brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +169 -58
- brainstate/_compatible_import.py +340 -148
- brainstate/_compatible_import_test.py +681 -0
- brainstate/_deprecation.py +210 -0
- brainstate/_deprecation_test.py +2319 -0
- brainstate/{util/error.py → _error.py} +45 -55
- brainstate/_state.py +1652 -1605
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/environ.py +1495 -563
- brainstate/environ_test.py +1223 -62
- brainstate/graph/__init__.py +22 -29
- brainstate/graph/_node.py +240 -0
- brainstate/graph/_node_test.py +589 -0
- brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
- brainstate/graph/_operation_test.py +1147 -0
- brainstate/mixin.py +1433 -365
- brainstate/mixin_test.py +1017 -77
- brainstate/nn/__init__.py +137 -135
- brainstate/nn/_activations.py +1100 -808
- brainstate/nn/_activations_test.py +354 -331
- brainstate/nn/_collective_ops.py +633 -514
- brainstate/nn/_collective_ops_test.py +774 -43
- brainstate/nn/_common.py +226 -178
- brainstate/nn/_common_test.py +154 -0
- brainstate/nn/_conv.py +2010 -501
- brainstate/nn/_conv_test.py +849 -238
- brainstate/nn/_delay.py +575 -588
- brainstate/nn/_delay_test.py +243 -238
- brainstate/nn/_dropout.py +618 -426
- brainstate/nn/_dropout_test.py +477 -100
- brainstate/nn/_dynamics.py +1267 -1343
- brainstate/nn/_dynamics_test.py +67 -78
- brainstate/nn/_elementwise.py +1298 -1119
- brainstate/nn/_elementwise_test.py +830 -169
- brainstate/nn/_embedding.py +408 -58
- brainstate/nn/_embedding_test.py +156 -0
- brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
- brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
- brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
- brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
- brainstate/nn/_exp_euler.py +254 -92
- brainstate/nn/_exp_euler_test.py +377 -35
- brainstate/nn/_linear.py +744 -424
- brainstate/nn/_linear_test.py +475 -107
- brainstate/nn/_metrics.py +1070 -0
- brainstate/nn/_metrics_test.py +611 -0
- brainstate/nn/_module.py +384 -377
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_normalizations.py +1334 -975
- brainstate/nn/_normalizations_test.py +699 -73
- brainstate/nn/_paddings.py +1020 -0
- brainstate/nn/_paddings_test.py +723 -0
- brainstate/nn/_poolings.py +2239 -1177
- brainstate/nn/_poolings_test.py +953 -217
- brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
- brainstate/nn/_rnns_test.py +593 -0
- brainstate/nn/_utils.py +216 -89
- brainstate/nn/_utils_test.py +402 -0
- brainstate/{init/_random_inits.py → nn/init.py} +809 -553
- brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
- brainstate/random/__init__.py +270 -24
- brainstate/random/_rand_funs.py +3938 -3616
- brainstate/random/_rand_funs_test.py +640 -567
- brainstate/random/_rand_seed.py +675 -210
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1617 -1409
- brainstate/random/_rand_state_test.py +551 -0
- brainstate/transform/__init__.py +59 -0
- brainstate/transform/_ad_checkpoint.py +176 -0
- brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
- brainstate/{augment → transform}/_autograd.py +1025 -778
- brainstate/{augment → transform}/_autograd_test.py +1289 -1289
- brainstate/transform/_conditions.py +316 -0
- brainstate/{compile → transform}/_conditions_test.py +220 -220
- brainstate/{compile → transform}/_error_if.py +94 -92
- brainstate/{compile → transform}/_error_if_test.py +52 -52
- brainstate/transform/_eval_shape.py +145 -0
- brainstate/{augment → transform}/_eval_shape_test.py +38 -38
- brainstate/{compile → transform}/_jit.py +399 -346
- brainstate/{compile → transform}/_jit_test.py +143 -143
- brainstate/{compile → transform}/_loop_collect_return.py +675 -536
- brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
- brainstate/{compile → transform}/_loop_no_collection.py +283 -184
- brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
- brainstate/transform/_make_jaxpr.py +2016 -0
- brainstate/transform/_make_jaxpr_test.py +1510 -0
- brainstate/transform/_mapping.py +529 -0
- brainstate/transform/_mapping_test.py +194 -0
- brainstate/{compile → transform}/_progress_bar.py +255 -202
- brainstate/{augment → transform}/_random.py +171 -151
- brainstate/{compile → transform}/_unvmap.py +256 -159
- brainstate/transform/_util.py +286 -0
- brainstate/typing.py +837 -304
- brainstate/typing_test.py +780 -0
- brainstate/util/__init__.py +27 -50
- brainstate/util/_others.py +1025 -0
- brainstate/util/_others_test.py +962 -0
- brainstate/util/_pretty_pytree.py +1301 -0
- brainstate/util/_pretty_pytree_test.py +675 -0
- brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
- brainstate/util/_pretty_repr_test.py +696 -0
- brainstate/util/filter.py +945 -469
- brainstate/util/filter_test.py +912 -0
- brainstate/util/struct.py +910 -523
- brainstate/util/struct_test.py +602 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
- brainstate-0.2.1.dist-info/RECORD +111 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
- brainstate/augment/__init__.py +0 -30
- brainstate/augment/_eval_shape.py +0 -99
- brainstate/augment/_mapping.py +0 -1060
- brainstate/augment/_mapping_test.py +0 -597
- brainstate/compile/__init__.py +0 -38
- brainstate/compile/_ad_checkpoint.py +0 -204
- brainstate/compile/_conditions.py +0 -256
- brainstate/compile/_make_jaxpr.py +0 -888
- brainstate/compile/_make_jaxpr_test.py +0 -156
- brainstate/compile/_util.py +0 -147
- brainstate/functional/__init__.py +0 -27
- brainstate/graph/_graph_node.py +0 -244
- brainstate/graph/_graph_node_test.py +0 -73
- brainstate/graph/_graph_operation_test.py +0 -563
- brainstate/init/__init__.py +0 -26
- brainstate/init/_base.py +0 -52
- brainstate/init/_generic.py +0 -244
- brainstate/init/_regular_inits.py +0 -105
- brainstate/init/_regular_inits_test.py +0 -50
- brainstate/nn/_inputs.py +0 -608
- brainstate/nn/_ltp.py +0 -28
- brainstate/nn/_neuron.py +0 -705
- brainstate/nn/_neuron_test.py +0 -161
- brainstate/nn/_others.py +0 -46
- brainstate/nn/_projection.py +0 -486
- brainstate/nn/_rate_rnns_test.py +0 -63
- brainstate/nn/_readout.py +0 -209
- brainstate/nn/_readout_test.py +0 -53
- brainstate/nn/_stp.py +0 -236
- brainstate/nn/_synapse.py +0 -505
- brainstate/nn/_synapse_test.py +0 -131
- brainstate/nn/_synaptic_projection.py +0 -423
- brainstate/nn/_synouts.py +0 -162
- brainstate/nn/_synouts_test.py +0 -57
- brainstate/nn/metrics.py +0 -388
- brainstate/optim/__init__.py +0 -38
- brainstate/optim/_base.py +0 -64
- brainstate/optim/_lr_scheduler.py +0 -448
- brainstate/optim/_lr_scheduler_test.py +0 -50
- brainstate/optim/_optax_optimizer.py +0 -152
- brainstate/optim/_optax_optimizer_test.py +0 -53
- brainstate/optim/_sgd_optimizer.py +0 -1104
- brainstate/random/_random_for_unit.py +0 -52
- brainstate/surrogate.py +0 -1957
- brainstate/transform.py +0 -23
- brainstate/util/caller.py +0 -98
- brainstate/util/others.py +0 -540
- brainstate/util/pretty_pytree.py +0 -945
- brainstate/util/pretty_pytree_test.py +0 -159
- brainstate/util/pretty_table.py +0 -2954
- brainstate/util/scaling.py +0 -258
- brainstate-0.1.10.dist-info/RECORD +0 -130
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
brainstate/nn/_rate_rnns_test.py
DELETED
@@ -1,63 +0,0 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
|
17
|
-
import unittest
|
18
|
-
|
19
|
-
import jax.numpy as jnp
|
20
|
-
|
21
|
-
import brainstate
|
22
|
-
|
23
|
-
|
24
|
-
class TestRateRNNModels(unittest.TestCase):
|
25
|
-
def setUp(self):
|
26
|
-
self.num_in = 3
|
27
|
-
self.num_out = 3
|
28
|
-
self.batch_size = 4
|
29
|
-
self.x = jnp.ones((self.batch_size, self.num_in))
|
30
|
-
|
31
|
-
def test_ValinaRNNCell(self):
|
32
|
-
model = brainstate.nn.ValinaRNNCell(num_in=self.num_in, num_out=self.num_out)
|
33
|
-
model.init_state(batch_size=self.batch_size)
|
34
|
-
output = model.update(self.x)
|
35
|
-
self.assertEqual(output.shape, (self.batch_size, self.num_out))
|
36
|
-
|
37
|
-
def test_GRUCell(self):
|
38
|
-
model = brainstate.nn.GRUCell(num_in=self.num_in, num_out=self.num_out)
|
39
|
-
model.init_state(batch_size=self.batch_size)
|
40
|
-
output = model.update(self.x)
|
41
|
-
self.assertEqual(output.shape, (self.batch_size, self.num_out))
|
42
|
-
|
43
|
-
def test_MGUCell(self):
|
44
|
-
model = brainstate.nn.MGUCell(num_in=self.num_in, num_out=self.num_out)
|
45
|
-
model.init_state(batch_size=self.batch_size)
|
46
|
-
output = model.update(self.x)
|
47
|
-
self.assertEqual(output.shape, (self.batch_size, self.num_out))
|
48
|
-
|
49
|
-
def test_LSTMCell(self):
|
50
|
-
model = brainstate.nn.LSTMCell(num_in=self.num_in, num_out=self.num_out)
|
51
|
-
model.init_state(batch_size=self.batch_size)
|
52
|
-
output = model.update(self.x)
|
53
|
-
self.assertEqual(output.shape, (self.batch_size, self.num_out))
|
54
|
-
|
55
|
-
def test_URLSTMCell(self):
|
56
|
-
model = brainstate.nn.URLSTMCell(num_in=self.num_in, num_out=self.num_out)
|
57
|
-
model.init_state(batch_size=self.batch_size)
|
58
|
-
output = model.update(self.x)
|
59
|
-
self.assertEqual(output.shape, (self.batch_size, self.num_out))
|
60
|
-
|
61
|
-
|
62
|
-
if __name__ == '__main__':
|
63
|
-
unittest.main()
|
brainstate/nn/_readout.py
DELETED
@@ -1,209 +0,0 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
# -*- coding: utf-8 -*-
|
17
|
-
|
18
|
-
|
19
|
-
import numbers
|
20
|
-
from typing import Callable
|
21
|
-
|
22
|
-
import brainunit as u
|
23
|
-
import jax
|
24
|
-
|
25
|
-
from brainstate import environ, init, surrogate
|
26
|
-
from brainstate._state import HiddenState, ParamState
|
27
|
-
from brainstate.typing import Size, ArrayLike
|
28
|
-
from ._exp_euler import exp_euler_step
|
29
|
-
from ._module import Module
|
30
|
-
from ._neuron import Neuron
|
31
|
-
|
32
|
-
__all__ = [
|
33
|
-
'LeakyRateReadout',
|
34
|
-
'LeakySpikeReadout',
|
35
|
-
]
|
36
|
-
|
37
|
-
|
38
|
-
class LeakyRateReadout(Module):
|
39
|
-
r"""
|
40
|
-
Leaky dynamics for the read-out module.
|
41
|
-
|
42
|
-
This module implements a leaky integrator with the following dynamics:
|
43
|
-
|
44
|
-
.. math::
|
45
|
-
r_{t} = \alpha r_{t-1} + x_{t} W
|
46
|
-
|
47
|
-
where:
|
48
|
-
- :math:`r_{t}` is the output at time t
|
49
|
-
- :math:`\alpha = e^{-\Delta t / \tau}` is the decay factor
|
50
|
-
- :math:`x_{t}` is the input at time t
|
51
|
-
- :math:`W` is the weight matrix
|
52
|
-
|
53
|
-
The leaky integrator acts as a low-pass filter, allowing the network
|
54
|
-
to maintain memory of past inputs with an exponential decay determined
|
55
|
-
by the time constant tau.
|
56
|
-
|
57
|
-
Parameters
|
58
|
-
----------
|
59
|
-
in_size : int or sequence of int
|
60
|
-
Size of the input dimension(s)
|
61
|
-
out_size : int or sequence of int
|
62
|
-
Size of the output dimension(s)
|
63
|
-
tau : ArrayLike, optional
|
64
|
-
Time constant of the leaky dynamics, by default 5ms
|
65
|
-
w_init : Callable, optional
|
66
|
-
Weight initialization function, by default KaimingNormal()
|
67
|
-
name : str, optional
|
68
|
-
Name of the module, by default None
|
69
|
-
|
70
|
-
Attributes
|
71
|
-
----------
|
72
|
-
decay : float
|
73
|
-
Decay factor computed as exp(-dt/tau)
|
74
|
-
weight : ParamState
|
75
|
-
Weight matrix connecting input to output
|
76
|
-
r : HiddenState
|
77
|
-
Hidden state representing the output values
|
78
|
-
"""
|
79
|
-
__module__ = 'brainstate.nn'
|
80
|
-
|
81
|
-
def __init__(
|
82
|
-
self,
|
83
|
-
in_size: Size,
|
84
|
-
out_size: Size,
|
85
|
-
tau: ArrayLike = 5. * u.ms,
|
86
|
-
w_init: Callable = init.KaimingNormal(),
|
87
|
-
name: str = None,
|
88
|
-
):
|
89
|
-
super().__init__(name=name)
|
90
|
-
|
91
|
-
# parameters
|
92
|
-
self.in_size = (in_size,) if isinstance(in_size, numbers.Integral) else tuple(in_size)
|
93
|
-
self.out_size = (out_size,) if isinstance(out_size, numbers.Integral) else tuple(out_size)
|
94
|
-
self.tau = init.param(tau, self.in_size)
|
95
|
-
self.decay = u.math.exp(-environ.get_dt() / self.tau)
|
96
|
-
|
97
|
-
# weights
|
98
|
-
self.weight = ParamState(init.param(w_init, (self.in_size[0], self.out_size[0])))
|
99
|
-
|
100
|
-
def init_state(self, batch_size=None, **kwargs):
|
101
|
-
self.r = HiddenState(init.param(init.Constant(0.), self.out_size, batch_size))
|
102
|
-
|
103
|
-
def reset_state(self, batch_size=None, **kwargs):
|
104
|
-
self.r.value = init.param(init.Constant(0.), self.out_size, batch_size)
|
105
|
-
|
106
|
-
def update(self, x):
|
107
|
-
self.r.value = self.decay * self.r.value + x @ self.weight.value
|
108
|
-
return self.r.value
|
109
|
-
|
110
|
-
|
111
|
-
class LeakySpikeReadout(Neuron):
|
112
|
-
r"""
|
113
|
-
Integrate-and-fire neuron model with leaky dynamics for readout functionality.
|
114
|
-
|
115
|
-
This class implements a spiking neuron with the following dynamics:
|
116
|
-
|
117
|
-
.. math::
|
118
|
-
\frac{dV}{dt} = \frac{-V + I_{in}}{\tau}
|
119
|
-
|
120
|
-
where:
|
121
|
-
- :math:`V` is the membrane potential
|
122
|
-
- :math:`\tau` is the membrane time constant
|
123
|
-
- :math:`I_{in}` is the input current
|
124
|
-
|
125
|
-
Spike generation occurs when :math:`V > V_{th}` according to:
|
126
|
-
|
127
|
-
.. math::
|
128
|
-
S_t = \text{surrogate}\left(\frac{V - V_{th}}{V_{th}}\right)
|
129
|
-
|
130
|
-
After spiking, the membrane potential is reset according to the reset mode:
|
131
|
-
- Soft reset: :math:`V \leftarrow V - V_{th} \cdot S_t`
|
132
|
-
- Hard reset: :math:`V \leftarrow V - V_t \cdot S_t` (where :math:`V_t` is detached)
|
133
|
-
|
134
|
-
Parameters
|
135
|
-
----------
|
136
|
-
in_size : Size
|
137
|
-
Size of the input dimension
|
138
|
-
tau : ArrayLike, optional
|
139
|
-
Membrane time constant, by default 5ms
|
140
|
-
V_th : ArrayLike, optional
|
141
|
-
Spike threshold, by default 1mV
|
142
|
-
w_init : Callable, optional
|
143
|
-
Weight initialization function, by default KaimingNormal(unit=mV)
|
144
|
-
V_initializer : ArrayLike, optional
|
145
|
-
Initial membrane potential, by default ZeroInit(unit=mV)
|
146
|
-
spk_fun : Callable, optional
|
147
|
-
Surrogate gradient function for spike generation, by default ReluGrad()
|
148
|
-
spk_reset : str, optional
|
149
|
-
Reset mechanism after spike ('soft' or 'hard'), by default 'soft'
|
150
|
-
name : str, optional
|
151
|
-
Name of the module, by default None
|
152
|
-
|
153
|
-
Attributes
|
154
|
-
----------
|
155
|
-
V : HiddenState
|
156
|
-
Membrane potential state variable
|
157
|
-
weight : ParamState
|
158
|
-
Synaptic weight matrix
|
159
|
-
"""
|
160
|
-
|
161
|
-
__module__ = 'brainstate.nn'
|
162
|
-
|
163
|
-
def __init__(
|
164
|
-
self,
|
165
|
-
in_size: Size,
|
166
|
-
tau: ArrayLike = 5. * u.ms,
|
167
|
-
V_th: ArrayLike = 1. * u.mV,
|
168
|
-
w_init: Callable = init.KaimingNormal(unit=u.mV),
|
169
|
-
V_initializer: ArrayLike = init.ZeroInit(unit=u.mV),
|
170
|
-
spk_fun: Callable = surrogate.ReluGrad(),
|
171
|
-
spk_reset: str = 'soft',
|
172
|
-
name: str = None,
|
173
|
-
):
|
174
|
-
super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
|
175
|
-
|
176
|
-
# parameters
|
177
|
-
self.tau = init.param(tau, self.varshape)
|
178
|
-
self.V_th = init.param(V_th, self.varshape)
|
179
|
-
self.V_initializer = V_initializer
|
180
|
-
|
181
|
-
# weights
|
182
|
-
self.weight = ParamState(init.param(w_init, (self.in_size[-1], self.out_size[-1])))
|
183
|
-
|
184
|
-
def init_state(self, batch_size, **kwargs):
|
185
|
-
self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
|
186
|
-
|
187
|
-
def reset_state(self, batch_size, **kwargs):
|
188
|
-
self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
|
189
|
-
|
190
|
-
@property
|
191
|
-
def spike(self):
|
192
|
-
return self.get_spike(self.V.value)
|
193
|
-
|
194
|
-
def get_spike(self, V):
|
195
|
-
v_scaled = (V - self.V_th) / self.V_th
|
196
|
-
return self.spk_fun(v_scaled)
|
197
|
-
|
198
|
-
def update(self, spk):
|
199
|
-
# reset
|
200
|
-
last_V = self.V.value
|
201
|
-
last_spike = self.get_spike(last_V)
|
202
|
-
V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_V)
|
203
|
-
V = last_V - V_th * last_spike
|
204
|
-
# membrane potential
|
205
|
-
x = spk @ self.weight.value
|
206
|
-
dv = lambda v: (-v + self.sum_current_inputs(x, v)) / self.tau
|
207
|
-
V = exp_euler_step(dv, V)
|
208
|
-
self.V.value = self.sum_delta_inputs(V)
|
209
|
-
return self.get_spike(V)
|
brainstate/nn/_readout_test.py
DELETED
@@ -1,53 +0,0 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
|
17
|
-
import unittest
|
18
|
-
|
19
|
-
import jax.numpy as jnp
|
20
|
-
|
21
|
-
import brainstate
|
22
|
-
|
23
|
-
|
24
|
-
class TestReadoutModels(unittest.TestCase):
|
25
|
-
def setUp(self):
|
26
|
-
self.in_size = 3
|
27
|
-
self.out_size = 3
|
28
|
-
self.batch_size = 4
|
29
|
-
self.tau = 5.0
|
30
|
-
self.V_th = 1.0
|
31
|
-
self.x = jnp.ones((self.batch_size, self.in_size))
|
32
|
-
|
33
|
-
def test_LeakyRateReadout(self):
|
34
|
-
with brainstate.environ.context(dt=0.1):
|
35
|
-
model = brainstate.nn.LeakyRateReadout(in_size=self.in_size, out_size=self.out_size, tau=self.tau)
|
36
|
-
model.init_state(batch_size=self.batch_size)
|
37
|
-
output = model.update(self.x)
|
38
|
-
self.assertEqual(output.shape, (self.batch_size, self.out_size))
|
39
|
-
|
40
|
-
def test_LeakySpikeReadout(self):
|
41
|
-
with brainstate.environ.context(dt=0.1):
|
42
|
-
model = brainstate.nn.LeakySpikeReadout(in_size=self.in_size, tau=self.tau, V_th=self.V_th,
|
43
|
-
V_initializer=brainstate.init.ZeroInit(),
|
44
|
-
w_init=brainstate.init.KaimingNormal())
|
45
|
-
model.init_state(batch_size=self.batch_size)
|
46
|
-
with brainstate.environ.context(t=0.):
|
47
|
-
output = model.update(self.x)
|
48
|
-
self.assertEqual(output.shape, (self.batch_size, self.out_size))
|
49
|
-
|
50
|
-
|
51
|
-
if __name__ == '__main__':
|
52
|
-
with brainstate.environ.context(dt=0.1):
|
53
|
-
unittest.main()
|
brainstate/nn/_stp.py
DELETED
@@ -1,236 +0,0 @@
|
|
1
|
-
# Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
# -*- coding: utf-8 -*-
|
17
|
-
|
18
|
-
from typing import Optional
|
19
|
-
|
20
|
-
import brainunit as u
|
21
|
-
|
22
|
-
from brainstate import init
|
23
|
-
from brainstate._state import HiddenState
|
24
|
-
from brainstate.typing import ArrayLike, Size
|
25
|
-
from ._exp_euler import exp_euler_step
|
26
|
-
from ._synapse import Synapse
|
27
|
-
|
28
|
-
__all__ = [
|
29
|
-
'ShortTermPlasticity', 'STP', 'STD',
|
30
|
-
]
|
31
|
-
|
32
|
-
|
33
|
-
class ShortTermPlasticity(Synapse):
|
34
|
-
pass
|
35
|
-
|
36
|
-
|
37
|
-
class STP(ShortTermPlasticity):
|
38
|
-
r"""
|
39
|
-
Synapse with short-term plasticity.
|
40
|
-
|
41
|
-
This class implements a synapse model with short-term plasticity (STP), which captures
|
42
|
-
activity-dependent changes in synaptic efficacy that occur over milliseconds to seconds.
|
43
|
-
The model simultaneously accounts for both short-term facilitation and depression
|
44
|
-
based on the formulation by Tsodyks & Markram (1998).
|
45
|
-
|
46
|
-
The model is characterized by the following equations:
|
47
|
-
|
48
|
-
$$
|
49
|
-
\frac{du}{dt} = -\frac{u}{\tau_f} + U \cdot (1 - u) \cdot \delta(t - t_{spike})
|
50
|
-
$$
|
51
|
-
|
52
|
-
$$
|
53
|
-
\frac{dx}{dt} = \frac{1 - x}{\tau_d} - u \cdot x \cdot \delta(t - t_{spike})
|
54
|
-
$$
|
55
|
-
|
56
|
-
$$
|
57
|
-
g_{syn} = u \cdot x
|
58
|
-
$$
|
59
|
-
|
60
|
-
where:
|
61
|
-
- $u$ represents the utilization of synaptic efficacy (facilitation variable)
|
62
|
-
- $x$ represents the available synaptic resources (depression variable)
|
63
|
-
- $\tau_f$ is the facilitation time constant
|
64
|
-
- $\tau_d$ is the depression time constant
|
65
|
-
- $U$ is the baseline utilization parameter
|
66
|
-
- $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
|
67
|
-
- $g_{syn}$ is the effective synaptic conductance
|
68
|
-
|
69
|
-
Parameters
|
70
|
-
----------
|
71
|
-
in_size : Size
|
72
|
-
Size of the input.
|
73
|
-
name : str, optional
|
74
|
-
Name of the synapse instance.
|
75
|
-
U : ArrayLike, default=0.15
|
76
|
-
Baseline utilization parameter (fraction of resources used per action potential).
|
77
|
-
tau_f : ArrayLike, default=1500.*u.ms
|
78
|
-
Time constant of short-term facilitation in milliseconds.
|
79
|
-
tau_d : ArrayLike, default=200.*u.ms
|
80
|
-
Time constant of short-term depression (recovery of synaptic resources) in milliseconds.
|
81
|
-
|
82
|
-
Attributes
|
83
|
-
----------
|
84
|
-
u : HiddenState
|
85
|
-
Utilization of synaptic efficacy (facilitation variable).
|
86
|
-
x : HiddenState
|
87
|
-
Available synaptic resources (depression variable).
|
88
|
-
|
89
|
-
Notes
|
90
|
-
-----
|
91
|
-
- Larger values of tau_f produce stronger facilitation effects.
|
92
|
-
- Larger values of tau_d lead to slower recovery from depression.
|
93
|
-
- The parameter U controls the initial release probability.
|
94
|
-
- The effective synaptic strength is the product of u and x.
|
95
|
-
|
96
|
-
References
|
97
|
-
----------
|
98
|
-
.. [1] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
|
99
|
-
pyramidal neurons depends on neurotransmitter release probability.
|
100
|
-
Proceedings of the National Academy of Sciences, 94(2), 719-723.
|
101
|
-
.. [2] Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic
|
102
|
-
synapses. Neural computation, 10(4), 821-835.
|
103
|
-
"""
|
104
|
-
__module__ = 'brainstate.nn'
|
105
|
-
|
106
|
-
def __init__(
|
107
|
-
self,
|
108
|
-
in_size: Size,
|
109
|
-
name: Optional[str] = None,
|
110
|
-
U: ArrayLike = 0.15,
|
111
|
-
tau_f: ArrayLike = 1500. * u.ms,
|
112
|
-
tau_d: ArrayLike = 200. * u.ms,
|
113
|
-
):
|
114
|
-
super().__init__(name=name, in_size=in_size)
|
115
|
-
|
116
|
-
# parameters
|
117
|
-
self.tau_f = init.param(tau_f, self.varshape)
|
118
|
-
self.tau_d = init.param(tau_d, self.varshape)
|
119
|
-
self.U = init.param(U, self.varshape)
|
120
|
-
|
121
|
-
def init_state(self, batch_size: int = None, **kwargs):
|
122
|
-
self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
|
123
|
-
self.u = HiddenState(init.param(init.Constant(self.U), self.varshape, batch_size))
|
124
|
-
|
125
|
-
def reset_state(self, batch_size: int = None, **kwargs):
|
126
|
-
self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
|
127
|
-
self.u.value = init.param(init.Constant(self.U), self.varshape, batch_size)
|
128
|
-
|
129
|
-
def update(self, pre_spike):
|
130
|
-
u = exp_euler_step(lambda u: - u / self.tau_f, self.u.value)
|
131
|
-
x = exp_euler_step(lambda x: (1 - x) / self.tau_d, self.x.value)
|
132
|
-
|
133
|
-
# --- original code:
|
134
|
-
# if pre_spike.dtype == jax.numpy.bool_:
|
135
|
-
# u = bm.where(pre_spike, u + self.U * (1 - self.u), u)
|
136
|
-
# x = bm.where(pre_spike, x - u * self.x, x)
|
137
|
-
# else:
|
138
|
-
# u = pre_spike * (u + self.U * (1 - self.u)) + (1 - pre_spike) * u
|
139
|
-
# x = pre_spike * (x - u * self.x) + (1 - pre_spike) * x
|
140
|
-
|
141
|
-
# --- simplified code:
|
142
|
-
u = u + pre_spike * self.U * (1 - self.u.value)
|
143
|
-
x = x - pre_spike * u * self.x.value
|
144
|
-
|
145
|
-
self.u.value = u
|
146
|
-
self.x.value = x
|
147
|
-
return u * x * pre_spike
|
148
|
-
|
149
|
-
|
150
|
-
class STD(ShortTermPlasticity):
|
151
|
-
r"""
|
152
|
-
Synapse with short-term depression.
|
153
|
-
|
154
|
-
This class implements a synapse model with short-term depression (STD), which captures
|
155
|
-
activity-dependent reduction in synaptic efficacy, typically caused by depletion of
|
156
|
-
neurotransmitter vesicles following repeated stimulation.
|
157
|
-
|
158
|
-
The model is characterized by the following equation:
|
159
|
-
|
160
|
-
$$
|
161
|
-
\frac{dx}{dt} = \frac{1 - x}{\tau} - U \cdot x \cdot \delta(t - t_{spike})
|
162
|
-
$$
|
163
|
-
|
164
|
-
$$
|
165
|
-
g_{syn} = x
|
166
|
-
$$
|
167
|
-
|
168
|
-
where:
|
169
|
-
- $x$ represents the available synaptic resources (depression variable)
|
170
|
-
- $\tau$ is the depression recovery time constant
|
171
|
-
- $U$ is the utilization parameter (fraction of resources depleted per spike)
|
172
|
-
- $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
|
173
|
-
- $g_{syn}$ is the effective synaptic conductance
|
174
|
-
|
175
|
-
Parameters
|
176
|
-
----------
|
177
|
-
in_size : Size
|
178
|
-
Size of the input.
|
179
|
-
name : str, optional
|
180
|
-
Name of the synapse instance.
|
181
|
-
tau : ArrayLike, default=200.*u.ms
|
182
|
-
Time constant governing recovery of synaptic resources in milliseconds.
|
183
|
-
U : ArrayLike, default=0.07
|
184
|
-
Utilization parameter (fraction of resources used per action potential).
|
185
|
-
|
186
|
-
Attributes
|
187
|
-
----------
|
188
|
-
x : HiddenState
|
189
|
-
Available synaptic resources (depression variable).
|
190
|
-
|
191
|
-
Notes
|
192
|
-
-----
|
193
|
-
- Larger values of tau lead to slower recovery from depression.
|
194
|
-
- Larger values of U cause stronger depression with each spike.
|
195
|
-
- This model is a simplified version of the STP model that only includes depression.
|
196
|
-
|
197
|
-
References
|
198
|
-
----------
|
199
|
-
.. [1] Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic
|
200
|
-
depression and cortical gain control. Science, 275(5297), 220-224.
|
201
|
-
.. [2] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
|
202
|
-
pyramidal neurons depends on neurotransmitter release probability.
|
203
|
-
Proceedings of the National Academy of Sciences, 94(2), 719-723.
|
204
|
-
"""
|
205
|
-
__module__ = 'brainstate.nn'
|
206
|
-
|
207
|
-
def __init__(
|
208
|
-
self,
|
209
|
-
in_size: Size,
|
210
|
-
name: Optional[str] = None,
|
211
|
-
# synapse parameters
|
212
|
-
tau: ArrayLike = 200. * u.ms,
|
213
|
-
U: ArrayLike = 0.07,
|
214
|
-
):
|
215
|
-
super().__init__(name=name, in_size=in_size)
|
216
|
-
|
217
|
-
# parameters
|
218
|
-
self.tau = init.param(tau, self.varshape)
|
219
|
-
self.U = init.param(U, self.varshape)
|
220
|
-
|
221
|
-
def init_state(self, batch_size: int = None, **kwargs):
|
222
|
-
self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
|
223
|
-
|
224
|
-
def reset_state(self, batch_size: int = None, **kwargs):
|
225
|
-
self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
|
226
|
-
|
227
|
-
def update(self, pre_spike):
|
228
|
-
x = exp_euler_step(lambda x: (1 - x) / self.tau, self.x.value)
|
229
|
-
|
230
|
-
# --- original code:
|
231
|
-
# self.x.value = bm.where(pre_spike, x - self.U * self.x, x)
|
232
|
-
|
233
|
-
# --- simplified code:
|
234
|
-
self.x.value = x - pre_spike * self.U * self.x.value
|
235
|
-
|
236
|
-
return self.x.value * pre_spike
|