brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (163) hide show
  1. brainstate/__init__.py +169 -58
  2. brainstate/_compatible_import.py +340 -148
  3. brainstate/_compatible_import_test.py +681 -0
  4. brainstate/_deprecation.py +210 -0
  5. brainstate/_deprecation_test.py +2319 -0
  6. brainstate/{util/error.py → _error.py} +45 -55
  7. brainstate/_state.py +1652 -1605
  8. brainstate/_state_test.py +52 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -563
  11. brainstate/environ_test.py +1223 -62
  12. brainstate/graph/__init__.py +22 -29
  13. brainstate/graph/_node.py +240 -0
  14. brainstate/graph/_node_test.py +589 -0
  15. brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
  16. brainstate/graph/_operation_test.py +1147 -0
  17. brainstate/mixin.py +1433 -365
  18. brainstate/mixin_test.py +1017 -77
  19. brainstate/nn/__init__.py +137 -135
  20. brainstate/nn/_activations.py +1100 -808
  21. brainstate/nn/_activations_test.py +354 -331
  22. brainstate/nn/_collective_ops.py +633 -514
  23. brainstate/nn/_collective_ops_test.py +774 -43
  24. brainstate/nn/_common.py +226 -178
  25. brainstate/nn/_common_test.py +154 -0
  26. brainstate/nn/_conv.py +2010 -501
  27. brainstate/nn/_conv_test.py +849 -238
  28. brainstate/nn/_delay.py +575 -588
  29. brainstate/nn/_delay_test.py +243 -238
  30. brainstate/nn/_dropout.py +618 -426
  31. brainstate/nn/_dropout_test.py +477 -100
  32. brainstate/nn/_dynamics.py +1267 -1343
  33. brainstate/nn/_dynamics_test.py +67 -78
  34. brainstate/nn/_elementwise.py +1298 -1119
  35. brainstate/nn/_elementwise_test.py +830 -169
  36. brainstate/nn/_embedding.py +408 -58
  37. brainstate/nn/_embedding_test.py +156 -0
  38. brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
  39. brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
  40. brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
  41. brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
  42. brainstate/nn/_exp_euler.py +254 -92
  43. brainstate/nn/_exp_euler_test.py +377 -35
  44. brainstate/nn/_linear.py +744 -424
  45. brainstate/nn/_linear_test.py +475 -107
  46. brainstate/nn/_metrics.py +1070 -0
  47. brainstate/nn/_metrics_test.py +611 -0
  48. brainstate/nn/_module.py +384 -377
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -975
  51. brainstate/nn/_normalizations_test.py +699 -73
  52. brainstate/nn/_paddings.py +1020 -0
  53. brainstate/nn/_paddings_test.py +723 -0
  54. brainstate/nn/_poolings.py +2239 -1177
  55. brainstate/nn/_poolings_test.py +953 -217
  56. brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
  57. brainstate/nn/_rnns_test.py +593 -0
  58. brainstate/nn/_utils.py +216 -89
  59. brainstate/nn/_utils_test.py +402 -0
  60. brainstate/{init/_random_inits.py → nn/init.py} +809 -553
  61. brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
  62. brainstate/random/__init__.py +270 -24
  63. brainstate/random/_rand_funs.py +3938 -3616
  64. brainstate/random/_rand_funs_test.py +640 -567
  65. brainstate/random/_rand_seed.py +675 -210
  66. brainstate/random/_rand_seed_test.py +48 -48
  67. brainstate/random/_rand_state.py +1617 -1409
  68. brainstate/random/_rand_state_test.py +551 -0
  69. brainstate/transform/__init__.py +59 -0
  70. brainstate/transform/_ad_checkpoint.py +176 -0
  71. brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
  72. brainstate/{augment → transform}/_autograd.py +1025 -778
  73. brainstate/{augment → transform}/_autograd_test.py +1289 -1289
  74. brainstate/transform/_conditions.py +316 -0
  75. brainstate/{compile → transform}/_conditions_test.py +220 -220
  76. brainstate/{compile → transform}/_error_if.py +94 -92
  77. brainstate/{compile → transform}/_error_if_test.py +52 -52
  78. brainstate/transform/_eval_shape.py +145 -0
  79. brainstate/{augment → transform}/_eval_shape_test.py +38 -38
  80. brainstate/{compile → transform}/_jit.py +399 -346
  81. brainstate/{compile → transform}/_jit_test.py +143 -143
  82. brainstate/{compile → transform}/_loop_collect_return.py +675 -536
  83. brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
  84. brainstate/{compile → transform}/_loop_no_collection.py +283 -184
  85. brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
  86. brainstate/transform/_make_jaxpr.py +2016 -0
  87. brainstate/transform/_make_jaxpr_test.py +1510 -0
  88. brainstate/transform/_mapping.py +529 -0
  89. brainstate/transform/_mapping_test.py +194 -0
  90. brainstate/{compile → transform}/_progress_bar.py +255 -202
  91. brainstate/{augment → transform}/_random.py +171 -151
  92. brainstate/{compile → transform}/_unvmap.py +256 -159
  93. brainstate/transform/_util.py +286 -0
  94. brainstate/typing.py +837 -304
  95. brainstate/typing_test.py +780 -0
  96. brainstate/util/__init__.py +27 -50
  97. brainstate/util/_others.py +1025 -0
  98. brainstate/util/_others_test.py +962 -0
  99. brainstate/util/_pretty_pytree.py +1301 -0
  100. brainstate/util/_pretty_pytree_test.py +675 -0
  101. brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
  102. brainstate/util/_pretty_repr_test.py +696 -0
  103. brainstate/util/filter.py +945 -469
  104. brainstate/util/filter_test.py +912 -0
  105. brainstate/util/struct.py +910 -523
  106. brainstate/util/struct_test.py +602 -0
  107. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
  108. brainstate-0.2.1.dist-info/RECORD +111 -0
  109. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
  110. brainstate/augment/__init__.py +0 -30
  111. brainstate/augment/_eval_shape.py +0 -99
  112. brainstate/augment/_mapping.py +0 -1060
  113. brainstate/augment/_mapping_test.py +0 -597
  114. brainstate/compile/__init__.py +0 -38
  115. brainstate/compile/_ad_checkpoint.py +0 -204
  116. brainstate/compile/_conditions.py +0 -256
  117. brainstate/compile/_make_jaxpr.py +0 -888
  118. brainstate/compile/_make_jaxpr_test.py +0 -156
  119. brainstate/compile/_util.py +0 -147
  120. brainstate/functional/__init__.py +0 -27
  121. brainstate/graph/_graph_node.py +0 -244
  122. brainstate/graph/_graph_node_test.py +0 -73
  123. brainstate/graph/_graph_operation_test.py +0 -563
  124. brainstate/init/__init__.py +0 -26
  125. brainstate/init/_base.py +0 -52
  126. brainstate/init/_generic.py +0 -244
  127. brainstate/init/_regular_inits.py +0 -105
  128. brainstate/init/_regular_inits_test.py +0 -50
  129. brainstate/nn/_inputs.py +0 -608
  130. brainstate/nn/_ltp.py +0 -28
  131. brainstate/nn/_neuron.py +0 -705
  132. brainstate/nn/_neuron_test.py +0 -161
  133. brainstate/nn/_others.py +0 -46
  134. brainstate/nn/_projection.py +0 -486
  135. brainstate/nn/_rate_rnns_test.py +0 -63
  136. brainstate/nn/_readout.py +0 -209
  137. brainstate/nn/_readout_test.py +0 -53
  138. brainstate/nn/_stp.py +0 -236
  139. brainstate/nn/_synapse.py +0 -505
  140. brainstate/nn/_synapse_test.py +0 -131
  141. brainstate/nn/_synaptic_projection.py +0 -423
  142. brainstate/nn/_synouts.py +0 -162
  143. brainstate/nn/_synouts_test.py +0 -57
  144. brainstate/nn/metrics.py +0 -388
  145. brainstate/optim/__init__.py +0 -38
  146. brainstate/optim/_base.py +0 -64
  147. brainstate/optim/_lr_scheduler.py +0 -448
  148. brainstate/optim/_lr_scheduler_test.py +0 -50
  149. brainstate/optim/_optax_optimizer.py +0 -152
  150. brainstate/optim/_optax_optimizer_test.py +0 -53
  151. brainstate/optim/_sgd_optimizer.py +0 -1104
  152. brainstate/random/_random_for_unit.py +0 -52
  153. brainstate/surrogate.py +0 -1957
  154. brainstate/transform.py +0 -23
  155. brainstate/util/caller.py +0 -98
  156. brainstate/util/others.py +0 -540
  157. brainstate/util/pretty_pytree.py +0 -945
  158. brainstate/util/pretty_pytree_test.py +0 -159
  159. brainstate/util/pretty_table.py +0 -2954
  160. brainstate/util/scaling.py +0 -258
  161. brainstate-0.1.10.dist-info/RECORD +0 -130
  162. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
  163. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -1,1289 +1,1289 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- import unittest
19
- from pprint import pprint
20
-
21
- import brainunit as u
22
- import jax
23
- import jax.numpy as jnp
24
- import pytest
25
-
26
- import brainstate
27
- from brainstate.augment._autograd import _jacfwd
28
-
29
-
30
- class TestPureFuncGrad(unittest.TestCase):
31
- def test_grad_pure_func_1(self):
32
- def call(a, b, c): return jnp.sum(a + b + c)
33
-
34
- brainstate.random.seed(1)
35
- a = jnp.ones(10)
36
- b = brainstate.random.randn(10)
37
- c = brainstate.random.uniform(size=10)
38
- f_grad = brainstate.augment.grad(call, argnums=[0, 1, 2])
39
- grads = f_grad(a, b, c)
40
-
41
- for g in grads: assert (g == 1.).all()
42
-
43
- def test_grad_pure_func_2(self):
44
- def call(a, b, c): return jnp.sum(a + b + c)
45
-
46
- brainstate.random.seed(1)
47
- a = jnp.ones(10)
48
- b = brainstate.random.randn(10)
49
- c = brainstate.random.uniform(size=10)
50
- f_grad = brainstate.augment.grad(call)
51
- assert (f_grad(a, b, c) == 1.).all()
52
-
53
- def test_grad_pure_func_aux1(self):
54
- def call(a, b, c):
55
- return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
56
-
57
- brainstate.random.seed(1)
58
- f_grad = brainstate.augment.grad(call, argnums=[0, 1, 2])
59
- with pytest.raises(TypeError):
60
- f_grad(jnp.ones(10), brainstate.random.randn(10), brainstate.random.uniform(size=10))
61
-
62
- def test_grad_pure_func_aux2(self):
63
- def call(a, b, c):
64
- return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
65
-
66
- brainstate.random.seed(1)
67
- f_grad = brainstate.augment.grad(call, argnums=[0, 1, 2], has_aux=True)
68
- grads, aux = f_grad(jnp.ones(10), brainstate.random.randn(10), brainstate.random.uniform(size=10))
69
- for g in grads: assert (g == 1.).all()
70
- assert aux[0] == jnp.sin(100)
71
- assert aux[1] == jnp.exp(0.1)
72
-
73
- def test_grad_pure_func_return1(self):
74
- def call(a, b, c): return jnp.sum(a + b + c)
75
-
76
- brainstate.random.seed(1)
77
- a = jnp.ones(10)
78
- b = brainstate.random.randn(10)
79
- c = brainstate.random.uniform(size=10)
80
- f_grad = brainstate.augment.grad(call, return_value=True)
81
- grads, returns = f_grad(a, b, c)
82
- assert (grads == 1.).all()
83
- assert returns == jnp.sum(a + b + c)
84
-
85
- def test_grad_func_return_aux1(self):
86
- def call(a, b, c):
87
- return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
88
-
89
- brainstate.random.seed(1)
90
- a = jnp.ones(10)
91
- b = brainstate.random.randn(10)
92
- c = brainstate.random.uniform(size=10)
93
- f_grad = brainstate.augment.grad(call, return_value=True, has_aux=True)
94
- grads, returns, aux = f_grad(a, b, c)
95
- assert (grads == 1.).all()
96
- assert returns == jnp.sum(a + b + c)
97
- assert aux[0] == jnp.sin(100)
98
- assert aux[1] == jnp.exp(0.1)
99
-
100
-
101
- class TestObjectFuncGrad(unittest.TestCase):
102
- def test_grad_ob1(self):
103
- class Test(brainstate.nn.Module):
104
- def __init__(self):
105
- super(Test, self).__init__()
106
-
107
- self.a = brainstate.ParamState(jnp.ones(10))
108
- self.b = brainstate.ParamState(brainstate.random.randn(10))
109
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
110
-
111
- def __call__(self):
112
- return jnp.sum(self.a.value + self.b.value + self.c.value)
113
-
114
- brainstate.random.seed(0)
115
-
116
- t = Test()
117
- f_grad = brainstate.augment.grad(t, grad_states={'a': t.a, 'b': t.b, 'c': t.c})
118
- grads = f_grad()
119
- for g in grads.values():
120
- assert (g == 1.).all()
121
-
122
- t = Test()
123
- f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b])
124
- grads = f_grad()
125
- for g in grads: assert (g == 1.).all()
126
-
127
- t = Test()
128
- f_grad = brainstate.augment.grad(t, grad_states=t.a)
129
- grads = f_grad()
130
- assert (grads == 1.).all()
131
-
132
- t = Test()
133
- f_grad = brainstate.augment.grad(t, grad_states=t.states())
134
- grads = f_grad()
135
- for g in grads.values():
136
- assert (g == 1.).all()
137
-
138
- def test_grad_ob_aux(self):
139
- class Test(brainstate.nn.Module):
140
- def __init__(self):
141
- super(Test, self).__init__()
142
- self.a = brainstate.ParamState(jnp.ones(10))
143
- self.b = brainstate.ParamState(brainstate.random.randn(10))
144
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
145
-
146
- def __call__(self):
147
- return jnp.sum(self.a.value + self.b.value + self.c.value), (jnp.sin(100), jnp.exp(0.1))
148
-
149
- brainstate.random.seed(0)
150
- t = Test()
151
- f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b], has_aux=True)
152
- grads, aux = f_grad()
153
- for g in grads: assert (g == 1.).all()
154
- assert aux[0] == jnp.sin(100)
155
- assert aux[1] == jnp.exp(0.1)
156
-
157
- t = Test()
158
- f_grad = brainstate.augment.grad(t, grad_states=t.a, has_aux=True)
159
- grads, aux = f_grad()
160
- assert (grads == 1.).all()
161
- assert aux[0] == jnp.sin(100)
162
- assert aux[1] == jnp.exp(0.1)
163
-
164
- t = Test()
165
- f_grad = brainstate.augment.grad(t, grad_states=t.states(), has_aux=True)
166
- grads, aux = f_grad()
167
- self.assertTrue(len(grads) == len(t.states()))
168
-
169
- def test_grad_ob_return(self):
170
- class Test(brainstate.nn.Module):
171
- def __init__(self):
172
- super(Test, self).__init__()
173
- self.a = brainstate.ParamState(jnp.ones(10))
174
- self.b = brainstate.ParamState(brainstate.random.randn(10))
175
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
176
-
177
- def __call__(self):
178
- return jnp.sum(self.a.value + self.b.value + self.c.value)
179
-
180
- brainstate.random.seed(0)
181
- t = Test()
182
- f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b], return_value=True)
183
- grads, returns = f_grad()
184
- for g in grads: assert (g == 1.).all()
185
- assert returns == t()
186
-
187
- t = Test()
188
- f_grad = brainstate.augment.grad(t, grad_states=t.a, return_value=True)
189
- grads, returns = f_grad()
190
- assert (grads == 1.).all()
191
- assert returns == t()
192
-
193
- def test_grad_ob_aux_return(self):
194
- class Test(brainstate.nn.Module):
195
- def __init__(self):
196
- super(Test, self).__init__()
197
- self.a = brainstate.ParamState(jnp.ones(10))
198
- self.b = brainstate.ParamState(brainstate.random.randn(10))
199
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
200
-
201
- def __call__(self):
202
- return jnp.sum(self.a.value + self.b.value + self.c.value), (jnp.sin(100), jnp.exp(0.1))
203
-
204
- brainstate.random.seed(0)
205
- t = Test()
206
- f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b], has_aux=True, return_value=True)
207
- grads, returns, aux = f_grad()
208
- for g in grads: assert (g == 1.).all()
209
- assert returns == jnp.sum(t.a.value + t.b.value + t.c.value)
210
- assert aux[0] == jnp.sin(100)
211
- assert aux[1] == jnp.exp(0.1)
212
-
213
- t = Test()
214
- f_grad = brainstate.augment.grad(t, grad_states=t.a, has_aux=True, return_value=True)
215
- grads, returns, aux = f_grad()
216
- assert (grads == 1.).all()
217
- assert returns == jnp.sum(t.a.value + t.b.value + t.c.value)
218
- assert aux[0] == jnp.sin(100)
219
- assert aux[1] == jnp.exp(0.1)
220
-
221
- def test_grad_ob_argnums(self):
222
- class Test(brainstate.nn.Module):
223
- def __init__(self):
224
- super(Test, self).__init__()
225
- brainstate.random.seed()
226
- self.a = brainstate.ParamState(jnp.ones(10))
227
- self.b = brainstate.ParamState(brainstate.random.randn(10))
228
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
229
-
230
- def __call__(self, d):
231
- return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d)
232
-
233
- brainstate.random.seed(0)
234
-
235
- t = Test()
236
- f_grad = brainstate.augment.grad(t, t.states(), argnums=0)
237
- var_grads, arg_grads = f_grad(brainstate.random.random(10))
238
- for g in var_grads.values(): assert (g == 1.).all()
239
- assert (arg_grads == 2.).all()
240
-
241
- t = Test()
242
- f_grad = brainstate.augment.grad(t, t.states(), argnums=[0])
243
- var_grads, arg_grads = f_grad(brainstate.random.random(10))
244
- for g in var_grads.values(): assert (g == 1.).all()
245
- assert (arg_grads[0] == 2.).all()
246
-
247
- t = Test()
248
- f_grad = brainstate.augment.grad(t, argnums=0)
249
- arg_grads = f_grad(brainstate.random.random(10))
250
- assert (arg_grads == 2.).all()
251
-
252
- t = Test()
253
- f_grad = brainstate.augment.grad(t, argnums=[0])
254
- arg_grads = f_grad(brainstate.random.random(10))
255
- assert (arg_grads[0] == 2.).all()
256
-
257
- def test_grad_ob_argnums_aux(self):
258
- class Test(brainstate.nn.Module):
259
- def __init__(self):
260
- super(Test, self).__init__()
261
- self.a = brainstate.ParamState(jnp.ones(10))
262
- self.b = brainstate.ParamState(brainstate.random.randn(10))
263
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
264
-
265
- def __call__(self, d):
266
- return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d), (jnp.sin(100), jnp.exp(0.1))
267
-
268
- brainstate.random.seed(0)
269
-
270
- t = Test()
271
- f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=0, has_aux=True)
272
- (var_grads, arg_grads), aux = f_grad(brainstate.random.random(10))
273
- for g in var_grads.values(): assert (g == 1.).all()
274
- assert (arg_grads == 2.).all()
275
- assert aux[0] == jnp.sin(100)
276
- assert aux[1] == jnp.exp(0.1)
277
-
278
- t = Test()
279
- f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=[0], has_aux=True)
280
- (var_grads, arg_grads), aux = f_grad(brainstate.random.random(10))
281
- for g in var_grads.values(): assert (g == 1.).all()
282
- assert (arg_grads[0] == 2.).all()
283
- assert aux[0] == jnp.sin(100)
284
- assert aux[1] == jnp.exp(0.1)
285
-
286
- t = Test()
287
- f_grad = brainstate.augment.grad(t, argnums=0, has_aux=True)
288
- arg_grads, aux = f_grad(brainstate.random.random(10))
289
- assert (arg_grads == 2.).all()
290
- assert aux[0] == jnp.sin(100)
291
- assert aux[1] == jnp.exp(0.1)
292
-
293
- t = Test()
294
- f_grad = brainstate.augment.grad(t, argnums=[0], has_aux=True)
295
- arg_grads, aux = f_grad(brainstate.random.random(10))
296
- assert (arg_grads[0] == 2.).all()
297
- assert aux[0] == jnp.sin(100)
298
- assert aux[1] == jnp.exp(0.1)
299
-
300
- def test_grad_ob_argnums_return(self):
301
- class Test(brainstate.nn.Module):
302
- def __init__(self):
303
- super(Test, self).__init__()
304
-
305
- self.a = brainstate.ParamState(jnp.ones(10))
306
- self.b = brainstate.ParamState(brainstate.random.randn(10))
307
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
308
-
309
- def __call__(self, d):
310
- return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d)
311
-
312
- brainstate.random.seed(0)
313
-
314
- t = Test()
315
- f_grad = brainstate.augment.grad(t, t.states(), argnums=0, return_value=True)
316
- d = brainstate.random.random(10)
317
- (var_grads, arg_grads), loss = f_grad(d)
318
- for g in var_grads.values():
319
- assert (g == 1.).all()
320
- assert (arg_grads == 2.).all()
321
- assert loss == t(d)
322
-
323
- t = Test()
324
- f_grad = brainstate.augment.grad(t, t.states(), argnums=[0], return_value=True)
325
- d = brainstate.random.random(10)
326
- (var_grads, arg_grads), loss = f_grad(d)
327
- for g in var_grads.values():
328
- assert (g == 1.).all()
329
- assert (arg_grads[0] == 2.).all()
330
- assert loss == t(d)
331
-
332
- t = Test()
333
- f_grad = brainstate.augment.grad(t, argnums=0, return_value=True)
334
- d = brainstate.random.random(10)
335
- arg_grads, loss = f_grad(d)
336
- assert (arg_grads == 2.).all()
337
- assert loss == t(d)
338
-
339
- t = Test()
340
- f_grad = brainstate.augment.grad(t, argnums=[0], return_value=True)
341
- d = brainstate.random.random(10)
342
- arg_grads, loss = f_grad(d)
343
- assert (arg_grads[0] == 2.).all()
344
- assert loss == t(d)
345
-
346
- def test_grad_ob_argnums_aux_return(self):
347
- class Test(brainstate.nn.Module):
348
- def __init__(self):
349
- super(Test, self).__init__()
350
- self.a = brainstate.ParamState(jnp.ones(10))
351
- self.b = brainstate.ParamState(brainstate.random.randn(10))
352
- self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
353
-
354
- def __call__(self, d):
355
- return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d), (jnp.sin(100), jnp.exp(0.1))
356
-
357
- brainstate.random.seed(0)
358
-
359
- t = Test()
360
- f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=0, has_aux=True, return_value=True)
361
- d = brainstate.random.random(10)
362
- (var_grads, arg_grads), loss, aux = f_grad(d)
363
- for g in var_grads.values(): assert (g == 1.).all()
364
- assert (arg_grads == 2.).all()
365
- assert aux[0] == jnp.sin(100)
366
- assert aux[1] == jnp.exp(0.1)
367
- assert loss == t(d)[0]
368
-
369
- t = Test()
370
- f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=[0], has_aux=True, return_value=True)
371
- d = brainstate.random.random(10)
372
- (var_grads, arg_grads), loss, aux = f_grad(d)
373
- for g in var_grads.values(): assert (g == 1.).all()
374
- assert (arg_grads[0] == 2.).all()
375
- assert aux[0] == jnp.sin(100)
376
- assert aux[1] == jnp.exp(0.1)
377
- assert loss == t(d)[0]
378
-
379
- t = Test()
380
- f_grad = brainstate.augment.grad(t, argnums=0, has_aux=True, return_value=True)
381
- d = brainstate.random.random(10)
382
- arg_grads, loss, aux = f_grad(d)
383
- assert (arg_grads == 2.).all()
384
- assert aux[0] == jnp.sin(100)
385
- assert aux[1] == jnp.exp(0.1)
386
- assert loss == t(d)[0]
387
-
388
- t = Test()
389
- f_grad = brainstate.augment.grad(t, argnums=[0], has_aux=True, return_value=True)
390
- d = brainstate.random.random(10)
391
- arg_grads, loss, aux = f_grad(d)
392
- assert (arg_grads[0] == 2.).all()
393
- assert aux[0] == jnp.sin(100)
394
- assert aux[1] == jnp.exp(0.1)
395
- assert loss == t(d)[0]
396
-
397
-
398
- class TestPureFuncJacobian(unittest.TestCase):
399
- def test1(self):
400
- jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 2]), has_aux=True)(3.)
401
- self.assertTrue(jax.numpy.allclose(jac, jax.jacfwd(lambda x: x ** 3)(3.)))
402
- self.assertTrue(aux[0] == 9.)
403
-
404
- def test_jacfwd_and_aux_nested(self):
405
- def f(x):
406
- jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 3]), has_aux=True)(x)
407
- return aux[0]
408
-
409
- f2 = lambda x: x ** 3
410
-
411
- self.assertEqual(_jacfwd(f)(4.), _jacfwd(f2)(4.))
412
- self.assertEqual(jax.jit(_jacfwd(f))(4.), _jacfwd(f2)(4.))
413
- self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(4.), _jacfwd(f2)(4.))
414
-
415
- self.assertEqual(_jacfwd(f)(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
416
- self.assertEqual(jax.jit(_jacfwd(f))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
417
- self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
418
-
419
- def f(x):
420
- jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 3]), has_aux=True)(x)
421
- return aux[0] * jnp.sin(x)
422
-
423
- f2 = lambda x: x ** 3 * jnp.sin(x)
424
-
425
- self.assertEqual(_jacfwd(f)(4.), _jacfwd(f2)(4.))
426
- self.assertEqual(jax.jit(_jacfwd(f))(4.), _jacfwd(f2)(4.))
427
- self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(4.), _jacfwd(f2)(4.))
428
-
429
- self.assertEqual(_jacfwd(f)(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
430
- self.assertEqual(jax.jit(_jacfwd(f))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
431
- self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
432
-
433
- def test_jacrev1(self):
434
- def f1(x, y):
435
- r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
436
- return r
437
-
438
- br = brainstate.augment.jacrev(f1)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
439
- jr = jax.jacrev(f1)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
440
- assert (br == jr).all()
441
-
442
- br = brainstate.augment.jacrev(f1, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
443
- jr = jax.jacrev(f1, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
444
- assert (br[0] == jr[0]).all()
445
- assert (br[1] == jr[1]).all()
446
-
447
- def test_jacrev2(self):
448
- print()
449
-
450
- def f2(x, y):
451
- r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
452
- r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
453
- return r1, r2
454
-
455
- jr = jax.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
456
- pprint(jr)
457
-
458
- br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
459
- pprint(br)
460
- assert jnp.array_equal(br[0], jr[0])
461
- assert jnp.array_equal(br[1], jr[1])
462
-
463
- br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
464
- pprint(br)
465
- assert jnp.array_equal(br[0], jr[0])
466
- assert jnp.array_equal(br[1], jr[1])
467
-
468
- def f2(x, y):
469
- r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
470
- r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
471
- return r1, r2
472
-
473
- br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
474
- pprint(br)
475
- assert jnp.array_equal(br[0], jr[0])
476
- assert jnp.array_equal(br[1], jr[1])
477
-
478
- br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
479
- pprint(br)
480
- assert jnp.array_equal(br[0], jr[0])
481
- assert jnp.array_equal(br[1], jr[1])
482
-
483
- def test_jacrev3(self):
484
- print()
485
-
486
- def f3(x, y):
487
- r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
488
- r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
489
- return r1, r2
490
-
491
- jr = jax.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
492
- pprint(jr)
493
-
494
- br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
495
- pprint(br)
496
- assert jnp.array_equal(br[0][0], jr[0][0])
497
- assert jnp.array_equal(br[0][1], jr[0][1])
498
- assert jnp.array_equal(br[1][0], jr[1][0])
499
- assert jnp.array_equal(br[1][1], jr[1][1])
500
-
501
- br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
502
- pprint(br)
503
- assert jnp.array_equal(br[0][0], jr[0][0])
504
- assert jnp.array_equal(br[0][1], jr[0][1])
505
- assert jnp.array_equal(br[1][0], jr[1][0])
506
- assert jnp.array_equal(br[1][1], jr[1][1])
507
-
508
- def f3(x, y):
509
- r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
510
- r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
511
- return r1, r2
512
-
513
- br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
514
- pprint(br)
515
- assert jnp.array_equal(br[0][0], jr[0][0])
516
- assert jnp.array_equal(br[0][1], jr[0][1])
517
- assert jnp.array_equal(br[1][0], jr[1][0])
518
- assert jnp.array_equal(br[1][1], jr[1][1])
519
-
520
- br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
521
- pprint(br)
522
- assert jnp.array_equal(br[0][0], jr[0][0])
523
- assert jnp.array_equal(br[0][1], jr[0][1])
524
- assert jnp.array_equal(br[1][0], jr[1][0])
525
- assert jnp.array_equal(br[1][1], jr[1][1])
526
-
527
- def test_jacrev_aux1(self):
528
- x = jnp.array([1., 2., 3.])
529
- y = jnp.array([10., 5.])
530
-
531
- def f1(x, y):
532
- a = 4 * x[1] ** 2 - 2 * x[2]
533
- r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], a, x[2] * jnp.sin(x[0])])
534
- return r, a
535
-
536
- f2 = lambda *args: f1(*args)[0]
537
- jr = jax.jacrev(f2)(x, y) # jax jacobian
538
- pprint(jr)
539
- grads, aux = brainstate.augment.jacrev(f1, has_aux=True)(x, y)
540
- assert (grads == jr).all()
541
- assert aux == (4 * x[1] ** 2 - 2 * x[2])
542
-
543
- jr = jax.jacrev(f2, argnums=(0, 1))(x, y) # jax jacobian
544
- pprint(jr)
545
- grads, aux = brainstate.augment.jacrev(f1, argnums=(0, 1), has_aux=True)(x, y)
546
- assert (grads[0] == jr[0]).all()
547
- assert (grads[1] == jr[1]).all()
548
- assert aux == (4 * x[1] ** 2 - 2 * x[2])
549
-
550
- def test_jacrev_return_aux1(self):
551
- with brainstate.environ.context(precision=64):
552
- def f1(x, y):
553
- a = 4 * x[1] ** 2 - 2 * x[2]
554
- r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], a, x[2] * jnp.sin(x[0])])
555
- return r, a
556
-
557
- _x = jnp.array([1., 2., 3.])
558
- _y = jnp.array([10., 5.])
559
- _r, _a = f1(_x, _y)
560
- f2 = lambda *args: f1(*args)[0]
561
- _g1 = jax.jacrev(f2)(_x, _y) # jax jacobian
562
- pprint(_g1)
563
- _g2 = jax.jacrev(f2, argnums=(0, 1))(_x, _y) # jax jacobian
564
- pprint(_g2)
565
-
566
- grads, vec, aux = brainstate.augment.jacrev(f1, return_value=True, has_aux=True)(_x, _y)
567
- assert (grads == _g1).all()
568
- assert aux == _a
569
- assert (vec == _r).all()
570
-
571
- grads, vec, aux = brainstate.augment.jacrev(f1, return_value=True, argnums=(0, 1), has_aux=True)(_x, _y)
572
- assert (grads[0] == _g2[0]).all()
573
- assert (grads[1] == _g2[1]).all()
574
- assert aux == _a
575
- assert (vec == _r).all()
576
-
577
-
578
- class TestClassFuncJacobian(unittest.TestCase):
579
- def test_jacrev1(self):
580
- def f1(x, y):
581
- r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
582
- return r
583
-
584
- _x = jnp.array([1., 2., 3.])
585
- _y = jnp.array([10., 5.])
586
-
587
- class Test(brainstate.nn.Module):
588
- def __init__(self):
589
- super(Test, self).__init__()
590
- self.x = brainstate.State(jnp.array([1., 2., 3.]))
591
- self.y = brainstate.State(jnp.array([10., 5.]))
592
-
593
- def __call__(self, ):
594
- a = self.x.value[0] * self.y.value[0]
595
- b = 5 * self.x.value[2] * self.y.value[1]
596
- c = 4 * self.x.value[1] ** 2 - 2 * self.x.value[2]
597
- d = self.x.value[2] * jnp.sin(self.x.value[0])
598
- r = jnp.asarray([a, b, c, d])
599
- return r
600
-
601
- _jr = jax.jacrev(f1)(_x, _y)
602
- t = Test()
603
- br = brainstate.augment.jacrev(t, grad_states=t.x)()
604
- self.assertTrue((br == _jr).all())
605
-
606
- _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
607
- t = Test()
608
- br = brainstate.augment.jacrev(t, grad_states=[t.x, t.y])()
609
- self.assertTrue((br[0] == _jr[0]).all())
610
- self.assertTrue((br[1] == _jr[1]).all())
611
-
612
-
613
- #
614
- # def test_jacfwd1(self):
615
- # def f1(x, y):
616
- # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
617
- # return r
618
- #
619
- # _x = jnp.array([1., 2., 3.])
620
- # _y = jnp.array([10., 5.])
621
- #
622
- # class Test(brainstate.nn.Module):
623
- # def __init__(self):
624
- # super(Test, self).__init__()
625
- # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
626
- # self.y = jnp.Variable(jnp.array([10., 5.]))
627
- #
628
- # def __call__(self, ):
629
- # a = self.x[0] * self.y[0]
630
- # b = 5 * self.x[2] * self.y[1]
631
- # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
632
- # d = self.x[2] * jnp.sin(self.x[0])
633
- # r = jnp.asarray([a, b, c, d])
634
- # return r
635
- #
636
- # _jr = jax.jacfwd(f1)(_x, _y)
637
- # t = Test()
638
- # br = brainstate.augment.jacfwd(t, grad_states=t.x)()
639
- # self.assertTrue((br == _jr).all())
640
- #
641
- # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
642
- # t = Test()
643
- # br = brainstate.augment.jacfwd(t, grad_states=[t.x, t.y])()
644
- # self.assertTrue((br[0] == _jr[0]).all())
645
- # self.assertTrue((br[1] == _jr[1]).all())
646
- #
647
- # def test_jacrev2(self):
648
- # def f1(x, y):
649
- # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
650
- # return r
651
- #
652
- # _x = jnp.array([1., 2., 3.])
653
- # _y = jnp.array([10., 5.])
654
- #
655
- # class Test(brainstate.nn.Module):
656
- # def __init__(self):
657
- # super(Test, self).__init__()
658
- # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
659
- #
660
- # def __call__(self, y):
661
- # a = self.x[0] * y[0]
662
- # b = 5 * self.x[2] * y[1]
663
- # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
664
- # d = self.x[2] * jnp.sin(self.x[0])
665
- # r = jnp.asarray([a, b, c, d])
666
- # return r
667
- #
668
- # _jr = jax.jacrev(f1)(_x, _y)
669
- # t = Test()
670
- # br = brainstate.augment.jacrev(t, grad_states=t.x)(_y)
671
- # self.assertTrue((br == _jr).all())
672
- #
673
- # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
674
- # t = Test()
675
- # var_grads, arg_grads = brainstate.augment.jacrev(t, grad_states=t.x, argnums=0)(_y)
676
- # print(var_grads, )
677
- # print(arg_grads, )
678
- # self.assertTrue((var_grads == _jr[0]).all())
679
- # self.assertTrue((arg_grads == _jr[1]).all())
680
- #
681
- # def test_jacfwd2(self):
682
- # def f1(x, y):
683
- # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
684
- # return r
685
- #
686
- # _x = jnp.array([1., 2., 3.])
687
- # _y = jnp.array([10., 5.])
688
- #
689
- # class Test(brainstate.nn.Module):
690
- # def __init__(self):
691
- # super(Test, self).__init__()
692
- # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
693
- #
694
- # def __call__(self, y):
695
- # a = self.x[0] * y[0]
696
- # b = 5 * self.x[2] * y[1]
697
- # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
698
- # d = self.x[2] * jnp.sin(self.x[0])
699
- # r = jnp.asarray([a, b, c, d])
700
- # return r
701
- #
702
- # _jr = jax.jacfwd(f1)(_x, _y)
703
- # t = Test()
704
- # br = brainstate.augment.jacfwd(t, grad_states=t.x)(_y)
705
- # self.assertTrue((br == _jr).all())
706
- #
707
- # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
708
- # t = Test()
709
- # var_grads, arg_grads = brainstate.augment.jacfwd(t, grad_states=t.x, argnums=0)(_y)
710
- # print(var_grads, )
711
- # print(arg_grads, )
712
- # self.assertTrue((var_grads == _jr[0]).all())
713
- # self.assertTrue((arg_grads == _jr[1]).all())
714
- #
715
- # def test_jacrev_aux1(self):
716
- # jnp.enable_x64()
717
- #
718
- # def f1(x, y):
719
- # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
720
- # return r
721
- #
722
- # _x = jnp.array([1., 2., 3.])
723
- # _y = jnp.array([10., 5.])
724
- #
725
- # class Test(brainstate.nn.Module):
726
- # def __init__(self):
727
- # super(Test, self).__init__()
728
- # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
729
- #
730
- # def __call__(self, y):
731
- # a = self.x[0] * y[0]
732
- # b = 5 * self.x[2] * y[1]
733
- # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
734
- # d = self.x[2] * jnp.sin(self.x[0])
735
- # r = jnp.asarray([a, b, c, d])
736
- # return r, (c, d)
737
- #
738
- # _jr = jax.jacrev(f1)(_x, _y)
739
- # t = Test()
740
- # br, _ = brainstate.augment.jacrev(t, grad_states=t.x, has_aux=True)(_y)
741
- # self.assertTrue((br == _jr).all())
742
- #
743
- # t = Test()
744
- # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
745
- # _aux = t(_y)[1]
746
- # (var_grads, arg_grads), aux = brainstate.augment.jacrev(t, grad_states=t.x, argnums=0, has_aux=True)(_y)
747
- # print(var_grads, )
748
- # print(arg_grads, )
749
- # self.assertTrue((var_grads == _jr[0]).all())
750
- # self.assertTrue((arg_grads == _jr[1]).all())
751
- # self.assertTrue(jnp.array_equal(aux, _aux))
752
- #
753
- # jnp.disable_x64()
754
- #
755
- # def test_jacfwd_aux1(self):
756
- # jnp.enable_x64()
757
- #
758
- # def f1(x, y):
759
- # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
760
- # return r
761
- #
762
- # _x = jnp.array([1., 2., 3.])
763
- # _y = jnp.array([10., 5.])
764
- #
765
- # class Test(brainstate.nn.Module):
766
- # def __init__(self):
767
- # super(Test, self).__init__()
768
- # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
769
- #
770
- # def __call__(self, y):
771
- # a = self.x[0] * y[0]
772
- # b = 5 * self.x[2] * y[1]
773
- # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
774
- # d = self.x[2] * jnp.sin(self.x[0])
775
- # r = jnp.asarray([a, b, c, d])
776
- # return r, (c, d)
777
- #
778
- # _jr = jax.jacfwd(f1)(_x, _y)
779
- # t = Test()
780
- # br, (c, d) = brainstate.augment.jacfwd(t, grad_states=t.x, has_aux=True)(_y)
781
- # # print(_jr)
782
- # # print(br)
783
- # a = (br == _jr)
784
- # self.assertTrue(a.all())
785
- #
786
- # t = Test()
787
- # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
788
- # _aux = t(_y)[1]
789
- # (var_grads, arg_grads), aux = brainstate.augment.jacfwd(t, grad_states=t.x, argnums=0, has_aux=True)(_y)
790
- # print(var_grads, )
791
- # print(arg_grads, )
792
- # self.assertTrue((var_grads == _jr[0]).all())
793
- # self.assertTrue((arg_grads == _jr[1]).all())
794
- # self.assertTrue(jnp.array_equal(aux, _aux))
795
- #
796
- # jnp.disable_x64()
797
- #
798
- # def test_jacrev_return_aux1(self):
799
- # jnp.enable_x64()
800
- #
801
- # def f1(x, y):
802
- # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
803
- # return r
804
- #
805
- # _x = jnp.array([1., 2., 3.])
806
- # _y = jnp.array([10., 5.])
807
- #
808
- # class Test(brainstate.nn.Module):
809
- # def __init__(self):
810
- # super(Test, self).__init__()
811
- # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
812
- #
813
- # def __call__(self, y):
814
- # a = self.x[0] * y[0]
815
- # b = 5 * self.x[2] * y[1]
816
- # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
817
- # d = self.x[2] * jnp.sin(self.x[0])
818
- # r = jnp.asarray([a, b, c, d])
819
- # return r, (c, d)
820
- #
821
- # _jr = jax.jacrev(f1)(_x, _y)
822
- # t = Test()
823
- # br, _ = brainstate.augment.jacrev(t, grad_states=t.x, has_aux=True)(_y)
824
- # self.assertTrue((br == _jr).all())
825
- #
826
- # t = Test()
827
- # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
828
- # _val, _aux = t(_y)
829
- # (var_grads, arg_grads), value, aux = brainstate.augment.jacrev(t, grad_states=t.x, argnums=0, has_aux=True, return_value=True)(_y)
830
- # print(var_grads, )
831
- # print(arg_grads, )
832
- # self.assertTrue((var_grads == _jr[0]).all())
833
- # self.assertTrue((arg_grads == _jr[1]).all())
834
- # self.assertTrue(jnp.array_equal(aux, _aux))
835
- # self.assertTrue(jnp.array_equal(value, _val))
836
- #
837
- # jnp.disable_x64()
838
- #
839
- # def test_jacfwd_return_aux1(self):
840
- # jnp.enable_x64()
841
- #
842
- # def f1(x, y):
843
- # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
844
- # return r
845
- #
846
- # _x = jnp.array([1., 2., 3.])
847
- # _y = jnp.array([10., 5.])
848
- #
849
- # class Test(brainstate.nn.Module):
850
- # def __init__(self):
851
- # super(Test, self).__init__()
852
- # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
853
- #
854
- # def __call__(self, y):
855
- # a = self.x[0] * y[0]
856
- # b = 5 * self.x[2] * y[1]
857
- # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
858
- # d = self.x[2] * jnp.sin(self.x[0])
859
- # r = jnp.asarray([a, b, c, d])
860
- # return r, (c, d)
861
- #
862
- # _jr = jax.jacfwd(f1)(_x, _y)
863
- # t = Test()
864
- # br, _ = brainstate.augment.jacfwd(t, grad_states=t.x, has_aux=True)(_y)
865
- # self.assertTrue((br == _jr).all())
866
- #
867
- # t = Test()
868
- # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
869
- # _val, _aux = t(_y)
870
- # (var_grads, arg_grads), value, aux = brainstate.augment.jacfwd(t, grad_states=t.x, argnums=0, has_aux=True, return_value=True)(_y)
871
- # print(_val, )
872
- # print('_aux: ', _aux, 'aux: ', aux)
873
- # print(var_grads, )
874
- # print(arg_grads, )
875
- # self.assertTrue((var_grads == _jr[0]).all())
876
- # self.assertTrue((arg_grads == _jr[1]).all())
877
- # self.assertTrue(jnp.array_equal(aux, _aux))
878
- # self.assertTrue(jnp.array_equal(value, _val))
879
- #
880
- # jnp.disable_x64()
881
- #
882
- #
883
- # class TestPureFuncVectorGrad(unittest.TestCase):
884
- # def test1(self):
885
- # f = lambda x: 3 * x ** 2
886
- # _x = jnp.ones(10)
887
- # pprint(brainstate.augment.vector_grad(f, argnums=0)(_x))
888
- #
889
- # def test2(self):
890
- # def f(x, y):
891
- # dx = x ** 2 + y ** 2 + 10
892
- # return dx
893
- #
894
- # _x = jnp.ones(5)
895
- # _y = jnp.ones(5)
896
- #
897
- # g = brainstate.augment.vector_grad(f, argnums=0)(_x, _y)
898
- # pprint(g)
899
- # self.assertTrue(jnp.array_equal(g, 2 * _x))
900
- #
901
- # g = brainstate.augment.vector_grad(f, argnums=(0,))(_x, _y)
902
- # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
903
- #
904
- # g = brainstate.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
905
- # pprint(g)
906
- # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
907
- # self.assertTrue(jnp.array_equal(g[1], 2 * _y))
908
- #
909
- # def test3(self):
910
- # def f(x, y):
911
- # dx = x ** 2 + y ** 2 + 10
912
- # dy = x ** 3 + y ** 3 - 10
913
- # return dx, dy
914
- #
915
- # _x = jnp.ones(5)
916
- # _y = jnp.ones(5)
917
- #
918
- # g = brainstate.augment.vector_grad(f, argnums=0)(_x, _y)
919
- # # pprint(g)
920
- # self.assertTrue(jnp.array_equal(g, 2 * _x + 3 * _x ** 2))
921
- #
922
- # g = brainstate.augment.vector_grad(f, argnums=(0,))(_x, _y)
923
- # self.assertTrue(jnp.array_equal(g[0], 2 * _x + 3 * _x ** 2))
924
- #
925
- # g = brainstate.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
926
- # # pprint(g)
927
- # self.assertTrue(jnp.array_equal(g[0], 2 * _x + 3 * _x ** 2))
928
- # self.assertTrue(jnp.array_equal(g[1], 2 * _y + 3 * _y ** 2))
929
- #
930
- # def test4_2d(self):
931
- # def f(x, y):
932
- # dx = x ** 2 + y ** 2 + 10
933
- # return dx
934
- #
935
- # _x = jnp.ones((5, 5))
936
- # _y = jnp.ones((5, 5))
937
- #
938
- # g = brainstate.augment.vector_grad(f, argnums=0)(_x, _y)
939
- # pprint(g)
940
- # self.assertTrue(jnp.array_equal(g, 2 * _x))
941
- #
942
- # g = brainstate.augment.vector_grad(f, argnums=(0,))(_x, _y)
943
- # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
944
- #
945
- # g = brainstate.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
946
- # pprint(g)
947
- # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
948
- # self.assertTrue(jnp.array_equal(g[1], 2 * _y))
949
- #
950
- # def test_aux1(self):
951
- # def f(x, y):
952
- # dx = x ** 2 + y ** 2 + 10
953
- # dy = x ** 3 + y ** 3 - 10
954
- # return dx, dy
955
- #
956
- # _x = jnp.ones(5)
957
- # _y = jnp.ones(5)
958
- #
959
- # g, aux = brainstate.augment.vector_grad(f, has_aux=True)(_x, _y)
960
- # pprint(g, )
961
- # pprint(aux)
962
- # self.assertTrue(jnp.array_equal(g, 2 * _x))
963
- # self.assertTrue(jnp.array_equal(aux, _x ** 3 + _y ** 3 - 10))
964
- #
965
- # def test_return1(self):
966
- # def f(x, y):
967
- # dx = x ** 2 + y ** 2 + 10
968
- # return dx
969
- #
970
- # _x = jnp.ones(5)
971
- # _y = jnp.ones(5)
972
- #
973
- # g, value = brainstate.augment.vector_grad(f, return_value=True)(_x, _y)
974
- # pprint(g, )
975
- # pprint(value)
976
- # self.assertTrue(jnp.array_equal(g, 2 * _x))
977
- # self.assertTrue(jnp.array_equal(value, _x ** 2 + _y ** 2 + 10))
978
- #
979
- # def test_return_aux1(self):
980
- # def f(x, y):
981
- # dx = x ** 2 + y ** 2 + 10
982
- # dy = x ** 3 + y ** 3 - 10
983
- # return dx, dy
984
- #
985
- # _x = jnp.ones(5)
986
- # _y = jnp.ones(5)
987
- #
988
- # g, value, aux = brainstate.augment.vector_grad(f, has_aux=True, return_value=True)(_x, _y)
989
- # print('grad', g)
990
- # print('value', value)
991
- # print('aux', aux)
992
- # self.assertTrue(jnp.array_equal(g, 2 * _x))
993
- # self.assertTrue(jnp.array_equal(value, _x ** 2 + _y ** 2 + 10))
994
- # self.assertTrue(jnp.array_equal(aux, _x ** 3 + _y ** 3 - 10))
995
- #
996
- #
997
- # class TestClassFuncVectorGrad(unittest.TestCase):
998
- # def test1(self):
999
- # class Test(brainstate.nn.Module):
1000
- # def __init__(self):
1001
- # super(Test, self).__init__()
1002
- # self.x = jnp.Variable(jnp.ones(5))
1003
- # self.y = jnp.Variable(jnp.ones(5))
1004
- #
1005
- # def __call__(self, *args, **kwargs):
1006
- # return self.x ** 2 + self.y ** 2 + 10
1007
- #
1008
- # t = Test()
1009
- #
1010
- # g = brainstate.augment.vector_grad(t, grad_states=t.x)()
1011
- # self.assertTrue(jnp.array_equal(g, 2 * t.x))
1012
- #
1013
- # g = brainstate.augment.vector_grad(t, grad_states=(t.x,))()
1014
- # self.assertTrue(jnp.array_equal(g[0], 2 * t.x))
1015
- #
1016
- # g = brainstate.augment.vector_grad(t, grad_states=(t.x, t.y))()
1017
- # self.assertTrue(jnp.array_equal(g[0], 2 * t.x))
1018
- # self.assertTrue(jnp.array_equal(g[1], 2 * t.y))
1019
- #
1020
- #
1021
- # def vgrad(f, *x):
1022
- # y, vjp_fn = jax.vjp(f, *x)
1023
- # return vjp_fn(jnp.ones(y.shape).value)[0]
1024
- #
1025
- #
1026
- # class TestDebug(parameterized.TestCase):
1027
- # def test_debug1(self):
1028
- # a = brainstate.random.RandomState()
1029
- #
1030
- # def f(b):
1031
- # print(a.value)
1032
- # return a + b + a.random()
1033
- #
1034
- # f = brainstate.augment.vector_grad(f, argnums=0)
1035
- # f(1.)
1036
- #
1037
- # with jax.disable_jit():
1038
- # f(1.)
1039
- #
1040
- # @parameterized.product(
1041
- # grad_fun=[brainstate.augment.grad, brainstate.augment.vector_grad]
1042
- # )
1043
- # def test_print_info1(self, grad_fun):
1044
- # file = tempfile.TemporaryFile(mode='w+')
1045
- #
1046
- # @functools.partial(grad_fun, argnums=0)
1047
- # def f2(a, b):
1048
- # print('compiling f2 ...', file=file)
1049
- # return a + b
1050
- #
1051
- # @functools.partial(grad_fun, argnums=0)
1052
- # def f1(a):
1053
- # print('compiling f1 ...', file=file)
1054
- # return f2(a, 1.)
1055
- #
1056
- # expect_res = '''
1057
- # compiling f1 ...
1058
- # compiling f2 ...
1059
- # compiling f1 ...
1060
- # compiling f2 ...
1061
- # '''
1062
- #
1063
- # print(f1(1.))
1064
- # file.seek(0)
1065
- # self.assertTrue(file.read().strip() == expect_res.strip())
1066
- #
1067
- # file = tempfile.TemporaryFile(mode='w+')
1068
- # with jax.disable_jit():
1069
- # expect_res = '''
1070
- # compiling f1 ...
1071
- # compiling f2 ...
1072
- # '''
1073
- # self.assertTrue(f1(1.) == 0.)
1074
- # file.seek(0)
1075
- # self.assertTrue(file.read().strip() == expect_res.strip())
1076
- #
1077
- # @parameterized.product(
1078
- # grad_fun=[brainstate.augment.grad, brainstate.augment.vector_grad]
1079
- # )
1080
- # def test_print_info2(self, grad_fun):
1081
- # file = tempfile.TemporaryFile(mode='w+')
1082
- #
1083
- # @functools.partial(grad_fun, argnums=0)
1084
- # def f1(a):
1085
- # @functools.partial(grad_fun, argnums=0)
1086
- # def f2(a, b):
1087
- # print('compiling f2 ...', file=file)
1088
- # return a + b
1089
- #
1090
- # print('compiling f1 ...', file=file)
1091
- # return f2(a, 1.)
1092
- #
1093
- # expect_res = '''
1094
- # compiling f1 ...
1095
- # compiling f2 ...
1096
- # compiling f1 ...
1097
- # compiling f2 ...
1098
- # compiling f2 ...
1099
- # '''
1100
- # self.assertTrue(f1(1.) == 0.)
1101
- # file.seek(0)
1102
- # self.assertTrue(file.read().strip() == expect_res.strip())
1103
- #
1104
- # file = tempfile.TemporaryFile(mode='w+')
1105
- # with jax.disable_jit():
1106
- # expect_res = '''
1107
- # compiling f1 ...
1108
- # compiling f2 ...
1109
- # '''
1110
- # self.assertTrue(f1(1.) == 0.)
1111
- # file.seek(0)
1112
- # # print(file.read().strip())
1113
- # self.assertTrue(file.read().strip() == expect_res.strip())
1114
- #
1115
- # def test_debug_correctness1(self):
1116
- # def test_f():
1117
- # a = jnp.Variable(jnp.ones(2))
1118
- # b = jnp.Variable(jnp.zeros(2))
1119
- #
1120
- # @brainstate.augment.vector_grad(argnums=0)
1121
- # def f1(c):
1122
- # a.value += 1
1123
- # b.value += 10
1124
- # return a * b * c
1125
- #
1126
- # return a, b, f1(1.)
1127
- #
1128
- # r1 = test_f()
1129
- # print(r1)
1130
- #
1131
- # with jax.disable_jit():
1132
- # r2 = test_f()
1133
- # print(r2)
1134
- # self.assertTrue(jnp.allclose(r1[0], r2[0]))
1135
- # self.assertTrue(jnp.allclose(r1[1], r2[1]))
1136
- # self.assertTrue(jnp.allclose(r1[2], r2[2]))
1137
- #
1138
- # def f1(c, a, b):
1139
- # a += 1
1140
- # b += 10
1141
- # return a * b * c
1142
- #
1143
- # r3 = vgrad(f1, 1., jnp.ones(2).value, jnp.zeros(2).value)
1144
- # self.assertTrue(jnp.allclose(r1[2], r3))
1145
- #
1146
- # def _bench_f2(self, dd):
1147
- # a = jnp.Variable(jnp.ones(2))
1148
- # b = jnp.Variable(jnp.zeros(2))
1149
- #
1150
- #
1151
- # def run_fun(d):
1152
- # @brainstate.augment.vector_grad(argnums=0)
1153
- # def f1(c):
1154
- # a.value += d
1155
- # b.value += 10
1156
- # return a * b * c
1157
- #
1158
- # return a, b, f1(1.)
1159
- #
1160
- # return run_fun(dd)
1161
- #
1162
- # def test_debug_correctness2(self):
1163
- # r1 = self._bench_f2(1.)
1164
- # print(r1)
1165
- #
1166
- # with jax.disable_jit():
1167
- # r2 = self._bench_f2(1.)
1168
- # print(r2)
1169
- #
1170
- # self.assertTrue(jnp.allclose(r1[0], r2[0]))
1171
- # self.assertTrue(jnp.allclose(r1[1], r2[1]))
1172
- # self.assertTrue(jnp.allclose(r1[2], r2[2]))
1173
- #
1174
- # def test_cache1(self):
1175
- # file = tempfile.TemporaryFile(mode='w+')
1176
- #
1177
- # def f(a, b):
1178
- # print('compiling f ...', file=file)
1179
- # return a + b
1180
- #
1181
- # grad1 = brainstate.augment.grad(f)(1., 2.) # call "f" twice, one for Variable finding, one for compiling
1182
- # grad2 = brainstate.augment.vector_grad(f)(1., 2.) # call "f" once for compiling
1183
- #
1184
- # file.seek(0)
1185
- # print(file.read().strip())
1186
- #
1187
- # expect_res = '''
1188
- # compiling f ...
1189
- # compiling f ...
1190
- # compiling f ...
1191
- # '''
1192
- # file.seek(0)
1193
- # self.assertTrue(file.read().strip() == expect_res.strip())
1194
- #
1195
- #
1196
-
1197
-
1198
- class TestUnitAwareGrad(unittest.TestCase):
1199
- def test_grad1(self):
1200
- def f(x):
1201
- return u.math.sum(x ** 2)
1202
-
1203
- x = jnp.array([1., 2., 3.]) * u.ms
1204
- g = brainstate.augment.grad(f, unit_aware=True)(x)
1205
- self.assertTrue(u.math.allclose(g, 2 * x))
1206
-
1207
- def test_vector_grad1(self):
1208
- def f(x):
1209
- return x ** 3
1210
-
1211
- x = jnp.array([1., 2., 3.]) * u.ms
1212
- g = brainstate.augment.vector_grad(f, unit_aware=True)(x)
1213
- self.assertTrue(u.math.allclose(g, 3 * x ** 2))
1214
-
1215
- def test_jacrev1(self):
1216
- def f(x, y):
1217
- return u.math.asarray([x[0] * y[0],
1218
- 5 * x[2] * y[1],
1219
- 4 * x[1] ** 2, ])
1220
-
1221
- _x = jnp.array([1., 2., 3.]) * u.ms
1222
- _y = jnp.array([10., 5.]) * u.ms
1223
-
1224
- g = brainstate.augment.jacrev(f, unit_aware=True, argnums=(0, 1))(_x, _y)
1225
- self.assertTrue(
1226
- u.math.allclose(
1227
- g[0],
1228
- u.math.asarray([
1229
- [10., 0., 0.],
1230
- [0., 0., 25.],
1231
- [0., 16., 0.]
1232
- ]) * u.ms
1233
- )
1234
- )
1235
-
1236
- self.assertTrue(
1237
- u.math.allclose(
1238
- g[1],
1239
- u.math.asarray([
1240
- [1., 0.],
1241
- [0., 15.],
1242
- [0., 0.]
1243
- ]) * u.ms
1244
- )
1245
- )
1246
-
1247
- def test_jacfwd1(self):
1248
- def f(x, y):
1249
- return u.math.asarray([x[0] * y[0],
1250
- 5 * x[2] * y[1],
1251
- 4 * x[1] ** 2, ])
1252
-
1253
- _x = jnp.array([1., 2., 3.]) * u.ms
1254
- _y = jnp.array([10., 5.]) * u.ms
1255
-
1256
- g = brainstate.augment.jacfwd(f, unit_aware=True, argnums=(0, 1))(_x, _y)
1257
- self.assertTrue(
1258
- u.math.allclose(
1259
- g[0],
1260
- u.math.asarray([
1261
- [10., 0., 0.],
1262
- [0., 0., 25.],
1263
- [0., 16., 0.]
1264
- ]) * u.ms
1265
- )
1266
- )
1267
-
1268
- self.assertTrue(
1269
- u.math.allclose(
1270
- g[1],
1271
- u.math.asarray([
1272
- [1., 0.],
1273
- [0., 15.],
1274
- [0., 0.]
1275
- ]) * u.ms
1276
- )
1277
- )
1278
-
1279
- def test_hessian(self):
1280
- unit = u.ms
1281
-
1282
- def scalar_function(x):
1283
- return x ** 3 + 3 * x * unit * unit + 2 * unit * unit * unit
1284
-
1285
- hess = brainstate.augment.hessian(scalar_function, unit_aware=True)
1286
- x = jnp.array(1.0) * unit
1287
- res = hess(x)
1288
- expected_hessian = jnp.array([[6.0]]) * unit
1289
- assert u.math.allclose(res, expected_hessian)
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+ import unittest
19
+ from pprint import pprint
20
+
21
+ import brainunit as u
22
+ import jax
23
+ import jax.numpy as jnp
24
+ import pytest
25
+
26
+ import brainstate
27
+ from brainstate.transform._autograd import _jacfwd
28
+
29
+
30
+ class TestPureFuncGrad(unittest.TestCase):
31
+ def test_grad_pure_func_1(self):
32
+ def call(a, b, c): return jnp.sum(a + b + c)
33
+
34
+ brainstate.random.seed(1)
35
+ a = jnp.ones(10)
36
+ b = brainstate.random.randn(10)
37
+ c = brainstate.random.uniform(size=10)
38
+ f_grad = brainstate.augment.grad(call, argnums=[0, 1, 2])
39
+ grads = f_grad(a, b, c)
40
+
41
+ for g in grads: assert (g == 1.).all()
42
+
43
+ def test_grad_pure_func_2(self):
44
+ def call(a, b, c): return jnp.sum(a + b + c)
45
+
46
+ brainstate.random.seed(1)
47
+ a = jnp.ones(10)
48
+ b = brainstate.random.randn(10)
49
+ c = brainstate.random.uniform(size=10)
50
+ f_grad = brainstate.augment.grad(call)
51
+ assert (f_grad(a, b, c) == 1.).all()
52
+
53
+ def test_grad_pure_func_aux1(self):
54
+ def call(a, b, c):
55
+ return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
56
+
57
+ brainstate.random.seed(1)
58
+ f_grad = brainstate.augment.grad(call, argnums=[0, 1, 2])
59
+ with pytest.raises(TypeError):
60
+ f_grad(jnp.ones(10), brainstate.random.randn(10), brainstate.random.uniform(size=10))
61
+
62
+ def test_grad_pure_func_aux2(self):
63
+ def call(a, b, c):
64
+ return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
65
+
66
+ brainstate.random.seed(1)
67
+ f_grad = brainstate.augment.grad(call, argnums=[0, 1, 2], has_aux=True)
68
+ grads, aux = f_grad(jnp.ones(10), brainstate.random.randn(10), brainstate.random.uniform(size=10))
69
+ for g in grads: assert (g == 1.).all()
70
+ assert aux[0] == jnp.sin(100)
71
+ assert aux[1] == jnp.exp(0.1)
72
+
73
+ def test_grad_pure_func_return1(self):
74
+ def call(a, b, c): return jnp.sum(a + b + c)
75
+
76
+ brainstate.random.seed(1)
77
+ a = jnp.ones(10)
78
+ b = brainstate.random.randn(10)
79
+ c = brainstate.random.uniform(size=10)
80
+ f_grad = brainstate.augment.grad(call, return_value=True)
81
+ grads, returns = f_grad(a, b, c)
82
+ assert (grads == 1.).all()
83
+ assert returns == jnp.sum(a + b + c)
84
+
85
+ def test_grad_func_return_aux1(self):
86
+ def call(a, b, c):
87
+ return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
88
+
89
+ brainstate.random.seed(1)
90
+ a = jnp.ones(10)
91
+ b = brainstate.random.randn(10)
92
+ c = brainstate.random.uniform(size=10)
93
+ f_grad = brainstate.augment.grad(call, return_value=True, has_aux=True)
94
+ grads, returns, aux = f_grad(a, b, c)
95
+ assert (grads == 1.).all()
96
+ assert returns == jnp.sum(a + b + c)
97
+ assert aux[0] == jnp.sin(100)
98
+ assert aux[1] == jnp.exp(0.1)
99
+
100
+
101
+ class TestObjectFuncGrad(unittest.TestCase):
102
+ def test_grad_ob1(self):
103
+ class Test(brainstate.nn.Module):
104
+ def __init__(self):
105
+ super(Test, self).__init__()
106
+
107
+ self.a = brainstate.ParamState(jnp.ones(10))
108
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
109
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
110
+
111
+ def __call__(self):
112
+ return jnp.sum(self.a.value + self.b.value + self.c.value)
113
+
114
+ brainstate.random.seed(0)
115
+
116
+ t = Test()
117
+ f_grad = brainstate.augment.grad(t, grad_states={'a': t.a, 'b': t.b, 'c': t.c})
118
+ grads = f_grad()
119
+ for g in grads.values():
120
+ assert (g == 1.).all()
121
+
122
+ t = Test()
123
+ f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b])
124
+ grads = f_grad()
125
+ for g in grads: assert (g == 1.).all()
126
+
127
+ t = Test()
128
+ f_grad = brainstate.augment.grad(t, grad_states=t.a)
129
+ grads = f_grad()
130
+ assert (grads == 1.).all()
131
+
132
+ t = Test()
133
+ f_grad = brainstate.augment.grad(t, grad_states=t.states())
134
+ grads = f_grad()
135
+ for g in grads.values():
136
+ assert (g == 1.).all()
137
+
138
+ def test_grad_ob_aux(self):
139
+ class Test(brainstate.nn.Module):
140
+ def __init__(self):
141
+ super(Test, self).__init__()
142
+ self.a = brainstate.ParamState(jnp.ones(10))
143
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
144
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
145
+
146
+ def __call__(self):
147
+ return jnp.sum(self.a.value + self.b.value + self.c.value), (jnp.sin(100), jnp.exp(0.1))
148
+
149
+ brainstate.random.seed(0)
150
+ t = Test()
151
+ f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b], has_aux=True)
152
+ grads, aux = f_grad()
153
+ for g in grads: assert (g == 1.).all()
154
+ assert aux[0] == jnp.sin(100)
155
+ assert aux[1] == jnp.exp(0.1)
156
+
157
+ t = Test()
158
+ f_grad = brainstate.augment.grad(t, grad_states=t.a, has_aux=True)
159
+ grads, aux = f_grad()
160
+ assert (grads == 1.).all()
161
+ assert aux[0] == jnp.sin(100)
162
+ assert aux[1] == jnp.exp(0.1)
163
+
164
+ t = Test()
165
+ f_grad = brainstate.augment.grad(t, grad_states=t.states(), has_aux=True)
166
+ grads, aux = f_grad()
167
+ self.assertTrue(len(grads) == len(t.states()))
168
+
169
+ def test_grad_ob_return(self):
170
+ class Test(brainstate.nn.Module):
171
+ def __init__(self):
172
+ super(Test, self).__init__()
173
+ self.a = brainstate.ParamState(jnp.ones(10))
174
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
175
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
176
+
177
+ def __call__(self):
178
+ return jnp.sum(self.a.value + self.b.value + self.c.value)
179
+
180
+ brainstate.random.seed(0)
181
+ t = Test()
182
+ f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b], return_value=True)
183
+ grads, returns = f_grad()
184
+ for g in grads: assert (g == 1.).all()
185
+ assert returns == t()
186
+
187
+ t = Test()
188
+ f_grad = brainstate.augment.grad(t, grad_states=t.a, return_value=True)
189
+ grads, returns = f_grad()
190
+ assert (grads == 1.).all()
191
+ assert returns == t()
192
+
193
+ def test_grad_ob_aux_return(self):
194
+ class Test(brainstate.nn.Module):
195
+ def __init__(self):
196
+ super(Test, self).__init__()
197
+ self.a = brainstate.ParamState(jnp.ones(10))
198
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
199
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
200
+
201
+ def __call__(self):
202
+ return jnp.sum(self.a.value + self.b.value + self.c.value), (jnp.sin(100), jnp.exp(0.1))
203
+
204
+ brainstate.random.seed(0)
205
+ t = Test()
206
+ f_grad = brainstate.augment.grad(t, grad_states=[t.a, t.b], has_aux=True, return_value=True)
207
+ grads, returns, aux = f_grad()
208
+ for g in grads: assert (g == 1.).all()
209
+ assert returns == jnp.sum(t.a.value + t.b.value + t.c.value)
210
+ assert aux[0] == jnp.sin(100)
211
+ assert aux[1] == jnp.exp(0.1)
212
+
213
+ t = Test()
214
+ f_grad = brainstate.augment.grad(t, grad_states=t.a, has_aux=True, return_value=True)
215
+ grads, returns, aux = f_grad()
216
+ assert (grads == 1.).all()
217
+ assert returns == jnp.sum(t.a.value + t.b.value + t.c.value)
218
+ assert aux[0] == jnp.sin(100)
219
+ assert aux[1] == jnp.exp(0.1)
220
+
221
+ def test_grad_ob_argnums(self):
222
+ class Test(brainstate.nn.Module):
223
+ def __init__(self):
224
+ super(Test, self).__init__()
225
+ brainstate.random.seed()
226
+ self.a = brainstate.ParamState(jnp.ones(10))
227
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
228
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
229
+
230
+ def __call__(self, d):
231
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d)
232
+
233
+ brainstate.random.seed(0)
234
+
235
+ t = Test()
236
+ f_grad = brainstate.augment.grad(t, t.states(), argnums=0)
237
+ var_grads, arg_grads = f_grad(brainstate.random.random(10))
238
+ for g in var_grads.values(): assert (g == 1.).all()
239
+ assert (arg_grads == 2.).all()
240
+
241
+ t = Test()
242
+ f_grad = brainstate.augment.grad(t, t.states(), argnums=[0])
243
+ var_grads, arg_grads = f_grad(brainstate.random.random(10))
244
+ for g in var_grads.values(): assert (g == 1.).all()
245
+ assert (arg_grads[0] == 2.).all()
246
+
247
+ t = Test()
248
+ f_grad = brainstate.augment.grad(t, argnums=0)
249
+ arg_grads = f_grad(brainstate.random.random(10))
250
+ assert (arg_grads == 2.).all()
251
+
252
+ t = Test()
253
+ f_grad = brainstate.augment.grad(t, argnums=[0])
254
+ arg_grads = f_grad(brainstate.random.random(10))
255
+ assert (arg_grads[0] == 2.).all()
256
+
257
+ def test_grad_ob_argnums_aux(self):
258
+ class Test(brainstate.nn.Module):
259
+ def __init__(self):
260
+ super(Test, self).__init__()
261
+ self.a = brainstate.ParamState(jnp.ones(10))
262
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
263
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
264
+
265
+ def __call__(self, d):
266
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d), (jnp.sin(100), jnp.exp(0.1))
267
+
268
+ brainstate.random.seed(0)
269
+
270
+ t = Test()
271
+ f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=0, has_aux=True)
272
+ (var_grads, arg_grads), aux = f_grad(brainstate.random.random(10))
273
+ for g in var_grads.values(): assert (g == 1.).all()
274
+ assert (arg_grads == 2.).all()
275
+ assert aux[0] == jnp.sin(100)
276
+ assert aux[1] == jnp.exp(0.1)
277
+
278
+ t = Test()
279
+ f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=[0], has_aux=True)
280
+ (var_grads, arg_grads), aux = f_grad(brainstate.random.random(10))
281
+ for g in var_grads.values(): assert (g == 1.).all()
282
+ assert (arg_grads[0] == 2.).all()
283
+ assert aux[0] == jnp.sin(100)
284
+ assert aux[1] == jnp.exp(0.1)
285
+
286
+ t = Test()
287
+ f_grad = brainstate.augment.grad(t, argnums=0, has_aux=True)
288
+ arg_grads, aux = f_grad(brainstate.random.random(10))
289
+ assert (arg_grads == 2.).all()
290
+ assert aux[0] == jnp.sin(100)
291
+ assert aux[1] == jnp.exp(0.1)
292
+
293
+ t = Test()
294
+ f_grad = brainstate.augment.grad(t, argnums=[0], has_aux=True)
295
+ arg_grads, aux = f_grad(brainstate.random.random(10))
296
+ assert (arg_grads[0] == 2.).all()
297
+ assert aux[0] == jnp.sin(100)
298
+ assert aux[1] == jnp.exp(0.1)
299
+
300
+ def test_grad_ob_argnums_return(self):
301
+ class Test(brainstate.nn.Module):
302
+ def __init__(self):
303
+ super(Test, self).__init__()
304
+
305
+ self.a = brainstate.ParamState(jnp.ones(10))
306
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
307
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
308
+
309
+ def __call__(self, d):
310
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d)
311
+
312
+ brainstate.random.seed(0)
313
+
314
+ t = Test()
315
+ f_grad = brainstate.augment.grad(t, t.states(), argnums=0, return_value=True)
316
+ d = brainstate.random.random(10)
317
+ (var_grads, arg_grads), loss = f_grad(d)
318
+ for g in var_grads.values():
319
+ assert (g == 1.).all()
320
+ assert (arg_grads == 2.).all()
321
+ assert loss == t(d)
322
+
323
+ t = Test()
324
+ f_grad = brainstate.augment.grad(t, t.states(), argnums=[0], return_value=True)
325
+ d = brainstate.random.random(10)
326
+ (var_grads, arg_grads), loss = f_grad(d)
327
+ for g in var_grads.values():
328
+ assert (g == 1.).all()
329
+ assert (arg_grads[0] == 2.).all()
330
+ assert loss == t(d)
331
+
332
+ t = Test()
333
+ f_grad = brainstate.augment.grad(t, argnums=0, return_value=True)
334
+ d = brainstate.random.random(10)
335
+ arg_grads, loss = f_grad(d)
336
+ assert (arg_grads == 2.).all()
337
+ assert loss == t(d)
338
+
339
+ t = Test()
340
+ f_grad = brainstate.augment.grad(t, argnums=[0], return_value=True)
341
+ d = brainstate.random.random(10)
342
+ arg_grads, loss = f_grad(d)
343
+ assert (arg_grads[0] == 2.).all()
344
+ assert loss == t(d)
345
+
346
+ def test_grad_ob_argnums_aux_return(self):
347
+ class Test(brainstate.nn.Module):
348
+ def __init__(self):
349
+ super(Test, self).__init__()
350
+ self.a = brainstate.ParamState(jnp.ones(10))
351
+ self.b = brainstate.ParamState(brainstate.random.randn(10))
352
+ self.c = brainstate.ParamState(brainstate.random.uniform(size=10))
353
+
354
+ def __call__(self, d):
355
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d), (jnp.sin(100), jnp.exp(0.1))
356
+
357
+ brainstate.random.seed(0)
358
+
359
+ t = Test()
360
+ f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=0, has_aux=True, return_value=True)
361
+ d = brainstate.random.random(10)
362
+ (var_grads, arg_grads), loss, aux = f_grad(d)
363
+ for g in var_grads.values(): assert (g == 1.).all()
364
+ assert (arg_grads == 2.).all()
365
+ assert aux[0] == jnp.sin(100)
366
+ assert aux[1] == jnp.exp(0.1)
367
+ assert loss == t(d)[0]
368
+
369
+ t = Test()
370
+ f_grad = brainstate.augment.grad(t, grad_states=t.states(), argnums=[0], has_aux=True, return_value=True)
371
+ d = brainstate.random.random(10)
372
+ (var_grads, arg_grads), loss, aux = f_grad(d)
373
+ for g in var_grads.values(): assert (g == 1.).all()
374
+ assert (arg_grads[0] == 2.).all()
375
+ assert aux[0] == jnp.sin(100)
376
+ assert aux[1] == jnp.exp(0.1)
377
+ assert loss == t(d)[0]
378
+
379
+ t = Test()
380
+ f_grad = brainstate.augment.grad(t, argnums=0, has_aux=True, return_value=True)
381
+ d = brainstate.random.random(10)
382
+ arg_grads, loss, aux = f_grad(d)
383
+ assert (arg_grads == 2.).all()
384
+ assert aux[0] == jnp.sin(100)
385
+ assert aux[1] == jnp.exp(0.1)
386
+ assert loss == t(d)[0]
387
+
388
+ t = Test()
389
+ f_grad = brainstate.augment.grad(t, argnums=[0], has_aux=True, return_value=True)
390
+ d = brainstate.random.random(10)
391
+ arg_grads, loss, aux = f_grad(d)
392
+ assert (arg_grads[0] == 2.).all()
393
+ assert aux[0] == jnp.sin(100)
394
+ assert aux[1] == jnp.exp(0.1)
395
+ assert loss == t(d)[0]
396
+
397
+
398
+ class TestPureFuncJacobian(unittest.TestCase):
399
+ def test1(self):
400
+ jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 2]), has_aux=True)(3.)
401
+ self.assertTrue(jax.numpy.allclose(jac, jax.jacfwd(lambda x: x ** 3)(3.)))
402
+ self.assertTrue(aux[0] == 9.)
403
+
404
+ def test_jacfwd_and_aux_nested(self):
405
+ def f(x):
406
+ jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 3]), has_aux=True)(x)
407
+ return aux[0]
408
+
409
+ f2 = lambda x: x ** 3
410
+
411
+ self.assertEqual(_jacfwd(f)(4.), _jacfwd(f2)(4.))
412
+ self.assertEqual(jax.jit(_jacfwd(f))(4.), _jacfwd(f2)(4.))
413
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(4.), _jacfwd(f2)(4.))
414
+
415
+ self.assertEqual(_jacfwd(f)(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
416
+ self.assertEqual(jax.jit(_jacfwd(f))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
417
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
418
+
419
+ def f(x):
420
+ jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 3]), has_aux=True)(x)
421
+ return aux[0] * jnp.sin(x)
422
+
423
+ f2 = lambda x: x ** 3 * jnp.sin(x)
424
+
425
+ self.assertEqual(_jacfwd(f)(4.), _jacfwd(f2)(4.))
426
+ self.assertEqual(jax.jit(_jacfwd(f))(4.), _jacfwd(f2)(4.))
427
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(4.), _jacfwd(f2)(4.))
428
+
429
+ self.assertEqual(_jacfwd(f)(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
430
+ self.assertEqual(jax.jit(_jacfwd(f))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
431
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
432
+
433
+ def test_jacrev1(self):
434
+ def f1(x, y):
435
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
436
+ return r
437
+
438
+ br = brainstate.augment.jacrev(f1)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
439
+ jr = jax.jacrev(f1)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
440
+ assert (br == jr).all()
441
+
442
+ br = brainstate.augment.jacrev(f1, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
443
+ jr = jax.jacrev(f1, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
444
+ assert (br[0] == jr[0]).all()
445
+ assert (br[1] == jr[1]).all()
446
+
447
+ def test_jacrev2(self):
448
+ print()
449
+
450
+ def f2(x, y):
451
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
452
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
453
+ return r1, r2
454
+
455
+ jr = jax.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
456
+ pprint(jr)
457
+
458
+ br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
459
+ pprint(br)
460
+ assert jnp.array_equal(br[0], jr[0])
461
+ assert jnp.array_equal(br[1], jr[1])
462
+
463
+ br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
464
+ pprint(br)
465
+ assert jnp.array_equal(br[0], jr[0])
466
+ assert jnp.array_equal(br[1], jr[1])
467
+
468
+ def f2(x, y):
469
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
470
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
471
+ return r1, r2
472
+
473
+ br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
474
+ pprint(br)
475
+ assert jnp.array_equal(br[0], jr[0])
476
+ assert jnp.array_equal(br[1], jr[1])
477
+
478
+ br = brainstate.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
479
+ pprint(br)
480
+ assert jnp.array_equal(br[0], jr[0])
481
+ assert jnp.array_equal(br[1], jr[1])
482
+
483
+ def test_jacrev3(self):
484
+ print()
485
+
486
+ def f3(x, y):
487
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
488
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
489
+ return r1, r2
490
+
491
+ jr = jax.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
492
+ pprint(jr)
493
+
494
+ br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
495
+ pprint(br)
496
+ assert jnp.array_equal(br[0][0], jr[0][0])
497
+ assert jnp.array_equal(br[0][1], jr[0][1])
498
+ assert jnp.array_equal(br[1][0], jr[1][0])
499
+ assert jnp.array_equal(br[1][1], jr[1][1])
500
+
501
+ br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
502
+ pprint(br)
503
+ assert jnp.array_equal(br[0][0], jr[0][0])
504
+ assert jnp.array_equal(br[0][1], jr[0][1])
505
+ assert jnp.array_equal(br[1][0], jr[1][0])
506
+ assert jnp.array_equal(br[1][1], jr[1][1])
507
+
508
+ def f3(x, y):
509
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
510
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
511
+ return r1, r2
512
+
513
+ br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
514
+ pprint(br)
515
+ assert jnp.array_equal(br[0][0], jr[0][0])
516
+ assert jnp.array_equal(br[0][1], jr[0][1])
517
+ assert jnp.array_equal(br[1][0], jr[1][0])
518
+ assert jnp.array_equal(br[1][1], jr[1][1])
519
+
520
+ br = brainstate.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
521
+ pprint(br)
522
+ assert jnp.array_equal(br[0][0], jr[0][0])
523
+ assert jnp.array_equal(br[0][1], jr[0][1])
524
+ assert jnp.array_equal(br[1][0], jr[1][0])
525
+ assert jnp.array_equal(br[1][1], jr[1][1])
526
+
527
+ def test_jacrev_aux1(self):
528
+ x = jnp.array([1., 2., 3.])
529
+ y = jnp.array([10., 5.])
530
+
531
+ def f1(x, y):
532
+ a = 4 * x[1] ** 2 - 2 * x[2]
533
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], a, x[2] * jnp.sin(x[0])])
534
+ return r, a
535
+
536
+ f2 = lambda *args: f1(*args)[0]
537
+ jr = jax.jacrev(f2)(x, y) # jax jacobian
538
+ pprint(jr)
539
+ grads, aux = brainstate.augment.jacrev(f1, has_aux=True)(x, y)
540
+ assert (grads == jr).all()
541
+ assert aux == (4 * x[1] ** 2 - 2 * x[2])
542
+
543
+ jr = jax.jacrev(f2, argnums=(0, 1))(x, y) # jax jacobian
544
+ pprint(jr)
545
+ grads, aux = brainstate.augment.jacrev(f1, argnums=(0, 1), has_aux=True)(x, y)
546
+ assert (grads[0] == jr[0]).all()
547
+ assert (grads[1] == jr[1]).all()
548
+ assert aux == (4 * x[1] ** 2 - 2 * x[2])
549
+
550
+ def test_jacrev_return_aux1(self):
551
+ with brainstate.environ.context(precision=64):
552
+ def f1(x, y):
553
+ a = 4 * x[1] ** 2 - 2 * x[2]
554
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], a, x[2] * jnp.sin(x[0])])
555
+ return r, a
556
+
557
+ _x = jnp.array([1., 2., 3.])
558
+ _y = jnp.array([10., 5.])
559
+ _r, _a = f1(_x, _y)
560
+ f2 = lambda *args: f1(*args)[0]
561
+ _g1 = jax.jacrev(f2)(_x, _y) # jax jacobian
562
+ pprint(_g1)
563
+ _g2 = jax.jacrev(f2, argnums=(0, 1))(_x, _y) # jax jacobian
564
+ pprint(_g2)
565
+
566
+ grads, vec, aux = brainstate.augment.jacrev(f1, return_value=True, has_aux=True)(_x, _y)
567
+ assert (grads == _g1).all()
568
+ assert aux == _a
569
+ assert (vec == _r).all()
570
+
571
+ grads, vec, aux = brainstate.augment.jacrev(f1, return_value=True, argnums=(0, 1), has_aux=True)(_x, _y)
572
+ assert (grads[0] == _g2[0]).all()
573
+ assert (grads[1] == _g2[1]).all()
574
+ assert aux == _a
575
+ assert (vec == _r).all()
576
+
577
+
578
+ class TestClassFuncJacobian(unittest.TestCase):
579
+ def test_jacrev1(self):
580
+ def f1(x, y):
581
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
582
+ return r
583
+
584
+ _x = jnp.array([1., 2., 3.])
585
+ _y = jnp.array([10., 5.])
586
+
587
+ class Test(brainstate.nn.Module):
588
+ def __init__(self):
589
+ super(Test, self).__init__()
590
+ self.x = brainstate.State(jnp.array([1., 2., 3.]))
591
+ self.y = brainstate.State(jnp.array([10., 5.]))
592
+
593
+ def __call__(self, ):
594
+ a = self.x.value[0] * self.y.value[0]
595
+ b = 5 * self.x.value[2] * self.y.value[1]
596
+ c = 4 * self.x.value[1] ** 2 - 2 * self.x.value[2]
597
+ d = self.x.value[2] * jnp.sin(self.x.value[0])
598
+ r = jnp.asarray([a, b, c, d])
599
+ return r
600
+
601
+ _jr = jax.jacrev(f1)(_x, _y)
602
+ t = Test()
603
+ br = brainstate.augment.jacrev(t, grad_states=t.x)()
604
+ self.assertTrue((br == _jr).all())
605
+
606
+ _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
607
+ t = Test()
608
+ br = brainstate.augment.jacrev(t, grad_states=[t.x, t.y])()
609
+ self.assertTrue((br[0] == _jr[0]).all())
610
+ self.assertTrue((br[1] == _jr[1]).all())
611
+
612
+
613
+ #
614
+ # def test_jacfwd1(self):
615
+ # def f1(x, y):
616
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
617
+ # return r
618
+ #
619
+ # _x = jnp.array([1., 2., 3.])
620
+ # _y = jnp.array([10., 5.])
621
+ #
622
+ # class Test(brainstate.nn.Module):
623
+ # def __init__(self):
624
+ # super(Test, self).__init__()
625
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
626
+ # self.y = jnp.Variable(jnp.array([10., 5.]))
627
+ #
628
+ # def __call__(self, ):
629
+ # a = self.x[0] * self.y[0]
630
+ # b = 5 * self.x[2] * self.y[1]
631
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
632
+ # d = self.x[2] * jnp.sin(self.x[0])
633
+ # r = jnp.asarray([a, b, c, d])
634
+ # return r
635
+ #
636
+ # _jr = jax.jacfwd(f1)(_x, _y)
637
+ # t = Test()
638
+ # br = brainstate.augment.jacfwd(t, grad_states=t.x)()
639
+ # self.assertTrue((br == _jr).all())
640
+ #
641
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
642
+ # t = Test()
643
+ # br = brainstate.augment.jacfwd(t, grad_states=[t.x, t.y])()
644
+ # self.assertTrue((br[0] == _jr[0]).all())
645
+ # self.assertTrue((br[1] == _jr[1]).all())
646
+ #
647
+ # def test_jacrev2(self):
648
+ # def f1(x, y):
649
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
650
+ # return r
651
+ #
652
+ # _x = jnp.array([1., 2., 3.])
653
+ # _y = jnp.array([10., 5.])
654
+ #
655
+ # class Test(brainstate.nn.Module):
656
+ # def __init__(self):
657
+ # super(Test, self).__init__()
658
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
659
+ #
660
+ # def __call__(self, y):
661
+ # a = self.x[0] * y[0]
662
+ # b = 5 * self.x[2] * y[1]
663
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
664
+ # d = self.x[2] * jnp.sin(self.x[0])
665
+ # r = jnp.asarray([a, b, c, d])
666
+ # return r
667
+ #
668
+ # _jr = jax.jacrev(f1)(_x, _y)
669
+ # t = Test()
670
+ # br = brainstate.augment.jacrev(t, grad_states=t.x)(_y)
671
+ # self.assertTrue((br == _jr).all())
672
+ #
673
+ # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
674
+ # t = Test()
675
+ # var_grads, arg_grads = brainstate.augment.jacrev(t, grad_states=t.x, argnums=0)(_y)
676
+ # print(var_grads, )
677
+ # print(arg_grads, )
678
+ # self.assertTrue((var_grads == _jr[0]).all())
679
+ # self.assertTrue((arg_grads == _jr[1]).all())
680
+ #
681
+ # def test_jacfwd2(self):
682
+ # def f1(x, y):
683
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
684
+ # return r
685
+ #
686
+ # _x = jnp.array([1., 2., 3.])
687
+ # _y = jnp.array([10., 5.])
688
+ #
689
+ # class Test(brainstate.nn.Module):
690
+ # def __init__(self):
691
+ # super(Test, self).__init__()
692
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
693
+ #
694
+ # def __call__(self, y):
695
+ # a = self.x[0] * y[0]
696
+ # b = 5 * self.x[2] * y[1]
697
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
698
+ # d = self.x[2] * jnp.sin(self.x[0])
699
+ # r = jnp.asarray([a, b, c, d])
700
+ # return r
701
+ #
702
+ # _jr = jax.jacfwd(f1)(_x, _y)
703
+ # t = Test()
704
+ # br = brainstate.augment.jacfwd(t, grad_states=t.x)(_y)
705
+ # self.assertTrue((br == _jr).all())
706
+ #
707
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
708
+ # t = Test()
709
+ # var_grads, arg_grads = brainstate.augment.jacfwd(t, grad_states=t.x, argnums=0)(_y)
710
+ # print(var_grads, )
711
+ # print(arg_grads, )
712
+ # self.assertTrue((var_grads == _jr[0]).all())
713
+ # self.assertTrue((arg_grads == _jr[1]).all())
714
+ #
715
+ # def test_jacrev_aux1(self):
716
+ # jnp.enable_x64()
717
+ #
718
+ # def f1(x, y):
719
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
720
+ # return r
721
+ #
722
+ # _x = jnp.array([1., 2., 3.])
723
+ # _y = jnp.array([10., 5.])
724
+ #
725
+ # class Test(brainstate.nn.Module):
726
+ # def __init__(self):
727
+ # super(Test, self).__init__()
728
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
729
+ #
730
+ # def __call__(self, y):
731
+ # a = self.x[0] * y[0]
732
+ # b = 5 * self.x[2] * y[1]
733
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
734
+ # d = self.x[2] * jnp.sin(self.x[0])
735
+ # r = jnp.asarray([a, b, c, d])
736
+ # return r, (c, d)
737
+ #
738
+ # _jr = jax.jacrev(f1)(_x, _y)
739
+ # t = Test()
740
+ # br, _ = brainstate.augment.jacrev(t, grad_states=t.x, has_aux=True)(_y)
741
+ # self.assertTrue((br == _jr).all())
742
+ #
743
+ # t = Test()
744
+ # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
745
+ # _aux = t(_y)[1]
746
+ # (var_grads, arg_grads), aux = brainstate.augment.jacrev(t, grad_states=t.x, argnums=0, has_aux=True)(_y)
747
+ # print(var_grads, )
748
+ # print(arg_grads, )
749
+ # self.assertTrue((var_grads == _jr[0]).all())
750
+ # self.assertTrue((arg_grads == _jr[1]).all())
751
+ # self.assertTrue(jnp.array_equal(aux, _aux))
752
+ #
753
+ # jnp.disable_x64()
754
+ #
755
+ # def test_jacfwd_aux1(self):
756
+ # jnp.enable_x64()
757
+ #
758
+ # def f1(x, y):
759
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
760
+ # return r
761
+ #
762
+ # _x = jnp.array([1., 2., 3.])
763
+ # _y = jnp.array([10., 5.])
764
+ #
765
+ # class Test(brainstate.nn.Module):
766
+ # def __init__(self):
767
+ # super(Test, self).__init__()
768
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
769
+ #
770
+ # def __call__(self, y):
771
+ # a = self.x[0] * y[0]
772
+ # b = 5 * self.x[2] * y[1]
773
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
774
+ # d = self.x[2] * jnp.sin(self.x[0])
775
+ # r = jnp.asarray([a, b, c, d])
776
+ # return r, (c, d)
777
+ #
778
+ # _jr = jax.jacfwd(f1)(_x, _y)
779
+ # t = Test()
780
+ # br, (c, d) = brainstate.augment.jacfwd(t, grad_states=t.x, has_aux=True)(_y)
781
+ # # print(_jr)
782
+ # # print(br)
783
+ # a = (br == _jr)
784
+ # self.assertTrue(a.all())
785
+ #
786
+ # t = Test()
787
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
788
+ # _aux = t(_y)[1]
789
+ # (var_grads, arg_grads), aux = brainstate.augment.jacfwd(t, grad_states=t.x, argnums=0, has_aux=True)(_y)
790
+ # print(var_grads, )
791
+ # print(arg_grads, )
792
+ # self.assertTrue((var_grads == _jr[0]).all())
793
+ # self.assertTrue((arg_grads == _jr[1]).all())
794
+ # self.assertTrue(jnp.array_equal(aux, _aux))
795
+ #
796
+ # jnp.disable_x64()
797
+ #
798
+ # def test_jacrev_return_aux1(self):
799
+ # jnp.enable_x64()
800
+ #
801
+ # def f1(x, y):
802
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
803
+ # return r
804
+ #
805
+ # _x = jnp.array([1., 2., 3.])
806
+ # _y = jnp.array([10., 5.])
807
+ #
808
+ # class Test(brainstate.nn.Module):
809
+ # def __init__(self):
810
+ # super(Test, self).__init__()
811
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
812
+ #
813
+ # def __call__(self, y):
814
+ # a = self.x[0] * y[0]
815
+ # b = 5 * self.x[2] * y[1]
816
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
817
+ # d = self.x[2] * jnp.sin(self.x[0])
818
+ # r = jnp.asarray([a, b, c, d])
819
+ # return r, (c, d)
820
+ #
821
+ # _jr = jax.jacrev(f1)(_x, _y)
822
+ # t = Test()
823
+ # br, _ = brainstate.augment.jacrev(t, grad_states=t.x, has_aux=True)(_y)
824
+ # self.assertTrue((br == _jr).all())
825
+ #
826
+ # t = Test()
827
+ # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
828
+ # _val, _aux = t(_y)
829
+ # (var_grads, arg_grads), value, aux = brainstate.augment.jacrev(t, grad_states=t.x, argnums=0, has_aux=True, return_value=True)(_y)
830
+ # print(var_grads, )
831
+ # print(arg_grads, )
832
+ # self.assertTrue((var_grads == _jr[0]).all())
833
+ # self.assertTrue((arg_grads == _jr[1]).all())
834
+ # self.assertTrue(jnp.array_equal(aux, _aux))
835
+ # self.assertTrue(jnp.array_equal(value, _val))
836
+ #
837
+ # jnp.disable_x64()
838
+ #
839
+ # def test_jacfwd_return_aux1(self):
840
+ # jnp.enable_x64()
841
+ #
842
+ # def f1(x, y):
843
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
844
+ # return r
845
+ #
846
+ # _x = jnp.array([1., 2., 3.])
847
+ # _y = jnp.array([10., 5.])
848
+ #
849
+ # class Test(brainstate.nn.Module):
850
+ # def __init__(self):
851
+ # super(Test, self).__init__()
852
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
853
+ #
854
+ # def __call__(self, y):
855
+ # a = self.x[0] * y[0]
856
+ # b = 5 * self.x[2] * y[1]
857
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
858
+ # d = self.x[2] * jnp.sin(self.x[0])
859
+ # r = jnp.asarray([a, b, c, d])
860
+ # return r, (c, d)
861
+ #
862
+ # _jr = jax.jacfwd(f1)(_x, _y)
863
+ # t = Test()
864
+ # br, _ = brainstate.augment.jacfwd(t, grad_states=t.x, has_aux=True)(_y)
865
+ # self.assertTrue((br == _jr).all())
866
+ #
867
+ # t = Test()
868
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
869
+ # _val, _aux = t(_y)
870
+ # (var_grads, arg_grads), value, aux = brainstate.augment.jacfwd(t, grad_states=t.x, argnums=0, has_aux=True, return_value=True)(_y)
871
+ # print(_val, )
872
+ # print('_aux: ', _aux, 'aux: ', aux)
873
+ # print(var_grads, )
874
+ # print(arg_grads, )
875
+ # self.assertTrue((var_grads == _jr[0]).all())
876
+ # self.assertTrue((arg_grads == _jr[1]).all())
877
+ # self.assertTrue(jnp.array_equal(aux, _aux))
878
+ # self.assertTrue(jnp.array_equal(value, _val))
879
+ #
880
+ # jnp.disable_x64()
881
+ #
882
+ #
883
+ # class TestPureFuncVectorGrad(unittest.TestCase):
884
+ # def test1(self):
885
+ # f = lambda x: 3 * x ** 2
886
+ # _x = jnp.ones(10)
887
+ # pprint(brainstate.augment.vector_grad(f, argnums=0)(_x))
888
+ #
889
+ # def test2(self):
890
+ # def f(x, y):
891
+ # dx = x ** 2 + y ** 2 + 10
892
+ # return dx
893
+ #
894
+ # _x = jnp.ones(5)
895
+ # _y = jnp.ones(5)
896
+ #
897
+ # g = brainstate.augment.vector_grad(f, argnums=0)(_x, _y)
898
+ # pprint(g)
899
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
900
+ #
901
+ # g = brainstate.augment.vector_grad(f, argnums=(0,))(_x, _y)
902
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
903
+ #
904
+ # g = brainstate.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
905
+ # pprint(g)
906
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
907
+ # self.assertTrue(jnp.array_equal(g[1], 2 * _y))
908
+ #
909
+ # def test3(self):
910
+ # def f(x, y):
911
+ # dx = x ** 2 + y ** 2 + 10
912
+ # dy = x ** 3 + y ** 3 - 10
913
+ # return dx, dy
914
+ #
915
+ # _x = jnp.ones(5)
916
+ # _y = jnp.ones(5)
917
+ #
918
+ # g = brainstate.augment.vector_grad(f, argnums=0)(_x, _y)
919
+ # # pprint(g)
920
+ # self.assertTrue(jnp.array_equal(g, 2 * _x + 3 * _x ** 2))
921
+ #
922
+ # g = brainstate.augment.vector_grad(f, argnums=(0,))(_x, _y)
923
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x + 3 * _x ** 2))
924
+ #
925
+ # g = brainstate.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
926
+ # # pprint(g)
927
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x + 3 * _x ** 2))
928
+ # self.assertTrue(jnp.array_equal(g[1], 2 * _y + 3 * _y ** 2))
929
+ #
930
+ # def test4_2d(self):
931
+ # def f(x, y):
932
+ # dx = x ** 2 + y ** 2 + 10
933
+ # return dx
934
+ #
935
+ # _x = jnp.ones((5, 5))
936
+ # _y = jnp.ones((5, 5))
937
+ #
938
+ # g = brainstate.augment.vector_grad(f, argnums=0)(_x, _y)
939
+ # pprint(g)
940
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
941
+ #
942
+ # g = brainstate.augment.vector_grad(f, argnums=(0,))(_x, _y)
943
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
944
+ #
945
+ # g = brainstate.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
946
+ # pprint(g)
947
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
948
+ # self.assertTrue(jnp.array_equal(g[1], 2 * _y))
949
+ #
950
+ # def test_aux1(self):
951
+ # def f(x, y):
952
+ # dx = x ** 2 + y ** 2 + 10
953
+ # dy = x ** 3 + y ** 3 - 10
954
+ # return dx, dy
955
+ #
956
+ # _x = jnp.ones(5)
957
+ # _y = jnp.ones(5)
958
+ #
959
+ # g, aux = brainstate.augment.vector_grad(f, has_aux=True)(_x, _y)
960
+ # pprint(g, )
961
+ # pprint(aux)
962
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
963
+ # self.assertTrue(jnp.array_equal(aux, _x ** 3 + _y ** 3 - 10))
964
+ #
965
+ # def test_return1(self):
966
+ # def f(x, y):
967
+ # dx = x ** 2 + y ** 2 + 10
968
+ # return dx
969
+ #
970
+ # _x = jnp.ones(5)
971
+ # _y = jnp.ones(5)
972
+ #
973
+ # g, value = brainstate.augment.vector_grad(f, return_value=True)(_x, _y)
974
+ # pprint(g, )
975
+ # pprint(value)
976
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
977
+ # self.assertTrue(jnp.array_equal(value, _x ** 2 + _y ** 2 + 10))
978
+ #
979
+ # def test_return_aux1(self):
980
+ # def f(x, y):
981
+ # dx = x ** 2 + y ** 2 + 10
982
+ # dy = x ** 3 + y ** 3 - 10
983
+ # return dx, dy
984
+ #
985
+ # _x = jnp.ones(5)
986
+ # _y = jnp.ones(5)
987
+ #
988
+ # g, value, aux = brainstate.augment.vector_grad(f, has_aux=True, return_value=True)(_x, _y)
989
+ # print('grad', g)
990
+ # print('value', value)
991
+ # print('aux', aux)
992
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
993
+ # self.assertTrue(jnp.array_equal(value, _x ** 2 + _y ** 2 + 10))
994
+ # self.assertTrue(jnp.array_equal(aux, _x ** 3 + _y ** 3 - 10))
995
+ #
996
+ #
997
+ # class TestClassFuncVectorGrad(unittest.TestCase):
998
+ # def test1(self):
999
+ # class Test(brainstate.nn.Module):
1000
+ # def __init__(self):
1001
+ # super(Test, self).__init__()
1002
+ # self.x = jnp.Variable(jnp.ones(5))
1003
+ # self.y = jnp.Variable(jnp.ones(5))
1004
+ #
1005
+ # def __call__(self, *args, **kwargs):
1006
+ # return self.x ** 2 + self.y ** 2 + 10
1007
+ #
1008
+ # t = Test()
1009
+ #
1010
+ # g = brainstate.augment.vector_grad(t, grad_states=t.x)()
1011
+ # self.assertTrue(jnp.array_equal(g, 2 * t.x))
1012
+ #
1013
+ # g = brainstate.augment.vector_grad(t, grad_states=(t.x,))()
1014
+ # self.assertTrue(jnp.array_equal(g[0], 2 * t.x))
1015
+ #
1016
+ # g = brainstate.augment.vector_grad(t, grad_states=(t.x, t.y))()
1017
+ # self.assertTrue(jnp.array_equal(g[0], 2 * t.x))
1018
+ # self.assertTrue(jnp.array_equal(g[1], 2 * t.y))
1019
+ #
1020
+ #
1021
+ # def vgrad(f, *x):
1022
+ # y, vjp_fn = jax.vjp(f, *x)
1023
+ # return vjp_fn(jnp.ones(y.shape).value)[0]
1024
+ #
1025
+ #
1026
+ # class TestDebug(parameterized.TestCase):
1027
+ # def test_debug1(self):
1028
+ # a = brainstate.random.RandomState()
1029
+ #
1030
+ # def f(b):
1031
+ # print(a.value)
1032
+ # return a + b + a.random()
1033
+ #
1034
+ # f = brainstate.augment.vector_grad(f, argnums=0)
1035
+ # f(1.)
1036
+ #
1037
+ # with jax.disable_jit():
1038
+ # f(1.)
1039
+ #
1040
+ # @parameterized.product(
1041
+ # grad_fun=[brainstate.augment.grad, brainstate.augment.vector_grad]
1042
+ # )
1043
+ # def test_print_info1(self, grad_fun):
1044
+ # file = tempfile.TemporaryFile(mode='w+')
1045
+ #
1046
+ # @functools.partial(grad_fun, argnums=0)
1047
+ # def f2(a, b):
1048
+ # print('compiling f2 ...', file=file)
1049
+ # return a + b
1050
+ #
1051
+ # @functools.partial(grad_fun, argnums=0)
1052
+ # def f1(a):
1053
+ # print('compiling f1 ...', file=file)
1054
+ # return f2(a, 1.)
1055
+ #
1056
+ # expect_res = '''
1057
+ # compiling f1 ...
1058
+ # compiling f2 ...
1059
+ # compiling f1 ...
1060
+ # compiling f2 ...
1061
+ # '''
1062
+ #
1063
+ # print(f1(1.))
1064
+ # file.seek(0)
1065
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1066
+ #
1067
+ # file = tempfile.TemporaryFile(mode='w+')
1068
+ # with jax.disable_jit():
1069
+ # expect_res = '''
1070
+ # compiling f1 ...
1071
+ # compiling f2 ...
1072
+ # '''
1073
+ # self.assertTrue(f1(1.) == 0.)
1074
+ # file.seek(0)
1075
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1076
+ #
1077
+ # @parameterized.product(
1078
+ # grad_fun=[brainstate.augment.grad, brainstate.augment.vector_grad]
1079
+ # )
1080
+ # def test_print_info2(self, grad_fun):
1081
+ # file = tempfile.TemporaryFile(mode='w+')
1082
+ #
1083
+ # @functools.partial(grad_fun, argnums=0)
1084
+ # def f1(a):
1085
+ # @functools.partial(grad_fun, argnums=0)
1086
+ # def f2(a, b):
1087
+ # print('compiling f2 ...', file=file)
1088
+ # return a + b
1089
+ #
1090
+ # print('compiling f1 ...', file=file)
1091
+ # return f2(a, 1.)
1092
+ #
1093
+ # expect_res = '''
1094
+ # compiling f1 ...
1095
+ # compiling f2 ...
1096
+ # compiling f1 ...
1097
+ # compiling f2 ...
1098
+ # compiling f2 ...
1099
+ # '''
1100
+ # self.assertTrue(f1(1.) == 0.)
1101
+ # file.seek(0)
1102
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1103
+ #
1104
+ # file = tempfile.TemporaryFile(mode='w+')
1105
+ # with jax.disable_jit():
1106
+ # expect_res = '''
1107
+ # compiling f1 ...
1108
+ # compiling f2 ...
1109
+ # '''
1110
+ # self.assertTrue(f1(1.) == 0.)
1111
+ # file.seek(0)
1112
+ # # print(file.read().strip())
1113
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1114
+ #
1115
+ # def test_debug_correctness1(self):
1116
+ # def test_f():
1117
+ # a = jnp.Variable(jnp.ones(2))
1118
+ # b = jnp.Variable(jnp.zeros(2))
1119
+ #
1120
+ # @brainstate.augment.vector_grad(argnums=0)
1121
+ # def f1(c):
1122
+ # a.value += 1
1123
+ # b.value += 10
1124
+ # return a * b * c
1125
+ #
1126
+ # return a, b, f1(1.)
1127
+ #
1128
+ # r1 = test_f()
1129
+ # print(r1)
1130
+ #
1131
+ # with jax.disable_jit():
1132
+ # r2 = test_f()
1133
+ # print(r2)
1134
+ # self.assertTrue(jnp.allclose(r1[0], r2[0]))
1135
+ # self.assertTrue(jnp.allclose(r1[1], r2[1]))
1136
+ # self.assertTrue(jnp.allclose(r1[2], r2[2]))
1137
+ #
1138
+ # def f1(c, a, b):
1139
+ # a += 1
1140
+ # b += 10
1141
+ # return a * b * c
1142
+ #
1143
+ # r3 = vgrad(f1, 1., jnp.ones(2).value, jnp.zeros(2).value)
1144
+ # self.assertTrue(jnp.allclose(r1[2], r3))
1145
+ #
1146
+ # def _bench_f2(self, dd):
1147
+ # a = jnp.Variable(jnp.ones(2))
1148
+ # b = jnp.Variable(jnp.zeros(2))
1149
+ #
1150
+ #
1151
+ # def run_fun(d):
1152
+ # @brainstate.augment.vector_grad(argnums=0)
1153
+ # def f1(c):
1154
+ # a.value += d
1155
+ # b.value += 10
1156
+ # return a * b * c
1157
+ #
1158
+ # return a, b, f1(1.)
1159
+ #
1160
+ # return run_fun(dd)
1161
+ #
1162
+ # def test_debug_correctness2(self):
1163
+ # r1 = self._bench_f2(1.)
1164
+ # print(r1)
1165
+ #
1166
+ # with jax.disable_jit():
1167
+ # r2 = self._bench_f2(1.)
1168
+ # print(r2)
1169
+ #
1170
+ # self.assertTrue(jnp.allclose(r1[0], r2[0]))
1171
+ # self.assertTrue(jnp.allclose(r1[1], r2[1]))
1172
+ # self.assertTrue(jnp.allclose(r1[2], r2[2]))
1173
+ #
1174
+ # def test_cache1(self):
1175
+ # file = tempfile.TemporaryFile(mode='w+')
1176
+ #
1177
+ # def f(a, b):
1178
+ # print('compiling f ...', file=file)
1179
+ # return a + b
1180
+ #
1181
+ # grad1 = brainstate.augment.grad(f)(1., 2.) # call "f" twice, one for Variable finding, one for compiling
1182
+ # grad2 = brainstate.augment.vector_grad(f)(1., 2.) # call "f" once for compiling
1183
+ #
1184
+ # file.seek(0)
1185
+ # print(file.read().strip())
1186
+ #
1187
+ # expect_res = '''
1188
+ # compiling f ...
1189
+ # compiling f ...
1190
+ # compiling f ...
1191
+ # '''
1192
+ # file.seek(0)
1193
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1194
+ #
1195
+ #
1196
+
1197
+
1198
+ class TestUnitAwareGrad(unittest.TestCase):
1199
+ def test_grad1(self):
1200
+ def f(x):
1201
+ return u.math.sum(x ** 2)
1202
+
1203
+ x = jnp.array([1., 2., 3.]) * u.ms
1204
+ g = brainstate.augment.grad(f, unit_aware=True)(x)
1205
+ self.assertTrue(u.math.allclose(g, 2 * x))
1206
+
1207
+ def test_vector_grad1(self):
1208
+ def f(x):
1209
+ return x ** 3
1210
+
1211
+ x = jnp.array([1., 2., 3.]) * u.ms
1212
+ g = brainstate.augment.vector_grad(f, unit_aware=True)(x)
1213
+ self.assertTrue(u.math.allclose(g, 3 * x ** 2))
1214
+
1215
+ def test_jacrev1(self):
1216
+ def f(x, y):
1217
+ return u.math.asarray([x[0] * y[0],
1218
+ 5 * x[2] * y[1],
1219
+ 4 * x[1] ** 2, ])
1220
+
1221
+ _x = jnp.array([1., 2., 3.]) * u.ms
1222
+ _y = jnp.array([10., 5.]) * u.ms
1223
+
1224
+ g = brainstate.augment.jacrev(f, unit_aware=True, argnums=(0, 1))(_x, _y)
1225
+ self.assertTrue(
1226
+ u.math.allclose(
1227
+ g[0],
1228
+ u.math.asarray([
1229
+ [10., 0., 0.],
1230
+ [0., 0., 25.],
1231
+ [0., 16., 0.]
1232
+ ]) * u.ms
1233
+ )
1234
+ )
1235
+
1236
+ self.assertTrue(
1237
+ u.math.allclose(
1238
+ g[1],
1239
+ u.math.asarray([
1240
+ [1., 0.],
1241
+ [0., 15.],
1242
+ [0., 0.]
1243
+ ]) * u.ms
1244
+ )
1245
+ )
1246
+
1247
+ def test_jacfwd1(self):
1248
+ def f(x, y):
1249
+ return u.math.asarray([x[0] * y[0],
1250
+ 5 * x[2] * y[1],
1251
+ 4 * x[1] ** 2, ])
1252
+
1253
+ _x = jnp.array([1., 2., 3.]) * u.ms
1254
+ _y = jnp.array([10., 5.]) * u.ms
1255
+
1256
+ g = brainstate.augment.jacfwd(f, unit_aware=True, argnums=(0, 1))(_x, _y)
1257
+ self.assertTrue(
1258
+ u.math.allclose(
1259
+ g[0],
1260
+ u.math.asarray([
1261
+ [10., 0., 0.],
1262
+ [0., 0., 25.],
1263
+ [0., 16., 0.]
1264
+ ]) * u.ms
1265
+ )
1266
+ )
1267
+
1268
+ self.assertTrue(
1269
+ u.math.allclose(
1270
+ g[1],
1271
+ u.math.asarray([
1272
+ [1., 0.],
1273
+ [0., 15.],
1274
+ [0., 0.]
1275
+ ]) * u.ms
1276
+ )
1277
+ )
1278
+
1279
+ def test_hessian(self):
1280
+ unit = u.ms
1281
+
1282
+ def scalar_function(x):
1283
+ return x ** 3 + 3 * x * unit * unit + 2 * unit * unit * unit
1284
+
1285
+ hess = brainstate.augment.hessian(scalar_function, unit_aware=True)
1286
+ x = jnp.array(1.0) * unit
1287
+ res = hess(x)
1288
+ expected_hessian = jnp.array([[6.0]]) * unit
1289
+ assert u.math.allclose(res, expected_hessian)