brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (163) hide show
  1. brainstate/__init__.py +169 -58
  2. brainstate/_compatible_import.py +340 -148
  3. brainstate/_compatible_import_test.py +681 -0
  4. brainstate/_deprecation.py +210 -0
  5. brainstate/_deprecation_test.py +2319 -0
  6. brainstate/{util/error.py → _error.py} +45 -55
  7. brainstate/_state.py +1652 -1605
  8. brainstate/_state_test.py +52 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -563
  11. brainstate/environ_test.py +1223 -62
  12. brainstate/graph/__init__.py +22 -29
  13. brainstate/graph/_node.py +240 -0
  14. brainstate/graph/_node_test.py +589 -0
  15. brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
  16. brainstate/graph/_operation_test.py +1147 -0
  17. brainstate/mixin.py +1433 -365
  18. brainstate/mixin_test.py +1017 -77
  19. brainstate/nn/__init__.py +137 -135
  20. brainstate/nn/_activations.py +1100 -808
  21. brainstate/nn/_activations_test.py +354 -331
  22. brainstate/nn/_collective_ops.py +633 -514
  23. brainstate/nn/_collective_ops_test.py +774 -43
  24. brainstate/nn/_common.py +226 -178
  25. brainstate/nn/_common_test.py +154 -0
  26. brainstate/nn/_conv.py +2010 -501
  27. brainstate/nn/_conv_test.py +849 -238
  28. brainstate/nn/_delay.py +575 -588
  29. brainstate/nn/_delay_test.py +243 -238
  30. brainstate/nn/_dropout.py +618 -426
  31. brainstate/nn/_dropout_test.py +477 -100
  32. brainstate/nn/_dynamics.py +1267 -1343
  33. brainstate/nn/_dynamics_test.py +67 -78
  34. brainstate/nn/_elementwise.py +1298 -1119
  35. brainstate/nn/_elementwise_test.py +830 -169
  36. brainstate/nn/_embedding.py +408 -58
  37. brainstate/nn/_embedding_test.py +156 -0
  38. brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
  39. brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
  40. brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
  41. brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
  42. brainstate/nn/_exp_euler.py +254 -92
  43. brainstate/nn/_exp_euler_test.py +377 -35
  44. brainstate/nn/_linear.py +744 -424
  45. brainstate/nn/_linear_test.py +475 -107
  46. brainstate/nn/_metrics.py +1070 -0
  47. brainstate/nn/_metrics_test.py +611 -0
  48. brainstate/nn/_module.py +384 -377
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -975
  51. brainstate/nn/_normalizations_test.py +699 -73
  52. brainstate/nn/_paddings.py +1020 -0
  53. brainstate/nn/_paddings_test.py +723 -0
  54. brainstate/nn/_poolings.py +2239 -1177
  55. brainstate/nn/_poolings_test.py +953 -217
  56. brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
  57. brainstate/nn/_rnns_test.py +593 -0
  58. brainstate/nn/_utils.py +216 -89
  59. brainstate/nn/_utils_test.py +402 -0
  60. brainstate/{init/_random_inits.py → nn/init.py} +809 -553
  61. brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
  62. brainstate/random/__init__.py +270 -24
  63. brainstate/random/_rand_funs.py +3938 -3616
  64. brainstate/random/_rand_funs_test.py +640 -567
  65. brainstate/random/_rand_seed.py +675 -210
  66. brainstate/random/_rand_seed_test.py +48 -48
  67. brainstate/random/_rand_state.py +1617 -1409
  68. brainstate/random/_rand_state_test.py +551 -0
  69. brainstate/transform/__init__.py +59 -0
  70. brainstate/transform/_ad_checkpoint.py +176 -0
  71. brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
  72. brainstate/{augment → transform}/_autograd.py +1025 -778
  73. brainstate/{augment → transform}/_autograd_test.py +1289 -1289
  74. brainstate/transform/_conditions.py +316 -0
  75. brainstate/{compile → transform}/_conditions_test.py +220 -220
  76. brainstate/{compile → transform}/_error_if.py +94 -92
  77. brainstate/{compile → transform}/_error_if_test.py +52 -52
  78. brainstate/transform/_eval_shape.py +145 -0
  79. brainstate/{augment → transform}/_eval_shape_test.py +38 -38
  80. brainstate/{compile → transform}/_jit.py +399 -346
  81. brainstate/{compile → transform}/_jit_test.py +143 -143
  82. brainstate/{compile → transform}/_loop_collect_return.py +675 -536
  83. brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
  84. brainstate/{compile → transform}/_loop_no_collection.py +283 -184
  85. brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
  86. brainstate/transform/_make_jaxpr.py +2016 -0
  87. brainstate/transform/_make_jaxpr_test.py +1510 -0
  88. brainstate/transform/_mapping.py +529 -0
  89. brainstate/transform/_mapping_test.py +194 -0
  90. brainstate/{compile → transform}/_progress_bar.py +255 -202
  91. brainstate/{augment → transform}/_random.py +171 -151
  92. brainstate/{compile → transform}/_unvmap.py +256 -159
  93. brainstate/transform/_util.py +286 -0
  94. brainstate/typing.py +837 -304
  95. brainstate/typing_test.py +780 -0
  96. brainstate/util/__init__.py +27 -50
  97. brainstate/util/_others.py +1025 -0
  98. brainstate/util/_others_test.py +962 -0
  99. brainstate/util/_pretty_pytree.py +1301 -0
  100. brainstate/util/_pretty_pytree_test.py +675 -0
  101. brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
  102. brainstate/util/_pretty_repr_test.py +696 -0
  103. brainstate/util/filter.py +945 -469
  104. brainstate/util/filter_test.py +912 -0
  105. brainstate/util/struct.py +910 -523
  106. brainstate/util/struct_test.py +602 -0
  107. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
  108. brainstate-0.2.1.dist-info/RECORD +111 -0
  109. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
  110. brainstate/augment/__init__.py +0 -30
  111. brainstate/augment/_eval_shape.py +0 -99
  112. brainstate/augment/_mapping.py +0 -1060
  113. brainstate/augment/_mapping_test.py +0 -597
  114. brainstate/compile/__init__.py +0 -38
  115. brainstate/compile/_ad_checkpoint.py +0 -204
  116. brainstate/compile/_conditions.py +0 -256
  117. brainstate/compile/_make_jaxpr.py +0 -888
  118. brainstate/compile/_make_jaxpr_test.py +0 -156
  119. brainstate/compile/_util.py +0 -147
  120. brainstate/functional/__init__.py +0 -27
  121. brainstate/graph/_graph_node.py +0 -244
  122. brainstate/graph/_graph_node_test.py +0 -73
  123. brainstate/graph/_graph_operation_test.py +0 -563
  124. brainstate/init/__init__.py +0 -26
  125. brainstate/init/_base.py +0 -52
  126. brainstate/init/_generic.py +0 -244
  127. brainstate/init/_regular_inits.py +0 -105
  128. brainstate/init/_regular_inits_test.py +0 -50
  129. brainstate/nn/_inputs.py +0 -608
  130. brainstate/nn/_ltp.py +0 -28
  131. brainstate/nn/_neuron.py +0 -705
  132. brainstate/nn/_neuron_test.py +0 -161
  133. brainstate/nn/_others.py +0 -46
  134. brainstate/nn/_projection.py +0 -486
  135. brainstate/nn/_rate_rnns_test.py +0 -63
  136. brainstate/nn/_readout.py +0 -209
  137. brainstate/nn/_readout_test.py +0 -53
  138. brainstate/nn/_stp.py +0 -236
  139. brainstate/nn/_synapse.py +0 -505
  140. brainstate/nn/_synapse_test.py +0 -131
  141. brainstate/nn/_synaptic_projection.py +0 -423
  142. brainstate/nn/_synouts.py +0 -162
  143. brainstate/nn/_synouts_test.py +0 -57
  144. brainstate/nn/metrics.py +0 -388
  145. brainstate/optim/__init__.py +0 -38
  146. brainstate/optim/_base.py +0 -64
  147. brainstate/optim/_lr_scheduler.py +0 -448
  148. brainstate/optim/_lr_scheduler_test.py +0 -50
  149. brainstate/optim/_optax_optimizer.py +0 -152
  150. brainstate/optim/_optax_optimizer_test.py +0 -53
  151. brainstate/optim/_sgd_optimizer.py +0 -1104
  152. brainstate/random/_random_for_unit.py +0 -52
  153. brainstate/surrogate.py +0 -1957
  154. brainstate/transform.py +0 -23
  155. brainstate/util/caller.py +0 -98
  156. brainstate/util/others.py +0 -540
  157. brainstate/util/pretty_pytree.py +0 -945
  158. brainstate/util/pretty_pytree_test.py +0 -159
  159. brainstate/util/pretty_table.py +0 -2954
  160. brainstate/util/scaling.py +0 -258
  161. brainstate-0.1.10.dist-info/RECORD +0 -130
  162. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
  163. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -1,58 +1,58 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- import unittest
17
-
18
- import jax.numpy as jnp
19
- import numpy as np
20
-
21
- import brainstate
22
-
23
-
24
- class TestForLoop(unittest.TestCase):
25
- def test_for_loop(self):
26
- a = brainstate.ShortTermState(0.)
27
- b = brainstate.ShortTermState(0.)
28
-
29
- def f(i):
30
- a.value += (1 + b.value)
31
- return a.value
32
-
33
- n_iter = 10
34
- ops = np.arange(n_iter)
35
- r = brainstate.compile.for_loop(f, ops)
36
-
37
- print(a)
38
- print(b)
39
- self.assertTrue(a.value == n_iter)
40
- self.assertTrue(jnp.allclose(r, ops + 1))
41
-
42
- def test_checkpointed_for_loop(self):
43
- a = brainstate.ShortTermState(0.)
44
- b = brainstate.ShortTermState(0.)
45
-
46
- def f(i):
47
- a.value += (1 + b.value)
48
- return a.value
49
-
50
- n_iter = 18
51
- ops = jnp.arange(n_iter)
52
- r = brainstate.compile.checkpointed_for_loop(f, ops, base=2, pbar=brainstate.compile.ProgressBar())
53
-
54
- print(a)
55
- print(b)
56
- print(r)
57
- self.assertTrue(a.value == n_iter)
58
- self.assertTrue(jnp.allclose(r, ops + 1))
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import unittest
17
+
18
+ import jax.numpy as jnp
19
+ import numpy as np
20
+
21
+ import brainstate
22
+
23
+
24
+ class TestForLoop(unittest.TestCase):
25
+ def test_for_loop(self):
26
+ a = brainstate.ShortTermState(0.)
27
+ b = brainstate.ShortTermState(0.)
28
+
29
+ def f(i):
30
+ a.value += (1 + b.value)
31
+ return a.value
32
+
33
+ n_iter = 10
34
+ ops = np.arange(n_iter)
35
+ r = brainstate.compile.for_loop(f, ops)
36
+
37
+ print(a)
38
+ print(b)
39
+ self.assertTrue(a.value == n_iter)
40
+ self.assertTrue(jnp.allclose(r, ops + 1))
41
+
42
+ def test_checkpointed_for_loop(self):
43
+ a = brainstate.ShortTermState(0.)
44
+ b = brainstate.ShortTermState(0.)
45
+
46
+ def f(i):
47
+ a.value += (1 + b.value)
48
+ return a.value
49
+
50
+ n_iter = 18
51
+ ops = jnp.arange(n_iter)
52
+ r = brainstate.compile.checkpointed_for_loop(f, ops, base=2, pbar=brainstate.compile.ProgressBar())
53
+
54
+ print(a)
55
+ print(b)
56
+ print(r)
57
+ self.assertTrue(a.value == n_iter)
58
+ self.assertTrue(jnp.allclose(r, ops + 1))
@@ -1,184 +1,283 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- import math
17
- from typing import Any, Callable, TypeVar
18
-
19
- import jax
20
-
21
- from brainstate._utils import set_module_as
22
- from ._loop_collect_return import _bounded_while_loop
23
- from ._make_jaxpr import StatefulFunction
24
- from ._util import wrap_single_fun_in_multi_branches_while_loop as wrap_fn
25
- from ._util import write_back_state_values
26
-
27
- X = TypeVar('X')
28
- Y = TypeVar('Y')
29
- T = TypeVar('T')
30
- Carry = TypeVar('Carry')
31
- BooleanNumeric = Any # A bool, or a Boolean array.
32
-
33
- __all__ = [
34
- 'while_loop', 'bounded_while_loop',
35
- ]
36
-
37
-
38
- @set_module_as('brainstate.compile')
39
- def while_loop(
40
- cond_fun: Callable[[T], BooleanNumeric],
41
- body_fun: Callable[[T], T],
42
- init_val: T
43
- ) -> T:
44
- """
45
- Call ``body_fun`` repeatedly in a loop while ``cond_fun`` is True.
46
-
47
- The `Haskell-like type signature`_ in brief is
48
-
49
- .. code-block:: haskell
50
-
51
- while_loop :: (a -> Bool) -> (a -> a) -> a -> a
52
-
53
- The semantics of ``while_loop`` are given by this Python implementation::
54
-
55
- def while_loop(cond_fun, body_fun, init_val):
56
- val = init_val
57
- while cond_fun(val):
58
- val = body_fun(val)
59
- return val
60
-
61
- Unlike that Python version, ``while_loop`` is a JAX primitive and is lowered
62
- to a single WhileOp. That makes it useful for reducing compilation times
63
- for jit-compiled functions, since native Python loop constructs in an ``@jit``
64
- function are unrolled, leading to large XLA computations.
65
-
66
- Also unlike the Python analogue, the loop-carried value ``val`` must hold a
67
- fixed shape and dtype across all iterations (and not just be consistent up to
68
- NumPy rank/shape broadcasting and dtype promotion rules, for example). In
69
- other words, the type ``a`` in the type signature above represents an array
70
- with a fixed shape and dtype (or a nested tuple/list/dict container data
71
- structure with a fixed structure and arrays with fixed shape and dtype at the
72
- leaves).
73
-
74
- Another difference from using Python-native loop constructs is that
75
- ``while_loop`` is not reverse-mode differentiable because XLA computations
76
- require static bounds on memory requirements.
77
-
78
- Args:
79
- cond_fun: function of type ``a -> Bool``.
80
- body_fun: function of type ``a -> a``.
81
- init_val: value of type ``a``, a type that can be a scalar, array, or any
82
- pytree (nested Python tuple/list/dict) thereof, representing the initial
83
- loop carry value.
84
-
85
- Returns:
86
- The output from the final iteration of body_fun, of type ``a``.
87
-
88
- .. _Haskell-like type signature: https://wiki.haskell.org/Type_signature
89
- """
90
- if not (callable(body_fun) and callable(cond_fun)):
91
- raise TypeError("while_loop: body_fun and cond_fun arguments should be callable.")
92
- if jax.config.jax_disable_jit:
93
- try:
94
- val = init_val
95
- while cond_fun(val):
96
- val = body_fun(val)
97
- return val
98
- except jax.core.ConcretizationTypeError:
99
- # Can't run this while_loop in Python (e.g. because there's a vmap
100
- # transformation on it), so we fall back to the primitive version.
101
- pass
102
-
103
- # evaluate jaxpr
104
- stateful_cond = StatefulFunction(cond_fun, name='while:cond').make_jaxpr(init_val)
105
- stateful_body = StatefulFunction(body_fun, name='while:body').make_jaxpr(init_val)
106
- if len(stateful_cond.get_write_states()) != 0:
107
- raise ValueError("while_loop: cond_fun should not have any write states.")
108
-
109
- # state trace and state values
110
- state_trace = stateful_cond.get_state_trace() + stateful_body.get_state_trace()
111
- read_state_vals = state_trace.get_read_state_values(True)
112
- write_state_vals = state_trace.get_write_state_values(True)
113
- new_cond_fn = wrap_fn(stateful_cond, state_trace, read_state_vals, False)
114
- new_body_fn = wrap_fn(stateful_body, state_trace, read_state_vals, True)
115
-
116
- # while_loop
117
- state_vals, final_val = jax.lax.while_loop(new_cond_fn, new_body_fn, (write_state_vals, init_val))
118
-
119
- # write back state values or restore them
120
- write_back_state_values(state_trace, read_state_vals, state_vals)
121
- return final_val
122
-
123
-
124
- def bounded_while_loop(
125
- cond_fun: Callable[[T], BooleanNumeric],
126
- body_fun: Callable[[T], T],
127
- init_val: T,
128
- *,
129
- max_steps: int,
130
- base: int = 16,
131
- ):
132
- """
133
- While loop with a bound on the maximum number of steps.
134
-
135
- This function is adapted from ``while_loop`` in `equinox <https://github.com/patrick-kidger/equinox/blob/main/equinox/internal/_loop/loop.py>`_.
136
-
137
- This function is useful when you want to ensure that a while loop terminates
138
- even if the condition function is never false. The function is implemented
139
- using a scan operation, so it is reverse-mode differentiable.
140
-
141
- Args:
142
- cond_fun: A function of type ``a -> Bool``.
143
- body_fun: A function of type ``a -> a``.
144
- init_val: The initial value of type ``a``.
145
- max_steps: A bound on the maximum number of steps, after which the loop
146
- terminates unconditionally.
147
- base: Run time will increase slightly as `base` increases. Compilation time will
148
- decrease substantially as `math.ceil(math.log(max_steps, base))` decreases.
149
- (Which happens as `base` increases.)
150
-
151
- Returns:
152
- The final value, as if computed by a `lax.while_loop`.
153
- """
154
-
155
- # checking
156
- if not isinstance(max_steps, int) or max_steps < 0:
157
- raise ValueError("max_steps must be a non-negative integer")
158
- init_val = jax.tree.map(jax.numpy.asarray, init_val)
159
- if max_steps == 0:
160
- return init_val
161
-
162
- # evaluate jaxpr
163
- stateful_cond = StatefulFunction(cond_fun, name='bounded_while:cond').make_jaxpr(init_val)
164
- stateful_body = StatefulFunction(body_fun, name='bounded_while:body').make_jaxpr(init_val)
165
- if len(stateful_cond.get_write_states()) != 0:
166
- raise ValueError("while_loop: cond_fun should not have any write states.")
167
-
168
- # state trace and state values
169
- state_trace = stateful_cond.get_state_trace() + stateful_body.get_state_trace()
170
- read_state_vals = state_trace.get_read_state_values(True)
171
- write_state_vals = state_trace.get_write_state_values(True)
172
- new_cond_fn = wrap_fn(stateful_cond, state_trace, read_state_vals, False)
173
- new_body_fn = wrap_fn(stateful_body, state_trace, read_state_vals, True)
174
-
175
- # initial value
176
- init_val = (write_state_vals, init_val)
177
-
178
- # while_loop
179
- rounded_max_steps = base ** int(math.ceil(math.log(max_steps, base)))
180
- state_vals, val = _bounded_while_loop(new_cond_fn, new_body_fn, init_val, rounded_max_steps, base, None)
181
-
182
- # write back state values or restore them
183
- write_back_state_values(state_trace, read_state_vals, state_vals)
184
- return val
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import math
17
+ from typing import Any, Callable, TypeVar
18
+
19
+ import jax
20
+
21
+ from brainstate._utils import set_module_as
22
+ from ._loop_collect_return import _bounded_while_loop
23
+ from ._make_jaxpr import StatefulFunction
24
+ from ._util import wrap_single_fun_in_multi_branches_while_loop as wrap_fn
25
+
26
+ X = TypeVar('X')
27
+ Y = TypeVar('Y')
28
+ T = TypeVar('T')
29
+ Carry = TypeVar('Carry')
30
+ BooleanNumeric = Any # A bool, or a Boolean array.
31
+
32
+ __all__ = [
33
+ 'while_loop', 'bounded_while_loop',
34
+ ]
35
+
36
+
37
+ @set_module_as('brainstate.transform')
38
+ def while_loop(
39
+ cond_fun: Callable[[T], BooleanNumeric],
40
+ body_fun: Callable[[T], T],
41
+ init_val: T
42
+ ) -> T:
43
+ """
44
+ Call ``body_fun`` repeatedly in a loop while ``cond_fun`` is True.
45
+
46
+ The `Haskell-like type signature`_ in brief is
47
+
48
+ .. code-block:: haskell
49
+
50
+ while_loop :: (a -> Bool) -> (a -> a) -> a -> a
51
+
52
+ The semantics of ``while_loop`` are given by this Python implementation:
53
+
54
+ .. code-block:: python
55
+
56
+ >>> def while_loop(cond_fun, body_fun, init_val):
57
+ ... val = init_val
58
+ ... while cond_fun(val):
59
+ ... val = body_fun(val)
60
+ ... return val
61
+
62
+ Unlike that Python version, ``while_loop`` is a JAX primitive and is lowered
63
+ to a single WhileOp. That makes it useful for reducing compilation times
64
+ for jit-compiled functions, since native Python loop constructs in an ``@jit``
65
+ function are unrolled, leading to large XLA computations.
66
+
67
+ Also unlike the Python analogue, the loop-carried value ``val`` must hold a
68
+ fixed shape and dtype across all iterations (and not just be consistent up to
69
+ NumPy rank/shape broadcasting and dtype promotion rules, for example). In
70
+ other words, the type ``a`` in the type signature above represents an array
71
+ with a fixed shape and dtype (or a nested tuple/list/dict container data
72
+ structure with a fixed structure and arrays with fixed shape and dtype at the
73
+ leaves).
74
+
75
+ Another difference from using Python-native loop constructs is that
76
+ ``while_loop`` is not reverse-mode differentiable because XLA computations
77
+ require static bounds on memory requirements.
78
+
79
+ Parameters
80
+ ----------
81
+ cond_fun : callable
82
+ Function of type ``a -> Bool``.
83
+ body_fun : callable
84
+ Function of type ``a -> a``.
85
+ init_val : T
86
+ Value of type ``a``, a type that can be a scalar, array, or any
87
+ pytree (nested Python tuple/list/dict) thereof, representing the initial
88
+ loop carry value.
89
+
90
+ Returns
91
+ -------
92
+ T
93
+ The output from the final iteration of body_fun, of type ``a``.
94
+
95
+ Examples
96
+ --------
97
+ Basic while loop operation:
98
+
99
+ .. code-block:: python
100
+
101
+ >>> import brainstate
102
+ >>> import jax.numpy as jnp
103
+ >>>
104
+ >>> def cond_fn(val):
105
+ ... return val < 10
106
+ >>>
107
+ >>> def body_fn(val):
108
+ ... return val + 1
109
+ >>>
110
+ >>> result = brainstate.transform.while_loop(cond_fn, body_fn, 0)
111
+ >>> # result will be 10
112
+
113
+ While loop with array state:
114
+
115
+ .. code-block:: python
116
+
117
+ >>> def cond_fn(state):
118
+ ... return jnp.sum(state) < 100
119
+ >>>
120
+ >>> def body_fn(state):
121
+ ... return state * 1.1
122
+ >>>
123
+ >>> init_state = jnp.array([1.0, 2.0, 3.0])
124
+ >>> final_state = brainstate.transform.while_loop(cond_fn, body_fn, init_state)
125
+
126
+ References
127
+ ----------
128
+ .. _Haskell-like type signature: https://wiki.haskell.org/Type_signature
129
+ """
130
+ if not (callable(body_fun) and callable(cond_fun)):
131
+ raise TypeError("while_loop: body_fun and cond_fun arguments should be callable.")
132
+ if jax.config.jax_disable_jit:
133
+ try:
134
+ val = init_val
135
+ while cond_fun(val):
136
+ val = body_fun(val)
137
+ return val
138
+ except jax.core.ConcretizationTypeError:
139
+ # Can't run this while_loop in Python (e.g. because there's a vmap
140
+ # transformation on it), so we fall back to the primitive version.
141
+ pass
142
+
143
+ # evaluate jaxpr
144
+ stateful_cond = StatefulFunction(cond_fun, name='while:cond').make_jaxpr(init_val)
145
+ stateful_body = StatefulFunction(body_fun, name='while:body').make_jaxpr(init_val)
146
+ cond_cache_key = stateful_cond.get_arg_cache_key(init_val)
147
+ body_cache_key = stateful_body.get_arg_cache_key(init_val)
148
+ if len(stateful_cond.get_write_states_by_cache(cond_cache_key)) != 0:
149
+ raise ValueError("while_loop: cond_fun should not have any write states.")
150
+
151
+ # state trace and state values
152
+ state_trace = (stateful_cond.get_state_trace_by_cache(cond_cache_key) +
153
+ stateful_body.get_state_trace_by_cache(body_cache_key))
154
+ read_state_vals = state_trace.get_read_state_values(True)
155
+ write_state_vals = state_trace.get_write_state_values(True)
156
+ new_cond_fn = wrap_fn(stateful_cond, state_trace, read_state_vals, False, cond_cache_key)
157
+ new_body_fn = wrap_fn(stateful_body, state_trace, read_state_vals, True, body_cache_key)
158
+
159
+ # while_loop
160
+ state_vals, final_val = jax.lax.while_loop(new_cond_fn, new_body_fn, (write_state_vals, init_val))
161
+
162
+ # write back state values or restore them
163
+ state_trace.assign_state_vals_v2(read_state_vals, state_vals)
164
+ return final_val
165
+
166
+
167
+ @set_module_as('brainstate.transform')
168
+ def bounded_while_loop(
169
+ cond_fun: Callable[[T], BooleanNumeric],
170
+ body_fun: Callable[[T], T],
171
+ init_val: T,
172
+ *,
173
+ max_steps: int,
174
+ base: int = 16,
175
+ ):
176
+ """
177
+ While loop with a bound on the maximum number of steps.
178
+
179
+ This function is adapted from ``while_loop`` in `equinox <https://github.com/patrick-kidger/equinox/blob/main/equinox/internal/_loop/loop.py>`_.
180
+
181
+ This function is useful when you want to ensure that a while loop terminates
182
+ even if the condition function is never false. The function is implemented
183
+ using a scan operation, so it is reverse-mode differentiable.
184
+
185
+ Parameters
186
+ ----------
187
+ cond_fun : callable
188
+ A function of type ``a -> Bool``.
189
+ body_fun : callable
190
+ A function of type ``a -> a``.
191
+ init_val : T
192
+ The initial value of type ``a``.
193
+ max_steps : int
194
+ A bound on the maximum number of steps, after which the loop
195
+ terminates unconditionally.
196
+ base : int, default 16
197
+ Run time will increase slightly as `base` increases. Compilation time will
198
+ decrease substantially as `math.ceil(math.log(max_steps, base))` decreases.
199
+ (Which happens as `base` increases.)
200
+
201
+ Returns
202
+ -------
203
+ T
204
+ The final value, as if computed by a `lax.while_loop`.
205
+
206
+ Examples
207
+ --------
208
+ Basic bounded while loop:
209
+
210
+ .. code-block:: python
211
+
212
+ >>> import brainstate
213
+ >>> import jax.numpy as jnp
214
+ >>>
215
+ >>> def cond_fn(val):
216
+ ... return val < 1000 # This might never be false
217
+ >>>
218
+ >>> def body_fn(val):
219
+ ... return val * 2
220
+ >>>
221
+ >>> # Loop will terminate after at most 10 steps
222
+ >>> result = brainstate.transform.bounded_while_loop(
223
+ ... cond_fn, body_fn, 1, max_steps=10
224
+ ... )
225
+
226
+ Bounded while loop with custom base:
227
+
228
+ .. code-block:: python
229
+
230
+ >>> # Use a smaller base for potentially faster compilation
231
+ >>> result = brainstate.transform.bounded_while_loop(
232
+ ... cond_fn, body_fn, 1, max_steps=100, base=8
233
+ ... )
234
+
235
+ Bounded while loop with array state:
236
+
237
+ .. code-block:: python
238
+
239
+ >>> def cond_fn(state):
240
+ ... return jnp.max(state) < 100
241
+ >>>
242
+ >>> def body_fn(state):
243
+ ... return state + jnp.array([1.0, 2.0, 3.0])
244
+ >>>
245
+ >>> init_state = jnp.array([0.0, 0.0, 0.0])
246
+ >>> final_state = brainstate.transform.bounded_while_loop(
247
+ ... cond_fn, body_fn, init_state, max_steps=50
248
+ ... )
249
+ """
250
+
251
+ # checking
252
+ if not isinstance(max_steps, int) or max_steps < 0:
253
+ raise ValueError("max_steps must be a non-negative integer")
254
+ init_val = jax.tree.map(jax.numpy.asarray, init_val)
255
+ if max_steps == 0:
256
+ return init_val
257
+
258
+ # evaluate jaxpr
259
+ stateful_cond = StatefulFunction(cond_fun, name='bounded_while:cond').make_jaxpr(init_val)
260
+ stateful_body = StatefulFunction(body_fun, name='bounded_while:body').make_jaxpr(init_val)
261
+ cond_cache_key = stateful_cond.get_arg_cache_key(init_val)
262
+ body_cache_key = stateful_body.get_arg_cache_key(init_val)
263
+ if len(stateful_cond.get_write_states_by_cache(cond_cache_key)) != 0:
264
+ raise ValueError("while_loop: cond_fun should not have any write states.")
265
+
266
+ # state trace and state values
267
+ state_trace = (stateful_cond.get_state_trace(init_val) +
268
+ stateful_body.get_state_trace(init_val))
269
+ read_state_vals = state_trace.get_read_state_values(True)
270
+ write_state_vals = state_trace.get_write_state_values(True)
271
+ new_cond_fn = wrap_fn(stateful_cond, state_trace, read_state_vals, False, cond_cache_key)
272
+ new_body_fn = wrap_fn(stateful_body, state_trace, read_state_vals, True, body_cache_key)
273
+
274
+ # initial value
275
+ init_val = (write_state_vals, init_val)
276
+
277
+ # while_loop
278
+ rounded_max_steps = base ** int(math.ceil(math.log(max_steps, base)))
279
+ state_vals, val = _bounded_while_loop(new_cond_fn, new_body_fn, init_val, rounded_max_steps, base, None)
280
+
281
+ # write back state values or restore them
282
+ state_trace.assign_state_vals_v2(read_state_vals, state_vals)
283
+ return val