brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +169 -58
- brainstate/_compatible_import.py +340 -148
- brainstate/_compatible_import_test.py +681 -0
- brainstate/_deprecation.py +210 -0
- brainstate/_deprecation_test.py +2319 -0
- brainstate/{util/error.py → _error.py} +45 -55
- brainstate/_state.py +1652 -1605
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/environ.py +1495 -563
- brainstate/environ_test.py +1223 -62
- brainstate/graph/__init__.py +22 -29
- brainstate/graph/_node.py +240 -0
- brainstate/graph/_node_test.py +589 -0
- brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
- brainstate/graph/_operation_test.py +1147 -0
- brainstate/mixin.py +1433 -365
- brainstate/mixin_test.py +1017 -77
- brainstate/nn/__init__.py +137 -135
- brainstate/nn/_activations.py +1100 -808
- brainstate/nn/_activations_test.py +354 -331
- brainstate/nn/_collective_ops.py +633 -514
- brainstate/nn/_collective_ops_test.py +774 -43
- brainstate/nn/_common.py +226 -178
- brainstate/nn/_common_test.py +154 -0
- brainstate/nn/_conv.py +2010 -501
- brainstate/nn/_conv_test.py +849 -238
- brainstate/nn/_delay.py +575 -588
- brainstate/nn/_delay_test.py +243 -238
- brainstate/nn/_dropout.py +618 -426
- brainstate/nn/_dropout_test.py +477 -100
- brainstate/nn/_dynamics.py +1267 -1343
- brainstate/nn/_dynamics_test.py +67 -78
- brainstate/nn/_elementwise.py +1298 -1119
- brainstate/nn/_elementwise_test.py +830 -169
- brainstate/nn/_embedding.py +408 -58
- brainstate/nn/_embedding_test.py +156 -0
- brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
- brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
- brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
- brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
- brainstate/nn/_exp_euler.py +254 -92
- brainstate/nn/_exp_euler_test.py +377 -35
- brainstate/nn/_linear.py +744 -424
- brainstate/nn/_linear_test.py +475 -107
- brainstate/nn/_metrics.py +1070 -0
- brainstate/nn/_metrics_test.py +611 -0
- brainstate/nn/_module.py +384 -377
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_normalizations.py +1334 -975
- brainstate/nn/_normalizations_test.py +699 -73
- brainstate/nn/_paddings.py +1020 -0
- brainstate/nn/_paddings_test.py +723 -0
- brainstate/nn/_poolings.py +2239 -1177
- brainstate/nn/_poolings_test.py +953 -217
- brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
- brainstate/nn/_rnns_test.py +593 -0
- brainstate/nn/_utils.py +216 -89
- brainstate/nn/_utils_test.py +402 -0
- brainstate/{init/_random_inits.py → nn/init.py} +809 -553
- brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
- brainstate/random/__init__.py +270 -24
- brainstate/random/_rand_funs.py +3938 -3616
- brainstate/random/_rand_funs_test.py +640 -567
- brainstate/random/_rand_seed.py +675 -210
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1617 -1409
- brainstate/random/_rand_state_test.py +551 -0
- brainstate/transform/__init__.py +59 -0
- brainstate/transform/_ad_checkpoint.py +176 -0
- brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
- brainstate/{augment → transform}/_autograd.py +1025 -778
- brainstate/{augment → transform}/_autograd_test.py +1289 -1289
- brainstate/transform/_conditions.py +316 -0
- brainstate/{compile → transform}/_conditions_test.py +220 -220
- brainstate/{compile → transform}/_error_if.py +94 -92
- brainstate/{compile → transform}/_error_if_test.py +52 -52
- brainstate/transform/_eval_shape.py +145 -0
- brainstate/{augment → transform}/_eval_shape_test.py +38 -38
- brainstate/{compile → transform}/_jit.py +399 -346
- brainstate/{compile → transform}/_jit_test.py +143 -143
- brainstate/{compile → transform}/_loop_collect_return.py +675 -536
- brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
- brainstate/{compile → transform}/_loop_no_collection.py +283 -184
- brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
- brainstate/transform/_make_jaxpr.py +2016 -0
- brainstate/transform/_make_jaxpr_test.py +1510 -0
- brainstate/transform/_mapping.py +529 -0
- brainstate/transform/_mapping_test.py +194 -0
- brainstate/{compile → transform}/_progress_bar.py +255 -202
- brainstate/{augment → transform}/_random.py +171 -151
- brainstate/{compile → transform}/_unvmap.py +256 -159
- brainstate/transform/_util.py +286 -0
- brainstate/typing.py +837 -304
- brainstate/typing_test.py +780 -0
- brainstate/util/__init__.py +27 -50
- brainstate/util/_others.py +1025 -0
- brainstate/util/_others_test.py +962 -0
- brainstate/util/_pretty_pytree.py +1301 -0
- brainstate/util/_pretty_pytree_test.py +675 -0
- brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
- brainstate/util/_pretty_repr_test.py +696 -0
- brainstate/util/filter.py +945 -469
- brainstate/util/filter_test.py +912 -0
- brainstate/util/struct.py +910 -523
- brainstate/util/struct_test.py +602 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
- brainstate-0.2.1.dist-info/RECORD +111 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
- brainstate/augment/__init__.py +0 -30
- brainstate/augment/_eval_shape.py +0 -99
- brainstate/augment/_mapping.py +0 -1060
- brainstate/augment/_mapping_test.py +0 -597
- brainstate/compile/__init__.py +0 -38
- brainstate/compile/_ad_checkpoint.py +0 -204
- brainstate/compile/_conditions.py +0 -256
- brainstate/compile/_make_jaxpr.py +0 -888
- brainstate/compile/_make_jaxpr_test.py +0 -156
- brainstate/compile/_util.py +0 -147
- brainstate/functional/__init__.py +0 -27
- brainstate/graph/_graph_node.py +0 -244
- brainstate/graph/_graph_node_test.py +0 -73
- brainstate/graph/_graph_operation_test.py +0 -563
- brainstate/init/__init__.py +0 -26
- brainstate/init/_base.py +0 -52
- brainstate/init/_generic.py +0 -244
- brainstate/init/_regular_inits.py +0 -105
- brainstate/init/_regular_inits_test.py +0 -50
- brainstate/nn/_inputs.py +0 -608
- brainstate/nn/_ltp.py +0 -28
- brainstate/nn/_neuron.py +0 -705
- brainstate/nn/_neuron_test.py +0 -161
- brainstate/nn/_others.py +0 -46
- brainstate/nn/_projection.py +0 -486
- brainstate/nn/_rate_rnns_test.py +0 -63
- brainstate/nn/_readout.py +0 -209
- brainstate/nn/_readout_test.py +0 -53
- brainstate/nn/_stp.py +0 -236
- brainstate/nn/_synapse.py +0 -505
- brainstate/nn/_synapse_test.py +0 -131
- brainstate/nn/_synaptic_projection.py +0 -423
- brainstate/nn/_synouts.py +0 -162
- brainstate/nn/_synouts_test.py +0 -57
- brainstate/nn/metrics.py +0 -388
- brainstate/optim/__init__.py +0 -38
- brainstate/optim/_base.py +0 -64
- brainstate/optim/_lr_scheduler.py +0 -448
- brainstate/optim/_lr_scheduler_test.py +0 -50
- brainstate/optim/_optax_optimizer.py +0 -152
- brainstate/optim/_optax_optimizer_test.py +0 -53
- brainstate/optim/_sgd_optimizer.py +0 -1104
- brainstate/random/_random_for_unit.py +0 -52
- brainstate/surrogate.py +0 -1957
- brainstate/transform.py +0 -23
- brainstate/util/caller.py +0 -98
- brainstate/util/others.py +0 -540
- brainstate/util/pretty_pytree.py +0 -945
- brainstate/util/pretty_pytree_test.py +0 -159
- brainstate/util/pretty_table.py +0 -2954
- brainstate/util/scaling.py +0 -258
- brainstate-0.1.10.dist-info/RECORD +0 -130
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,529 @@
|
|
1
|
+
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import functools
|
17
|
+
from typing import (
|
18
|
+
Any,
|
19
|
+
TypeVar,
|
20
|
+
Callable,
|
21
|
+
Hashable,
|
22
|
+
Sequence,
|
23
|
+
Iterable,
|
24
|
+
Tuple,
|
25
|
+
Union,
|
26
|
+
Optional,
|
27
|
+
Dict
|
28
|
+
)
|
29
|
+
|
30
|
+
import jax
|
31
|
+
|
32
|
+
from brainstate._compatible_import import Device
|
33
|
+
from brainstate._state import catch_new_states
|
34
|
+
from brainstate._utils import set_module_as
|
35
|
+
from brainstate.typing import Missing, Filter
|
36
|
+
from brainstate.util import NestedDict
|
37
|
+
from ._loop_collect_return import scan
|
38
|
+
from ._make_jaxpr import StatefulMapping
|
39
|
+
|
40
|
+
__all__ = [
|
41
|
+
'vmap',
|
42
|
+
'pmap',
|
43
|
+
'map',
|
44
|
+
'vmap_new_states',
|
45
|
+
]
|
46
|
+
|
47
|
+
F = TypeVar("F", bound=Callable)
|
48
|
+
AxisName = Hashable
|
49
|
+
|
50
|
+
|
51
|
+
@set_module_as('brainstate.transform')
|
52
|
+
def vmap(
|
53
|
+
fn: F | Missing = Missing(),
|
54
|
+
*,
|
55
|
+
# --- normal jax.vmap arguments --- #
|
56
|
+
in_axes: int | None | Sequence[Any] = 0,
|
57
|
+
out_axes: Any = 0,
|
58
|
+
axis_name: AxisName | None = None,
|
59
|
+
axis_size: int | None = None,
|
60
|
+
spmd_axis_name: AxisName | tuple[AxisName, ...] | None = None,
|
61
|
+
# --- brainstate specific arguments --- #
|
62
|
+
state_in_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
63
|
+
state_out_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
64
|
+
) -> StatefulMapping | Callable[[F], StatefulMapping]:
|
65
|
+
"""
|
66
|
+
Vectorizing map. Creates a function which maps ``fun`` over argument axes.
|
67
|
+
|
68
|
+
The transformation :func:`vmap` is designed to work with ``pygraph`` structure
|
69
|
+
defined in the ``brainstate`` library. It is used to vectorize functions by
|
70
|
+
pushing the mapped axis down into primitive operations.
|
71
|
+
|
72
|
+
More information please see `jax.vmap <https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html>`__.
|
73
|
+
|
74
|
+
These are several example usage::
|
75
|
+
|
76
|
+
>>> import brainstate as brainstate
|
77
|
+
>>> import jax.numpy as jnp
|
78
|
+
|
79
|
+
>>> class Model(brainstate.nn.Module):
|
80
|
+
>>> def __init__(self):
|
81
|
+
>>> super().__init__()
|
82
|
+
>>>
|
83
|
+
>>> self.a = brainstate.ShortTermState(brainstate.random.randn(5))
|
84
|
+
>>> self.b = brainstate.ShortTermState(brainstate.random.randn(5))
|
85
|
+
>>> self.c = brainstate.State(brainstate.random.randn(1))
|
86
|
+
|
87
|
+
>>> def __call__(self, *args, **kwargs):
|
88
|
+
>>> self.c.value = self.a.value * self.b.value
|
89
|
+
>>> return self.c.value + 1.
|
90
|
+
|
91
|
+
>>> model = Model()
|
92
|
+
|
93
|
+
>>> r = brainstate.transform.vmap(
|
94
|
+
>>> model,
|
95
|
+
>>> in_states=model.states(brainstate.ShortTermState),
|
96
|
+
>>> out_states=model.c
|
97
|
+
>>> )()
|
98
|
+
|
99
|
+
Parameters
|
100
|
+
----------
|
101
|
+
fn : callable, optional
|
102
|
+
Function to be mapped over additional axes.
|
103
|
+
in_axes : int, None, or sequence, default 0
|
104
|
+
An integer, None, or sequence of values specifying which input
|
105
|
+
array axes to map over.
|
106
|
+
out_axes : int, None, or sequence, default 0
|
107
|
+
An integer, None, or (nested) standard Python container
|
108
|
+
(tuple/list/dict) thereof indicating where the mapped axis should appear
|
109
|
+
in the output.
|
110
|
+
axis_name : hashable, optional
|
111
|
+
A hashable Python object used to identify the mapped
|
112
|
+
axis so that parallel collectives can be applied.
|
113
|
+
axis_size : int, optional
|
114
|
+
An integer indicating the size of the axis to be
|
115
|
+
mapped. If not provided, the mapped axis size is inferred from arguments.
|
116
|
+
spmd_axis_name : hashable or tuple of hashable, optional
|
117
|
+
A hashable Python object or tuple of hashable
|
118
|
+
Python objects used to identify the mapped axis so that parallel collectives
|
119
|
+
can be applied. This is used to specify multiple axes to be mapped over
|
120
|
+
in a nested :func:`vmap` call. The length of the tuple must match the
|
121
|
+
number of nested :func:`vmap` calls. The first element of the tuple
|
122
|
+
corresponds to the outermost :func:`vmap` call, the second element to
|
123
|
+
the next outermost, and so on. If the tuple is not provided, the
|
124
|
+
``axis_name`` is used for all nested :func:`vmap` calls.
|
125
|
+
in_states : dict or State objects, optional
|
126
|
+
The :class:`State` objects to be mapped over in the inputs.
|
127
|
+
out_states : dict or State objects, optional
|
128
|
+
The :class:`State` objects to be mapped over in the outputs.
|
129
|
+
|
130
|
+
Returns
|
131
|
+
-------
|
132
|
+
callable
|
133
|
+
Batched/vectorized version of ``fun`` with arguments that correspond to
|
134
|
+
those of ``fun``, but with extra array axes at positions indicated by
|
135
|
+
``in_axes``, and a return value that corresponds to that of ``fun``, but
|
136
|
+
with extra array axes at positions indicated by ``out_axes``.
|
137
|
+
|
138
|
+
"""
|
139
|
+
|
140
|
+
if isinstance(fn, Missing):
|
141
|
+
return functools.partial(
|
142
|
+
vmap,
|
143
|
+
in_axes=in_axes,
|
144
|
+
out_axes=out_axes,
|
145
|
+
state_in_axes=state_in_axes,
|
146
|
+
state_out_axes=state_out_axes,
|
147
|
+
axis_name=axis_name,
|
148
|
+
axis_size=axis_size,
|
149
|
+
spmd_axis_name=spmd_axis_name,
|
150
|
+
) # type: ignore[return-value]
|
151
|
+
|
152
|
+
return StatefulMapping(
|
153
|
+
fn,
|
154
|
+
in_axes=in_axes,
|
155
|
+
out_axes=out_axes,
|
156
|
+
state_in_axes=state_in_axes,
|
157
|
+
state_out_axes=state_out_axes,
|
158
|
+
axis_name=axis_name,
|
159
|
+
axis_size=axis_size,
|
160
|
+
mapping_fn=functools.partial(jax.vmap, spmd_axis_name=spmd_axis_name)
|
161
|
+
)
|
162
|
+
|
163
|
+
|
164
|
+
@set_module_as('brainstate.transform')
|
165
|
+
def pmap(
|
166
|
+
fn: Callable[[NestedDict, ...], Any] | Missing = Missing(),
|
167
|
+
axis_name: Optional[AxisName] = None,
|
168
|
+
*,
|
169
|
+
in_axes: Any = 0,
|
170
|
+
out_axes: Any = 0,
|
171
|
+
static_broadcasted_argnums: int | Iterable[int] = (),
|
172
|
+
devices: Optional[Sequence[Device]] = None, # noqa: F811
|
173
|
+
backend: Optional[str] = None,
|
174
|
+
axis_size: Optional[int] = None,
|
175
|
+
donate_argnums: int | Iterable[int] = (),
|
176
|
+
global_arg_shapes: Optional[Tuple[Tuple[int, ...], ...]] = None,
|
177
|
+
# --- brainstate specific arguments --- #
|
178
|
+
state_in_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
179
|
+
state_out_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
180
|
+
) -> Callable[[F], F] | F:
|
181
|
+
"""
|
182
|
+
Parallel map with support for collective operations.
|
183
|
+
|
184
|
+
The purpose of :py:func:`pmap` is to express single-program multiple-data
|
185
|
+
(SPMD) programs. Applying :py:func:`pmap` to a function will compile the
|
186
|
+
function with XLA (similarly to :py:func:`jit`), then execute it in parallel
|
187
|
+
on XLA devices, such as multiple GPUs or multiple TPU cores. Semantically it
|
188
|
+
is comparable to :py:func:`vmap` because both transformations map a function
|
189
|
+
over array axes, but where :py:func:`vmap` vectorizes functions by pushing the
|
190
|
+
mapped axis down into primitive operations, :py:func:`pmap` instead replicates
|
191
|
+
the function and executes each replica on its own XLA device in parallel.
|
192
|
+
|
193
|
+
The mapped axis size must be less than or equal to the number of local XLA
|
194
|
+
devices available, as returned by :py:func:`jax.local_device_count()` (unless
|
195
|
+
``devices`` is specified, see below). For nested :py:func:`pmap` calls, the
|
196
|
+
product of the mapped axis sizes must be less than or equal to the number of
|
197
|
+
XLA devices.
|
198
|
+
|
199
|
+
More information please see `jax.vmap <https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html>`__.
|
200
|
+
|
201
|
+
|
202
|
+
Args:
|
203
|
+
fn: Function to be mapped over argument axes. Its arguments and return
|
204
|
+
value should be arrays, scalars, or (nested) standard Python containers
|
205
|
+
(tuple/list/dict) thereof. Positional arguments indicated by
|
206
|
+
``static_broadcasted_argnums`` can be anything at all, provided they are
|
207
|
+
hashable and have an equality operation defined.
|
208
|
+
axis_name: Optional, a hashable Python object used to identify the mapped
|
209
|
+
axis so that parallel collectives can be applied.
|
210
|
+
in_axes: A non-negative integer, None, or nested Python container thereof
|
211
|
+
that specifies which axes of positional arguments to map over. Arguments
|
212
|
+
passed as keywords are always mapped over their leading axis (i.e. axis
|
213
|
+
index 0). See :py:func:`vmap` for details.
|
214
|
+
out_axes: A non-negative integer, None, or nested Python container thereof
|
215
|
+
indicating where the mapped axis should appear in the output. All outputs
|
216
|
+
with a mapped axis must have a non-None ``out_axes`` specification
|
217
|
+
(see :py:func:`vmap`).
|
218
|
+
static_broadcasted_argnums: An int or collection of ints specifying which
|
219
|
+
positional arguments to treat as static (compile-time constant).
|
220
|
+
Operations that only depend on static arguments will be constant-folded.
|
221
|
+
Calling the pmapped function with different values for these constants
|
222
|
+
will trigger recompilation. If the pmapped function is called with fewer
|
223
|
+
positional arguments than indicated by ``static_broadcasted_argnums`` then
|
224
|
+
an error is raised. Each of the static arguments will be broadcasted to
|
225
|
+
all devices. Arguments that are not arrays or containers thereof must be
|
226
|
+
marked as static. Defaults to ().
|
227
|
+
|
228
|
+
Static arguments must be hashable, meaning both ``__hash__`` and
|
229
|
+
``__eq__`` are implemented, and should be immutable.
|
230
|
+
|
231
|
+
devices: This is an experimental feature and the API is likely to change.
|
232
|
+
Optional, a sequence of Devices to map over. (Available devices can be
|
233
|
+
retrieved via jax.devices()). Must be given identically for each process
|
234
|
+
in multi-process settings (and will therefore include devices across
|
235
|
+
processes). If specified, the size of the mapped axis must be equal to
|
236
|
+
the number of devices in the sequence local to the given process. Nested
|
237
|
+
:py:func:`pmap` s with ``devices`` specified in either the inner or outer
|
238
|
+
:py:func:`pmap` are not yet supported.
|
239
|
+
backend: This is an experimental feature and the API is likely to change.
|
240
|
+
Optional, a string representing the XLA backend. 'cpu', 'gpu', or 'tpu'.
|
241
|
+
axis_size: Optional; the size of the mapped axis.
|
242
|
+
donate_argnums: Specify which positional argument buffers are "donated" to
|
243
|
+
the computation. It is safe to donate argument buffers if you no longer need
|
244
|
+
them once the computation has finished. In some cases XLA can make use of
|
245
|
+
donated buffers to reduce the amount of memory needed to perform a
|
246
|
+
computation, for example recycling one of your input buffers to store a
|
247
|
+
result. You should not reuse buffers that you donate to a computation, JAX
|
248
|
+
will raise an error if you try to.
|
249
|
+
Note that donate_argnums only work for positional arguments, and keyword
|
250
|
+
arguments will not be donated.
|
251
|
+
|
252
|
+
For more details on buffer donation see the
|
253
|
+
`FAQ <https://jax.readthedocs.io/en/latest/faq.html#buffer-donation>`_.
|
254
|
+
global_arg_shapes: Optional; a tuple of tuples of integers representing the
|
255
|
+
shapes of the global arguments. These are arguments that are not replicated
|
256
|
+
across devices, but are broadcasted to all devices. The tuple should have
|
257
|
+
the same length as the number of global arguments, and each inner tuple
|
258
|
+
should have the same length as the corresponding argument. The shapes of
|
259
|
+
the global arguments must be the same on all devices.
|
260
|
+
rngs: Optional, a random number generator or sequence of random number
|
261
|
+
generators to be used in the mapped function. These random number
|
262
|
+
generators are restored their random key after the mapped function is
|
263
|
+
executed.
|
264
|
+
|
265
|
+
Returns:
|
266
|
+
A parallelized version of ``fun`` with arguments that correspond to those of
|
267
|
+
``fun`` but with extra array axes at positions indicated by ``in_axes`` and
|
268
|
+
with output that has an additional leading array axis (with the same size).
|
269
|
+
|
270
|
+
"""
|
271
|
+
|
272
|
+
if isinstance(fn, Missing):
|
273
|
+
return functools.partial(
|
274
|
+
pmap,
|
275
|
+
axis_name=axis_name,
|
276
|
+
in_axes=in_axes,
|
277
|
+
out_axes=out_axes,
|
278
|
+
static_broadcasted_argnums=static_broadcasted_argnums,
|
279
|
+
devices=devices,
|
280
|
+
backend=backend,
|
281
|
+
axis_size=axis_size,
|
282
|
+
donate_argnums=donate_argnums,
|
283
|
+
global_arg_shapes=global_arg_shapes,
|
284
|
+
) # type: ignore[return-value]
|
285
|
+
|
286
|
+
return StatefulMapping(
|
287
|
+
fn,
|
288
|
+
in_axes=in_axes,
|
289
|
+
out_axes=out_axes,
|
290
|
+
state_in_axes=state_in_axes,
|
291
|
+
state_out_axes=state_out_axes,
|
292
|
+
axis_name=axis_name,
|
293
|
+
axis_size=axis_size,
|
294
|
+
mapping_fn=functools.partial(
|
295
|
+
jax.pmap,
|
296
|
+
static_broadcasted_argnums=static_broadcasted_argnums,
|
297
|
+
devices=devices,
|
298
|
+
backend=backend,
|
299
|
+
donate_argnums=donate_argnums,
|
300
|
+
global_arg_shapes=global_arg_shapes,
|
301
|
+
),
|
302
|
+
)
|
303
|
+
|
304
|
+
|
305
|
+
def _batch_and_remainder(x, batch_size: int):
|
306
|
+
leaves, tree_def = jax.tree.flatten(x)
|
307
|
+
|
308
|
+
scan_leaves = []
|
309
|
+
remainder_leaves = []
|
310
|
+
|
311
|
+
length = None
|
312
|
+
for leaf in leaves:
|
313
|
+
if length is None:
|
314
|
+
length = leaf.shape[0]
|
315
|
+
if length != leaf.shape[0]:
|
316
|
+
raise ValueError(f"All inputs must have the same length. Got {length} and {leaf.shape[0]}.")
|
317
|
+
|
318
|
+
num_batches, num_remainder = divmod(length, batch_size)
|
319
|
+
for leaf in leaves:
|
320
|
+
total_batch_elems = num_batches * batch_size
|
321
|
+
scan_leaves.append(leaf[:total_batch_elems].reshape(num_batches, batch_size, *leaf.shape[1:]))
|
322
|
+
if num_remainder:
|
323
|
+
remainder_leaves.append(leaf[total_batch_elems:])
|
324
|
+
|
325
|
+
scan_tree = tree_def.unflatten(scan_leaves)
|
326
|
+
if num_remainder:
|
327
|
+
remainder_tree = tree_def.unflatten(remainder_leaves)
|
328
|
+
return scan_tree, remainder_tree
|
329
|
+
else:
|
330
|
+
return scan_tree, None
|
331
|
+
|
332
|
+
|
333
|
+
@set_module_as('brainstate.transform')
|
334
|
+
def map(
|
335
|
+
f,
|
336
|
+
*xs,
|
337
|
+
batch_size: int | None = None,
|
338
|
+
):
|
339
|
+
"""
|
340
|
+
Map a function over leading array axes.
|
341
|
+
|
342
|
+
Like Python's builtin map, except inputs and outputs are in the form of
|
343
|
+
stacked arrays. Consider using the :func:`~jax.vmap` transform instead, unless you
|
344
|
+
need to apply a function element by element for reduced memory usage or
|
345
|
+
heterogeneous computation with other control flow primitives.
|
346
|
+
|
347
|
+
When ``xs`` is an array type, the semantics of :func:`~map` are given by this
|
348
|
+
Python implementation::
|
349
|
+
|
350
|
+
def map(f, *xs):
|
351
|
+
return np.stack([f(*x) for x in xs])
|
352
|
+
|
353
|
+
Like :func:`~scan`, :func:`~map` is implemented in terms of JAX primitives so
|
354
|
+
many of the same advantages over a Python loop apply: ``xs`` may be an
|
355
|
+
arbitrary nested pytree type, and the mapped computation is compiled only
|
356
|
+
once.
|
357
|
+
|
358
|
+
If ``batch_size`` is provided, the computation is executed in batches of that size
|
359
|
+
and parallelized using :func:`~jax.vmap`. This can be used as either a more performant
|
360
|
+
version of ``map`` or as a memory-efficient version of ``vmap``. If the axis is not
|
361
|
+
divisible by the batch size, the remainder is processed in a separate ``vmap`` and
|
362
|
+
concatenated to the result.
|
363
|
+
|
364
|
+
>>> import jax.numpy as jnp
|
365
|
+
>>> x = jnp.ones((10, 3, 4))
|
366
|
+
>>> def f(x):
|
367
|
+
... print('inner shape:', x.shape)
|
368
|
+
... return x + 1
|
369
|
+
>>> y = map(f, x, batch_size=3)
|
370
|
+
inner shape: (3, 4)
|
371
|
+
inner shape: (3, 4)
|
372
|
+
>>> y.shape
|
373
|
+
(10, 3, 4)
|
374
|
+
|
375
|
+
In the example above, "inner shape" is printed twice, once while tracing the batched
|
376
|
+
computation and once while tracing the remainder computation.
|
377
|
+
|
378
|
+
Args:
|
379
|
+
f: a Python function to apply element-wise over the first axis or axes of
|
380
|
+
``xs``.
|
381
|
+
xs: values over which to map along the leading axis.
|
382
|
+
batch_size: (optional) integer specifying the size of the batch for each step to execute
|
383
|
+
in parallel.
|
384
|
+
|
385
|
+
Returns:
|
386
|
+
Mapped values.
|
387
|
+
"""
|
388
|
+
if batch_size is not None:
|
389
|
+
scan_xs, remainder_xs = _batch_and_remainder(xs, batch_size)
|
390
|
+
g = lambda _, x: ((), vmap(f)(*x))
|
391
|
+
_, scan_ys = scan(g, (), scan_xs)
|
392
|
+
if remainder_xs is None:
|
393
|
+
ys = jax.tree.map(lambda x: _flatten(x), scan_ys)
|
394
|
+
else:
|
395
|
+
remainder_ys = vmap(f)(*remainder_xs)
|
396
|
+
ys = jax.tree.map(
|
397
|
+
lambda x, y: jax.lax.concatenate([_flatten(x), y], dimension=0),
|
398
|
+
scan_ys,
|
399
|
+
remainder_ys,
|
400
|
+
)
|
401
|
+
else:
|
402
|
+
g = lambda _, x: ((), f(*x))
|
403
|
+
_, ys = scan(g, (), xs)
|
404
|
+
return ys
|
405
|
+
|
406
|
+
|
407
|
+
def _flatten(x):
|
408
|
+
return x.reshape(-1, *x.shape[2:])
|
409
|
+
|
410
|
+
|
411
|
+
def _vmap_new_states_transform(
|
412
|
+
fun: Callable[..., Any],
|
413
|
+
*,
|
414
|
+
# -- normal jax.vmap arguments -- #
|
415
|
+
in_axes: int | None | Sequence[Any] = 0,
|
416
|
+
out_axes: Any = 0,
|
417
|
+
axis_name: AxisName | None = None,
|
418
|
+
axis_size: int | None = None,
|
419
|
+
spmd_axis_name: AxisName | tuple[AxisName, ...] | None = None,
|
420
|
+
# -- brainstate specific arguments -- #
|
421
|
+
state_tag: str | None = None,
|
422
|
+
state_to_exclude: Filter | None = None,
|
423
|
+
state_in_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
424
|
+
state_out_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
425
|
+
):
|
426
|
+
# TODO: How about nested call ``vmap_new_states``?
|
427
|
+
if isinstance(axis_size, int) and axis_size <= 0:
|
428
|
+
raise ValueError(f"axis_size must be greater than 0, got {axis_size}.")
|
429
|
+
|
430
|
+
@vmap(
|
431
|
+
in_axes=in_axes,
|
432
|
+
out_axes=out_axes,
|
433
|
+
axis_name=axis_name,
|
434
|
+
axis_size=axis_size,
|
435
|
+
spmd_axis_name=spmd_axis_name,
|
436
|
+
state_in_axes=state_in_axes,
|
437
|
+
state_out_axes=state_out_axes,
|
438
|
+
)
|
439
|
+
def new_fun(args):
|
440
|
+
# call the function
|
441
|
+
with catch_new_states(state_tag=state_tag, state_to_exclude=state_to_exclude) as catcher:
|
442
|
+
out = fun(*args)
|
443
|
+
|
444
|
+
# get vmap state values
|
445
|
+
vmap_state_vals = catcher.get_state_values()
|
446
|
+
|
447
|
+
return out, vmap_state_vals
|
448
|
+
|
449
|
+
@functools.wraps(fun)
|
450
|
+
def vmapped_fn(*args):
|
451
|
+
# vmapping
|
452
|
+
with catch_new_states(state_to_exclude=state_to_exclude) as catcher:
|
453
|
+
outs, vmap_state_vals = new_fun(args)
|
454
|
+
vmap_states = catcher.get_states()
|
455
|
+
|
456
|
+
# restore vmapped state values
|
457
|
+
for st_val, st in zip(vmap_state_vals, vmap_states):
|
458
|
+
st.restore_value(st_val)
|
459
|
+
# ------------------------------------------------
|
460
|
+
# --- this is CRUCIAL to avoid jax tracing leakage
|
461
|
+
# ------------------------------------------------
|
462
|
+
st.decrease_stack_level()
|
463
|
+
return outs
|
464
|
+
|
465
|
+
return vmapped_fn
|
466
|
+
|
467
|
+
|
468
|
+
@set_module_as('brainstate.transform')
|
469
|
+
def vmap_new_states(
|
470
|
+
fun: Callable = Missing(),
|
471
|
+
*,
|
472
|
+
# -- normal jax.vmap arguments -- #
|
473
|
+
in_axes: int | None | Sequence[Any] = 0,
|
474
|
+
out_axes: Any = 0,
|
475
|
+
axis_name: AxisName | None = None,
|
476
|
+
axis_size: int | None = None,
|
477
|
+
spmd_axis_name: AxisName | tuple[AxisName, ...] | None = None,
|
478
|
+
# -- brainstate specific arguments -- #
|
479
|
+
state_tag: str | None = None,
|
480
|
+
state_to_exclude: Filter = None,
|
481
|
+
state_in_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
482
|
+
state_out_axes: Union[Dict[AxisName, Filter], Filter] = None,
|
483
|
+
):
|
484
|
+
"""
|
485
|
+
Vectorize a function over new states created within it.
|
486
|
+
|
487
|
+
This function applies JAX's vmap transformation to newly created states
|
488
|
+
during the function's execution. It allows for more
|
489
|
+
flexible vectorization in the context of stateful computations.
|
490
|
+
|
491
|
+
Args:
|
492
|
+
fun (Callable, optional): The function to be vectorized. Defaults to Missing().
|
493
|
+
in_axes (int | None | Sequence[Any], optional): Specification of input axes for vectorization. Defaults to 0.
|
494
|
+
out_axes (Any, optional): Specification of output axes after vectorization. Defaults to 0.
|
495
|
+
axis_name (AxisName, optional): Name of the axis being vectorized over. Defaults to None.
|
496
|
+
axis_size (int, optional): Size of the axis being vectorized over. Defaults to None.
|
497
|
+
spmd_axis_name (AxisName | tuple[AxisName, ...], optional): Name(s) of SPMD axis/axes. Defaults to None.
|
498
|
+
state_tag (str, optional): A tag to identify specific states. Defaults to None.
|
499
|
+
state_to_exclude (Sequence[int], optional): Indices of states to exclude from vectorization. Defaults to ().
|
500
|
+
|
501
|
+
Returns:
|
502
|
+
Callable: A vectorized version of the input function that handles new state creation.
|
503
|
+
"""
|
504
|
+
if isinstance(fun, Missing):
|
505
|
+
return functools.partial(
|
506
|
+
_vmap_new_states_transform,
|
507
|
+
in_axes=in_axes,
|
508
|
+
out_axes=out_axes,
|
509
|
+
axis_name=axis_name,
|
510
|
+
axis_size=axis_size,
|
511
|
+
spmd_axis_name=spmd_axis_name,
|
512
|
+
state_tag=state_tag,
|
513
|
+
state_to_exclude=state_to_exclude,
|
514
|
+
state_in_axes=state_in_axes,
|
515
|
+
state_out_axes=state_out_axes,
|
516
|
+
)
|
517
|
+
else:
|
518
|
+
return _vmap_new_states_transform(
|
519
|
+
fun,
|
520
|
+
in_axes=in_axes,
|
521
|
+
out_axes=out_axes,
|
522
|
+
axis_name=axis_name,
|
523
|
+
axis_size=axis_size,
|
524
|
+
spmd_axis_name=spmd_axis_name,
|
525
|
+
state_tag=state_tag,
|
526
|
+
state_to_exclude=state_to_exclude,
|
527
|
+
state_in_axes=state_in_axes,
|
528
|
+
state_out_axes=state_out_axes,
|
529
|
+
)
|