liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import torch.nn as nn
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class LigerFusedNeighborhoodAttention(nn.Module):
|
|
12
|
+
"""
|
|
13
|
+
Liger Fused Neighborhood Attention Module.
|
|
14
|
+
|
|
15
|
+
Paper: https://arxiv.org/pdf/2504.16922
|
|
16
|
+
|
|
17
|
+
Fused Neighborhood attention restricts the attention mechanism to a local neighborhood
|
|
18
|
+
around each position, reducing computational complexity from O(n²) to O(n*k)
|
|
19
|
+
where k is the neighborhood size.
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
hidden_size (int): The hidden dimension size
|
|
23
|
+
num_heads (int): Number of attention heads
|
|
24
|
+
kernel_size (int): Size of the neighborhood window (default: 7)
|
|
25
|
+
dilation (int): Dilation factor for the neighborhood (default: 1)
|
|
26
|
+
bias (bool): Whether to use bias in linear projections (default: True)
|
|
27
|
+
dropout (float): Dropout probability (default: 0.0)
|
|
28
|
+
scale (Optional[float]): Scaling factor for attention scores.
|
|
29
|
+
If None, uses 1/sqrt(head_dim) (default: None)
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(
|
|
33
|
+
self,
|
|
34
|
+
hidden_size: int,
|
|
35
|
+
num_heads: int,
|
|
36
|
+
kernel_size: int = 7,
|
|
37
|
+
dilation: int = 1,
|
|
38
|
+
bias: bool = True,
|
|
39
|
+
dropout: float = 0.0,
|
|
40
|
+
scale: Optional[float] = None,
|
|
41
|
+
):
|
|
42
|
+
super().__init__()
|
|
43
|
+
|
|
44
|
+
if hidden_size % num_heads != 0:
|
|
45
|
+
raise ValueError(f"hidden_size ({hidden_size}) must be divisible by num_heads ({num_heads})")
|
|
46
|
+
|
|
47
|
+
if kernel_size <= 0:
|
|
48
|
+
raise ValueError(f"kernel_size ({kernel_size}) must be positive")
|
|
49
|
+
|
|
50
|
+
if kernel_size % 2 == 0:
|
|
51
|
+
raise ValueError(f"kernel_size ({kernel_size}) must be odd")
|
|
52
|
+
|
|
53
|
+
if dilation < 1:
|
|
54
|
+
raise ValueError(f"dilation ({dilation}) must be positive")
|
|
55
|
+
|
|
56
|
+
self.hidden_size = hidden_size
|
|
57
|
+
self.num_heads = num_heads
|
|
58
|
+
self.head_dim = hidden_size // num_heads
|
|
59
|
+
self.kernel_size = kernel_size
|
|
60
|
+
self.dilation = dilation
|
|
61
|
+
self.scale = scale if scale is not None else 1.0 / math.sqrt(self.head_dim)
|
|
62
|
+
self.dropout_p = dropout
|
|
63
|
+
|
|
64
|
+
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
65
|
+
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
66
|
+
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
67
|
+
|
|
68
|
+
self.out_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
69
|
+
|
|
70
|
+
if dropout > 0.0:
|
|
71
|
+
self.dropout = nn.Dropout(dropout)
|
|
72
|
+
else:
|
|
73
|
+
self.dropout = None
|
|
74
|
+
|
|
75
|
+
def forward(
|
|
76
|
+
self,
|
|
77
|
+
hidden_states: torch.Tensor,
|
|
78
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
79
|
+
) -> torch.Tensor:
|
|
80
|
+
"""
|
|
81
|
+
Forward pass of the fused neighborhood attention module.
|
|
82
|
+
|
|
83
|
+
Args:
|
|
84
|
+
hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
|
|
85
|
+
attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
|
|
86
|
+
|
|
87
|
+
Returns:
|
|
88
|
+
torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
|
|
89
|
+
"""
|
|
90
|
+
if attention_mask is not None:
|
|
91
|
+
raise NotImplementedError("Attention mask is not yet supported in LigerFusedNeighborhoodAttention")
|
|
92
|
+
|
|
93
|
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
|
94
|
+
|
|
95
|
+
query = self.q_proj(hidden_states)
|
|
96
|
+
key = self.k_proj(hidden_states)
|
|
97
|
+
value = self.v_proj(hidden_states)
|
|
98
|
+
|
|
99
|
+
query = query.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
100
|
+
key = key.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
101
|
+
value = value.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
102
|
+
|
|
103
|
+
attn_output = LigerFusedNeighborhoodAttentionFunction.apply(
|
|
104
|
+
query, key, value, self.kernel_size, self.dilation, self.scale
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, hidden_size)
|
|
108
|
+
|
|
109
|
+
if self.dropout is not None:
|
|
110
|
+
attn_output = self.dropout(attn_output)
|
|
111
|
+
|
|
112
|
+
output = self.out_proj(attn_output)
|
|
113
|
+
|
|
114
|
+
return output
|
|
115
|
+
|
|
116
|
+
def extra_repr(self) -> str:
|
|
117
|
+
return (
|
|
118
|
+
f"hidden_size={self.hidden_size}, num_heads={self.num_heads}, "
|
|
119
|
+
f"head_dim={self.head_dim}, kernel_size={self.kernel_size}, "
|
|
120
|
+
f"dilation={self.dilation}, scale={self.scale}, dropout={self.dropout_p}"
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
class LigerFusedNeighborhoodAttentionLayer(nn.Module):
|
|
125
|
+
"""
|
|
126
|
+
A complete neighborhood attention layer with layer norm and residual connection.
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
hidden_size (int): The hidden dimension size
|
|
130
|
+
num_heads (int): Number of attention heads
|
|
131
|
+
kernel_size (int): Size of the neighborhood window (default: 7)
|
|
132
|
+
dilation (int): Dilation factor for the neighborhood (default: 1)
|
|
133
|
+
bias (bool): Whether to use bias in linear projections (default: True)
|
|
134
|
+
dropout (float): Dropout probability (default: 0.0)
|
|
135
|
+
layer_norm_eps (float): Epsilon for layer normalization (default: 1e-5)
|
|
136
|
+
scale (Optional[float]): Scaling factor for attention scores (default: None)
|
|
137
|
+
"""
|
|
138
|
+
|
|
139
|
+
def __init__(
|
|
140
|
+
self,
|
|
141
|
+
hidden_size: int,
|
|
142
|
+
num_heads: int,
|
|
143
|
+
kernel_size: int = 7,
|
|
144
|
+
dilation: int = 1,
|
|
145
|
+
bias: bool = True,
|
|
146
|
+
dropout: float = 0.0,
|
|
147
|
+
layer_norm_eps: float = 1e-5,
|
|
148
|
+
scale: Optional[float] = None,
|
|
149
|
+
):
|
|
150
|
+
super().__init__()
|
|
151
|
+
|
|
152
|
+
self.attention = LigerFusedNeighborhoodAttention(
|
|
153
|
+
hidden_size=hidden_size,
|
|
154
|
+
num_heads=num_heads,
|
|
155
|
+
kernel_size=kernel_size,
|
|
156
|
+
dilation=dilation,
|
|
157
|
+
bias=bias,
|
|
158
|
+
dropout=dropout,
|
|
159
|
+
scale=scale,
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
|
163
|
+
|
|
164
|
+
if dropout > 0.0:
|
|
165
|
+
self.dropout = nn.Dropout(dropout)
|
|
166
|
+
else:
|
|
167
|
+
self.dropout = None
|
|
168
|
+
|
|
169
|
+
def forward(
|
|
170
|
+
self,
|
|
171
|
+
hidden_states: torch.Tensor,
|
|
172
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
173
|
+
) -> torch.Tensor:
|
|
174
|
+
"""
|
|
175
|
+
Forward pass with residual connection and layer normalization.
|
|
176
|
+
|
|
177
|
+
Args:
|
|
178
|
+
hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
|
|
179
|
+
attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
|
|
180
|
+
|
|
181
|
+
Returns:
|
|
182
|
+
torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
|
|
183
|
+
"""
|
|
184
|
+
normed_hidden_states = self.layer_norm(hidden_states)
|
|
185
|
+
|
|
186
|
+
attn_output = self.attention(normed_hidden_states, attention_mask)
|
|
187
|
+
|
|
188
|
+
if self.dropout is not None:
|
|
189
|
+
attn_output = self.dropout(attn_output)
|
|
190
|
+
|
|
191
|
+
output = hidden_states + attn_output
|
|
192
|
+
|
|
193
|
+
return output
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
class LigerFusedNeighborhoodAttentionConfig:
|
|
197
|
+
"""
|
|
198
|
+
Configuration class for Fused Neighborhood Attention.
|
|
199
|
+
|
|
200
|
+
This can be used to easily configure neighborhood attention parameters
|
|
201
|
+
for different model architectures.
|
|
202
|
+
"""
|
|
203
|
+
|
|
204
|
+
def __init__(
|
|
205
|
+
self,
|
|
206
|
+
hidden_size: int = 768,
|
|
207
|
+
num_heads: int = 12,
|
|
208
|
+
kernel_size: int = 7,
|
|
209
|
+
dilation: int = 1,
|
|
210
|
+
bias: bool = True,
|
|
211
|
+
dropout: float = 0.0,
|
|
212
|
+
layer_norm_eps: float = 1e-5,
|
|
213
|
+
scale: Optional[float] = None,
|
|
214
|
+
):
|
|
215
|
+
self.hidden_size = hidden_size
|
|
216
|
+
self.num_heads = num_heads
|
|
217
|
+
self.kernel_size = kernel_size
|
|
218
|
+
self.dilation = dilation
|
|
219
|
+
self.bias = bias
|
|
220
|
+
self.dropout = dropout
|
|
221
|
+
self.layer_norm_eps = layer_norm_eps
|
|
222
|
+
self.scale = scale
|
|
223
|
+
|
|
224
|
+
def to_dict(self):
|
|
225
|
+
return {
|
|
226
|
+
"hidden_size": self.hidden_size,
|
|
227
|
+
"num_heads": self.num_heads,
|
|
228
|
+
"kernel_size": self.kernel_size,
|
|
229
|
+
"dilation": self.dilation,
|
|
230
|
+
"bias": self.bias,
|
|
231
|
+
"dropout": self.dropout,
|
|
232
|
+
"layer_norm_eps": self.layer_norm_eps,
|
|
233
|
+
"scale": self.scale,
|
|
234
|
+
}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import torch.nn as nn
|
|
2
2
|
|
|
3
|
-
from liger_kernel.ops
|
|
3
|
+
from liger_kernel.ops import LigerGELUMulFunction
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
class LigerGEGLUMLP(nn.Module):
|
|
@@ -13,11 +13,10 @@ class LigerGEGLUMLP(nn.Module):
|
|
|
13
13
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
14
14
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
15
15
|
# TODO: support exact GELU
|
|
16
|
-
|
|
17
|
-
|
|
16
|
+
# Right now Gemma 1, 1.1 and 2 models are all using `gelu_pytorch_tanh`
|
|
17
|
+
# https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/gemma/modeling_gemma.py#L175
|
|
18
|
+
# https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/activations.py#L46
|
|
19
|
+
# So we can safely assume we use tanh approximation form all the time
|
|
18
20
|
|
|
19
21
|
def forward(self, x):
|
|
20
|
-
|
|
21
|
-
return self.down_proj(
|
|
22
|
-
LigerGELUMulFunction.apply(self.gate_proj(x), self.up_proj(x))
|
|
23
|
-
)
|
|
22
|
+
return self.down_proj(LigerGELUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops import LigerGroupNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerGroupNorm(nn.Module):
|
|
8
|
+
def __init__(self, num_channels, num_groups, eps=1e-6, bias=False, init_fn="ones"):
|
|
9
|
+
"""
|
|
10
|
+
A Group Normalization layer.
|
|
11
|
+
Args:
|
|
12
|
+
num_channels (int): Number of channels in the input tensor.
|
|
13
|
+
num_groups (int): Number of groups to divide the channels into.
|
|
14
|
+
eps (float, optional): A value added to the denominator for numerical stability. Default: 1e-6.
|
|
15
|
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``False``.
|
|
16
|
+
init_fn (str, optional): Initialization function for the learnable parameters. Default: "ones".
|
|
17
|
+
"""
|
|
18
|
+
super().__init__()
|
|
19
|
+
assert init_fn in [
|
|
20
|
+
"ones",
|
|
21
|
+
"zeros",
|
|
22
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
23
|
+
|
|
24
|
+
assert num_channels % num_groups == 0, (
|
|
25
|
+
f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
|
|
26
|
+
)
|
|
27
|
+
self.num_channels = num_channels
|
|
28
|
+
self.num_groups = num_groups
|
|
29
|
+
self.eps = eps
|
|
30
|
+
self.weight = nn.Parameter(torch.ones(num_channels) if init_fn == "ones" else torch.zeros(num_channels))
|
|
31
|
+
self.bias = nn.Parameter(torch.randn(num_channels) if bias else torch.zeros(num_channels))
|
|
32
|
+
self.variance_epsilon = eps
|
|
33
|
+
|
|
34
|
+
def forward(self, hidden_states):
|
|
35
|
+
# hidden_states: (batch_size, num_channels, *)
|
|
36
|
+
assert hidden_states.dim() >= 3, f"Input must have atleast 3 dimensions, got {hidden_states.dim()}"
|
|
37
|
+
assert hidden_states.size(1) == self.num_channels, (
|
|
38
|
+
f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
|
|
39
|
+
)
|
|
40
|
+
return LigerGroupNormFunction.apply(
|
|
41
|
+
hidden_states,
|
|
42
|
+
self.weight,
|
|
43
|
+
self.bias,
|
|
44
|
+
self.num_channels,
|
|
45
|
+
self.num_groups,
|
|
46
|
+
self.variance_epsilon,
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
def extra_repr(self):
|
|
50
|
+
return f"{self.hidden_size}, num_channels={self.num_channels}, num_groups={self.num_groups}, eps={self.eps}"
|
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
|
|
4
|
+
from liger_kernel.ops import GrpoLossFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def triton_grpo_loss(
|
|
8
|
+
logits,
|
|
9
|
+
old_logp,
|
|
10
|
+
ref_logp,
|
|
11
|
+
completion_ids,
|
|
12
|
+
advantages,
|
|
13
|
+
completion_mask=None,
|
|
14
|
+
temperature=0.9,
|
|
15
|
+
beta=0.04,
|
|
16
|
+
eps_low=0.2,
|
|
17
|
+
eps_high=0.4,
|
|
18
|
+
inplace=True,
|
|
19
|
+
loss_type="dapo",
|
|
20
|
+
max_completion_length=None,
|
|
21
|
+
importance_sampling_level="token",
|
|
22
|
+
reduce=False,
|
|
23
|
+
):
|
|
24
|
+
assert logits is not None and completion_ids is not None and advantages is not None, (
|
|
25
|
+
"must provide logits、completion_ids and advantages"
|
|
26
|
+
)
|
|
27
|
+
if importance_sampling_level != "token":
|
|
28
|
+
raise ValueError(
|
|
29
|
+
f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
|
|
33
|
+
logits,
|
|
34
|
+
old_logp,
|
|
35
|
+
ref_logp,
|
|
36
|
+
completion_ids,
|
|
37
|
+
advantages,
|
|
38
|
+
completion_mask,
|
|
39
|
+
temperature,
|
|
40
|
+
beta,
|
|
41
|
+
eps_low,
|
|
42
|
+
eps_high,
|
|
43
|
+
inplace,
|
|
44
|
+
)
|
|
45
|
+
if not reduce:
|
|
46
|
+
return per_token_loss, per_token_kl, is_clipped
|
|
47
|
+
|
|
48
|
+
loss = _reduce_grpo_loss(
|
|
49
|
+
per_token_loss,
|
|
50
|
+
completion_mask,
|
|
51
|
+
loss_type=loss_type,
|
|
52
|
+
max_completion_length=max_completion_length,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
metrics = []
|
|
56
|
+
if beta != 0.0 and per_token_kl is not None:
|
|
57
|
+
metrics.append(_masked_mean(per_token_kl, completion_mask))
|
|
58
|
+
metrics.append(_masked_mean(is_clipped.float(), completion_mask))
|
|
59
|
+
return loss, metrics
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
|
|
63
|
+
mask = completion_mask
|
|
64
|
+
if mask is None:
|
|
65
|
+
mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
|
|
66
|
+
mask = mask.to(per_token_loss.dtype)
|
|
67
|
+
|
|
68
|
+
if loss_type == "grpo":
|
|
69
|
+
per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
70
|
+
return per_seq.mean()
|
|
71
|
+
if loss_type == "bnpo":
|
|
72
|
+
return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
|
|
73
|
+
if loss_type == "dr_grpo":
|
|
74
|
+
if max_completion_length is None:
|
|
75
|
+
raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
|
|
76
|
+
batch = per_token_loss.shape[0]
|
|
77
|
+
return (per_token_loss * mask).sum() / (batch * max_completion_length)
|
|
78
|
+
if loss_type == "dapo":
|
|
79
|
+
normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
|
|
80
|
+
return (per_token_loss * mask).sum() / normalizer
|
|
81
|
+
raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def _masked_mean(values, mask):
|
|
85
|
+
if mask is None:
|
|
86
|
+
mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
|
|
87
|
+
mask = mask.to(values.dtype)
|
|
88
|
+
return (values * mask).sum() / mask.sum().clamp(min=1.0)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
# This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
|
|
92
|
+
"""
|
|
93
|
+
import torch
|
|
94
|
+
import trl
|
|
95
|
+
assert trl.__version__.startswith("0.16"), "please pip install trl==0.16"
|
|
96
|
+
from trl.extras.profiling import profiling_decorator
|
|
97
|
+
|
|
98
|
+
@profiling_decorator
|
|
99
|
+
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):
|
|
100
|
+
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
|
|
101
|
+
logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
|
|
102
|
+
return fused_selective_log_softmax(logits, input_ids, self.temperature, mask=attention_mask)
|
|
103
|
+
|
|
104
|
+
@profiling_decorator
|
|
105
|
+
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
|
|
106
|
+
if return_outputs:
|
|
107
|
+
raise ValueError("The GRPOTrainer does not support returning outputs")
|
|
108
|
+
# Compute the per-token log probabilities for the model
|
|
109
|
+
|
|
110
|
+
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
|
|
111
|
+
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
|
|
112
|
+
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
|
|
113
|
+
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
|
|
114
|
+
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
|
|
115
|
+
logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
|
|
116
|
+
|
|
117
|
+
ref_per_token_logps = inputs["ref_per_token_logps"]
|
|
118
|
+
advantages = inputs["advantages"]
|
|
119
|
+
old_per_token_logps = inputs["old_per_token_logps"]
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
per_token_loss, per_token_kl, is_clipped = triton_grpo_loss(logits,
|
|
123
|
+
old_per_token_logps,
|
|
124
|
+
ref_per_token_logps,
|
|
125
|
+
completion_ids,
|
|
126
|
+
advantages,
|
|
127
|
+
completion_mask,
|
|
128
|
+
self.temperature,
|
|
129
|
+
self.beta,
|
|
130
|
+
self.epsilon_low,
|
|
131
|
+
self.epsilon_high,)
|
|
132
|
+
loss = (per_token_loss * completion_mask).sum() / completion_mask.sum()
|
|
133
|
+
|
|
134
|
+
# Log the metrics
|
|
135
|
+
mode = "eval" if self.control.should_evaluate else "train"
|
|
136
|
+
|
|
137
|
+
if self.beta != 0.0:
|
|
138
|
+
mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum()
|
|
139
|
+
self._metrics[mode]["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
|
|
140
|
+
|
|
141
|
+
clip_ratio = (is_clipped * completion_mask).sum() / completion_mask.sum()
|
|
142
|
+
self._metrics[mode]["clip_ratio"].append(self.accelerator.gather_for_metrics(clip_ratio).mean().item())
|
|
143
|
+
return loss
|
|
144
|
+
|
|
145
|
+
trl.GRPOTrainer._get_per_token_logps = _get_per_token_logps
|
|
146
|
+
trl.GRPOTrainer.compute_loss = compute_loss
|
|
147
|
+
trigger = None
|
|
148
|
+
"""
|
|
149
|
+
|
|
150
|
+
# add this line at the first line of grpo.py in open-r1
|
|
151
|
+
"""
|
|
152
|
+
from liger_kernel.transformers.grpo_loss import trigger
|
|
153
|
+
"""
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
from liger_kernel.ops import LigerJSDFunction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerJSD(torch.nn.Module):
|
|
9
|
+
r"""The generalized Jensen-Shannon Divergence.
|
|
10
|
+
.. math::
|
|
11
|
+
JSD(\beta)(P || Q)
|
|
12
|
+
= \beta * KLDiv(P || (\beta * P + (1 - \beta) * Q)) + (1 - \beta) * KLDiv(Q || (\beta * P + (1 - \beta) * Q))
|
|
13
|
+
.. note::
|
|
14
|
+
As all the other losses in PyTorch, this function expects the first argument,
|
|
15
|
+
:attr:`log_q`, to be the predictions, the output of the student model in log-space,
|
|
16
|
+
and the second, :attr:`log_p`, to be the observations, the output of the teacher model in log-space.
|
|
17
|
+
This differs from the standard mathematical notation :math:`JSD(P || Q)` where
|
|
18
|
+
:math:`P` denotes the teacher model and :math:`Q` denotes the student model.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
|
|
22
|
+
ignore_index (int): The index to ignore in the target. Default: `-100`
|
|
23
|
+
|
|
24
|
+
Shape:
|
|
25
|
+
- Input: :math:`(BT, V)`, where B is batch size, T is sequence length, V is vocab size.
|
|
26
|
+
- Target: :math:`(BT, V)`, same shape as the input.
|
|
27
|
+
- shift_labels (Optional): :math:`(BT,)`
|
|
28
|
+
- Output: a scalar.
|
|
29
|
+
|
|
30
|
+
Examples:
|
|
31
|
+
```python
|
|
32
|
+
>>> (B, T, V) = (2, 2, 5)
|
|
33
|
+
>>> jsd = LigerJSD(beta=0.1)
|
|
34
|
+
>>> # input should be a distribution in the log space
|
|
35
|
+
>>> input = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
|
|
36
|
+
>>> target = torch.randn(B * T, V).log_softmax(dim=-1)
|
|
37
|
+
>>> output = jsd(input, target)
|
|
38
|
+
>>>
|
|
39
|
+
>>> # Example with labels for supervised fine-tuning (SFT) context
|
|
40
|
+
>>> # Assume logits and corresponding labels are given
|
|
41
|
+
>>> student_logits = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
|
|
42
|
+
>>> teacher_logits = torch.randn(B * T, V).log_softmax(dim=-1)
|
|
43
|
+
>>> labels = torch.randint(0, V, (B * T,), torch.long)
|
|
44
|
+
>>> # Shift so that tokens < n predict n
|
|
45
|
+
>>> shift_student_logits = student_logits[..., :-1, :].contiguous()
|
|
46
|
+
>>> shift_teacher_logits = teacher_logits[..., :-1, :].contiguous()
|
|
47
|
+
>>> shift_labels = labels[..., 1:].contiguous()
|
|
48
|
+
>>> # Flatten tokens
|
|
49
|
+
>>> shift_student_logits = shift_student_logits.view(-1, V)
|
|
50
|
+
>>> shift_teacher_logits = shift_teacher_logits.view(-1, V)
|
|
51
|
+
>>> shift_labels = shift_labels.view(-1)
|
|
52
|
+
>>> # Calculate loss
|
|
53
|
+
>>> loss_fct = LigerJSD(beta=0.1)
|
|
54
|
+
>>> loss = loss_fct(shift_studetn_logits, shift_teacher_logits, shift_labels)
|
|
55
|
+
|
|
56
|
+
```
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
def __init__(self, beta: float = 0.5, ignore_index: int = -100):
|
|
60
|
+
super().__init__()
|
|
61
|
+
self.beta = beta
|
|
62
|
+
self.ignore_index = ignore_index
|
|
63
|
+
|
|
64
|
+
def forward(
|
|
65
|
+
self,
|
|
66
|
+
log_q: torch.Tensor,
|
|
67
|
+
log_p: torch.Tensor,
|
|
68
|
+
shift_labels: Optional[torch.LongTensor] = None,
|
|
69
|
+
):
|
|
70
|
+
return LigerJSDFunction.apply(log_q, log_p, shift_labels, self.beta, self.ignore_index)
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
import torch.nn as nn
|
|
2
|
+
|
|
3
|
+
from liger_kernel.ops import LigerKLDivLossFunction
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class LigerKLDIVLoss(nn.KLDivLoss):
|
|
7
|
+
def __init__(self, eps: float = 1e-10, *args, **kwargs):
|
|
8
|
+
super(LigerKLDIVLoss, self).__init__(*args, **kwargs)
|
|
9
|
+
self.eps = eps
|
|
10
|
+
|
|
11
|
+
def forward(self, y_pred, y_true):
|
|
12
|
+
return LigerKLDivLossFunction.apply(y_pred, y_true, self.reduction, self.log_target, self.eps)
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops import LigerLayerNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerLayerNorm(nn.Module):
|
|
8
|
+
def __init__(self, hidden_size, eps=1e-6, bias=False, init_fn="ones"):
|
|
9
|
+
super().__init__()
|
|
10
|
+
assert init_fn in [
|
|
11
|
+
"ones",
|
|
12
|
+
"zeros",
|
|
13
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
14
|
+
self.hidden_size = hidden_size
|
|
15
|
+
self.eps = eps
|
|
16
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
|
17
|
+
self.bias = nn.Parameter(torch.randn(hidden_size) if bias else torch.zeros(hidden_size))
|
|
18
|
+
self.variance_epsilon = eps
|
|
19
|
+
|
|
20
|
+
def forward(self, hidden_states):
|
|
21
|
+
return LigerLayerNormFunction.apply(hidden_states, self.weight, self.bias, self.variance_epsilon)
|
|
22
|
+
|
|
23
|
+
def extra_repr(self):
|
|
24
|
+
return f"{self.hidden_size}, eps={self.eps}"
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
|
|
3
|
+
Supports both text and vision RoPE variants with fused operations for optimal performance.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops import LigerLlama4RopeFunction
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def liger_llama4_text_rotary_pos_emb(
|
|
12
|
+
xq: torch.Tensor,
|
|
13
|
+
xk: torch.Tensor,
|
|
14
|
+
freqs_cis: torch.Tensor,
|
|
15
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
16
|
+
"""
|
|
17
|
+
Liger-optimized implementation of Llama4 text rotary position embedding.
|
|
18
|
+
|
|
19
|
+
This implementation uses a fused Triton kernel for complex multiplication,
|
|
20
|
+
providing significant performance improvements over the original PyTorch implementation.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
24
|
+
xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
25
|
+
freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
29
|
+
"""
|
|
30
|
+
# Use fused Triton kernel for complex RoPE
|
|
31
|
+
return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def liger_llama4_vision_rotary_pos_emb(
|
|
35
|
+
query: torch.Tensor,
|
|
36
|
+
key: torch.Tensor,
|
|
37
|
+
freqs_ci: torch.Tensor,
|
|
38
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
39
|
+
"""
|
|
40
|
+
Liger-optimized implementation of Llama4 vision rotary position embedding.
|
|
41
|
+
|
|
42
|
+
This implementation uses the same fused Triton kernel as text RoPE,
|
|
43
|
+
providing performance improvements for vision transformer attention.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
47
|
+
key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
48
|
+
freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
|
|
49
|
+
|
|
50
|
+
Returns:
|
|
51
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
52
|
+
"""
|
|
53
|
+
# Handle broadcasting for vision RoPE
|
|
54
|
+
if freqs_ci.dim() == 3:
|
|
55
|
+
try:
|
|
56
|
+
# Try the regular 3D expansion
|
|
57
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
58
|
+
except RuntimeError as e:
|
|
59
|
+
if "expand" in str(e) and "4" in str(e):
|
|
60
|
+
# The tensor is actually 4D internally, handle it differently
|
|
61
|
+
freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
|
|
62
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
63
|
+
else:
|
|
64
|
+
raise e
|
|
65
|
+
elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
|
|
66
|
+
# Squeeze the middle dimension to get (1, seq_len, head_dim//2)
|
|
67
|
+
freqs_ci = freqs_ci.squeeze(2)
|
|
68
|
+
elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
|
|
69
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
70
|
+
else:
|
|
71
|
+
raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
|
|
72
|
+
|
|
73
|
+
# Use the same fused kernel as text RoPE
|
|
74
|
+
return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
# Note: We only patch the functions, not the classes
|
|
78
|
+
# The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# Convenience functions for monkey patching
|
|
82
|
+
def apply_liger_llama4_rope_full(modeling_module):
|
|
83
|
+
"""
|
|
84
|
+
Apply Liger optimizations to Llama4 RoPE functions.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
modeling_module: The transformers modeling module to patch
|
|
88
|
+
"""
|
|
89
|
+
# Replace the text RoPE function
|
|
90
|
+
modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
|
|
91
|
+
|
|
92
|
+
# Replace the vision RoPE function
|
|
93
|
+
modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb
|