liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +307 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +63 -0
  18. liger_kernel/ops/__init__.py +141 -0
  19. liger_kernel/ops/backends/README.md +151 -0
  20. liger_kernel/ops/backends/__init__.py +13 -0
  21. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  22. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  23. liger_kernel/ops/backends/registry.py +61 -0
  24. liger_kernel/ops/cross_entropy.py +383 -114
  25. liger_kernel/ops/dyt.py +160 -0
  26. liger_kernel/ops/experimental/embedding.py +141 -0
  27. liger_kernel/ops/experimental/mm_int8int2.py +349 -0
  28. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  29. liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
  30. liger_kernel/ops/fused_linear_jsd.py +228 -0
  31. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  32. liger_kernel/ops/geglu.py +66 -64
  33. liger_kernel/ops/group_norm.py +306 -0
  34. liger_kernel/ops/grpo_loss.py +312 -0
  35. liger_kernel/ops/jsd.py +201 -0
  36. liger_kernel/ops/kl_div.py +262 -0
  37. liger_kernel/ops/layer_norm.py +320 -0
  38. liger_kernel/ops/llama4_rope.py +225 -0
  39. liger_kernel/ops/multi_token_attention.py +207 -0
  40. liger_kernel/ops/poly_norm.py +390 -0
  41. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  42. liger_kernel/ops/rms_norm.py +484 -88
  43. liger_kernel/ops/rope.py +122 -117
  44. liger_kernel/ops/softmax.py +201 -0
  45. liger_kernel/ops/sparsemax.py +179 -0
  46. liger_kernel/ops/swiglu.py +68 -65
  47. liger_kernel/ops/tiled_mlp.py +136 -0
  48. liger_kernel/ops/tvd.py +207 -0
  49. liger_kernel/ops/utils.py +82 -3
  50. liger_kernel/transformers/__init__.py +218 -6
  51. liger_kernel/transformers/auto_model.py +38 -0
  52. liger_kernel/transformers/cross_entropy.py +52 -7
  53. liger_kernel/transformers/dyt.py +22 -0
  54. liger_kernel/transformers/experimental/__init__.py +5 -0
  55. liger_kernel/transformers/experimental/embedding.py +26 -0
  56. liger_kernel/transformers/fsdp.py +55 -0
  57. liger_kernel/transformers/functional.py +301 -0
  58. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  59. liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
  60. liger_kernel/transformers/fused_linear_jsd.py +95 -0
  61. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  62. liger_kernel/transformers/geglu.py +6 -7
  63. liger_kernel/transformers/group_norm.py +50 -0
  64. liger_kernel/transformers/grpo_loss.py +153 -0
  65. liger_kernel/transformers/jsd.py +70 -0
  66. liger_kernel/transformers/kl_div.py +12 -0
  67. liger_kernel/transformers/layer_norm.py +24 -0
  68. liger_kernel/transformers/llama4_rope.py +93 -0
  69. liger_kernel/transformers/model/falcon_h1.py +122 -0
  70. liger_kernel/transformers/model/gemma.py +261 -0
  71. liger_kernel/transformers/model/gemma2.py +283 -0
  72. liger_kernel/transformers/model/gemma3.py +332 -0
  73. liger_kernel/transformers/model/glm4.py +141 -0
  74. liger_kernel/transformers/model/glm4v.py +163 -0
  75. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  76. liger_kernel/transformers/model/gpt_oss.py +211 -0
  77. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  78. liger_kernel/transformers/model/internvl.py +157 -0
  79. liger_kernel/transformers/model/llama.py +221 -41
  80. liger_kernel/transformers/model/llama4.py +121 -0
  81. liger_kernel/transformers/model/llava.py +344 -0
  82. liger_kernel/transformers/model/loss_utils.py +95 -0
  83. liger_kernel/transformers/model/mistral.py +145 -0
  84. liger_kernel/transformers/model/mixtral.py +293 -0
  85. liger_kernel/transformers/model/mllama.py +269 -0
  86. liger_kernel/transformers/model/olmo2.py +141 -0
  87. liger_kernel/transformers/model/olmo3.py +142 -0
  88. liger_kernel/transformers/model/output_classes.py +147 -0
  89. liger_kernel/transformers/model/paligemma.py +433 -0
  90. liger_kernel/transformers/model/phi3.py +120 -0
  91. liger_kernel/transformers/model/qwen2.py +259 -0
  92. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  93. liger_kernel/transformers/model/qwen2_vl.py +159 -0
  94. liger_kernel/transformers/model/qwen3.py +136 -0
  95. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  96. liger_kernel/transformers/model/qwen3_next.py +146 -0
  97. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  98. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  99. liger_kernel/transformers/model/smollm3.py +199 -0
  100. liger_kernel/transformers/model/smolvlm.py +158 -0
  101. liger_kernel/transformers/monkey_patch.py +2816 -21
  102. liger_kernel/transformers/multi_token_attention.py +64 -0
  103. liger_kernel/transformers/poly_norm.py +42 -0
  104. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  105. liger_kernel/transformers/rms_norm.py +75 -5
  106. liger_kernel/transformers/rope.py +47 -3
  107. liger_kernel/transformers/softmax.py +12 -0
  108. liger_kernel/transformers/sparsemax.py +16 -0
  109. liger_kernel/transformers/swiglu.py +62 -6
  110. liger_kernel/transformers/tiled_mlp.py +133 -0
  111. liger_kernel/transformers/trainer/__init__.py +4 -0
  112. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  113. liger_kernel/transformers/trainer_integration.py +2 -45
  114. liger_kernel/transformers/tvd.py +13 -0
  115. liger_kernel/triton/__init__.py +1 -3
  116. liger_kernel/triton/monkey_patch.py +1 -5
  117. liger_kernel/utils.py +96 -0
  118. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
  119. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
  120. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  121. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
  122. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
  123. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
  124. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
  125. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  126. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,234 @@
1
+ import math
2
+
3
+ from typing import Optional
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
9
+
10
+
11
+ class LigerFusedNeighborhoodAttention(nn.Module):
12
+ """
13
+ Liger Fused Neighborhood Attention Module.
14
+
15
+ Paper: https://arxiv.org/pdf/2504.16922
16
+
17
+ Fused Neighborhood attention restricts the attention mechanism to a local neighborhood
18
+ around each position, reducing computational complexity from O(n²) to O(n*k)
19
+ where k is the neighborhood size.
20
+
21
+ Args:
22
+ hidden_size (int): The hidden dimension size
23
+ num_heads (int): Number of attention heads
24
+ kernel_size (int): Size of the neighborhood window (default: 7)
25
+ dilation (int): Dilation factor for the neighborhood (default: 1)
26
+ bias (bool): Whether to use bias in linear projections (default: True)
27
+ dropout (float): Dropout probability (default: 0.0)
28
+ scale (Optional[float]): Scaling factor for attention scores.
29
+ If None, uses 1/sqrt(head_dim) (default: None)
30
+ """
31
+
32
+ def __init__(
33
+ self,
34
+ hidden_size: int,
35
+ num_heads: int,
36
+ kernel_size: int = 7,
37
+ dilation: int = 1,
38
+ bias: bool = True,
39
+ dropout: float = 0.0,
40
+ scale: Optional[float] = None,
41
+ ):
42
+ super().__init__()
43
+
44
+ if hidden_size % num_heads != 0:
45
+ raise ValueError(f"hidden_size ({hidden_size}) must be divisible by num_heads ({num_heads})")
46
+
47
+ if kernel_size <= 0:
48
+ raise ValueError(f"kernel_size ({kernel_size}) must be positive")
49
+
50
+ if kernel_size % 2 == 0:
51
+ raise ValueError(f"kernel_size ({kernel_size}) must be odd")
52
+
53
+ if dilation < 1:
54
+ raise ValueError(f"dilation ({dilation}) must be positive")
55
+
56
+ self.hidden_size = hidden_size
57
+ self.num_heads = num_heads
58
+ self.head_dim = hidden_size // num_heads
59
+ self.kernel_size = kernel_size
60
+ self.dilation = dilation
61
+ self.scale = scale if scale is not None else 1.0 / math.sqrt(self.head_dim)
62
+ self.dropout_p = dropout
63
+
64
+ self.q_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
65
+ self.k_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
66
+ self.v_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
67
+
68
+ self.out_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
69
+
70
+ if dropout > 0.0:
71
+ self.dropout = nn.Dropout(dropout)
72
+ else:
73
+ self.dropout = None
74
+
75
+ def forward(
76
+ self,
77
+ hidden_states: torch.Tensor,
78
+ attention_mask: Optional[torch.Tensor] = None,
79
+ ) -> torch.Tensor:
80
+ """
81
+ Forward pass of the fused neighborhood attention module.
82
+
83
+ Args:
84
+ hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
85
+ attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
86
+
87
+ Returns:
88
+ torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
89
+ """
90
+ if attention_mask is not None:
91
+ raise NotImplementedError("Attention mask is not yet supported in LigerFusedNeighborhoodAttention")
92
+
93
+ batch_size, seq_len, hidden_size = hidden_states.shape
94
+
95
+ query = self.q_proj(hidden_states)
96
+ key = self.k_proj(hidden_states)
97
+ value = self.v_proj(hidden_states)
98
+
99
+ query = query.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
100
+ key = key.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
101
+ value = value.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
102
+
103
+ attn_output = LigerFusedNeighborhoodAttentionFunction.apply(
104
+ query, key, value, self.kernel_size, self.dilation, self.scale
105
+ )
106
+
107
+ attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, hidden_size)
108
+
109
+ if self.dropout is not None:
110
+ attn_output = self.dropout(attn_output)
111
+
112
+ output = self.out_proj(attn_output)
113
+
114
+ return output
115
+
116
+ def extra_repr(self) -> str:
117
+ return (
118
+ f"hidden_size={self.hidden_size}, num_heads={self.num_heads}, "
119
+ f"head_dim={self.head_dim}, kernel_size={self.kernel_size}, "
120
+ f"dilation={self.dilation}, scale={self.scale}, dropout={self.dropout_p}"
121
+ )
122
+
123
+
124
+ class LigerFusedNeighborhoodAttentionLayer(nn.Module):
125
+ """
126
+ A complete neighborhood attention layer with layer norm and residual connection.
127
+
128
+ Args:
129
+ hidden_size (int): The hidden dimension size
130
+ num_heads (int): Number of attention heads
131
+ kernel_size (int): Size of the neighborhood window (default: 7)
132
+ dilation (int): Dilation factor for the neighborhood (default: 1)
133
+ bias (bool): Whether to use bias in linear projections (default: True)
134
+ dropout (float): Dropout probability (default: 0.0)
135
+ layer_norm_eps (float): Epsilon for layer normalization (default: 1e-5)
136
+ scale (Optional[float]): Scaling factor for attention scores (default: None)
137
+ """
138
+
139
+ def __init__(
140
+ self,
141
+ hidden_size: int,
142
+ num_heads: int,
143
+ kernel_size: int = 7,
144
+ dilation: int = 1,
145
+ bias: bool = True,
146
+ dropout: float = 0.0,
147
+ layer_norm_eps: float = 1e-5,
148
+ scale: Optional[float] = None,
149
+ ):
150
+ super().__init__()
151
+
152
+ self.attention = LigerFusedNeighborhoodAttention(
153
+ hidden_size=hidden_size,
154
+ num_heads=num_heads,
155
+ kernel_size=kernel_size,
156
+ dilation=dilation,
157
+ bias=bias,
158
+ dropout=dropout,
159
+ scale=scale,
160
+ )
161
+
162
+ self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
163
+
164
+ if dropout > 0.0:
165
+ self.dropout = nn.Dropout(dropout)
166
+ else:
167
+ self.dropout = None
168
+
169
+ def forward(
170
+ self,
171
+ hidden_states: torch.Tensor,
172
+ attention_mask: Optional[torch.Tensor] = None,
173
+ ) -> torch.Tensor:
174
+ """
175
+ Forward pass with residual connection and layer normalization.
176
+
177
+ Args:
178
+ hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
179
+ attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
180
+
181
+ Returns:
182
+ torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
183
+ """
184
+ normed_hidden_states = self.layer_norm(hidden_states)
185
+
186
+ attn_output = self.attention(normed_hidden_states, attention_mask)
187
+
188
+ if self.dropout is not None:
189
+ attn_output = self.dropout(attn_output)
190
+
191
+ output = hidden_states + attn_output
192
+
193
+ return output
194
+
195
+
196
+ class LigerFusedNeighborhoodAttentionConfig:
197
+ """
198
+ Configuration class for Fused Neighborhood Attention.
199
+
200
+ This can be used to easily configure neighborhood attention parameters
201
+ for different model architectures.
202
+ """
203
+
204
+ def __init__(
205
+ self,
206
+ hidden_size: int = 768,
207
+ num_heads: int = 12,
208
+ kernel_size: int = 7,
209
+ dilation: int = 1,
210
+ bias: bool = True,
211
+ dropout: float = 0.0,
212
+ layer_norm_eps: float = 1e-5,
213
+ scale: Optional[float] = None,
214
+ ):
215
+ self.hidden_size = hidden_size
216
+ self.num_heads = num_heads
217
+ self.kernel_size = kernel_size
218
+ self.dilation = dilation
219
+ self.bias = bias
220
+ self.dropout = dropout
221
+ self.layer_norm_eps = layer_norm_eps
222
+ self.scale = scale
223
+
224
+ def to_dict(self):
225
+ return {
226
+ "hidden_size": self.hidden_size,
227
+ "num_heads": self.num_heads,
228
+ "kernel_size": self.kernel_size,
229
+ "dilation": self.dilation,
230
+ "bias": self.bias,
231
+ "dropout": self.dropout,
232
+ "layer_norm_eps": self.layer_norm_eps,
233
+ "scale": self.scale,
234
+ }
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.geglu import LigerGELUMulFunction
3
+ from liger_kernel.ops import LigerGELUMulFunction
4
4
 
5
5
 
6
6
  class LigerGEGLUMLP(nn.Module):
@@ -13,11 +13,10 @@ class LigerGEGLUMLP(nn.Module):
13
13
  self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
14
14
  self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
15
15
  # TODO: support exact GELU
16
- if config.hidden_act not in ["gelu_pytorch_tanh"]:
17
- raise ValueError(f"Activation function {config.hidden_act} not supported.")
16
+ # Right now Gemma 1, 1.1 and 2 models are all using `gelu_pytorch_tanh`
17
+ # https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/gemma/modeling_gemma.py#L175
18
+ # https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/activations.py#L46
19
+ # So we can safely assume we use tanh approximation form all the time
18
20
 
19
21
  def forward(self, x):
20
-
21
- return self.down_proj(
22
- LigerGELUMulFunction.apply(self.gate_proj(x), self.up_proj(x))
23
- )
22
+ return self.down_proj(LigerGELUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
@@ -0,0 +1,50 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops import LigerGroupNormFunction
5
+
6
+
7
+ class LigerGroupNorm(nn.Module):
8
+ def __init__(self, num_channels, num_groups, eps=1e-6, bias=False, init_fn="ones"):
9
+ """
10
+ A Group Normalization layer.
11
+ Args:
12
+ num_channels (int): Number of channels in the input tensor.
13
+ num_groups (int): Number of groups to divide the channels into.
14
+ eps (float, optional): A value added to the denominator for numerical stability. Default: 1e-6.
15
+ bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``False``.
16
+ init_fn (str, optional): Initialization function for the learnable parameters. Default: "ones".
17
+ """
18
+ super().__init__()
19
+ assert init_fn in [
20
+ "ones",
21
+ "zeros",
22
+ ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
23
+
24
+ assert num_channels % num_groups == 0, (
25
+ f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
26
+ )
27
+ self.num_channels = num_channels
28
+ self.num_groups = num_groups
29
+ self.eps = eps
30
+ self.weight = nn.Parameter(torch.ones(num_channels) if init_fn == "ones" else torch.zeros(num_channels))
31
+ self.bias = nn.Parameter(torch.randn(num_channels) if bias else torch.zeros(num_channels))
32
+ self.variance_epsilon = eps
33
+
34
+ def forward(self, hidden_states):
35
+ # hidden_states: (batch_size, num_channels, *)
36
+ assert hidden_states.dim() >= 3, f"Input must have atleast 3 dimensions, got {hidden_states.dim()}"
37
+ assert hidden_states.size(1) == self.num_channels, (
38
+ f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
39
+ )
40
+ return LigerGroupNormFunction.apply(
41
+ hidden_states,
42
+ self.weight,
43
+ self.bias,
44
+ self.num_channels,
45
+ self.num_groups,
46
+ self.variance_epsilon,
47
+ )
48
+
49
+ def extra_repr(self):
50
+ return f"{self.hidden_size}, num_channels={self.num_channels}, num_groups={self.num_groups}, eps={self.eps}"
@@ -0,0 +1,153 @@
1
+ import torch
2
+
3
+ from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
4
+ from liger_kernel.ops import GrpoLossFunction
5
+
6
+
7
+ def triton_grpo_loss(
8
+ logits,
9
+ old_logp,
10
+ ref_logp,
11
+ completion_ids,
12
+ advantages,
13
+ completion_mask=None,
14
+ temperature=0.9,
15
+ beta=0.04,
16
+ eps_low=0.2,
17
+ eps_high=0.4,
18
+ inplace=True,
19
+ loss_type="dapo",
20
+ max_completion_length=None,
21
+ importance_sampling_level="token",
22
+ reduce=False,
23
+ ):
24
+ assert logits is not None and completion_ids is not None and advantages is not None, (
25
+ "must provide logits、completion_ids and advantages"
26
+ )
27
+ if importance_sampling_level != "token":
28
+ raise ValueError(
29
+ f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
30
+ )
31
+
32
+ per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
33
+ logits,
34
+ old_logp,
35
+ ref_logp,
36
+ completion_ids,
37
+ advantages,
38
+ completion_mask,
39
+ temperature,
40
+ beta,
41
+ eps_low,
42
+ eps_high,
43
+ inplace,
44
+ )
45
+ if not reduce:
46
+ return per_token_loss, per_token_kl, is_clipped
47
+
48
+ loss = _reduce_grpo_loss(
49
+ per_token_loss,
50
+ completion_mask,
51
+ loss_type=loss_type,
52
+ max_completion_length=max_completion_length,
53
+ )
54
+
55
+ metrics = []
56
+ if beta != 0.0 and per_token_kl is not None:
57
+ metrics.append(_masked_mean(per_token_kl, completion_mask))
58
+ metrics.append(_masked_mean(is_clipped.float(), completion_mask))
59
+ return loss, metrics
60
+
61
+
62
+ def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
63
+ mask = completion_mask
64
+ if mask is None:
65
+ mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
66
+ mask = mask.to(per_token_loss.dtype)
67
+
68
+ if loss_type == "grpo":
69
+ per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
70
+ return per_seq.mean()
71
+ if loss_type == "bnpo":
72
+ return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
73
+ if loss_type == "dr_grpo":
74
+ if max_completion_length is None:
75
+ raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
76
+ batch = per_token_loss.shape[0]
77
+ return (per_token_loss * mask).sum() / (batch * max_completion_length)
78
+ if loss_type == "dapo":
79
+ normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
80
+ return (per_token_loss * mask).sum() / normalizer
81
+ raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
82
+
83
+
84
+ def _masked_mean(values, mask):
85
+ if mask is None:
86
+ mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
87
+ mask = mask.to(values.dtype)
88
+ return (values * mask).sum() / mask.sum().clamp(min=1.0)
89
+
90
+
91
+ # This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
92
+ """
93
+ import torch
94
+ import trl
95
+ assert trl.__version__.startswith("0.16"), "please pip install trl==0.16"
96
+ from trl.extras.profiling import profiling_decorator
97
+
98
+ @profiling_decorator
99
+ def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):
100
+ # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
101
+ logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
102
+ return fused_selective_log_softmax(logits, input_ids, self.temperature, mask=attention_mask)
103
+
104
+ @profiling_decorator
105
+ def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
106
+ if return_outputs:
107
+ raise ValueError("The GRPOTrainer does not support returning outputs")
108
+ # Compute the per-token log probabilities for the model
109
+
110
+ prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
111
+ completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
112
+ input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
113
+ attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
114
+ logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
115
+ logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
116
+
117
+ ref_per_token_logps = inputs["ref_per_token_logps"]
118
+ advantages = inputs["advantages"]
119
+ old_per_token_logps = inputs["old_per_token_logps"]
120
+
121
+
122
+ per_token_loss, per_token_kl, is_clipped = triton_grpo_loss(logits,
123
+ old_per_token_logps,
124
+ ref_per_token_logps,
125
+ completion_ids,
126
+ advantages,
127
+ completion_mask,
128
+ self.temperature,
129
+ self.beta,
130
+ self.epsilon_low,
131
+ self.epsilon_high,)
132
+ loss = (per_token_loss * completion_mask).sum() / completion_mask.sum()
133
+
134
+ # Log the metrics
135
+ mode = "eval" if self.control.should_evaluate else "train"
136
+
137
+ if self.beta != 0.0:
138
+ mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum()
139
+ self._metrics[mode]["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
140
+
141
+ clip_ratio = (is_clipped * completion_mask).sum() / completion_mask.sum()
142
+ self._metrics[mode]["clip_ratio"].append(self.accelerator.gather_for_metrics(clip_ratio).mean().item())
143
+ return loss
144
+
145
+ trl.GRPOTrainer._get_per_token_logps = _get_per_token_logps
146
+ trl.GRPOTrainer.compute_loss = compute_loss
147
+ trigger = None
148
+ """
149
+
150
+ # add this line at the first line of grpo.py in open-r1
151
+ """
152
+ from liger_kernel.transformers.grpo_loss import trigger
153
+ """
@@ -0,0 +1,70 @@
1
+ from typing import Optional
2
+
3
+ import torch
4
+
5
+ from liger_kernel.ops import LigerJSDFunction
6
+
7
+
8
+ class LigerJSD(torch.nn.Module):
9
+ r"""The generalized Jensen-Shannon Divergence.
10
+ .. math::
11
+ JSD(\beta)(P || Q)
12
+ = \beta * KLDiv(P || (\beta * P + (1 - \beta) * Q)) + (1 - \beta) * KLDiv(Q || (\beta * P + (1 - \beta) * Q))
13
+ .. note::
14
+ As all the other losses in PyTorch, this function expects the first argument,
15
+ :attr:`log_q`, to be the predictions, the output of the student model in log-space,
16
+ and the second, :attr:`log_p`, to be the observations, the output of the teacher model in log-space.
17
+ This differs from the standard mathematical notation :math:`JSD(P || Q)` where
18
+ :math:`P` denotes the teacher model and :math:`Q` denotes the student model.
19
+
20
+ Args:
21
+ beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
22
+ ignore_index (int): The index to ignore in the target. Default: `-100`
23
+
24
+ Shape:
25
+ - Input: :math:`(BT, V)`, where B is batch size, T is sequence length, V is vocab size.
26
+ - Target: :math:`(BT, V)`, same shape as the input.
27
+ - shift_labels (Optional): :math:`(BT,)`
28
+ - Output: a scalar.
29
+
30
+ Examples:
31
+ ```python
32
+ >>> (B, T, V) = (2, 2, 5)
33
+ >>> jsd = LigerJSD(beta=0.1)
34
+ >>> # input should be a distribution in the log space
35
+ >>> input = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
36
+ >>> target = torch.randn(B * T, V).log_softmax(dim=-1)
37
+ >>> output = jsd(input, target)
38
+ >>>
39
+ >>> # Example with labels for supervised fine-tuning (SFT) context
40
+ >>> # Assume logits and corresponding labels are given
41
+ >>> student_logits = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
42
+ >>> teacher_logits = torch.randn(B * T, V).log_softmax(dim=-1)
43
+ >>> labels = torch.randint(0, V, (B * T,), torch.long)
44
+ >>> # Shift so that tokens < n predict n
45
+ >>> shift_student_logits = student_logits[..., :-1, :].contiguous()
46
+ >>> shift_teacher_logits = teacher_logits[..., :-1, :].contiguous()
47
+ >>> shift_labels = labels[..., 1:].contiguous()
48
+ >>> # Flatten tokens
49
+ >>> shift_student_logits = shift_student_logits.view(-1, V)
50
+ >>> shift_teacher_logits = shift_teacher_logits.view(-1, V)
51
+ >>> shift_labels = shift_labels.view(-1)
52
+ >>> # Calculate loss
53
+ >>> loss_fct = LigerJSD(beta=0.1)
54
+ >>> loss = loss_fct(shift_studetn_logits, shift_teacher_logits, shift_labels)
55
+
56
+ ```
57
+ """
58
+
59
+ def __init__(self, beta: float = 0.5, ignore_index: int = -100):
60
+ super().__init__()
61
+ self.beta = beta
62
+ self.ignore_index = ignore_index
63
+
64
+ def forward(
65
+ self,
66
+ log_q: torch.Tensor,
67
+ log_p: torch.Tensor,
68
+ shift_labels: Optional[torch.LongTensor] = None,
69
+ ):
70
+ return LigerJSDFunction.apply(log_q, log_p, shift_labels, self.beta, self.ignore_index)
@@ -0,0 +1,12 @@
1
+ import torch.nn as nn
2
+
3
+ from liger_kernel.ops import LigerKLDivLossFunction
4
+
5
+
6
+ class LigerKLDIVLoss(nn.KLDivLoss):
7
+ def __init__(self, eps: float = 1e-10, *args, **kwargs):
8
+ super(LigerKLDIVLoss, self).__init__(*args, **kwargs)
9
+ self.eps = eps
10
+
11
+ def forward(self, y_pred, y_true):
12
+ return LigerKLDivLossFunction.apply(y_pred, y_true, self.reduction, self.log_target, self.eps)
@@ -0,0 +1,24 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops import LigerLayerNormFunction
5
+
6
+
7
+ class LigerLayerNorm(nn.Module):
8
+ def __init__(self, hidden_size, eps=1e-6, bias=False, init_fn="ones"):
9
+ super().__init__()
10
+ assert init_fn in [
11
+ "ones",
12
+ "zeros",
13
+ ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
14
+ self.hidden_size = hidden_size
15
+ self.eps = eps
16
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
17
+ self.bias = nn.Parameter(torch.randn(hidden_size) if bias else torch.zeros(hidden_size))
18
+ self.variance_epsilon = eps
19
+
20
+ def forward(self, hidden_states):
21
+ return LigerLayerNormFunction.apply(hidden_states, self.weight, self.bias, self.variance_epsilon)
22
+
23
+ def extra_repr(self):
24
+ return f"{self.hidden_size}, eps={self.eps}"
@@ -0,0 +1,93 @@
1
+ """
2
+ Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
3
+ Supports both text and vision RoPE variants with fused operations for optimal performance.
4
+ """
5
+
6
+ import torch
7
+
8
+ from liger_kernel.ops import LigerLlama4RopeFunction
9
+
10
+
11
+ def liger_llama4_text_rotary_pos_emb(
12
+ xq: torch.Tensor,
13
+ xk: torch.Tensor,
14
+ freqs_cis: torch.Tensor,
15
+ ) -> tuple[torch.Tensor, torch.Tensor]:
16
+ """
17
+ Liger-optimized implementation of Llama4 text rotary position embedding.
18
+
19
+ This implementation uses a fused Triton kernel for complex multiplication,
20
+ providing significant performance improvements over the original PyTorch implementation.
21
+
22
+ Args:
23
+ xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
24
+ xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
25
+ freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
26
+
27
+ Returns:
28
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
29
+ """
30
+ # Use fused Triton kernel for complex RoPE
31
+ return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
32
+
33
+
34
+ def liger_llama4_vision_rotary_pos_emb(
35
+ query: torch.Tensor,
36
+ key: torch.Tensor,
37
+ freqs_ci: torch.Tensor,
38
+ ) -> tuple[torch.Tensor, torch.Tensor]:
39
+ """
40
+ Liger-optimized implementation of Llama4 vision rotary position embedding.
41
+
42
+ This implementation uses the same fused Triton kernel as text RoPE,
43
+ providing performance improvements for vision transformer attention.
44
+
45
+ Args:
46
+ query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
47
+ key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
48
+ freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
49
+
50
+ Returns:
51
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
52
+ """
53
+ # Handle broadcasting for vision RoPE
54
+ if freqs_ci.dim() == 3:
55
+ try:
56
+ # Try the regular 3D expansion
57
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
58
+ except RuntimeError as e:
59
+ if "expand" in str(e) and "4" in str(e):
60
+ # The tensor is actually 4D internally, handle it differently
61
+ freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
62
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
63
+ else:
64
+ raise e
65
+ elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
66
+ # Squeeze the middle dimension to get (1, seq_len, head_dim//2)
67
+ freqs_ci = freqs_ci.squeeze(2)
68
+ elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
69
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
70
+ else:
71
+ raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
72
+
73
+ # Use the same fused kernel as text RoPE
74
+ return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
75
+
76
+
77
+ # Note: We only patch the functions, not the classes
78
+ # The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
79
+
80
+
81
+ # Convenience functions for monkey patching
82
+ def apply_liger_llama4_rope_full(modeling_module):
83
+ """
84
+ Apply Liger optimizations to Llama4 RoPE functions.
85
+
86
+ Args:
87
+ modeling_module: The transformers modeling module to patch
88
+ """
89
+ # Replace the text RoPE function
90
+ modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
91
+
92
+ # Replace the vision RoPE function
93
+ modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb