_square_scale=0.0,
|
|
24
|
+
label_smoothing=0.0,
|
|
25
|
+
reduction="mean",
|
|
26
|
+
softcap=None,
|
|
27
|
+
return_z_loss=False,
|
|
28
|
+
accum_dtype=None,
|
|
29
|
+
use_token_scaling=False,
|
|
30
|
+
return_token_accuracy=False,
|
|
31
|
+
):
|
|
32
|
+
assert isinstance(return_z_loss, bool), f"return_z_loss must be True or False. Got: {return_z_loss}"
|
|
33
|
+
assert isinstance(return_token_accuracy, bool), (
|
|
34
|
+
f"return_token_accuracy must be True or False. Got: {return_token_accuracy}"
|
|
35
|
+
)
|
|
36
|
+
device = _input.device
|
|
18
37
|
|
|
19
|
-
|
|
20
|
-
the materialization of the large logits tensor. Since Cross Entropy Loss is the last layer, we can
|
|
21
|
-
compute the gradient at the forward pass. By doing so, we don't have to store the _input and target
|
|
22
|
-
for the backward pass.
|
|
38
|
+
input_requires_grad = _input.requires_grad
|
|
23
39
|
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
40
|
+
# inputs have shape: BT x H
|
|
41
|
+
# materialized activations will have shape: BT x V
|
|
42
|
+
# the increase in memory = BT x V
|
|
43
|
+
# reduction can be achieved by partitioning the number of tokens BT into smaller chunks.
|
|
44
|
+
# for ex: if we were to achieve the same memory consumption as BT x H, then the chunk size should be:
|
|
45
|
+
# inc_factor = (V+H-1)//H, chunk_size = (BT + inc_factor - 1)//inc_factor
|
|
46
|
+
# for ex: BT = 4096*4, V = 32000, H = 4096 ==> inc_factor = 8, chunk_size = 2048
|
|
47
|
+
BT, H = _input.shape
|
|
48
|
+
V = weight.shape[0]
|
|
49
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
|
50
|
+
|
|
51
|
+
inc_factor = triton.cdiv(V, H) # (V + H - 1) // H
|
|
52
|
+
chunk_size = triton.next_power_of_2(triton.cdiv(BT, inc_factor)) # (BT + inc_factor - 1) // inc_factor
|
|
53
|
+
num_chunks = triton.cdiv(BT, chunk_size) # (BT + chunk_size - 1) // chunk_size
|
|
54
|
+
|
|
55
|
+
grad_input = torch.zeros_like(_input, device=device)
|
|
56
|
+
|
|
57
|
+
# we use fp32 for loss and gradients accumulator
|
|
58
|
+
if input_requires_grad:
|
|
59
|
+
if accum_dtype is None:
|
|
60
|
+
grad_weight = torch.zeros_like(weight, device=device) if weight.requires_grad else None
|
|
61
|
+
grad_bias = torch.zeros_like(bias, device=device) if bias is not None else None
|
|
62
|
+
else:
|
|
63
|
+
grad_weight = torch.zeros_like(weight, dtype=accum_dtype, device=device) if weight.requires_grad else None
|
|
64
|
+
grad_bias = torch.zeros_like(bias, dtype=accum_dtype, device=device) if bias is not None else None
|
|
65
|
+
else:
|
|
66
|
+
grad_weight = None
|
|
67
|
+
grad_bias = None
|
|
68
|
+
|
|
69
|
+
loss_1d = torch.zeros(BT, dtype=torch.float32, device=device)
|
|
70
|
+
z_loss_1d = torch.zeros(BT, dtype=_input.dtype, device=_input.device) if return_z_loss else None
|
|
71
|
+
token_accuracy_1d = torch.zeros(BT, dtype=torch.float32, device=device) if return_token_accuracy else None
|
|
72
|
+
|
|
73
|
+
# TODO: evaluate how CUDA synchronization caused by .item() affects the speed
|
|
74
|
+
target_mask = target != ignore_index
|
|
75
|
+
total_n_non_ignore = target_mask.sum().item()
|
|
76
|
+
total_sum_non_ignore_ce_weight = total_n_non_ignore
|
|
77
|
+
ce_weight_sum = 0.0
|
|
78
|
+
if ce_weight is not None:
|
|
79
|
+
assert ce_weight.shape[0] == V, f"If given, weight has to be a Tensor of size V. Got: {ce_weight.shape}"
|
|
80
|
+
assert torch.is_floating_point(ce_weight), (
|
|
81
|
+
f"If given, weight has to be a Tensor of floating point dtype. Got: {ce_weight.dtype}"
|
|
33
82
|
)
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
#
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
#
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
83
|
+
total_sum_non_ignore_ce_weight = (
|
|
84
|
+
torch.gather(ce_weight, dim=0, index=target.masked_select(target_mask)).sum().item()
|
|
85
|
+
)
|
|
86
|
+
ce_weight_sum = ce_weight.sum().item()
|
|
87
|
+
if ce_weight.stride(-1) != 1:
|
|
88
|
+
ce_weight = ce_weight.contiguous()
|
|
89
|
+
|
|
90
|
+
for chunk_id in range(num_chunks):
|
|
91
|
+
start_idx = chunk_id * chunk_size
|
|
92
|
+
end_idx = min((chunk_id + 1) * chunk_size, BT)
|
|
93
|
+
_input_chunk = _input[start_idx:end_idx] # chunk_size x H
|
|
94
|
+
|
|
95
|
+
# when doing matmul, use the original precision
|
|
96
|
+
logits_chunk = _input_chunk @ weight.t() # chunk_size x V
|
|
97
|
+
if bias is not None:
|
|
98
|
+
logits_chunk = logits_chunk + bias
|
|
99
|
+
|
|
100
|
+
target_chunk = target[start_idx:end_idx] # chunk_size,
|
|
101
|
+
|
|
102
|
+
n_rows = logits_chunk.shape[0]
|
|
103
|
+
|
|
104
|
+
# Compute predicted probabilities for token scaling if needed
|
|
105
|
+
if use_token_scaling:
|
|
106
|
+
# Compute softmax probabilities for scaling
|
|
107
|
+
# We need to compute this before the cross entropy kernel modifies logits_chunk
|
|
108
|
+
logits_for_softmax = logits_chunk.detach().clone() # Detach to avoid gradient flow
|
|
109
|
+
if softcap is not None:
|
|
110
|
+
logits_for_softmax = softcap * torch.tanh(logits_for_softmax / softcap)
|
|
111
|
+
|
|
112
|
+
# Compute softmax to get predicted probabilities
|
|
113
|
+
probs = torch.softmax(logits_for_softmax, dim=-1)
|
|
114
|
+
|
|
115
|
+
# Get predicted probabilities for token scaling, handling ignored targets
|
|
116
|
+
valid_target_mask = target_chunk != ignore_index
|
|
117
|
+
valid_targets = target_chunk[valid_target_mask]
|
|
118
|
+
|
|
119
|
+
if len(valid_targets) > 0:
|
|
120
|
+
# Gather probabilities only for valid targets
|
|
121
|
+
valid_probs = probs[valid_target_mask]
|
|
122
|
+
pred_probs_valid = torch.gather(valid_probs, -1, valid_targets.unsqueeze(-1)).squeeze(-1)
|
|
123
|
+
|
|
124
|
+
# Create full tensor with zeros for ignored targets
|
|
125
|
+
pred_probs = torch.zeros_like(target_chunk, dtype=probs.dtype, device=probs.device)
|
|
126
|
+
pred_probs[valid_target_mask] = pred_probs_valid
|
|
127
|
+
else:
|
|
128
|
+
# All targets are ignored
|
|
129
|
+
pred_probs = torch.zeros_like(target_chunk, dtype=probs.dtype, device=probs.device)
|
|
130
|
+
|
|
131
|
+
# Store the scaling factors
|
|
132
|
+
scaling_factors = pred_probs.detach() # Detach to ensure no gradient flow
|
|
133
|
+
|
|
134
|
+
# unreduced loss
|
|
135
|
+
loss_1d_slice = loss_1d[start_idx:end_idx] # chunk_size,
|
|
136
|
+
z_loss_1d_slice = z_loss_1d[start_idx:end_idx] if return_z_loss else None
|
|
137
|
+
token_accuracy_1d_slice = token_accuracy_1d[start_idx:end_idx] if return_token_accuracy else None
|
|
138
|
+
|
|
139
|
+
# ensure _input and target are contiguous
|
|
140
|
+
logits_chunk = logits_chunk.contiguous()
|
|
141
|
+
target_chunk = target_chunk.contiguous()
|
|
142
|
+
|
|
143
|
+
# Here we calculate the gradient of logits_chunk in place so we can save memory.
|
|
144
|
+
liger_cross_entropy_kernel[(n_rows,)](
|
|
145
|
+
X_ptr=logits_chunk,
|
|
146
|
+
X_stride=logits_chunk.stride(-2),
|
|
147
|
+
Y_ptr=target_chunk,
|
|
148
|
+
Y_stride=target_chunk.stride(-1), # always 1
|
|
149
|
+
weight_ptr=ce_weight,
|
|
150
|
+
loss_ptr=loss_1d_slice,
|
|
151
|
+
z_loss_ptr=z_loss_1d_slice,
|
|
152
|
+
loss_stride=loss_1d_slice.stride(-1), # always 1
|
|
153
|
+
token_accuracy_ptr=token_accuracy_1d_slice,
|
|
154
|
+
token_accuracy_stride=token_accuracy_1d_slice.stride(-1)
|
|
155
|
+
if return_token_accuracy
|
|
156
|
+
else 0, # always 1 if accuracy is enabled
|
|
157
|
+
n_cols=V,
|
|
158
|
+
n_non_ignore=total_n_non_ignore,
|
|
159
|
+
sum_non_ignore_weight=total_sum_non_ignore_ce_weight,
|
|
160
|
+
weight_sum=ce_weight_sum,
|
|
161
|
+
ignore_index=ignore_index,
|
|
162
|
+
lse_square_scale=lse_square_scale,
|
|
163
|
+
label_smoothing=label_smoothing,
|
|
164
|
+
reduction=reduction,
|
|
165
|
+
softcap=softcap,
|
|
166
|
+
RETURN_Z_LOSS=return_z_loss,
|
|
167
|
+
RETURN_TOKEN_ACCURACY=return_token_accuracy,
|
|
168
|
+
HAS_WEIGHT=True if ce_weight is not None else False,
|
|
169
|
+
HAS_SOFTCAPPING=True if softcap is not None else False,
|
|
170
|
+
HAS_GRADIENTS=input_requires_grad,
|
|
171
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
172
|
+
num_warps=32 if not is_hip() else 16,
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
# Apply token scaling if requested
|
|
176
|
+
if use_token_scaling:
|
|
177
|
+
loss_1d_slice = loss_1d_slice * scaling_factors
|
|
178
|
+
if return_z_loss:
|
|
179
|
+
z_loss_1d_slice = z_loss_1d_slice * scaling_factors
|
|
180
|
+
|
|
181
|
+
loss_1d[start_idx:end_idx] = loss_1d_slice
|
|
182
|
+
if return_z_loss:
|
|
183
|
+
z_loss_1d[start_idx:end_idx] = z_loss_1d_slice
|
|
184
|
+
if return_token_accuracy:
|
|
185
|
+
token_accuracy_1d[start_idx:end_idx] = token_accuracy_1d_slice
|
|
186
|
+
grad_logits_chunk = logits_chunk # chunk_size x V
|
|
187
|
+
|
|
188
|
+
# Apply token scaling to gradients if requested
|
|
189
|
+
if use_token_scaling:
|
|
190
|
+
# Expand scaling factors to match gradient dimensions
|
|
191
|
+
scaling_factors_expanded = scaling_factors.unsqueeze(-1) # chunk_size x 1
|
|
192
|
+
grad_logits_chunk = grad_logits_chunk * scaling_factors_expanded
|
|
97
193
|
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
grad_logits_chunk = logits_chunk * (n_non_ignore / total_n_non_ignore)
|
|
111
|
-
grad_input[start_idx:end_idx] = grad_logits_chunk @ linear
|
|
112
|
-
|
|
113
|
-
torch.addmm(
|
|
114
|
-
input=grad_linear,
|
|
115
|
-
mat1=logits_chunk.t(),
|
|
116
|
-
mat2=_input_chunk,
|
|
117
|
-
out=grad_linear,
|
|
118
|
-
alpha=n_non_ignore / total_n_non_ignore,
|
|
119
|
-
beta=1.0,
|
|
194
|
+
if input_requires_grad:
|
|
195
|
+
grad_input[start_idx:end_idx] = grad_logits_chunk @ weight
|
|
196
|
+
|
|
197
|
+
if grad_weight is not None and input_requires_grad:
|
|
198
|
+
grad_weight += torch.mm(grad_logits_chunk.t(), _input_chunk).float()
|
|
199
|
+
|
|
200
|
+
if bias is not None and input_requires_grad:
|
|
201
|
+
torch.add(
|
|
202
|
+
input=grad_bias,
|
|
203
|
+
other=grad_logits_chunk.sum(dim=0),
|
|
204
|
+
out=grad_bias,
|
|
205
|
+
alpha=1.0,
|
|
120
206
|
)
|
|
121
207
|
|
|
122
|
-
|
|
208
|
+
# Need extra calculations for backward if reduction=='none'. Not supporting reduction='none' now.
|
|
209
|
+
# if reduction == "none":
|
|
210
|
+
# loss = loss_1d
|
|
211
|
+
# z_loss = z_loss_1d if return_z_loss else None
|
|
123
212
|
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
213
|
+
if reduction == "none":
|
|
214
|
+
# Return per-token losses
|
|
215
|
+
loss = loss_1d
|
|
216
|
+
z_loss = z_loss_1d if return_z_loss else None
|
|
217
|
+
token_accuracy = token_accuracy_1d if return_token_accuracy else None
|
|
218
|
+
else:
|
|
219
|
+
loss = torch.sum(loss_1d)
|
|
220
|
+
z_loss = torch.sum(z_loss_1d) if return_z_loss else None
|
|
221
|
+
# For accuracy, we compute the mean across all non-ignored tokens
|
|
222
|
+
token_accuracy = torch.sum(token_accuracy_1d) / total_n_non_ignore if return_token_accuracy else None
|
|
127
223
|
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
224
|
+
# Cast back to original dtype
|
|
225
|
+
grad_weight = grad_weight.to(weight.dtype) if grad_weight is not None else None
|
|
226
|
+
grad_bias = grad_bias.to(bias.dtype) if grad_bias is not None else None
|
|
227
|
+
|
|
228
|
+
return loss, z_loss, token_accuracy, grad_input, grad_weight, grad_bias
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
def fused_linear_cross_entropy_backward(grad_output, grad_input, grad_weight, grad_bias):
|
|
232
|
+
# If cross entropy is the last layer, grad_output is 1.0. Skip the mul to save time
|
|
233
|
+
if not torch.equal(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
234
|
+
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
|
|
235
|
+
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
|
|
236
|
+
BT, H = grad_input.shape
|
|
237
|
+
n_rows = BT
|
|
238
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
|
|
239
|
+
|
|
240
|
+
element_mul_kernel[(n_rows,)](
|
|
241
|
+
grad_input,
|
|
242
|
+
grad_input.stride(-2),
|
|
243
|
+
grad_output,
|
|
244
|
+
H,
|
|
245
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
246
|
+
num_warps=32 if not is_hip() else 16,
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
# handle grad_weight
|
|
250
|
+
if grad_weight is not None:
|
|
251
|
+
V, H = grad_weight.shape
|
|
252
|
+
n_rows = V
|
|
253
|
+
|
|
254
|
+
element_mul_kernel[(n_rows,)](
|
|
255
|
+
grad_weight,
|
|
256
|
+
grad_weight.stride(-2),
|
|
142
257
|
grad_output,
|
|
143
258
|
H,
|
|
144
259
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
145
|
-
num_warps=32,
|
|
260
|
+
num_warps=32 if not is_hip() else 16,
|
|
146
261
|
)
|
|
147
262
|
|
|
148
|
-
|
|
149
|
-
V
|
|
263
|
+
if grad_bias is not None:
|
|
264
|
+
V = grad_bias.shape[0]
|
|
150
265
|
n_rows = V
|
|
151
266
|
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
267
|
+
element_mul_kernel[(n_rows,)](
|
|
268
|
+
grad_bias,
|
|
269
|
+
grad_bias.stride(-1),
|
|
155
270
|
grad_output,
|
|
156
|
-
|
|
271
|
+
1,
|
|
157
272
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
158
|
-
num_warps=32,
|
|
273
|
+
num_warps=32 if not is_hip() else 16,
|
|
159
274
|
)
|
|
275
|
+
return grad_input, grad_weight, grad_bias
|
|
160
276
|
|
|
161
|
-
|
|
277
|
+
|
|
278
|
+
class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
|
|
279
|
+
@staticmethod
|
|
280
|
+
@amp_custom_fwd
|
|
281
|
+
def forward(
|
|
282
|
+
ctx,
|
|
283
|
+
_input,
|
|
284
|
+
weight,
|
|
285
|
+
target,
|
|
286
|
+
bias=None,
|
|
287
|
+
ce_weight=None,
|
|
288
|
+
ignore_index=-100,
|
|
289
|
+
lse_square_scale=0.0,
|
|
290
|
+
label_smoothing=0.0,
|
|
291
|
+
reduction="mean",
|
|
292
|
+
softcap=None,
|
|
293
|
+
return_z_loss: bool = False,
|
|
294
|
+
accum_dtype=None,
|
|
295
|
+
use_token_scaling: bool = False,
|
|
296
|
+
return_token_accuracy: bool = False,
|
|
297
|
+
):
|
|
298
|
+
"""
|
|
299
|
+
Fusing the last linear layer with cross-entropy loss
|
|
300
|
+
Reference: https://github.com/mgmalek/efficient_cross_entropy
|
|
301
|
+
|
|
302
|
+
Handle the forward and backward pass of the final linear layer via cross-entropy loss by avoiding
|
|
303
|
+
the materialization of the large logits tensor. Since Cross Entropy Loss is the last layer, we can
|
|
304
|
+
compute the gradient at the forward pass. By doing so, we don't have to store the _input and target
|
|
305
|
+
for the backward pass.
|
|
306
|
+
|
|
307
|
+
_input: (B*T, H) where B is batch size, T is sequence length, H is hidden dimension.
|
|
308
|
+
target: (B*T) where each value is in [0, V-1]
|
|
309
|
+
weight: (V, H) where V is the number of classes
|
|
310
|
+
bias: (V) where V is the number of classes
|
|
311
|
+
ce_weight: a manual rescaling weight given to each class. If given, has to be a Tensor of size V and floating point dtype
|
|
312
|
+
ignore_index: the index to ignore in the target
|
|
313
|
+
label_smoothing (float): The amount of smoothing when computing the loss, where 0.0 means no smoothing.
|
|
314
|
+
reduction: reduction to apply
|
|
315
|
+
accum_dtype (torch.dtype): the dtype of intermediate result buffers for weight and bias gradient accumulations.
|
|
316
|
+
Recommended to set `accum_dtype` to higher precision, e.g. `torch.float32`, if the training is unstable with original dtype. Default: `None`, performing accumulations in original dtype
|
|
317
|
+
use_token_scaling (bool): whether to scale each token's loss by its predicted probability (detached).
|
|
318
|
+
When True, each token's loss is multiplied by the model's predicted probability for that token's true class.
|
|
319
|
+
Default: False.
|
|
320
|
+
return_token_accuracy (bool): When `return_token_accuracy` is `True`, computes and returns per-token accuracy without materializing logits. Default: `False`
|
|
321
|
+
"""
|
|
322
|
+
|
|
323
|
+
loss, z_loss, token_accuracy, grad_input, grad_weight, grad_bias = fused_linear_cross_entropy_forward(
|
|
324
|
+
_input=_input,
|
|
325
|
+
weight=weight,
|
|
326
|
+
target=target,
|
|
327
|
+
bias=bias,
|
|
328
|
+
ce_weight=ce_weight,
|
|
329
|
+
ignore_index=ignore_index,
|
|
330
|
+
lse_square_scale=lse_square_scale,
|
|
331
|
+
label_smoothing=label_smoothing,
|
|
332
|
+
reduction=reduction,
|
|
333
|
+
softcap=softcap,
|
|
334
|
+
return_z_loss=return_z_loss,
|
|
335
|
+
accum_dtype=accum_dtype,
|
|
336
|
+
use_token_scaling=use_token_scaling,
|
|
337
|
+
return_token_accuracy=return_token_accuracy,
|
|
338
|
+
)
|
|
339
|
+
# downcast to dtype and store for backward
|
|
340
|
+
ctx.save_for_backward(
|
|
341
|
+
grad_input.detach(),
|
|
342
|
+
grad_weight.detach() if grad_weight is not None else None,
|
|
343
|
+
grad_bias.detach() if bias is not None else None,
|
|
344
|
+
)
|
|
345
|
+
ctx.return_z_loss = return_z_loss
|
|
346
|
+
ctx.return_token_accuracy = return_token_accuracy
|
|
347
|
+
return loss, z_loss, token_accuracy
|
|
348
|
+
|
|
349
|
+
@staticmethod
|
|
350
|
+
@amp_custom_bwd
|
|
351
|
+
def backward(ctx, grad_output, grad_output2, grad_output3):
|
|
352
|
+
if ctx.return_z_loss:
|
|
353
|
+
del grad_output2 # z_loss is only for logging
|
|
354
|
+
if ctx.return_token_accuracy:
|
|
355
|
+
del grad_output3 # token_accuracy is only for metrics
|
|
356
|
+
(grad_input, grad_weight, grad_bias) = ctx.saved_tensors
|
|
357
|
+
grad_input, grad_weight, grad_bias = fused_linear_cross_entropy_backward(
|
|
358
|
+
grad_output, grad_input, grad_weight, grad_bias
|
|
359
|
+
)
|
|
360
|
+
return (
|
|
361
|
+
grad_input,
|
|
362
|
+
grad_weight,
|
|
363
|
+
None,
|
|
364
|
+
grad_bias,
|
|
365
|
+
None,
|
|
366
|
+
None,
|
|
367
|
+
None,
|
|
368
|
+
None,
|
|
369
|
+
None,
|
|
370
|
+
None,
|
|
371
|
+
None,
|
|
372
|
+
None,
|
|
373
|
+
None, # use_token_scaling
|
|
374
|
+
None, # return_token_accuracy
|
|
375
|
+
)
|