liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +307 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +63 -0
  18. liger_kernel/ops/__init__.py +141 -0
  19. liger_kernel/ops/backends/README.md +151 -0
  20. liger_kernel/ops/backends/__init__.py +13 -0
  21. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  22. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  23. liger_kernel/ops/backends/registry.py +61 -0
  24. liger_kernel/ops/cross_entropy.py +383 -114
  25. liger_kernel/ops/dyt.py +160 -0
  26. liger_kernel/ops/experimental/embedding.py +141 -0
  27. liger_kernel/ops/experimental/mm_int8int2.py +349 -0
  28. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  29. liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
  30. liger_kernel/ops/fused_linear_jsd.py +228 -0
  31. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  32. liger_kernel/ops/geglu.py +66 -64
  33. liger_kernel/ops/group_norm.py +306 -0
  34. liger_kernel/ops/grpo_loss.py +312 -0
  35. liger_kernel/ops/jsd.py +201 -0
  36. liger_kernel/ops/kl_div.py +262 -0
  37. liger_kernel/ops/layer_norm.py +320 -0
  38. liger_kernel/ops/llama4_rope.py +225 -0
  39. liger_kernel/ops/multi_token_attention.py +207 -0
  40. liger_kernel/ops/poly_norm.py +390 -0
  41. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  42. liger_kernel/ops/rms_norm.py +484 -88
  43. liger_kernel/ops/rope.py +122 -117
  44. liger_kernel/ops/softmax.py +201 -0
  45. liger_kernel/ops/sparsemax.py +179 -0
  46. liger_kernel/ops/swiglu.py +68 -65
  47. liger_kernel/ops/tiled_mlp.py +136 -0
  48. liger_kernel/ops/tvd.py +207 -0
  49. liger_kernel/ops/utils.py +82 -3
  50. liger_kernel/transformers/__init__.py +218 -6
  51. liger_kernel/transformers/auto_model.py +38 -0
  52. liger_kernel/transformers/cross_entropy.py +52 -7
  53. liger_kernel/transformers/dyt.py +22 -0
  54. liger_kernel/transformers/experimental/__init__.py +5 -0
  55. liger_kernel/transformers/experimental/embedding.py +26 -0
  56. liger_kernel/transformers/fsdp.py +55 -0
  57. liger_kernel/transformers/functional.py +301 -0
  58. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  59. liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
  60. liger_kernel/transformers/fused_linear_jsd.py +95 -0
  61. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  62. liger_kernel/transformers/geglu.py +6 -7
  63. liger_kernel/transformers/group_norm.py +50 -0
  64. liger_kernel/transformers/grpo_loss.py +153 -0
  65. liger_kernel/transformers/jsd.py +70 -0
  66. liger_kernel/transformers/kl_div.py +12 -0
  67. liger_kernel/transformers/layer_norm.py +24 -0
  68. liger_kernel/transformers/llama4_rope.py +93 -0
  69. liger_kernel/transformers/model/falcon_h1.py +122 -0
  70. liger_kernel/transformers/model/gemma.py +261 -0
  71. liger_kernel/transformers/model/gemma2.py +283 -0
  72. liger_kernel/transformers/model/gemma3.py +332 -0
  73. liger_kernel/transformers/model/glm4.py +141 -0
  74. liger_kernel/transformers/model/glm4v.py +163 -0
  75. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  76. liger_kernel/transformers/model/gpt_oss.py +211 -0
  77. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  78. liger_kernel/transformers/model/internvl.py +157 -0
  79. liger_kernel/transformers/model/llama.py +221 -41
  80. liger_kernel/transformers/model/llama4.py +121 -0
  81. liger_kernel/transformers/model/llava.py +344 -0
  82. liger_kernel/transformers/model/loss_utils.py +95 -0
  83. liger_kernel/transformers/model/mistral.py +145 -0
  84. liger_kernel/transformers/model/mixtral.py +293 -0
  85. liger_kernel/transformers/model/mllama.py +269 -0
  86. liger_kernel/transformers/model/olmo2.py +141 -0
  87. liger_kernel/transformers/model/olmo3.py +142 -0
  88. liger_kernel/transformers/model/output_classes.py +147 -0
  89. liger_kernel/transformers/model/paligemma.py +433 -0
  90. liger_kernel/transformers/model/phi3.py +120 -0
  91. liger_kernel/transformers/model/qwen2.py +259 -0
  92. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  93. liger_kernel/transformers/model/qwen2_vl.py +159 -0
  94. liger_kernel/transformers/model/qwen3.py +136 -0
  95. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  96. liger_kernel/transformers/model/qwen3_next.py +146 -0
  97. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  98. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  99. liger_kernel/transformers/model/smollm3.py +199 -0
  100. liger_kernel/transformers/model/smolvlm.py +158 -0
  101. liger_kernel/transformers/monkey_patch.py +2816 -21
  102. liger_kernel/transformers/multi_token_attention.py +64 -0
  103. liger_kernel/transformers/poly_norm.py +42 -0
  104. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  105. liger_kernel/transformers/rms_norm.py +75 -5
  106. liger_kernel/transformers/rope.py +47 -3
  107. liger_kernel/transformers/softmax.py +12 -0
  108. liger_kernel/transformers/sparsemax.py +16 -0
  109. liger_kernel/transformers/swiglu.py +62 -6
  110. liger_kernel/transformers/tiled_mlp.py +133 -0
  111. liger_kernel/transformers/trainer/__init__.py +4 -0
  112. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  113. liger_kernel/transformers/trainer_integration.py +2 -45
  114. liger_kernel/transformers/tvd.py +13 -0
  115. liger_kernel/triton/__init__.py +1 -3
  116. liger_kernel/triton/monkey_patch.py +1 -5
  117. liger_kernel/utils.py +96 -0
  118. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
  119. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
  120. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  121. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
  122. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
  123. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
  124. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
  125. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  126. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,122 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ if TYPE_CHECKING:
8
+ from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional["FalconHybridMambaAttentionDynamicCache"] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ cache_position: Optional[torch.LongTensor] = None,
27
+ logits_to_keep: Union[int, torch.Tensor] = 0,
28
+ skip_logits: Optional[bool] = None,
29
+ return_dict: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> Union[tuple, LigerCausalLMOutputWithPast]:
32
+ r"""
33
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
34
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
35
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
36
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
37
+
38
+ Example:
39
+
40
+ ```python
41
+ >>> from transformers import AutoTokenizer, FalconH1ForCausalLM
42
+
43
+ >>> model = FalconH1ForCausalLM.from_pretrained("...")
44
+ >>> tokenizer = AutoTokenizer.from_pretrained("...")
45
+
46
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
47
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
48
+
49
+ >>> # Generate
50
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
51
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
52
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
53
+ ```"""
54
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
55
+ output_hidden_states = (
56
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
57
+ )
58
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
59
+
60
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
61
+ outputs = self.model(
62
+ input_ids=input_ids,
63
+ attention_mask=attention_mask,
64
+ position_ids=position_ids,
65
+ past_key_values=past_key_values,
66
+ inputs_embeds=inputs_embeds,
67
+ use_cache=use_cache,
68
+ output_attentions=output_attentions,
69
+ output_hidden_states=output_hidden_states,
70
+ cache_position=cache_position,
71
+ **kwargs,
72
+ )
73
+
74
+ hidden_states = outputs[0]
75
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
76
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
77
+ kept_hidden_states = hidden_states[:, slice_indices, :]
78
+
79
+ shift_labels = kwargs.pop("shift_labels", None)
80
+ logits = None
81
+ loss = None
82
+ token_accuracy = None
83
+
84
+ # if in training mode, don't materialize logits
85
+ if skip_logits and labels is None:
86
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
87
+
88
+ if skip_logits is None:
89
+ # By default, if in training mode, don't materialize logits
90
+ skip_logits = self.training and labels is not None
91
+
92
+ # Compute loss
93
+ if skip_logits:
94
+ result = LigerForCausalLMLoss(
95
+ hidden_states=kept_hidden_states,
96
+ lm_head_weight=self.lm_head.weight,
97
+ labels=labels,
98
+ shift_labels=shift_labels,
99
+ hidden_size=self.config.hidden_size,
100
+ **kwargs,
101
+ )
102
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
103
+ else:
104
+ logits = self.lm_head(kept_hidden_states)
105
+ if labels is not None or shift_labels is not None:
106
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
107
+
108
+ if not return_dict:
109
+ output = (logits,) + outputs[1:]
110
+ output = ((loss,) + output) if loss is not None else output
111
+ output = output + (token_accuracy,) if token_accuracy is not None else output
112
+ return output
113
+
114
+ # Return custom output class with token_accuracy field
115
+ return LigerCausalLMOutputWithPast(
116
+ loss=loss,
117
+ logits=logits,
118
+ past_key_values=outputs.past_key_values,
119
+ hidden_states=outputs.hidden_states,
120
+ attentions=outputs.attentions,
121
+ token_accuracy=token_accuracy,
122
+ )
@@ -0,0 +1,261 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from torch.nn import CrossEntropyLoss
9
+ from transformers.cache_utils import Cache
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+ from transformers.utils.deprecation import deprecate_kwarg
12
+
13
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
14
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
16
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
17
+
18
+
19
+ def lce_forward_deprecated(
20
+ self,
21
+ input_ids: torch.LongTensor = None,
22
+ attention_mask: Optional[torch.Tensor] = None,
23
+ position_ids: Optional[torch.LongTensor] = None,
24
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
25
+ inputs_embeds: Optional[torch.FloatTensor] = None,
26
+ labels: Optional[torch.LongTensor] = None,
27
+ use_cache: Optional[bool] = None,
28
+ output_attentions: Optional[bool] = None,
29
+ output_hidden_states: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ cache_position: Optional[torch.LongTensor] = None,
32
+ skip_logits: Optional[bool] = None,
33
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
34
+ r"""
35
+
36
+ copy paste transformers.models.gemma.modeling_gemma causalLM with loss replaced with liger fused cross entropy
37
+
38
+ Args:
39
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
40
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
41
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
42
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
43
+
44
+ Returns:
45
+
46
+ Example:
47
+
48
+ ```python
49
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
50
+
51
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
52
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
53
+
54
+ >>> prompt = "What is your favorite condiment?"
55
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
56
+
57
+ >>> # Generate
58
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
59
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
60
+ "What is your favorite condiment?"
61
+ ```"""
62
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
63
+ output_hidden_states = (
64
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
65
+ )
66
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
67
+
68
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
69
+ outputs = self.model(
70
+ input_ids=input_ids,
71
+ attention_mask=attention_mask,
72
+ position_ids=position_ids,
73
+ past_key_values=past_key_values,
74
+ inputs_embeds=inputs_embeds,
75
+ use_cache=use_cache,
76
+ output_attentions=output_attentions,
77
+ output_hidden_states=output_hidden_states,
78
+ return_dict=return_dict,
79
+ cache_position=cache_position,
80
+ )
81
+
82
+ hidden_states = outputs[0]
83
+
84
+ loss = None
85
+ logits = None
86
+
87
+ if skip_logits and labels is None:
88
+ raise ValueError("skip_logits is True, but labels is None")
89
+
90
+ if skip_logits is None:
91
+ # By default, if in training mode, don't materialize logits
92
+ skip_logits = self.training and labels is not None
93
+
94
+ if skip_logits:
95
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
96
+ shift_labels = labels[..., 1:].contiguous()
97
+
98
+ # flatten
99
+
100
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
101
+ shift_labels = shift_labels.view(-1)
102
+
103
+ lce = LigerFusedLinearCrossEntropyLoss()
104
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
105
+
106
+ else:
107
+ logits = self.lm_head(hidden_states)
108
+ if labels is not None:
109
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
110
+ logits = logits.float()
111
+ # Shift so that tokens < n predict n
112
+ shift_logits = logits[..., :-1, :].contiguous()
113
+ shift_labels = labels[..., 1:].contiguous()
114
+ # Flatten the tokens
115
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
116
+ shift_labels = shift_labels.view(-1)
117
+ # Ensure tensors are on the same device
118
+ shift_labels = shift_labels.to(shift_logits.device)
119
+ loss_fct = CrossEntropyLoss()
120
+ loss = loss_fct(shift_logits, shift_labels)
121
+
122
+ if not return_dict:
123
+ output = (logits,) + outputs[1:]
124
+ return (loss,) + output if loss is not None else output
125
+
126
+ return CausalLMOutputWithPast(
127
+ loss=loss,
128
+ logits=logits,
129
+ past_key_values=outputs.past_key_values,
130
+ hidden_states=outputs.hidden_states,
131
+ attentions=outputs.attentions,
132
+ )
133
+
134
+
135
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
136
+ def lce_forward(
137
+ self,
138
+ input_ids: torch.LongTensor = None,
139
+ attention_mask: Optional[torch.Tensor] = None,
140
+ position_ids: Optional[torch.LongTensor] = None,
141
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
142
+ inputs_embeds: Optional[torch.FloatTensor] = None,
143
+ labels: Optional[torch.LongTensor] = None,
144
+ use_cache: Optional[bool] = None,
145
+ output_attentions: Optional[bool] = None,
146
+ output_hidden_states: Optional[bool] = None,
147
+ return_dict: Optional[bool] = None,
148
+ cache_position: Optional[torch.LongTensor] = None,
149
+ logits_to_keep: Union[int, torch.Tensor] = 0,
150
+ skip_logits: Optional[bool] = None,
151
+ **kwargs,
152
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
153
+ r"""
154
+ Args:
155
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
156
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
157
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
158
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
159
+
160
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
161
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
162
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
163
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
164
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
165
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
166
+
167
+ Returns:
168
+
169
+ Example:
170
+
171
+ ```python
172
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
173
+
174
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
175
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
176
+
177
+ >>> prompt = "What is your favorite condiment?"
178
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
179
+
180
+ >>> # Generate
181
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
182
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
183
+ "What is your favorite condiment?"
184
+ ```"""
185
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
186
+ output_hidden_states = (
187
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
188
+ )
189
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
190
+
191
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
192
+ outputs = self.model(
193
+ input_ids=input_ids,
194
+ attention_mask=attention_mask,
195
+ position_ids=position_ids,
196
+ past_key_values=past_key_values,
197
+ inputs_embeds=inputs_embeds,
198
+ use_cache=use_cache,
199
+ output_attentions=output_attentions,
200
+ output_hidden_states=output_hidden_states,
201
+ return_dict=return_dict,
202
+ cache_position=cache_position,
203
+ **kwargs,
204
+ )
205
+
206
+ hidden_states = outputs[0]
207
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
208
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
209
+ kept_hidden_states = hidden_states[:, slice_indices, :]
210
+
211
+ shift_labels = kwargs.pop("shift_labels", None)
212
+ logits = None
213
+ loss = None
214
+ token_accuracy = None
215
+
216
+ if skip_logits and labels is None and shift_labels is None:
217
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
218
+
219
+ if skip_logits is None:
220
+ # By default, if in training mode, don't materialize logits
221
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
222
+
223
+ # Compute loss
224
+ if skip_logits:
225
+ result = LigerForCausalLMLoss(
226
+ hidden_states=kept_hidden_states,
227
+ lm_head_weight=self.lm_head.weight,
228
+ labels=labels,
229
+ shift_labels=shift_labels,
230
+ hidden_size=self.config.hidden_size,
231
+ **kwargs,
232
+ )
233
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
234
+ else:
235
+ logits = self.lm_head(kept_hidden_states)
236
+ if labels is not None or shift_labels is not None:
237
+ loss = self.loss_function(
238
+ logits=logits,
239
+ labels=labels,
240
+ shift_labels=shift_labels,
241
+ vocab_size=self.config.vocab_size,
242
+ **kwargs,
243
+ )
244
+
245
+ if not return_dict:
246
+ output_tuple = (logits,) + outputs[1:]
247
+ if loss is not None:
248
+ output_tuple = (loss,) + output_tuple
249
+ if token_accuracy is not None:
250
+ output_tuple = output_tuple + (token_accuracy,)
251
+ return output_tuple
252
+
253
+ # Return custom output class with token_accuracy field
254
+ return LigerCausalLMOutputWithPast(
255
+ loss=loss,
256
+ logits=logits,
257
+ past_key_values=outputs.past_key_values,
258
+ hidden_states=outputs.hidden_states,
259
+ attentions=outputs.attentions,
260
+ token_accuracy=token_accuracy,
261
+ )
@@ -0,0 +1,283 @@
1
+ import logging
2
+
3
+ from typing import Optional
4
+ from typing import Tuple
5
+ from typing import Union
6
+
7
+ import torch
8
+
9
+ from torch.nn import CrossEntropyLoss
10
+ from transformers.cache_utils import HybridCache
11
+ from transformers.modeling_outputs import CausalLMOutputWithPast
12
+ from transformers.utils.deprecation import deprecate_kwarg
13
+
14
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
15
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
16
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
17
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+
22
+ def lce_forward_deprecated(
23
+ self,
24
+ input_ids: torch.LongTensor = None,
25
+ attention_mask: Optional[torch.Tensor] = None,
26
+ position_ids: Optional[torch.LongTensor] = None,
27
+ past_key_values: Optional[HybridCache] = None,
28
+ inputs_embeds: Optional[torch.FloatTensor] = None,
29
+ labels: Optional[torch.LongTensor] = None,
30
+ use_cache: Optional[bool] = None,
31
+ output_attentions: Optional[bool] = None,
32
+ output_hidden_states: Optional[bool] = None,
33
+ return_dict: Optional[bool] = None,
34
+ cache_position: Optional[torch.LongTensor] = None,
35
+ skip_logits: Optional[bool] = None,
36
+ **kwargs,
37
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
38
+ r"""
39
+ Args:
40
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
41
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
42
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
43
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
44
+
45
+ Returns:
46
+
47
+ Example:
48
+
49
+ ```python
50
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
51
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
52
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
53
+ >>> prompt = "What is your favorite condiment?"
54
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
55
+ >>> # Generate
56
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
57
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
58
+ "What is your favorite condiment?"
59
+ ```"""
60
+
61
+ if self.training and self.config._attn_implementation != "eager":
62
+ logger.warning_once(
63
+ "It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
64
+ f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
65
+ )
66
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
67
+ output_hidden_states = (
68
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
69
+ )
70
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
72
+ outputs = self.model(
73
+ input_ids=input_ids,
74
+ attention_mask=attention_mask,
75
+ position_ids=position_ids,
76
+ past_key_values=past_key_values,
77
+ inputs_embeds=inputs_embeds,
78
+ use_cache=use_cache,
79
+ output_attentions=output_attentions,
80
+ output_hidden_states=output_hidden_states,
81
+ return_dict=return_dict,
82
+ cache_position=cache_position,
83
+ **kwargs,
84
+ )
85
+
86
+ hidden_states = outputs[0]
87
+
88
+ loss = None
89
+ logits = None
90
+
91
+ if skip_logits and labels is None:
92
+ raise ValueError("skip_logits is True, but labels is None")
93
+
94
+ if skip_logits is None:
95
+ # By default, if in training mode, don't materialize logits
96
+ skip_logits = self.training and labels is not None
97
+
98
+ if skip_logits:
99
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
100
+ shift_labels = labels[..., 1:].contiguous()
101
+
102
+ # flatten
103
+
104
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
105
+ shift_labels = shift_labels.view(-1)
106
+
107
+ lce = LigerFusedLinearCrossEntropyLoss(softcap=self.config.final_logit_softcapping)
108
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
109
+
110
+ else:
111
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
112
+ logits = self.lm_head(hidden_states)
113
+ if self.config.final_logit_softcapping is not None:
114
+ logits = logits / self.config.final_logit_softcapping
115
+ logits = torch.tanh(logits)
116
+ logits = logits * self.config.final_logit_softcapping
117
+
118
+ loss = None
119
+ if labels is not None:
120
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
121
+ logits = logits.float()
122
+ # Shift so that tokens < n predict n
123
+ shift_logits = logits[..., :-1, :].contiguous()
124
+ shift_labels = labels[..., 1:].contiguous()
125
+ # Flatten the tokens
126
+ loss_fct = CrossEntropyLoss()
127
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
128
+ shift_labels = shift_labels.view(-1)
129
+ # Enable model parallelism
130
+ shift_labels = shift_labels.to(shift_logits.device)
131
+ loss = loss_fct(shift_logits, shift_labels)
132
+
133
+ if not return_dict:
134
+ output = (logits,) + outputs[1:]
135
+ return (loss,) + output if loss is not None else output
136
+
137
+ return CausalLMOutputWithPast(
138
+ loss=loss,
139
+ logits=logits,
140
+ past_key_values=outputs.past_key_values,
141
+ hidden_states=outputs.hidden_states,
142
+ attentions=outputs.attentions,
143
+ )
144
+
145
+
146
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
147
+ def lce_forward(
148
+ self,
149
+ input_ids: torch.LongTensor = None,
150
+ attention_mask: Optional[torch.Tensor] = None,
151
+ position_ids: Optional[torch.LongTensor] = None,
152
+ past_key_values: Optional[HybridCache] = None,
153
+ inputs_embeds: Optional[torch.FloatTensor] = None,
154
+ labels: Optional[torch.LongTensor] = None,
155
+ use_cache: Optional[bool] = None,
156
+ output_attentions: Optional[bool] = None,
157
+ output_hidden_states: Optional[bool] = None,
158
+ return_dict: Optional[bool] = None,
159
+ cache_position: Optional[torch.LongTensor] = None,
160
+ logits_to_keep: Union[int, torch.Tensor] = 0,
161
+ skip_logits: Optional[bool] = None,
162
+ **kwargs,
163
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
164
+ r"""
165
+ Args:
166
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
167
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
168
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
169
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
170
+
171
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
172
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
173
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
174
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
175
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
176
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
177
+
178
+ Returns:
179
+
180
+ Example:
181
+
182
+ ```python
183
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
184
+
185
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
186
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
187
+
188
+ >>> prompt = "What is your favorite condiment?"
189
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
190
+
191
+ >>> # Generate
192
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
193
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
194
+ "What is your favorite condiment?"
195
+ ```"""
196
+
197
+ if self.training and self.config._attn_implementation != "eager":
198
+ logger.warning_once(
199
+ "It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
200
+ f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
201
+ )
202
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
203
+ output_hidden_states = (
204
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
205
+ )
206
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
207
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
208
+ outputs = self.model(
209
+ input_ids=input_ids,
210
+ attention_mask=attention_mask,
211
+ position_ids=position_ids,
212
+ past_key_values=past_key_values,
213
+ inputs_embeds=inputs_embeds,
214
+ use_cache=use_cache,
215
+ output_attentions=output_attentions,
216
+ output_hidden_states=output_hidden_states,
217
+ return_dict=return_dict,
218
+ cache_position=cache_position,
219
+ **kwargs,
220
+ )
221
+
222
+ hidden_states = outputs[0]
223
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
224
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
225
+ kept_hidden_states = hidden_states[:, slice_indices, :]
226
+
227
+ shift_labels = kwargs.pop("shift_labels", None)
228
+ logits = None
229
+ loss = None
230
+ token_accuracy = None
231
+
232
+ if skip_logits and labels is None and shift_labels is None:
233
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
234
+
235
+ if skip_logits is None:
236
+ # By default, if in training mode, don't materialize logits
237
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
238
+
239
+ # Compute loss
240
+ if skip_logits:
241
+ result = LigerForCausalLMLoss(
242
+ hidden_states=kept_hidden_states,
243
+ lm_head_weight=self.lm_head.weight,
244
+ labels=labels,
245
+ shift_labels=shift_labels,
246
+ hidden_size=self.config.hidden_size,
247
+ final_logit_softcapping=self.config.final_logit_softcapping,
248
+ **kwargs,
249
+ )
250
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
251
+
252
+ else:
253
+ logits = self.lm_head(kept_hidden_states)
254
+ if self.config.final_logit_softcapping is not None:
255
+ logits = logits / self.config.final_logit_softcapping
256
+ logits = torch.tanh(logits)
257
+ logits = logits * self.config.final_logit_softcapping
258
+
259
+ loss = None
260
+ if labels is not None or shift_labels is not None:
261
+ loss = self.loss_function(
262
+ logits=logits,
263
+ labels=labels,
264
+ shift_labels=shift_labels,
265
+ vocab_size=self.vocab_size,
266
+ **kwargs,
267
+ )
268
+
269
+ if not return_dict:
270
+ output_tuple = (logits,) + outputs[1:]
271
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
272
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
273
+ return output_tuple
274
+
275
+ # Return custom output class with token_accuracy field
276
+ return LigerCausalLMOutputWithPast(
277
+ loss=loss,
278
+ logits=logits,
279
+ past_key_values=outputs.past_key_values,
280
+ hidden_states=outputs.hidden_states,
281
+ attentions=outputs.attentions,
282
+ token_accuracy=token_accuracy,
283
+ )