liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -1,45 +1,2 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
from liger_kernel.transformers.monkey_patch import (
|
|
4
|
-
apply_liger_kernel_to_gemma,
|
|
5
|
-
apply_liger_kernel_to_llama,
|
|
6
|
-
apply_liger_kernel_to_mistral,
|
|
7
|
-
apply_liger_kernel_to_mixtral,
|
|
8
|
-
)
|
|
9
|
-
|
|
10
|
-
logger = logging.getLogger(__name__)
|
|
11
|
-
|
|
12
|
-
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
13
|
-
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
14
|
-
"gemma": apply_liger_kernel_to_gemma,
|
|
15
|
-
"llama": apply_liger_kernel_to_llama,
|
|
16
|
-
"mistral": apply_liger_kernel_to_mistral,
|
|
17
|
-
"mixtral": apply_liger_kernel_to_mixtral,
|
|
18
|
-
}
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
def _apply_liger_kernel(model_type: str = "", **kwargs) -> None:
|
|
22
|
-
"""
|
|
23
|
-
Applies Liger kernels based on the specified model type. The custom
|
|
24
|
-
kernels for the specified model type will be applied with the provided
|
|
25
|
-
keyword arguments, otherwise the default configuration will be used.
|
|
26
|
-
|
|
27
|
-
Args:
|
|
28
|
-
- model_type: the model types as defined in transformers/models/auto/modeling_auto.py
|
|
29
|
-
and specified in the model's config.json
|
|
30
|
-
- kwargs: keyword arguments that are passed to the corresponding apply_liger_kernel_to_* function.
|
|
31
|
-
"""
|
|
32
|
-
|
|
33
|
-
if not model_type:
|
|
34
|
-
logger.info("Model type was not provided. No Liger kernels will be applied.")
|
|
35
|
-
return
|
|
36
|
-
|
|
37
|
-
if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
|
|
38
|
-
logger.info(
|
|
39
|
-
f"There are currently no Liger kernels supported for model type: {model_type}."
|
|
40
|
-
)
|
|
41
|
-
return
|
|
42
|
-
|
|
43
|
-
logger.info(f"Applying Liger kernels for model type: {model_type}.")
|
|
44
|
-
# Apply the default combination of liger kernels available for the model
|
|
45
|
-
MODEL_TYPE_TO_APPLY_LIGER_FN[model_type](**kwargs)
|
|
1
|
+
# To not break HF Trainer integration
|
|
2
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
import torch.nn as nn
|
|
2
|
+
|
|
3
|
+
from liger_kernel.ops import LigerTVDLossFunction
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class LigerTVDLoss(nn.Module):
|
|
7
|
+
def __init__(self, reduction="batchmean", ignore_index: int = -100):
|
|
8
|
+
super(LigerTVDLoss, self).__init__()
|
|
9
|
+
self.reduction = reduction
|
|
10
|
+
self.ignore_index = ignore_index
|
|
11
|
+
|
|
12
|
+
def forward(self, p, q, shift_labels=None):
|
|
13
|
+
return LigerTVDLossFunction.apply(p, q, shift_labels, self.reduction, self.ignore_index)
|
liger_kernel/triton/__init__.py
CHANGED
|
@@ -1,12 +1,10 @@
|
|
|
1
1
|
import os
|
|
2
2
|
import random
|
|
3
3
|
|
|
4
|
-
from overrides import override
|
|
5
4
|
from triton.runtime.cache import FileCacheManager
|
|
6
5
|
|
|
7
6
|
|
|
8
7
|
class LigerTritonFileCacheManager(FileCacheManager):
|
|
9
|
-
@override
|
|
10
8
|
def put(self, data, filename, binary=True) -> str:
|
|
11
9
|
if not self.cache_dir:
|
|
12
10
|
raise RuntimeError("Could not create or locate cache dir")
|
|
@@ -39,6 +37,4 @@ def apply_liger_triton_cache_manager():
|
|
|
39
37
|
Experimental feature to get around transient FileNotFoundError in triton compilation.
|
|
40
38
|
For more details please see https://github.com/triton-lang/triton/pull/4295
|
|
41
39
|
"""
|
|
42
|
-
os.environ["TRITON_CACHE_MANAGER"] =
|
|
43
|
-
"liger_kernel.triton.monkey_patch:LigerTritonFileCacheManager"
|
|
44
|
-
)
|
|
40
|
+
os.environ["TRITON_CACHE_MANAGER"] = "liger_kernel.triton.monkey_patch:LigerTritonFileCacheManager"
|
liger_kernel/utils.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
try:
|
|
2
|
+
import peft # noqa: F401
|
|
3
|
+
|
|
4
|
+
PEFT_AVAILABLE = True
|
|
5
|
+
except ImportError:
|
|
6
|
+
PEFT_AVAILABLE = False
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def is_peft_available():
|
|
12
|
+
return PEFT_AVAILABLE
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def infer_device():
|
|
16
|
+
"""
|
|
17
|
+
Get current device name based on available devices
|
|
18
|
+
"""
|
|
19
|
+
if torch.cuda.is_available(): # Works for both Nvidia and AMD
|
|
20
|
+
return "cuda"
|
|
21
|
+
# Use Ascend NPU if available (torch.npu)
|
|
22
|
+
elif is_npu_available():
|
|
23
|
+
return "npu"
|
|
24
|
+
# XPU (Intel) if available
|
|
25
|
+
elif torch.xpu.is_available():
|
|
26
|
+
return "xpu"
|
|
27
|
+
else:
|
|
28
|
+
return "cpu"
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def is_npu_available() -> bool:
|
|
32
|
+
"""Detect Ascend NPU availability."""
|
|
33
|
+
try:
|
|
34
|
+
from transformers.utils import is_torch_npu_available
|
|
35
|
+
|
|
36
|
+
return is_torch_npu_available()
|
|
37
|
+
except Exception:
|
|
38
|
+
return False
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def get_npu_multi_processor_count() -> int:
|
|
42
|
+
"""Return a heuristic multi-processor count for NPU."""
|
|
43
|
+
if is_npu_available():
|
|
44
|
+
NPU_MULTI_PROCESSOR_COUNT = 48
|
|
45
|
+
dev_props = torch.npu.get_device_properties()
|
|
46
|
+
# The vector_core_num attribute is supported in the torch.npu v7.2.0 release version.
|
|
47
|
+
return dev_props.vector_core_num if hasattr(dev_props, "vector_core_num") else NPU_MULTI_PROCESSOR_COUNT
|
|
48
|
+
# Reasonable default to avoid division by zero
|
|
49
|
+
return 1
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def transformers_version_dispatch(
|
|
53
|
+
required_version: str,
|
|
54
|
+
before_fn,
|
|
55
|
+
after_fn,
|
|
56
|
+
before_args: tuple = (),
|
|
57
|
+
after_args: tuple = (),
|
|
58
|
+
before_kwargs: dict = None,
|
|
59
|
+
after_kwargs: dict = None,
|
|
60
|
+
):
|
|
61
|
+
"""
|
|
62
|
+
Dispatches to different functions based on package version comparison.
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
required_version: Version to compare against (e.g. "4.48.0")
|
|
66
|
+
before_fn: Function to call if package_version < required_version
|
|
67
|
+
after_fn: Function to call if package_version >= required_version
|
|
68
|
+
before_args: Positional arguments for before_fn
|
|
69
|
+
after_args: Positional arguments for after_fn
|
|
70
|
+
before_kwargs: Keyword arguments for before_fn
|
|
71
|
+
after_kwargs: Keyword arguments for after_fn
|
|
72
|
+
|
|
73
|
+
Returns:
|
|
74
|
+
Result from either before_fn or after_fn
|
|
75
|
+
|
|
76
|
+
Example:
|
|
77
|
+
>>> rotary_emb = transformers_version_dispatch(
|
|
78
|
+
... "4.48.0",
|
|
79
|
+
... LlamaRotaryEmbedding,
|
|
80
|
+
... LlamaRotaryEmbedding,
|
|
81
|
+
... before_args=(head_dim,),
|
|
82
|
+
... after_args=(LlamaConfig(head_dim=head_dim),),
|
|
83
|
+
... before_kwargs={'device': device},
|
|
84
|
+
... after_kwargs={'device': device}
|
|
85
|
+
... )
|
|
86
|
+
"""
|
|
87
|
+
from packaging import version
|
|
88
|
+
from transformers import __version__ as transformers_version
|
|
89
|
+
|
|
90
|
+
before_kwargs = before_kwargs or {}
|
|
91
|
+
after_kwargs = after_kwargs or {}
|
|
92
|
+
|
|
93
|
+
if version.parse(transformers_version) < version.parse(required_version):
|
|
94
|
+
return before_fn(*before_args, **before_kwargs)
|
|
95
|
+
else:
|
|
96
|
+
return after_fn(*after_args, **after_kwargs)
|
|
@@ -0,0 +1,447 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: liger_kernel_nightly
|
|
3
|
+
Version: 0.6.4.dev20251212103629
|
|
4
|
+
Summary: Efficient Triton kernels for LLM Training
|
|
5
|
+
License: BSD 2-CLAUSE LICENSE
|
|
6
|
+
Copyright 2024 LinkedIn Corporation
|
|
7
|
+
All Rights Reserved.
|
|
8
|
+
Redistribution and use in source and binary forms, with or
|
|
9
|
+
without modification, are permitted provided that the following
|
|
10
|
+
conditions are met:
|
|
11
|
+
1. Redistributions of source code must retain the above copyright
|
|
12
|
+
notice, this list of conditions and the following disclaimer.
|
|
13
|
+
2. Redistributions in binary form must reproduce the above
|
|
14
|
+
copyright notice, this list of conditions and the following
|
|
15
|
+
disclaimer in the documentation and/or other materials provided
|
|
16
|
+
with the distribution.
|
|
17
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
18
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
19
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
20
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
21
|
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
22
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
23
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
24
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
25
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
26
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
28
|
+
|
|
29
|
+
Project-URL: Homepage, https://github.com/linkedin/Liger-Kernel
|
|
30
|
+
Description-Content-Type: text/markdown
|
|
31
|
+
License-File: LICENSE
|
|
32
|
+
License-File: NOTICE
|
|
33
|
+
Requires-Dist: torch>=2.1.2
|
|
34
|
+
Requires-Dist: triton>=2.3.1
|
|
35
|
+
Provides-Extra: dev
|
|
36
|
+
Requires-Dist: transformers>=4.49.0; extra == "dev"
|
|
37
|
+
Requires-Dist: matplotlib>=3.7.2; extra == "dev"
|
|
38
|
+
Requires-Dist: ruff>=0.12.0; extra == "dev"
|
|
39
|
+
Requires-Dist: pytest>=7.1.2; extra == "dev"
|
|
40
|
+
Requires-Dist: pytest-xdist; extra == "dev"
|
|
41
|
+
Requires-Dist: pytest-cov; extra == "dev"
|
|
42
|
+
Requires-Dist: pytest-asyncio; extra == "dev"
|
|
43
|
+
Requires-Dist: pytest-rerunfailures; extra == "dev"
|
|
44
|
+
Requires-Dist: datasets>=2.19.2; extra == "dev"
|
|
45
|
+
Requires-Dist: seaborn; extra == "dev"
|
|
46
|
+
Requires-Dist: mkdocs-material; extra == "dev"
|
|
47
|
+
Requires-Dist: torchvision>=0.20; extra == "dev"
|
|
48
|
+
|
|
49
|
+
<a name="readme-top"></a>
|
|
50
|
+
|
|
51
|
+
# Liger Kernel: Efficient Triton Kernels for LLM Training
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
<table style="width: 100%; text-align: center; border-collapse: collapse;">
|
|
55
|
+
<tr>
|
|
56
|
+
<th style="padding: 10px;" colspan="2">Stable</th>
|
|
57
|
+
<th style="padding: 10px;" colspan="2">Nightly</th>
|
|
58
|
+
<th style="padding: 10px;">Discord</th>
|
|
59
|
+
</tr>
|
|
60
|
+
<tr>
|
|
61
|
+
<td style="padding: 10px;">
|
|
62
|
+
<a href="https://pepy.tech/project/liger-kernel">
|
|
63
|
+
<img src="https://static.pepy.tech/badge/liger-kernel" alt="Downloads (Stable)">
|
|
64
|
+
</a>
|
|
65
|
+
</td>
|
|
66
|
+
<td style="padding: 10px;">
|
|
67
|
+
<a href="https://pypi.org/project/liger-kernel">
|
|
68
|
+
<img alt="PyPI - Version" src="https://img.shields.io/pypi/v/liger-kernel?color=green">
|
|
69
|
+
</a>
|
|
70
|
+
</td>
|
|
71
|
+
<td style="padding: 10px;">
|
|
72
|
+
<a href="https://pepy.tech/project/liger-kernel-nightly">
|
|
73
|
+
<img src="https://static.pepy.tech/badge/liger-kernel-nightly" alt="Downloads (Nightly)">
|
|
74
|
+
</a>
|
|
75
|
+
</td>
|
|
76
|
+
<td style="padding: 10px;">
|
|
77
|
+
<a href="https://pypi.org/project/liger-kernel-nightly">
|
|
78
|
+
<img alt="PyPI - Version" src="https://img.shields.io/pypi/v/liger-kernel-nightly?color=green">
|
|
79
|
+
</a>
|
|
80
|
+
</td>
|
|
81
|
+
<td style="padding: 10px;">
|
|
82
|
+
<a href="https://discord.gg/gpumode">
|
|
83
|
+
<img src="https://dcbadge.limes.pink/api/server/gpumode?style=flat" alt="Join Our Discord">
|
|
84
|
+
</a>
|
|
85
|
+
</td>
|
|
86
|
+
</tr>
|
|
87
|
+
</table>
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
<img src="https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/logo-banner.png">
|
|
92
|
+
|
|
93
|
+
[Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [High-level APIs](#high-level-apis) | [Low-level APIs](#low-level-apis) | [Cite our work](#cite-this-work)
|
|
94
|
+
|
|
95
|
+
<details>
|
|
96
|
+
<summary>Latest News 🔥</summary>
|
|
97
|
+
|
|
98
|
+
- [2025/03/06] We release a joint blog post on TorchTune × Liger - [Peak Performance, Minimized Memory: Optimizing torchtune’s performance with torch.compile & Liger Kernel](https://pytorch.org/blog/peak-performance-minimized-memory/)
|
|
99
|
+
- [2024/12/11] We release [v0.5.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.5.0): 80% more memory efficient post training losses (DPO, ORPO, CPO, etc)!
|
|
100
|
+
- [2024/12/5] We release LinkedIn Engineering Blog - [Liger-Kernel: Empowering an open source ecosystem of Triton Kernels for Efficient LLM Training](https://www.linkedin.com/blog/engineering/open-source/liger-kernel-open-source-ecosystem-for-efficient-llm-training)
|
|
101
|
+
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision!
|
|
102
|
+
- [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989
|
|
103
|
+
- [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks!
|
|
104
|
+
- [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel)
|
|
105
|
+
- [2024/8/23] Official release: check out our [X post](https://x.com/hsu_byron/status/1827072737673982056)
|
|
106
|
+
|
|
107
|
+
</details>
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
**Liger Kernel** is a collection of Triton kernels designed specifically for LLM training. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. The kernel works out of the box with [Flash Attention](https://github.com/Dao-AILab/flash-attention), [PyTorch FSDP](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [Microsoft DeepSpeed](https://github.com/microsoft/DeepSpeed). We welcome contributions from the community to gather the best kernels for LLM training.
|
|
111
|
+
|
|
112
|
+
We've also added optimized Post-Training kernels that deliver **up to 80% memory savings** for alignment and distillation tasks. We support losses like DPO, CPO, ORPO, SimPO, KTO, JSD, and many more. Check out [how we optimize the memory](https://x.com/hsu_byron/status/1866577403918917655).
|
|
113
|
+
|
|
114
|
+
You can view the documentation site for additional installation, usage examples, and API references:https://linkedin.github.io/Liger-Kernel/
|
|
115
|
+
|
|
116
|
+
You can view the Liger Kernel Technical Report: https://openreview.net/forum?id=36SjAIT42G
|
|
117
|
+
|
|
118
|
+
## Supercharge Your Model with Liger Kernel
|
|
119
|
+
|
|
120
|
+

|
|
121
|
+
|
|
122
|
+
With one line of code, Liger Kernel can increase throughput by more than 20% and reduce memory usage by 60%, thereby enabling longer context lengths, larger batch sizes, and massive vocabularies.
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
| Speed Up | Memory Reduction |
|
|
126
|
+
|--------------------------|-------------------------|
|
|
127
|
+
|  |  |
|
|
128
|
+
|
|
129
|
+
> **Note:**
|
|
130
|
+
> - Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Data Type = `bf16`, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
|
|
131
|
+
> - Hugging Face models start to OOM at a 4K context length, whereas Hugging Face + Liger Kernel scales up to 16K.
|
|
132
|
+
|
|
133
|
+
## Optimize Post Training with Liger Kernel
|
|
134
|
+
|
|
135
|
+
<p align="center">
|
|
136
|
+
<img src="https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/post-training.png" width="50%" alt="Post Training">
|
|
137
|
+
</p>
|
|
138
|
+
|
|
139
|
+
We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
|
|
140
|
+
|
|
141
|
+
```python
|
|
142
|
+
from liger_kernel.chunked_loss import LigerFusedLinearORPOLoss
|
|
143
|
+
orpo_loss = LigerFusedLinearORPOLoss()
|
|
144
|
+
y = orpo_loss(lm_head.weight, x, target)
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
## Examples
|
|
149
|
+
|
|
150
|
+
| **Use Case** | **Description** |
|
|
151
|
+
|------------------------------------------------|---------------------------------------------------------------------------------------------------|
|
|
152
|
+
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP |
|
|
153
|
+
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 |
|
|
154
|
+
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP |
|
|
155
|
+
| [**Vision-Language Model SFT**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface/run_qwen2_vl.sh) | Finetune Qwen2-VL on image-text data using 4 A100s with FSDP |
|
|
156
|
+
| [**Liger ORPO Trainer**](https://github.com/linkedin/Liger-Kernel/blob/main/examples/alignment/run_orpo.py) | Align Llama 3.2 using Liger ORPO Trainer with FSDP with 50% memory reduction |
|
|
157
|
+
|
|
158
|
+
## Key Features
|
|
159
|
+
|
|
160
|
+
- **Ease of use:** Simply patch your Hugging Face model with one line of code, or compose your own model using our Liger Kernel modules.
|
|
161
|
+
- **Time and memory efficient:** In the same spirit as Flash-Attn, but for layers like **RMSNorm**, **RoPE**, **SwiGLU**, and **CrossEntropy**! Increases multi-GPU training throughput by 20% and reduces memory usage by 60% with **kernel fusion**, **in-place replacement**, and **chunking** techniques.
|
|
162
|
+
- **Exact:** Computation is exact—no approximations! Both forward and backward passes are implemented with rigorous unit tests and undergo convergence testing against training runs without Liger Kernel to ensure accuracy.
|
|
163
|
+
- **Lightweight:** Liger Kernel has minimal dependencies, requiring only Torch and Triton—no extra libraries needed! Say goodbye to dependency headaches!
|
|
164
|
+
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
|
|
165
|
+
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift), [oumi](https://github.com/oumi-ai/oumi/tree/main)
|
|
166
|
+
|
|
167
|
+
## Installation
|
|
168
|
+
|
|
169
|
+
### Dependencies
|
|
170
|
+
|
|
171
|
+
#### CUDA
|
|
172
|
+
|
|
173
|
+
- `torch >= 2.1.2`
|
|
174
|
+
- `triton >= 2.3.0`
|
|
175
|
+
|
|
176
|
+
#### ROCm
|
|
177
|
+
|
|
178
|
+
- `torch >= 2.5.0` Install according to the instruction in Pytorch official webpage.
|
|
179
|
+
- `triton >= 3.0.0` Install from pypi. (e.g. `pip install triton==3.0.0`)
|
|
180
|
+
|
|
181
|
+
```bash
|
|
182
|
+
pip install -e .[dev]
|
|
183
|
+
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3/
|
|
184
|
+
```
|
|
185
|
+
|
|
186
|
+
### Optional Dependencies
|
|
187
|
+
|
|
188
|
+
- `transformers >= 4.x`: Required if you plan to use the transformers models patching APIs. The specific model you are working will dictate the minimum version of transformers.
|
|
189
|
+
|
|
190
|
+
> **Note:**
|
|
191
|
+
> Our kernels inherit the full spectrum of hardware compatibility offered by [Triton](https://github.com/triton-lang/triton).
|
|
192
|
+
|
|
193
|
+
To install the stable version:
|
|
194
|
+
|
|
195
|
+
```bash
|
|
196
|
+
$ pip install liger-kernel
|
|
197
|
+
```
|
|
198
|
+
|
|
199
|
+
To install the nightly version:
|
|
200
|
+
|
|
201
|
+
```bash
|
|
202
|
+
$ pip install liger-kernel-nightly
|
|
203
|
+
```
|
|
204
|
+
|
|
205
|
+
To install from source:
|
|
206
|
+
|
|
207
|
+
```bash
|
|
208
|
+
git clone https://github.com/linkedin/Liger-Kernel.git
|
|
209
|
+
cd Liger-Kernel
|
|
210
|
+
|
|
211
|
+
# Install Default Dependencies
|
|
212
|
+
# Setup.py will detect whether you are using AMD or NVIDIA
|
|
213
|
+
pip install -e .
|
|
214
|
+
|
|
215
|
+
# Setup Development Dependencies
|
|
216
|
+
pip install -e ".[dev]"
|
|
217
|
+
|
|
218
|
+
# NOTE -> For AMD users only
|
|
219
|
+
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3/
|
|
220
|
+
```
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
## Getting Started
|
|
224
|
+
|
|
225
|
+
There are a couple of ways to apply Liger kernels, depending on the level of customization required.
|
|
226
|
+
|
|
227
|
+
### 1. Use AutoLigerKernelForCausalLM
|
|
228
|
+
|
|
229
|
+
Using the `AutoLigerKernelForCausalLM` is the simplest approach, as you don't have to import a model-specific patching API. If the model type is supported, the modeling code will be automatically patched using the default settings.
|
|
230
|
+
|
|
231
|
+
```python
|
|
232
|
+
from liger_kernel.transformers import AutoLigerKernelForCausalLM
|
|
233
|
+
|
|
234
|
+
# This AutoModel wrapper class automatically monkey-patches the
|
|
235
|
+
# model with the optimized Liger kernels if the model is supported.
|
|
236
|
+
model = AutoLigerKernelForCausalLM.from_pretrained("path/to/some/model")
|
|
237
|
+
```
|
|
238
|
+
|
|
239
|
+
### 2. Apply Model-Specific Patching APIs
|
|
240
|
+
|
|
241
|
+
Using the [patching APIs](#patching), you can swap Hugging Face models with optimized Liger Kernels.
|
|
242
|
+
|
|
243
|
+
```python
|
|
244
|
+
import transformers
|
|
245
|
+
from liger_kernel.transformers import apply_liger_kernel_to_llama
|
|
246
|
+
|
|
247
|
+
# 1a. Adding this line automatically monkey-patches the model with the optimized Liger kernels
|
|
248
|
+
apply_liger_kernel_to_llama()
|
|
249
|
+
|
|
250
|
+
# 1b. You could alternatively specify exactly which kernels are applied
|
|
251
|
+
apply_liger_kernel_to_llama(
|
|
252
|
+
rope=True,
|
|
253
|
+
swiglu=True,
|
|
254
|
+
cross_entropy=True,
|
|
255
|
+
fused_linear_cross_entropy=False,
|
|
256
|
+
rms_norm=False
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
# 2. Instantiate patched model
|
|
260
|
+
model = transformers.AutoModelForCausalLM("path/to/llama/model")
|
|
261
|
+
```
|
|
262
|
+
|
|
263
|
+
### 3. Compose Your Own Model
|
|
264
|
+
|
|
265
|
+
You can take individual [kernels](https://github.com/linkedin/Liger-Kernel?tab=readme-ov-file#model-kernels) to compose your models.
|
|
266
|
+
|
|
267
|
+
```python
|
|
268
|
+
from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
|
|
269
|
+
import torch.nn as nn
|
|
270
|
+
import torch
|
|
271
|
+
|
|
272
|
+
model = nn.Linear(128, 256).cuda()
|
|
273
|
+
|
|
274
|
+
# fuses linear + cross entropy layers together and performs chunk-by-chunk computation to reduce memory
|
|
275
|
+
loss_fn = LigerFusedLinearCrossEntropyLoss()
|
|
276
|
+
|
|
277
|
+
input = torch.randn(4, 128, requires_grad=True, device="cuda")
|
|
278
|
+
target = torch.randint(256, (4, ), device="cuda")
|
|
279
|
+
|
|
280
|
+
loss = loss_fn(model.weight, input, target)
|
|
281
|
+
loss.backward()
|
|
282
|
+
```
|
|
283
|
+
|
|
284
|
+
## High-level APIs
|
|
285
|
+
|
|
286
|
+
### AutoModel
|
|
287
|
+
|
|
288
|
+
| **AutoModel Variant** | **API** |
|
|
289
|
+
|-----------|---------|
|
|
290
|
+
| AutoModelForCausalLM | `liger_kernel.transformers.AutoLigerKernelForCausalLM` |
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
### Patching
|
|
294
|
+
|
|
295
|
+
| **Model** | **API** | **Supported Operations** |
|
|
296
|
+
|-------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
|
|
297
|
+
| Llama4 (Text) & (Multimodal) | `liger_kernel.transformers.apply_liger_kernel_to_llama4` | RMSNorm, LayerNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
298
|
+
| LLaMA 2 & 3 | `liger_kernel.transformers.apply_liger_kernel_to_llama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
299
|
+
| LLaMA 3.2-Vision | `liger_kernel.transformers.apply_liger_kernel_to_mllama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
300
|
+
| Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
301
|
+
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
302
|
+
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
303
|
+
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
304
|
+
| Gemma3 (Text) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3_text` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
305
|
+
| Gemma3 (Multimodal) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
306
|
+
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
307
|
+
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
308
|
+
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
309
|
+
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
310
|
+
| Qwen3 | `liger_kernel.transformers.apply_liger_kernel_to_qwen3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
311
|
+
| Qwen3 MoE | `liger_kernel.transformers.apply_liger_kernel_to_qwen3_moe` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
312
|
+
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
|
+
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
314
|
+
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
|
+
| Olmo3 | `liger_kernel.transformers.apply_liger_kernel_to_olmo3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
316
|
+
| GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
|
+
| GPT-OSS | `liger_kernel.transformers.apply_liger_kernel_to_gpt_oss` | RoPE, RMSNorm, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
318
|
+
| InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
319
|
+
| HunyuanV1 | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_dense` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
320
|
+
| HunyuanV1 MoE | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_moe` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
## Low-level APIs
|
|
324
|
+
|
|
325
|
+
- `Fused Linear` kernels combine linear layers with losses, reducing memory usage by up to 80% - ideal for HBM-constrained workloads.
|
|
326
|
+
- Other kernels use fusion and in-place techniques for memory and performance optimization.
|
|
327
|
+
|
|
328
|
+
### Model Kernels
|
|
329
|
+
|
|
330
|
+
| **Kernel** | **API** |
|
|
331
|
+
|---------------------------------|-------------------------------------------------------------|
|
|
332
|
+
| RMSNorm | `liger_kernel.transformers.LigerRMSNorm` |
|
|
333
|
+
| LayerNorm | `liger_kernel.transformers.LigerLayerNorm` |
|
|
334
|
+
| RoPE | `liger_kernel.transformers.liger_rotary_pos_emb` |
|
|
335
|
+
| SwiGLU | `liger_kernel.transformers.LigerSwiGLUMLP` |
|
|
336
|
+
| GeGLU | `liger_kernel.transformers.LigerGEGLUMLP` |
|
|
337
|
+
| CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
|
|
338
|
+
| Fused Linear CrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
|
|
339
|
+
| Multi Token Attention | `liger_kernel.transformers.LigerMultiTokenAttention` |
|
|
340
|
+
| Softmax | `liger_kernel.transformers.LigerSoftmax` |
|
|
341
|
+
| Sparsemax | `liger_kernel.transformers.LigerSparsemax` |
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
### Alignment Kernels
|
|
345
|
+
|
|
346
|
+
| **Kernel** | **API** |
|
|
347
|
+
|---------------------------------|-------------------------------------------------------------|
|
|
348
|
+
| Fused Linear CPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearCPOLoss` |
|
|
349
|
+
| Fused Linear DPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearDPOLoss` |
|
|
350
|
+
| Fused Linear ORPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearORPOLoss` |
|
|
351
|
+
| Fused Linear SimPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearSimPOLoss` |
|
|
352
|
+
| Fused Linear KTO Loss | `liger_kernel.chunked_loss.LigerFusedLinearKTOLoss` |
|
|
353
|
+
|
|
354
|
+
### Distillation Kernels
|
|
355
|
+
|
|
356
|
+
| **Kernel** | **API** |
|
|
357
|
+
|---------------------------------|-------------------------------------------------------------|
|
|
358
|
+
| KLDivergence | `liger_kernel.transformers.LigerKLDIVLoss` |
|
|
359
|
+
| JSD | `liger_kernel.transformers.LigerJSD` |
|
|
360
|
+
| Fused Linear JSD | `liger_kernel.transformers.LigerFusedLinearJSD` |
|
|
361
|
+
| TVD | `liger_kernel.transformers.LigerTVDLoss` |
|
|
362
|
+
|
|
363
|
+
### Experimental Kernels
|
|
364
|
+
|
|
365
|
+
| **Kernel** | **API** |
|
|
366
|
+
|---------------------------------|-------------------------------------------------------------|
|
|
367
|
+
| Embedding | `liger_kernel.transformers.experimental.LigerEmbedding` |
|
|
368
|
+
| Matmul int2xint8 | `liger_kernel.transformers.experimental.matmul` |
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
## Contributing, Acknowledgements, and License
|
|
372
|
+
|
|
373
|
+
- [Contributing Guidelines](https://github.com/linkedin/Liger-Kernel/blob/main/docs/contributing.md)
|
|
374
|
+
- [Acknowledgements](https://github.com/linkedin/Liger-Kernel/blob/main/docs/acknowledgement.md)
|
|
375
|
+
- [License Information](https://github.com/linkedin/Liger-Kernel/blob/main/docs/license.md)
|
|
376
|
+
|
|
377
|
+
## Sponsorship and Collaboration
|
|
378
|
+
|
|
379
|
+
- [Glows.ai](https://platform.glows.ai/): Sponsoring NVIDIA GPUs for our open source developers.
|
|
380
|
+
- [AMD](https://www.amd.com/en.html): Providing AMD GPUs for our AMD CI.
|
|
381
|
+
- [Intel](https://www.intel.com/): Providing Intel GPUs for our Intel CI.
|
|
382
|
+
- [Modal](https://modal.com/): Free 3000 credits from GPU MODE IRL for our NVIDIA CI.
|
|
383
|
+
- [EmbeddedLLM](https://embeddedllm.com/): Making Liger Kernel run fast and stable on AMD.
|
|
384
|
+
- [HuggingFace](https://huggingface.co/): Integrating Liger Kernel into Hugging Face Transformers and TRL.
|
|
385
|
+
- [Lightning AI](https://lightning.ai/): Integrating Liger Kernel into Lightning Thunder.
|
|
386
|
+
- [Axolotl](https://axolotl.ai/): Integrating Liger Kernel into Axolotl.
|
|
387
|
+
- [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory): Integrating Liger Kernel into Llama-Factory.
|
|
388
|
+
|
|
389
|
+
|
|
390
|
+
## CI status
|
|
391
|
+
|
|
392
|
+
<table style="width: 100%; text-align: center; border-collapse: collapse;">
|
|
393
|
+
<tr>
|
|
394
|
+
<th style="padding: 10px;">Build</th>
|
|
395
|
+
</tr>
|
|
396
|
+
<tr>
|
|
397
|
+
<td style="padding: 10px;">
|
|
398
|
+
<div style="display: block;">
|
|
399
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml">
|
|
400
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml/badge.svg?branch=main&event=push" alt="Build">
|
|
401
|
+
</a>
|
|
402
|
+
</div>
|
|
403
|
+
<div style="display: block;">
|
|
404
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
|
|
405
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml/badge.svg?branch=main&event=push" alt="Build">
|
|
406
|
+
</a>
|
|
407
|
+
</div>
|
|
408
|
+
<div style="display: block;">
|
|
409
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml">
|
|
410
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml/badge.svg?branch=main&event=push" alt="Build">
|
|
411
|
+
</a>
|
|
412
|
+
</div>
|
|
413
|
+
</td>
|
|
414
|
+
</tr>
|
|
415
|
+
</table>
|
|
416
|
+
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
## Contact
|
|
420
|
+
|
|
421
|
+
- For issues, create a Github ticket in this repository
|
|
422
|
+
- For open discussion, join [our discord channel on GPUMode](https://discord.com/channels/1189498204333543425/1275130785933951039)
|
|
423
|
+
- For formal collaboration, send an email to Yanning Chen(yannchen@linkedin.com) and Zhipeng Wang(zhipwang@linkedin.com)
|
|
424
|
+
|
|
425
|
+
## Cite this work
|
|
426
|
+
|
|
427
|
+
Biblatex entry:
|
|
428
|
+
```bib
|
|
429
|
+
@inproceedings{
|
|
430
|
+
hsu2025ligerkernel,
|
|
431
|
+
title={Liger-Kernel: Efficient Triton Kernels for {LLM} Training},
|
|
432
|
+
author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen and Zhipeng Wang},
|
|
433
|
+
booktitle={Championing Open-source DEvelopment in ML Workshop @ ICML25},
|
|
434
|
+
year={2025},
|
|
435
|
+
url={https://openreview.net/forum?id=36SjAIT42G}
|
|
436
|
+
}
|
|
437
|
+
```
|
|
438
|
+
|
|
439
|
+
## Star History
|
|
440
|
+
[](https://www.star-history.com/#linkedin/Liger-Kernel&Date)
|
|
441
|
+
|
|
442
|
+
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
|
|
443
|
+
<a href="#readme-top" style="text-decoration: none; color: #007bff; font-weight: bold;">
|
|
444
|
+
↑ Back to Top ↑
|
|
445
|
+
</a>
|
|
446
|
+
</p>
|
|
447
|
+
|