brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (163) hide show
  1. brainstate/__init__.py +169 -58
  2. brainstate/_compatible_import.py +340 -148
  3. brainstate/_compatible_import_test.py +681 -0
  4. brainstate/_deprecation.py +210 -0
  5. brainstate/_deprecation_test.py +2319 -0
  6. brainstate/{util/error.py → _error.py} +45 -55
  7. brainstate/_state.py +1652 -1605
  8. brainstate/_state_test.py +52 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -563
  11. brainstate/environ_test.py +1223 -62
  12. brainstate/graph/__init__.py +22 -29
  13. brainstate/graph/_node.py +240 -0
  14. brainstate/graph/_node_test.py +589 -0
  15. brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
  16. brainstate/graph/_operation_test.py +1147 -0
  17. brainstate/mixin.py +1433 -365
  18. brainstate/mixin_test.py +1017 -77
  19. brainstate/nn/__init__.py +137 -135
  20. brainstate/nn/_activations.py +1100 -808
  21. brainstate/nn/_activations_test.py +354 -331
  22. brainstate/nn/_collective_ops.py +633 -514
  23. brainstate/nn/_collective_ops_test.py +774 -43
  24. brainstate/nn/_common.py +226 -178
  25. brainstate/nn/_common_test.py +154 -0
  26. brainstate/nn/_conv.py +2010 -501
  27. brainstate/nn/_conv_test.py +849 -238
  28. brainstate/nn/_delay.py +575 -588
  29. brainstate/nn/_delay_test.py +243 -238
  30. brainstate/nn/_dropout.py +618 -426
  31. brainstate/nn/_dropout_test.py +477 -100
  32. brainstate/nn/_dynamics.py +1267 -1343
  33. brainstate/nn/_dynamics_test.py +67 -78
  34. brainstate/nn/_elementwise.py +1298 -1119
  35. brainstate/nn/_elementwise_test.py +830 -169
  36. brainstate/nn/_embedding.py +408 -58
  37. brainstate/nn/_embedding_test.py +156 -0
  38. brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
  39. brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
  40. brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
  41. brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
  42. brainstate/nn/_exp_euler.py +254 -92
  43. brainstate/nn/_exp_euler_test.py +377 -35
  44. brainstate/nn/_linear.py +744 -424
  45. brainstate/nn/_linear_test.py +475 -107
  46. brainstate/nn/_metrics.py +1070 -0
  47. brainstate/nn/_metrics_test.py +611 -0
  48. brainstate/nn/_module.py +384 -377
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -975
  51. brainstate/nn/_normalizations_test.py +699 -73
  52. brainstate/nn/_paddings.py +1020 -0
  53. brainstate/nn/_paddings_test.py +723 -0
  54. brainstate/nn/_poolings.py +2239 -1177
  55. brainstate/nn/_poolings_test.py +953 -217
  56. brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
  57. brainstate/nn/_rnns_test.py +593 -0
  58. brainstate/nn/_utils.py +216 -89
  59. brainstate/nn/_utils_test.py +402 -0
  60. brainstate/{init/_random_inits.py → nn/init.py} +809 -553
  61. brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
  62. brainstate/random/__init__.py +270 -24
  63. brainstate/random/_rand_funs.py +3938 -3616
  64. brainstate/random/_rand_funs_test.py +640 -567
  65. brainstate/random/_rand_seed.py +675 -210
  66. brainstate/random/_rand_seed_test.py +48 -48
  67. brainstate/random/_rand_state.py +1617 -1409
  68. brainstate/random/_rand_state_test.py +551 -0
  69. brainstate/transform/__init__.py +59 -0
  70. brainstate/transform/_ad_checkpoint.py +176 -0
  71. brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
  72. brainstate/{augment → transform}/_autograd.py +1025 -778
  73. brainstate/{augment → transform}/_autograd_test.py +1289 -1289
  74. brainstate/transform/_conditions.py +316 -0
  75. brainstate/{compile → transform}/_conditions_test.py +220 -220
  76. brainstate/{compile → transform}/_error_if.py +94 -92
  77. brainstate/{compile → transform}/_error_if_test.py +52 -52
  78. brainstate/transform/_eval_shape.py +145 -0
  79. brainstate/{augment → transform}/_eval_shape_test.py +38 -38
  80. brainstate/{compile → transform}/_jit.py +399 -346
  81. brainstate/{compile → transform}/_jit_test.py +143 -143
  82. brainstate/{compile → transform}/_loop_collect_return.py +675 -536
  83. brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
  84. brainstate/{compile → transform}/_loop_no_collection.py +283 -184
  85. brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
  86. brainstate/transform/_make_jaxpr.py +2016 -0
  87. brainstate/transform/_make_jaxpr_test.py +1510 -0
  88. brainstate/transform/_mapping.py +529 -0
  89. brainstate/transform/_mapping_test.py +194 -0
  90. brainstate/{compile → transform}/_progress_bar.py +255 -202
  91. brainstate/{augment → transform}/_random.py +171 -151
  92. brainstate/{compile → transform}/_unvmap.py +256 -159
  93. brainstate/transform/_util.py +286 -0
  94. brainstate/typing.py +837 -304
  95. brainstate/typing_test.py +780 -0
  96. brainstate/util/__init__.py +27 -50
  97. brainstate/util/_others.py +1025 -0
  98. brainstate/util/_others_test.py +962 -0
  99. brainstate/util/_pretty_pytree.py +1301 -0
  100. brainstate/util/_pretty_pytree_test.py +675 -0
  101. brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
  102. brainstate/util/_pretty_repr_test.py +696 -0
  103. brainstate/util/filter.py +945 -469
  104. brainstate/util/filter_test.py +912 -0
  105. brainstate/util/struct.py +910 -523
  106. brainstate/util/struct_test.py +602 -0
  107. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
  108. brainstate-0.2.1.dist-info/RECORD +111 -0
  109. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
  110. brainstate/augment/__init__.py +0 -30
  111. brainstate/augment/_eval_shape.py +0 -99
  112. brainstate/augment/_mapping.py +0 -1060
  113. brainstate/augment/_mapping_test.py +0 -597
  114. brainstate/compile/__init__.py +0 -38
  115. brainstate/compile/_ad_checkpoint.py +0 -204
  116. brainstate/compile/_conditions.py +0 -256
  117. brainstate/compile/_make_jaxpr.py +0 -888
  118. brainstate/compile/_make_jaxpr_test.py +0 -156
  119. brainstate/compile/_util.py +0 -147
  120. brainstate/functional/__init__.py +0 -27
  121. brainstate/graph/_graph_node.py +0 -244
  122. brainstate/graph/_graph_node_test.py +0 -73
  123. brainstate/graph/_graph_operation_test.py +0 -563
  124. brainstate/init/__init__.py +0 -26
  125. brainstate/init/_base.py +0 -52
  126. brainstate/init/_generic.py +0 -244
  127. brainstate/init/_regular_inits.py +0 -105
  128. brainstate/init/_regular_inits_test.py +0 -50
  129. brainstate/nn/_inputs.py +0 -608
  130. brainstate/nn/_ltp.py +0 -28
  131. brainstate/nn/_neuron.py +0 -705
  132. brainstate/nn/_neuron_test.py +0 -161
  133. brainstate/nn/_others.py +0 -46
  134. brainstate/nn/_projection.py +0 -486
  135. brainstate/nn/_rate_rnns_test.py +0 -63
  136. brainstate/nn/_readout.py +0 -209
  137. brainstate/nn/_readout_test.py +0 -53
  138. brainstate/nn/_stp.py +0 -236
  139. brainstate/nn/_synapse.py +0 -505
  140. brainstate/nn/_synapse_test.py +0 -131
  141. brainstate/nn/_synaptic_projection.py +0 -423
  142. brainstate/nn/_synouts.py +0 -162
  143. brainstate/nn/_synouts_test.py +0 -57
  144. brainstate/nn/metrics.py +0 -388
  145. brainstate/optim/__init__.py +0 -38
  146. brainstate/optim/_base.py +0 -64
  147. brainstate/optim/_lr_scheduler.py +0 -448
  148. brainstate/optim/_lr_scheduler_test.py +0 -50
  149. brainstate/optim/_optax_optimizer.py +0 -152
  150. brainstate/optim/_optax_optimizer_test.py +0 -53
  151. brainstate/optim/_sgd_optimizer.py +0 -1104
  152. brainstate/random/_random_for_unit.py +0 -52
  153. brainstate/surrogate.py +0 -1957
  154. brainstate/transform.py +0 -23
  155. brainstate/util/caller.py +0 -98
  156. brainstate/util/others.py +0 -540
  157. brainstate/util/pretty_pytree.py +0 -945
  158. brainstate/util/pretty_pytree_test.py +0 -159
  159. brainstate/util/pretty_table.py +0 -2954
  160. brainstate/util/scaling.py +0 -258
  161. brainstate-0.1.10.dist-info/RECORD +0 -130
  162. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
  163. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -1,92 +1,254 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- from typing import Callable
18
-
19
- import brainunit as u
20
- import jax.numpy as jnp
21
-
22
- from brainstate import environ, random
23
- from brainstate.augment import vector_grad
24
-
25
- __all__ = [
26
- 'exp_euler_step',
27
- ]
28
-
29
-
30
- def exp_euler_step(
31
- fn: Callable, *args, **kwargs
32
- ):
33
- r"""
34
- One-step Exponential Euler method for solving ODEs.
35
-
36
- Examples
37
- --------
38
-
39
- >>> def fun(x, t):
40
- ... return -x
41
- >>> x = 1.0
42
- >>> exp_euler_step(fun, x, None)
43
-
44
- If the variable ( $x$ ) has units of ( $[X]$ ), then the drift term ( $\text{drift_fn}(x)$ ) should
45
- have units of ( $[X]/[T]$ ), where ( $[T]$ ) is the unit of time.
46
-
47
- If the variable ( x ) has units of ( [X] ), then the diffusion term ( \text{diffusion_fn}(x) )
48
- should have units of ( [X]/\sqrt{[T]} ).
49
-
50
- Args:
51
- fun: Callable. The function to be solved.
52
- diffusion: Callable. The diffusion function.
53
- *args: The input arguments.
54
- drift: Callable. The drift function.
55
-
56
- Returns:
57
- The one-step solution of the ODE.
58
- """
59
- assert callable(fn), 'The input function should be callable.'
60
- assert len(args) > 0, 'The input arguments should not be empty.'
61
- if callable(args[0]):
62
- diffusion = args[0]
63
- args = args[1:]
64
- else:
65
- diffusion = None
66
- assert len(args) > 0, 'The input arguments should not be empty.'
67
- if u.math.get_dtype(args[0]) not in [jnp.float32, jnp.float64, jnp.float16, jnp.bfloat16]:
68
- raise ValueError(
69
- f'The input data type should be float64, float32, float16, or bfloat16 '
70
- f'when using Exponential Euler method. But we got {args[0].dtype}.'
71
- )
72
-
73
- # drift
74
- dt = environ.get('dt')
75
- linear, derivative = vector_grad(fn, argnums=0, return_value=True)(*args, **kwargs)
76
- linear = u.Quantity(u.get_mantissa(linear), u.get_unit(derivative) / u.get_unit(linear))
77
- phi = u.math.exprel(dt * linear)
78
- x_next = args[0] + dt * phi * derivative
79
-
80
- # diffusion
81
- if diffusion is not None:
82
- diffusion_part = diffusion(*args, **kwargs) * u.math.sqrt(dt) * random.randn_like(args[0])
83
- if u.get_dim(x_next) != u.get_dim(diffusion_part):
84
- drift_unit = u.get_unit(x_next)
85
- time_unit = u.get_unit(dt)
86
- raise ValueError(
87
- f"Drift unit is {drift_unit}, "
88
- f"expected diffusion unit is {drift_unit / time_unit ** 0.5}, "
89
- f"but we got {u.get_unit(diffusion_part)}."
90
- )
91
- x_next += diffusion_part
92
- return x_next
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ from typing import Callable
18
+
19
+ import brainunit as u
20
+ import jax.numpy as jnp
21
+
22
+ from brainstate import environ, random
23
+ from brainstate.transform import vector_grad
24
+
25
+ __all__ = [
26
+ 'exp_euler_step',
27
+ ]
28
+
29
+
30
+ def exp_euler_step(
31
+ fn: Callable, *args, **kwargs
32
+ ):
33
+ r"""
34
+ One-step Exponential Euler method for solving ODEs and SDEs.
35
+
36
+ The Exponential Euler method is a numerical integration scheme that provides improved
37
+ stability for stiff differential equations by exactly integrating the linear part of
38
+ the equation. For ODEs, it solves equations of the form:
39
+
40
+ .. math::
41
+ \frac{dx}{dt} = f(x, t)
42
+
43
+ For SDEs, it handles equations of the form:
44
+
45
+ .. math::
46
+ dx = f(x, t)dt + g(x, t)dW
47
+
48
+ where :math:`f(x, t)` is the drift term and :math:`g(x, t)` is the diffusion term.
49
+
50
+ The method linearizes the drift function around the current state and uses the
51
+ matrix exponential to integrate the linear part exactly, while treating the
52
+ remainder with standard Euler stepping.
53
+
54
+ Parameters
55
+ ----------
56
+ fn : Callable
57
+ The drift function :math:`f(x, t)` to be integrated. This function should
58
+ take the state variable as the first argument, followed by optional time
59
+ and other arguments. It should return the derivative :math:`dx/dt`.
60
+ *args
61
+ Variable arguments. If the first argument is callable, it is treated as
62
+ the diffusion function for SDE integration. Otherwise, arguments are
63
+ passed to the drift function. The first non-callable argument should be
64
+ the state variable :math:`x`.
65
+ **kwargs
66
+ Additional keyword arguments passed to the drift and diffusion functions.
67
+
68
+ Returns
69
+ -------
70
+ x_next : ArrayLike
71
+ The state variable after one integration step of size ``dt``, where ``dt``
72
+ is obtained from the environment via ``environ.get('dt')``.
73
+
74
+ Raises
75
+ ------
76
+ ValueError
77
+ If the input state variable dtype is not float16, bfloat16, float32, or float64.
78
+ ValueError
79
+ If drift and diffusion terms have incompatible units.
80
+ AssertionError
81
+ If ``fn`` is not callable or if no state variable is provided in ``*args``.
82
+
83
+ Notes
84
+ -----
85
+ **Unit Compatibility:**
86
+
87
+ - If the state variable :math:`x` has units :math:`[X]`, the drift function
88
+ :math:`f(x, t)` should return values with units :math:`[X]/[T]`, where
89
+ :math:`[T]` is the unit of time.
90
+
91
+ - If the state variable :math:`x` has units :math:`[X]`, the diffusion function
92
+ :math:`g(x, t)` should return values with units :math:`[X]/\sqrt{[T]}`.
93
+
94
+ **Algorithm:**
95
+
96
+ The method computes the Jacobian :math:`J = \frac{\partial f}{\partial x}` and
97
+ uses the exponential-related function :math:`\varphi(z) = (e^z - 1)/z` to update:
98
+
99
+ .. math::
100
+ x_{n+1} = x_n + dt \cdot \varphi(dt \cdot J) \cdot f(x_n, t_n)
101
+
102
+ For SDEs, a stochastic term is added:
103
+
104
+ .. math::
105
+ x_{n+1} = x_{n+1} + g(x_n, t_n) \sqrt{dt} \cdot \mathcal{N}(0, I)
106
+
107
+ Examples
108
+ --------
109
+ **ODE Integration:**
110
+
111
+ Simple exponential decay equation :math:`\frac{dx}{dt} = -x`:
112
+
113
+ .. code-block:: python
114
+
115
+ >>> import brainstate as bst
116
+ >>> import jax.numpy as jnp
117
+ >>>
118
+ >>> # Set time step in environment
119
+ >>> bst.environ.set(dt=0.01)
120
+ >>>
121
+ >>> # Define drift function
122
+ >>> def drift(x, t):
123
+ ... return -x
124
+ >>>
125
+ >>> # Initial condition
126
+ >>> x0 = jnp.array(1.0)
127
+ >>>
128
+ >>> # Single integration step
129
+ >>> x1 = bst.nn.exp_euler_step(drift, x0, None)
130
+ >>> print(x1) # Should be close to exp(-0.01) ≈ 0.99
131
+
132
+ **SDE Integration:**
133
+
134
+ Ornstein-Uhlenbeck process :math:`dx = -\theta x dt + \sigma dW`:
135
+
136
+ .. code-block:: python
137
+
138
+ >>> import brainstate as bst
139
+ >>> import jax.numpy as jnp
140
+ >>>
141
+ >>> # Set time step
142
+ >>> bst.environ.set(dt=0.01)
143
+ >>>
144
+ >>> # Define drift and diffusion
145
+ >>> theta = 0.5
146
+ >>> sigma = 0.3
147
+ >>>
148
+ >>> def drift(x, t):
149
+ ... return -theta * x
150
+ >>>
151
+ >>> def diffusion(x, t):
152
+ ... return jnp.full_like(x, sigma)
153
+ >>>
154
+ >>> # Initial condition
155
+ >>> x0 = jnp.array(1.0)
156
+ >>>
157
+ >>> # Single SDE integration step
158
+ >>> x1 = bst.nn.exp_euler_step(drift, diffusion, x0, None)
159
+
160
+ **Multi-dimensional system:**
161
+
162
+ .. code-block:: python
163
+
164
+ >>> import brainstate as bst
165
+ >>> import jax.numpy as jnp
166
+ >>>
167
+ >>> bst.environ.set(dt=0.01)
168
+ >>>
169
+ >>> # Coupled oscillator system
170
+ >>> def drift(x, t):
171
+ ... x1, x2 = x[0], x[1]
172
+ ... return jnp.array([-x1 + x2, -x2 - x1])
173
+ >>>
174
+ >>> x0 = jnp.array([1.0, 0.0])
175
+ >>> x1 = bst.nn.exp_euler_step(drift, x0, None)
176
+
177
+ See Also
178
+ --------
179
+ brainstate.transform.vector_grad : Compute vector-Jacobian product used internally.
180
+ brainstate.environ.get : Retrieve environment variables like ``dt``.
181
+
182
+ References
183
+ ----------
184
+ .. [1] Hochbruck, M., & Ostermann, A. (2010). Exponential integrators.
185
+ Acta Numerica, 19, 209-286.
186
+ .. [2] Cox, S. M., & Matthews, P. C. (2002). Exponential time differencing
187
+ for stiff systems. Journal of Computational Physics, 176(2), 430-455.
188
+ """
189
+ # Validate inputs
190
+ assert callable(fn), 'The drift function should be callable.'
191
+ assert len(args) > 0, 'The input arguments should not be empty.'
192
+
193
+ # Parse arguments: check if first arg is diffusion function
194
+ diffusion = None
195
+ if callable(args[0]):
196
+ diffusion = args[0]
197
+ args = args[1:]
198
+ assert len(args) > 0, 'State variable is required after diffusion function.'
199
+
200
+ # Validate state variable dtype
201
+ state = u.math.asarray(args[0])
202
+ dtype = u.math.get_dtype(state)
203
+ if dtype not in [jnp.float16, jnp.bfloat16, jnp.float32, jnp.float64]:
204
+ raise ValueError(
205
+ f'State variable dtype must be float16, bfloat16, float32, or float64 '
206
+ f'for Exponential Euler method, but got {dtype}.'
207
+ )
208
+
209
+ # Get time step from environment
210
+ dt = environ.get_dt()
211
+
212
+ # Compute drift term with Jacobian
213
+ # vector_grad returns (Jacobian, function_value)
214
+ jacobian, drift_value = vector_grad(fn, argnums=0, return_value=True)(*args, **kwargs)
215
+
216
+ # Convert Jacobian to proper units: [derivative_unit / state_unit] = [1/T]
217
+ jacobian_with_unit = u.Quantity(
218
+ u.get_mantissa(jacobian),
219
+ u.get_unit(drift_value) / u.get_unit(jacobian)
220
+ )
221
+
222
+ # Compute phi function: phi(z) = (exp(z) - 1) / z
223
+ # This is the exponential-related function for stability
224
+ phi = u.math.exprel(dt * jacobian_with_unit)
225
+
226
+ # Update state using exponential Euler scheme
227
+ x_next = state + dt * phi * drift_value
228
+
229
+ # Add diffusion term for SDE if provided
230
+ if diffusion is not None:
231
+ # Compute diffusion coefficient
232
+ diffusion_coef = diffusion(*args, **kwargs)
233
+
234
+ # Generate random noise and scale by sqrt(dt)
235
+ noise = random.randn_like(state)
236
+ diffusion_term = diffusion_coef * u.math.sqrt(dt) * noise
237
+
238
+ # Validate unit compatibility between drift and diffusion
239
+ if u.get_dim(x_next) != u.get_dim(diffusion_term):
240
+ drift_unit = u.get_unit(x_next)
241
+ time_unit = u.get_unit(dt)
242
+ expected_diffusion_unit = drift_unit / time_unit ** 0.5
243
+ actual_diffusion_unit = u.get_unit(diffusion_term)
244
+ raise ValueError(
245
+ f"Unit mismatch between drift and diffusion terms. "
246
+ f"State has unit {u.get_unit(state)}, "
247
+ f"drift produces unit {drift_unit}, "
248
+ f"expected diffusion unit {expected_diffusion_unit}, "
249
+ f"but got {actual_diffusion_unit}."
250
+ )
251
+
252
+ x_next = x_next + diffusion_term
253
+
254
+ return x_next