brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (163) hide show
  1. brainstate/__init__.py +169 -58
  2. brainstate/_compatible_import.py +340 -148
  3. brainstate/_compatible_import_test.py +681 -0
  4. brainstate/_deprecation.py +210 -0
  5. brainstate/_deprecation_test.py +2319 -0
  6. brainstate/{util/error.py → _error.py} +45 -55
  7. brainstate/_state.py +1652 -1605
  8. brainstate/_state_test.py +52 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -563
  11. brainstate/environ_test.py +1223 -62
  12. brainstate/graph/__init__.py +22 -29
  13. brainstate/graph/_node.py +240 -0
  14. brainstate/graph/_node_test.py +589 -0
  15. brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
  16. brainstate/graph/_operation_test.py +1147 -0
  17. brainstate/mixin.py +1433 -365
  18. brainstate/mixin_test.py +1017 -77
  19. brainstate/nn/__init__.py +137 -135
  20. brainstate/nn/_activations.py +1100 -808
  21. brainstate/nn/_activations_test.py +354 -331
  22. brainstate/nn/_collective_ops.py +633 -514
  23. brainstate/nn/_collective_ops_test.py +774 -43
  24. brainstate/nn/_common.py +226 -178
  25. brainstate/nn/_common_test.py +154 -0
  26. brainstate/nn/_conv.py +2010 -501
  27. brainstate/nn/_conv_test.py +849 -238
  28. brainstate/nn/_delay.py +575 -588
  29. brainstate/nn/_delay_test.py +243 -238
  30. brainstate/nn/_dropout.py +618 -426
  31. brainstate/nn/_dropout_test.py +477 -100
  32. brainstate/nn/_dynamics.py +1267 -1343
  33. brainstate/nn/_dynamics_test.py +67 -78
  34. brainstate/nn/_elementwise.py +1298 -1119
  35. brainstate/nn/_elementwise_test.py +830 -169
  36. brainstate/nn/_embedding.py +408 -58
  37. brainstate/nn/_embedding_test.py +156 -0
  38. brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
  39. brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
  40. brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
  41. brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
  42. brainstate/nn/_exp_euler.py +254 -92
  43. brainstate/nn/_exp_euler_test.py +377 -35
  44. brainstate/nn/_linear.py +744 -424
  45. brainstate/nn/_linear_test.py +475 -107
  46. brainstate/nn/_metrics.py +1070 -0
  47. brainstate/nn/_metrics_test.py +611 -0
  48. brainstate/nn/_module.py +384 -377
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -975
  51. brainstate/nn/_normalizations_test.py +699 -73
  52. brainstate/nn/_paddings.py +1020 -0
  53. brainstate/nn/_paddings_test.py +723 -0
  54. brainstate/nn/_poolings.py +2239 -1177
  55. brainstate/nn/_poolings_test.py +953 -217
  56. brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
  57. brainstate/nn/_rnns_test.py +593 -0
  58. brainstate/nn/_utils.py +216 -89
  59. brainstate/nn/_utils_test.py +402 -0
  60. brainstate/{init/_random_inits.py → nn/init.py} +809 -553
  61. brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
  62. brainstate/random/__init__.py +270 -24
  63. brainstate/random/_rand_funs.py +3938 -3616
  64. brainstate/random/_rand_funs_test.py +640 -567
  65. brainstate/random/_rand_seed.py +675 -210
  66. brainstate/random/_rand_seed_test.py +48 -48
  67. brainstate/random/_rand_state.py +1617 -1409
  68. brainstate/random/_rand_state_test.py +551 -0
  69. brainstate/transform/__init__.py +59 -0
  70. brainstate/transform/_ad_checkpoint.py +176 -0
  71. brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
  72. brainstate/{augment → transform}/_autograd.py +1025 -778
  73. brainstate/{augment → transform}/_autograd_test.py +1289 -1289
  74. brainstate/transform/_conditions.py +316 -0
  75. brainstate/{compile → transform}/_conditions_test.py +220 -220
  76. brainstate/{compile → transform}/_error_if.py +94 -92
  77. brainstate/{compile → transform}/_error_if_test.py +52 -52
  78. brainstate/transform/_eval_shape.py +145 -0
  79. brainstate/{augment → transform}/_eval_shape_test.py +38 -38
  80. brainstate/{compile → transform}/_jit.py +399 -346
  81. brainstate/{compile → transform}/_jit_test.py +143 -143
  82. brainstate/{compile → transform}/_loop_collect_return.py +675 -536
  83. brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
  84. brainstate/{compile → transform}/_loop_no_collection.py +283 -184
  85. brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
  86. brainstate/transform/_make_jaxpr.py +2016 -0
  87. brainstate/transform/_make_jaxpr_test.py +1510 -0
  88. brainstate/transform/_mapping.py +529 -0
  89. brainstate/transform/_mapping_test.py +194 -0
  90. brainstate/{compile → transform}/_progress_bar.py +255 -202
  91. brainstate/{augment → transform}/_random.py +171 -151
  92. brainstate/{compile → transform}/_unvmap.py +256 -159
  93. brainstate/transform/_util.py +286 -0
  94. brainstate/typing.py +837 -304
  95. brainstate/typing_test.py +780 -0
  96. brainstate/util/__init__.py +27 -50
  97. brainstate/util/_others.py +1025 -0
  98. brainstate/util/_others_test.py +962 -0
  99. brainstate/util/_pretty_pytree.py +1301 -0
  100. brainstate/util/_pretty_pytree_test.py +675 -0
  101. brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
  102. brainstate/util/_pretty_repr_test.py +696 -0
  103. brainstate/util/filter.py +945 -469
  104. brainstate/util/filter_test.py +912 -0
  105. brainstate/util/struct.py +910 -523
  106. brainstate/util/struct_test.py +602 -0
  107. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
  108. brainstate-0.2.1.dist-info/RECORD +111 -0
  109. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
  110. brainstate/augment/__init__.py +0 -30
  111. brainstate/augment/_eval_shape.py +0 -99
  112. brainstate/augment/_mapping.py +0 -1060
  113. brainstate/augment/_mapping_test.py +0 -597
  114. brainstate/compile/__init__.py +0 -38
  115. brainstate/compile/_ad_checkpoint.py +0 -204
  116. brainstate/compile/_conditions.py +0 -256
  117. brainstate/compile/_make_jaxpr.py +0 -888
  118. brainstate/compile/_make_jaxpr_test.py +0 -156
  119. brainstate/compile/_util.py +0 -147
  120. brainstate/functional/__init__.py +0 -27
  121. brainstate/graph/_graph_node.py +0 -244
  122. brainstate/graph/_graph_node_test.py +0 -73
  123. brainstate/graph/_graph_operation_test.py +0 -563
  124. brainstate/init/__init__.py +0 -26
  125. brainstate/init/_base.py +0 -52
  126. brainstate/init/_generic.py +0 -244
  127. brainstate/init/_regular_inits.py +0 -105
  128. brainstate/init/_regular_inits_test.py +0 -50
  129. brainstate/nn/_inputs.py +0 -608
  130. brainstate/nn/_ltp.py +0 -28
  131. brainstate/nn/_neuron.py +0 -705
  132. brainstate/nn/_neuron_test.py +0 -161
  133. brainstate/nn/_others.py +0 -46
  134. brainstate/nn/_projection.py +0 -486
  135. brainstate/nn/_rate_rnns_test.py +0 -63
  136. brainstate/nn/_readout.py +0 -209
  137. brainstate/nn/_readout_test.py +0 -53
  138. brainstate/nn/_stp.py +0 -236
  139. brainstate/nn/_synapse.py +0 -505
  140. brainstate/nn/_synapse_test.py +0 -131
  141. brainstate/nn/_synaptic_projection.py +0 -423
  142. brainstate/nn/_synouts.py +0 -162
  143. brainstate/nn/_synouts_test.py +0 -57
  144. brainstate/nn/metrics.py +0 -388
  145. brainstate/optim/__init__.py +0 -38
  146. brainstate/optim/_base.py +0 -64
  147. brainstate/optim/_lr_scheduler.py +0 -448
  148. brainstate/optim/_lr_scheduler_test.py +0 -50
  149. brainstate/optim/_optax_optimizer.py +0 -152
  150. brainstate/optim/_optax_optimizer_test.py +0 -53
  151. brainstate/optim/_sgd_optimizer.py +0 -1104
  152. brainstate/random/_random_for_unit.py +0 -52
  153. brainstate/surrogate.py +0 -1957
  154. brainstate/transform.py +0 -23
  155. brainstate/util/caller.py +0 -98
  156. brainstate/util/others.py +0 -540
  157. brainstate/util/pretty_pytree.py +0 -945
  158. brainstate/util/pretty_pytree_test.py +0 -159
  159. brainstate/util/pretty_table.py +0 -2954
  160. brainstate/util/scaling.py +0 -258
  161. brainstate-0.1.10.dist-info/RECORD +0 -130
  162. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
  163. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,194 @@
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import unittest
18
+
19
+ import jax
20
+ import jax.numpy as jnp
21
+ from jax import vmap
22
+ from jax.lax import psum, pmean, pmax
23
+
24
+ import brainstate
25
+ import brainstate.transform
26
+ from brainstate._error import BatchAxisError
27
+
28
+
29
+
30
+ class TestMap(unittest.TestCase):
31
+ def test_map(self):
32
+ for dim in [(10,), (10, 10), (10, 10, 10)]:
33
+ x = brainstate.random.rand(*dim)
34
+ r1 = brainstate.transform.map(lambda a: a + 1, x, batch_size=None)
35
+ r2 = brainstate.transform.map(lambda a: a + 1, x, batch_size=2)
36
+ r3 = brainstate.transform.map(lambda a: a + 1, x, batch_size=4)
37
+ r4 = brainstate.transform.map(lambda a: a + 1, x, batch_size=5)
38
+ true_r = x + 1
39
+
40
+ self.assertTrue(jnp.allclose(r1, true_r))
41
+ self.assertTrue(jnp.allclose(r2, true_r))
42
+ self.assertTrue(jnp.allclose(r3, true_r))
43
+ self.assertTrue(jnp.allclose(r4, true_r))
44
+
45
+
46
+ class TestAxisName:
47
+ def test1(self):
48
+ def compute_stats_with_axis_name(x):
49
+ """Compute statistics using named axis operations"""
50
+ # Sum across the named axis 'batch'
51
+ total_sum = psum(x, axis_name='batch')
52
+
53
+ # Mean across the named axis 'batch'
54
+ mean_val = pmean(x, axis_name='batch')
55
+
56
+ # Max across the named axis 'batch'
57
+ max_val = pmax(x, axis_name='batch')
58
+
59
+ return {
60
+ 'sum': total_sum,
61
+ 'mean': mean_val,
62
+ 'max': max_val,
63
+ 'original': x
64
+ }
65
+
66
+ batch_data = jnp.array([1.0, 2.0, 3.0, 4.0, 5.0])
67
+ print("Input batch data:", batch_data)
68
+
69
+ # vmap with axis name 'batch'
70
+ vectorized_stats_jax = jax.jit(vmap(compute_stats_with_axis_name, axis_name='batch'))
71
+ result_jax = vectorized_stats_jax(batch_data)
72
+
73
+ # vmap with axis name 'batch'
74
+ vectorized_stats = brainstate.transform.vmap(compute_stats_with_axis_name, axis_name='batch')
75
+ result = vectorized_stats(batch_data)
76
+
77
+ # vmap with axis name 'batch'
78
+ vectorized_stats_v2 = brainstate.transform.jit(
79
+ brainstate.transform.vmap(compute_stats_with_axis_name, axis_name='batch')
80
+ )
81
+ result_v2 = vectorized_stats_v2(batch_data)
82
+
83
+ for key in result_jax.keys():
84
+ print(f" {key}: {result_jax[key]}")
85
+ assert jnp.allclose(result_jax[key], result[key]), f"Mismatch in {key}"
86
+ assert jnp.allclose(result_jax[key], result_v2[key]), f"Mismatch in {key}"
87
+
88
+ def test_nested_vmap(self):
89
+ def nested_computation(x):
90
+ """Computation with multiple named axes"""
91
+ # Sum over 'inner' axis, then mean over 'outer' axis
92
+ inner_sum = psum(x, axis_name='inner')
93
+ outer_mean = pmean(inner_sum, axis_name='outer')
94
+ return outer_mean
95
+
96
+ # Create 2D batch data
97
+ data_2d = jnp.arange(12.0).reshape(3, 4) # Shape: [outer_batch=3, inner_batch=4]
98
+ print("Input 2D data shape:", data_2d.shape)
99
+ print("Input 2D data:\n", data_2d)
100
+
101
+ # Nested vmap: first over inner dimension, then outer dimension
102
+ inner_vmap = vmap(nested_computation, axis_name='inner')
103
+ nested_vmap = vmap(inner_vmap, axis_name='outer')
104
+
105
+ result_2d = nested_vmap(data_2d)
106
+ print("Result after nested vmap:", result_2d)
107
+
108
+ inner_vmap_bst = brainstate.transform.vmap(nested_computation, axis_name='inner')
109
+ nested_vmap_bst = brainstate.transform.vmap(inner_vmap_bst, axis_name='outer')
110
+ result_2d_bst = nested_vmap_bst(data_2d)
111
+ print("Result after nested vmap:", result_2d_bst)
112
+
113
+ assert jnp.allclose(result_2d, result_2d_bst)
114
+
115
+ def _gradient_averaging_simulation_bst(self):
116
+ def loss_function(params, x, y):
117
+ """Simple quadratic loss"""
118
+ pred = params * x
119
+ return (pred - y) ** 2
120
+
121
+ def compute_gradients_with_averaging(params, batch_x, batch_y):
122
+ """Compute gradients and average them across the batch"""
123
+ # Compute per-sample gradients
124
+ grad_fn = jax.grad(loss_function, argnums=0)
125
+ per_sample_grads = vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
126
+
127
+ # Average gradients across batch using named axis
128
+ def average_grads(grads):
129
+ return pmean(grads, axis_name='batch')
130
+
131
+ # Apply averaging with named axis
132
+ averaged_grads = vmap(average_grads, axis_name='batch')(per_sample_grads)
133
+ return averaged_grads
134
+
135
+ # Example data
136
+ params = 2.0
137
+ batch_x = jnp.array([1.0, 2.0, 3.0, 4.0])
138
+ batch_y = jnp.array([2.0, 4.0, 7.0, 8.0])
139
+
140
+ print("Parameters:", params)
141
+ print("Batch X:", batch_x)
142
+ print("Batch Y:", batch_y)
143
+
144
+ # Compute individual gradients first
145
+ grad_fn = jax.grad(loss_function, argnums=0)
146
+ individual_grads = vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
147
+ print("Individual gradients:", individual_grads)
148
+
149
+ # Now compute averaged gradients using axis names
150
+ averaged_grads = compute_gradients_with_averaging(params, batch_x, batch_y)
151
+ print("Averaged gradients:", averaged_grads)
152
+
153
+ return individual_grads, averaged_grads
154
+
155
+ def _gradient_averaging_simulation_jax(self):
156
+ def loss_function(params, x, y):
157
+ """Simple quadratic loss"""
158
+ pred = params * x
159
+ return (pred - y) ** 2
160
+
161
+ def compute_gradients_with_averaging(params, batch_x, batch_y):
162
+ """Compute gradients and average them across the batch"""
163
+ # Compute per-sample gradients
164
+ grad_fn = jax.grad(loss_function, argnums=0)
165
+ per_sample_grads = brainstate.transform.vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
166
+
167
+ # Average gradients across batch using named axis
168
+ def average_grads(grads):
169
+ return pmean(grads, axis_name='batch')
170
+
171
+ # Apply averaging with named axis
172
+ averaged_grads = brainstate.transform.vmap(average_grads, axis_name='batch')(per_sample_grads)
173
+ return averaged_grads
174
+
175
+ # Example data
176
+ params = 2.0
177
+ batch_x = jnp.array([1.0, 2.0, 3.0, 4.0])
178
+ batch_y = jnp.array([2.0, 4.0, 7.0, 8.0])
179
+
180
+ print("Parameters:", params)
181
+ print("Batch X:", batch_x)
182
+ print("Batch Y:", batch_y)
183
+
184
+ # Compute individual gradients first
185
+ grad_fn = jax.grad(loss_function, argnums=0)
186
+ individual_grads = brainstate.transform.vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
187
+ print("Individual gradients:", individual_grads)
188
+
189
+ # Now compute averaged gradients using axis names
190
+ averaged_grads = compute_gradients_with_averaging(params, batch_x, batch_y)
191
+ print("Averaged gradients:", averaged_grads)
192
+
193
+ return individual_grads, averaged_grads
194
+
@@ -1,202 +1,255 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import copy
18
- import importlib.util
19
- from typing import Optional, Callable, Any, Tuple, Dict
20
-
21
- import jax
22
-
23
- tqdm_installed = importlib.util.find_spec('tqdm') is not None
24
-
25
- __all__ = [
26
- 'ProgressBar',
27
- ]
28
-
29
- Index = int
30
- Carray = Any
31
- Output = Any
32
-
33
-
34
- class ProgressBar(object):
35
- """
36
- A progress bar for tracking the progress of a jitted for-loop computation.
37
-
38
- It can be used in :py:func:`for_loop`, :py:func:`checkpointed_for_loop`, :py:func:`scan`,
39
- and :py:func:`checkpointed_scan` functions. Or any other jitted function that uses
40
- a for-loop.
41
-
42
- The message displayed in the progress bar can be customized by the following two methods:
43
-
44
- 1. By passing a string to the `desc` argument. For example:
45
-
46
- .. code-block:: python
47
-
48
- ProgressBar(desc="Running 1000 iterations")
49
-
50
- 2. By passing a tuple with a string and a callable function to the `desc` argument. The callable
51
- function should take a dictionary as input and return a dictionary. The returned dictionary
52
- will be used to format the string. For example:
53
-
54
- .. code-block:: python
55
-
56
- a = brainstate.State(1.)
57
- def loop_fn(x):
58
- a.value = x.value + 1.
59
- return jnp.sum(x ** 2)
60
-
61
- pbar = ProgressBar(desc=("Running {i} iterations, loss = {loss}",
62
- lambda i_carray_y: {"i": i_carray_y["i"], "loss": i_carray_y["y"]}))
63
-
64
- brainstate.compile.for_loop(loop_fn, xs, pbar=pbar)
65
-
66
- In this example, ``"i"`` denotes the iteration number and ``"loss"`` is computed from the output,
67
- the ``"carry"`` is the dynamic state in the loop, for example ``a.value`` in this case.
68
-
69
-
70
- Args:
71
- freq: The frequency at which to print the progress bar. If not specified, the progress
72
- bar will be printed every 5% of the total iterations.
73
- count: The number of times to print the progress bar. If not specified, the progress
74
- bar will be printed every 5% of the total iterations.
75
- desc: A description of the progress bar. If not specified, a default message will be
76
- displayed.
77
- kwargs: Additional keyword arguments to pass to the progress bar.
78
- """
79
- __module__ = "brainstate.compile"
80
-
81
- def __init__(
82
- self,
83
- freq: Optional[int] = None,
84
- count: Optional[int] = None,
85
- desc: Optional[Tuple[str, Callable[[Dict], Dict]] | str] = None,
86
- **kwargs
87
- ):
88
- # print rate
89
- self.print_freq = freq
90
- if isinstance(freq, int):
91
- assert freq > 0, "Print rate should be > 0."
92
-
93
- # print count
94
- self.print_count = count
95
- if self.print_freq is not None and self.print_count is not None:
96
- raise ValueError("Cannot specify both count and freq.")
97
-
98
- # other parameters
99
- for kwarg in ("total", "mininterval", "maxinterval", "miniters"):
100
- kwargs.pop(kwarg, None)
101
- self.kwargs = kwargs
102
-
103
- # description
104
- if desc is not None:
105
- if isinstance(desc, str):
106
- pass
107
- else:
108
- assert isinstance(desc, (tuple, list)), 'Description should be a tuple or list.'
109
- assert isinstance(desc[0], str), 'Description should be a string.'
110
- assert callable(desc[1]), 'Description should be a callable.'
111
- self.desc = desc
112
-
113
- # check if tqdm is installed
114
- if not tqdm_installed:
115
- raise ImportError("tqdm is not installed.")
116
-
117
- def init(self, n: int):
118
- kwargs = copy.copy(self.kwargs)
119
- freq = self.print_freq
120
- count = self.print_count
121
- if count is not None:
122
- freq, remainder = divmod(n, count)
123
- if freq == 0:
124
- raise ValueError(f"Count {count} is too large for n {n}.")
125
- elif freq is None:
126
- if n > 20:
127
- freq = int(n / 20)
128
- else:
129
- freq = 1
130
- remainder = n % freq
131
- else:
132
- if freq < 1:
133
- raise ValueError(f"Print rate should be > 0 got {freq}")
134
- elif freq > n:
135
- raise ValueError("Print rate should be less than the "
136
- f"number of steps {n}, got {freq}")
137
- remainder = n % freq
138
-
139
- message = f"Running for {n:,} iterations" if self.desc is None else self.desc
140
- return ProgressBarRunner(n, freq, remainder, message, **kwargs)
141
-
142
-
143
- class ProgressBarRunner(object):
144
- __module__ = "brainstate.compile"
145
-
146
- def __init__(
147
- self,
148
- n: int,
149
- print_freq: int,
150
- remainder: int,
151
- message: str | Tuple[str, Callable[[Dict], Dict]],
152
- **kwargs
153
- ):
154
- self.tqdm_bars = {}
155
- self.kwargs = kwargs
156
- self.n = n
157
- self.print_freq = print_freq
158
- self.remainder = remainder
159
- self.message = message
160
-
161
- def _define_tqdm(self, x: dict):
162
- from tqdm.auto import tqdm
163
- self.tqdm_bars[0] = tqdm(range(self.n), **self.kwargs)
164
- if isinstance(self.message, str):
165
- self.tqdm_bars[0].set_description(self.message, refresh=False)
166
- else:
167
- self.tqdm_bars[0].set_description(self.message[0].format(**x), refresh=True)
168
-
169
- def _update_tqdm(self, x: dict):
170
- self.tqdm_bars[0].update(self.print_freq)
171
- if not isinstance(self.message, str):
172
- self.tqdm_bars[0].set_description(self.message[0].format(**x), refresh=True)
173
-
174
- def _close_tqdm(self, x: dict):
175
- if self.remainder > 0:
176
- self.tqdm_bars[0].update(self.remainder)
177
- if not isinstance(self.message, str):
178
- self.tqdm_bars[0].set_description(self.message[0].format(**x), refresh=True)
179
- self.tqdm_bars[0].close()
180
-
181
- def __call__(self, iter_num, **kwargs):
182
- data = dict() if isinstance(self.message, str) else self.message[1](dict(i=iter_num, **kwargs))
183
- assert isinstance(data, dict), 'Description function should return a dictionary.'
184
-
185
- _ = jax.lax.cond(
186
- iter_num == 0,
187
- lambda x: jax.debug.callback(self._define_tqdm, x, ordered=True),
188
- lambda x: None,
189
- data
190
- )
191
- _ = jax.lax.cond(
192
- iter_num % self.print_freq == (self.print_freq - 1),
193
- lambda x: jax.debug.callback(self._update_tqdm, x, ordered=True),
194
- lambda x: None,
195
- data
196
- )
197
- _ = jax.lax.cond(
198
- iter_num == self.n - 1,
199
- lambda x: jax.debug.callback(self._close_tqdm, x, ordered=True),
200
- lambda x: None,
201
- data
202
- )
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import copy
18
+ import importlib.util
19
+ from typing import Optional, Callable, Any, Tuple, Dict
20
+
21
+ import jax
22
+
23
+ tqdm_installed = importlib.util.find_spec('tqdm') is not None
24
+
25
+ __all__ = [
26
+ 'ProgressBar',
27
+ ]
28
+
29
+ Index = int
30
+ Carray = Any
31
+ Output = Any
32
+
33
+
34
+ class ProgressBar(object):
35
+ """
36
+ A progress bar for tracking the progress of a jitted for-loop computation.
37
+
38
+ It can be used in :py:func:`for_loop`, :py:func:`checkpointed_for_loop`, :py:func:`scan`,
39
+ and :py:func:`checkpointed_scan` functions. Or any other jitted function that uses
40
+ a for-loop.
41
+
42
+ The message displayed in the progress bar can be customized by the following two methods:
43
+
44
+ 1. By passing a string to the `desc` argument.
45
+ 2. By passing a tuple with a string and a callable function to the `desc` argument. The callable
46
+ function should take a dictionary as input and return a dictionary. The returned dictionary
47
+ will be used to format the string.
48
+
49
+ In the second case, ``"i"`` denotes the iteration number and other keys can be computed from the
50
+ loop outputs and carry values.
51
+
52
+ Parameters
53
+ ----------
54
+ freq : int, optional
55
+ The frequency at which to print the progress bar. If not specified, the progress
56
+ bar will be printed every 5% of the total iterations.
57
+ count : int, optional
58
+ The number of times to print the progress bar. If not specified, the progress
59
+ bar will be printed every 5% of the total iterations. Cannot be used together with `freq`.
60
+ desc : str or tuple, optional
61
+ A description of the progress bar. If not specified, a default message will be
62
+ displayed. Can be either a string or a tuple of (format_string, format_function).
63
+ **kwargs
64
+ Additional keyword arguments to pass to the progress bar.
65
+
66
+ Examples
67
+ --------
68
+ Basic usage with default description:
69
+
70
+ .. code-block:: python
71
+
72
+ >>> import brainstate
73
+ >>> import jax.numpy as jnp
74
+ >>>
75
+ >>> def loop_fn(x):
76
+ ... return x ** 2
77
+ >>>
78
+ >>> xs = jnp.arange(100)
79
+ >>> pbar = brainstate.transform.ProgressBar()
80
+ >>> results = brainstate.transform.for_loop(loop_fn, xs, pbar=pbar)
81
+
82
+ With custom description string:
83
+
84
+ .. code-block:: python
85
+
86
+ >>> pbar = brainstate.transform.ProgressBar(desc="Running 1000 iterations")
87
+ >>> results = brainstate.transform.for_loop(loop_fn, xs, pbar=pbar)
88
+
89
+ With frequency control:
90
+
91
+ .. code-block:: python
92
+
93
+ >>> # Update every 10 iterations
94
+ >>> pbar = brainstate.transform.ProgressBar(freq=10)
95
+ >>> results = brainstate.transform.for_loop(loop_fn, xs, pbar=pbar)
96
+ >>>
97
+ >>> # Update exactly 20 times during execution
98
+ >>> pbar = brainstate.transform.ProgressBar(count=20)
99
+ >>> results = brainstate.transform.for_loop(loop_fn, xs, pbar=pbar)
100
+
101
+ With dynamic description based on loop variables:
102
+
103
+ .. code-block:: python
104
+
105
+ >>> state = brainstate.State(1.0)
106
+ >>>
107
+ >>> def loop_fn(x):
108
+ ... state.value += x
109
+ ... loss = jnp.sum(x ** 2)
110
+ ... return loss
111
+ >>>
112
+ >>> def format_desc(data):
113
+ ... return {"i": data["i"], "loss": data["y"], "state": data["carry"]}
114
+ >>>
115
+ >>> pbar = brainstate.transform.ProgressBar(
116
+ ... desc=("Iteration {i}, loss = {loss:.4f}, state = {state:.2f}", format_desc)
117
+ ... )
118
+ >>> results = brainstate.transform.for_loop(loop_fn, xs, pbar=pbar)
119
+
120
+ With scan function:
121
+
122
+ .. code-block:: python
123
+
124
+ >>> def scan_fn(carry, x):
125
+ ... new_carry = carry + x
126
+ ... return new_carry, new_carry ** 2
127
+ >>>
128
+ >>> init_carry = 0.0
129
+ >>> pbar = brainstate.transform.ProgressBar(freq=5)
130
+ >>> final_carry, ys = brainstate.transform.scan(scan_fn, init_carry, xs, pbar=pbar)
131
+ """
132
+ __module__ = "brainstate.transform"
133
+
134
+ def __init__(
135
+ self,
136
+ freq: Optional[int] = None,
137
+ count: Optional[int] = None,
138
+ desc: Optional[Tuple[str, Callable[[Dict], Dict]] | str] = None,
139
+ **kwargs
140
+ ):
141
+ # print rate
142
+ self.print_freq = freq
143
+ if isinstance(freq, int):
144
+ assert freq > 0, "Print rate should be > 0."
145
+
146
+ # print count
147
+ self.print_count = count
148
+ if self.print_freq is not None and self.print_count is not None:
149
+ raise ValueError("Cannot specify both count and freq.")
150
+
151
+ # other parameters
152
+ for kwarg in ("total", "mininterval", "maxinterval", "miniters"):
153
+ kwargs.pop(kwarg, None)
154
+ self.kwargs = kwargs
155
+
156
+ # description
157
+ if desc is not None:
158
+ if isinstance(desc, str):
159
+ pass
160
+ else:
161
+ assert isinstance(desc, (tuple, list)), 'Description should be a tuple or list.'
162
+ assert isinstance(desc[0], str), 'Description should be a string.'
163
+ assert callable(desc[1]), 'Description should be a callable.'
164
+ self.desc = desc
165
+
166
+ # check if tqdm is installed
167
+ if not tqdm_installed:
168
+ raise ImportError("tqdm is not installed.")
169
+
170
+ def init(self, n: int):
171
+ kwargs = copy.copy(self.kwargs)
172
+ freq = self.print_freq
173
+ count = self.print_count
174
+ if count is not None:
175
+ freq, remainder = divmod(n, count)
176
+ if freq == 0:
177
+ raise ValueError(f"Count {count} is too large for n {n}.")
178
+ elif freq is None:
179
+ if n > 20:
180
+ freq = int(n / 20)
181
+ else:
182
+ freq = 1
183
+ remainder = n % freq
184
+ else:
185
+ if freq < 1:
186
+ raise ValueError(f"Print rate should be > 0 got {freq}")
187
+ elif freq > n:
188
+ raise ValueError("Print rate should be less than the "
189
+ f"number of steps {n}, got {freq}")
190
+ remainder = n % freq
191
+
192
+ message = f"Running for {n:,} iterations" if self.desc is None else self.desc
193
+ return ProgressBarRunner(n, freq, remainder, message, **kwargs)
194
+
195
+
196
+ class ProgressBarRunner(object):
197
+ __module__ = "brainstate.transform"
198
+
199
+ def __init__(
200
+ self,
201
+ n: int,
202
+ print_freq: int,
203
+ remainder: int,
204
+ message: str | Tuple[str, Callable[[Dict], Dict]],
205
+ **kwargs
206
+ ):
207
+ self.tqdm_bars = {}
208
+ self.kwargs = kwargs
209
+ self.n = n
210
+ self.print_freq = print_freq
211
+ self.remainder = remainder
212
+ self.message = message
213
+
214
+ def _define_tqdm(self, x: dict):
215
+ from tqdm.auto import tqdm
216
+ self.tqdm_bars[0] = tqdm(range(self.n), **self.kwargs)
217
+ if isinstance(self.message, str):
218
+ self.tqdm_bars[0].set_description(self.message, refresh=False)
219
+ else:
220
+ self.tqdm_bars[0].set_description(self.message[0].format(**x), refresh=True)
221
+
222
+ def _update_tqdm(self, x: dict):
223
+ self.tqdm_bars[0].update(self.print_freq)
224
+ if not isinstance(self.message, str):
225
+ self.tqdm_bars[0].set_description(self.message[0].format(**x), refresh=True)
226
+
227
+ def _close_tqdm(self, x: dict):
228
+ if self.remainder > 0:
229
+ self.tqdm_bars[0].update(self.remainder)
230
+ if not isinstance(self.message, str):
231
+ self.tqdm_bars[0].set_description(self.message[0].format(**x), refresh=True)
232
+ self.tqdm_bars[0].close()
233
+
234
+ def __call__(self, iter_num, **kwargs):
235
+ data = dict() if isinstance(self.message, str) else self.message[1](dict(i=iter_num, **kwargs))
236
+ assert isinstance(data, dict), 'Description function should return a dictionary.'
237
+
238
+ _ = jax.lax.cond(
239
+ iter_num == 0,
240
+ lambda x: jax.debug.callback(self._define_tqdm, x, ordered=True),
241
+ lambda x: None,
242
+ data
243
+ )
244
+ _ = jax.lax.cond(
245
+ iter_num % self.print_freq == (self.print_freq - 1),
246
+ lambda x: jax.debug.callback(self._update_tqdm, x, ordered=True),
247
+ lambda x: None,
248
+ data
249
+ )
250
+ _ = jax.lax.cond(
251
+ iter_num == self.n - 1,
252
+ lambda x: jax.debug.callback(self._close_tqdm, x, ordered=True),
253
+ lambda x: None,
254
+ data
255
+ )