brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +169 -58
- brainstate/_compatible_import.py +340 -148
- brainstate/_compatible_import_test.py +681 -0
- brainstate/_deprecation.py +210 -0
- brainstate/_deprecation_test.py +2319 -0
- brainstate/{util/error.py → _error.py} +45 -55
- brainstate/_state.py +1652 -1605
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/environ.py +1495 -563
- brainstate/environ_test.py +1223 -62
- brainstate/graph/__init__.py +22 -29
- brainstate/graph/_node.py +240 -0
- brainstate/graph/_node_test.py +589 -0
- brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
- brainstate/graph/_operation_test.py +1147 -0
- brainstate/mixin.py +1433 -365
- brainstate/mixin_test.py +1017 -77
- brainstate/nn/__init__.py +137 -135
- brainstate/nn/_activations.py +1100 -808
- brainstate/nn/_activations_test.py +354 -331
- brainstate/nn/_collective_ops.py +633 -514
- brainstate/nn/_collective_ops_test.py +774 -43
- brainstate/nn/_common.py +226 -178
- brainstate/nn/_common_test.py +154 -0
- brainstate/nn/_conv.py +2010 -501
- brainstate/nn/_conv_test.py +849 -238
- brainstate/nn/_delay.py +575 -588
- brainstate/nn/_delay_test.py +243 -238
- brainstate/nn/_dropout.py +618 -426
- brainstate/nn/_dropout_test.py +477 -100
- brainstate/nn/_dynamics.py +1267 -1343
- brainstate/nn/_dynamics_test.py +67 -78
- brainstate/nn/_elementwise.py +1298 -1119
- brainstate/nn/_elementwise_test.py +830 -169
- brainstate/nn/_embedding.py +408 -58
- brainstate/nn/_embedding_test.py +156 -0
- brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
- brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
- brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
- brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
- brainstate/nn/_exp_euler.py +254 -92
- brainstate/nn/_exp_euler_test.py +377 -35
- brainstate/nn/_linear.py +744 -424
- brainstate/nn/_linear_test.py +475 -107
- brainstate/nn/_metrics.py +1070 -0
- brainstate/nn/_metrics_test.py +611 -0
- brainstate/nn/_module.py +384 -377
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_normalizations.py +1334 -975
- brainstate/nn/_normalizations_test.py +699 -73
- brainstate/nn/_paddings.py +1020 -0
- brainstate/nn/_paddings_test.py +723 -0
- brainstate/nn/_poolings.py +2239 -1177
- brainstate/nn/_poolings_test.py +953 -217
- brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
- brainstate/nn/_rnns_test.py +593 -0
- brainstate/nn/_utils.py +216 -89
- brainstate/nn/_utils_test.py +402 -0
- brainstate/{init/_random_inits.py → nn/init.py} +809 -553
- brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
- brainstate/random/__init__.py +270 -24
- brainstate/random/_rand_funs.py +3938 -3616
- brainstate/random/_rand_funs_test.py +640 -567
- brainstate/random/_rand_seed.py +675 -210
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1617 -1409
- brainstate/random/_rand_state_test.py +551 -0
- brainstate/transform/__init__.py +59 -0
- brainstate/transform/_ad_checkpoint.py +176 -0
- brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
- brainstate/{augment → transform}/_autograd.py +1025 -778
- brainstate/{augment → transform}/_autograd_test.py +1289 -1289
- brainstate/transform/_conditions.py +316 -0
- brainstate/{compile → transform}/_conditions_test.py +220 -220
- brainstate/{compile → transform}/_error_if.py +94 -92
- brainstate/{compile → transform}/_error_if_test.py +52 -52
- brainstate/transform/_eval_shape.py +145 -0
- brainstate/{augment → transform}/_eval_shape_test.py +38 -38
- brainstate/{compile → transform}/_jit.py +399 -346
- brainstate/{compile → transform}/_jit_test.py +143 -143
- brainstate/{compile → transform}/_loop_collect_return.py +675 -536
- brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
- brainstate/{compile → transform}/_loop_no_collection.py +283 -184
- brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
- brainstate/transform/_make_jaxpr.py +2016 -0
- brainstate/transform/_make_jaxpr_test.py +1510 -0
- brainstate/transform/_mapping.py +529 -0
- brainstate/transform/_mapping_test.py +194 -0
- brainstate/{compile → transform}/_progress_bar.py +255 -202
- brainstate/{augment → transform}/_random.py +171 -151
- brainstate/{compile → transform}/_unvmap.py +256 -159
- brainstate/transform/_util.py +286 -0
- brainstate/typing.py +837 -304
- brainstate/typing_test.py +780 -0
- brainstate/util/__init__.py +27 -50
- brainstate/util/_others.py +1025 -0
- brainstate/util/_others_test.py +962 -0
- brainstate/util/_pretty_pytree.py +1301 -0
- brainstate/util/_pretty_pytree_test.py +675 -0
- brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
- brainstate/util/_pretty_repr_test.py +696 -0
- brainstate/util/filter.py +945 -469
- brainstate/util/filter_test.py +912 -0
- brainstate/util/struct.py +910 -523
- brainstate/util/struct_test.py +602 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
- brainstate-0.2.1.dist-info/RECORD +111 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
- brainstate/augment/__init__.py +0 -30
- brainstate/augment/_eval_shape.py +0 -99
- brainstate/augment/_mapping.py +0 -1060
- brainstate/augment/_mapping_test.py +0 -597
- brainstate/compile/__init__.py +0 -38
- brainstate/compile/_ad_checkpoint.py +0 -204
- brainstate/compile/_conditions.py +0 -256
- brainstate/compile/_make_jaxpr.py +0 -888
- brainstate/compile/_make_jaxpr_test.py +0 -156
- brainstate/compile/_util.py +0 -147
- brainstate/functional/__init__.py +0 -27
- brainstate/graph/_graph_node.py +0 -244
- brainstate/graph/_graph_node_test.py +0 -73
- brainstate/graph/_graph_operation_test.py +0 -563
- brainstate/init/__init__.py +0 -26
- brainstate/init/_base.py +0 -52
- brainstate/init/_generic.py +0 -244
- brainstate/init/_regular_inits.py +0 -105
- brainstate/init/_regular_inits_test.py +0 -50
- brainstate/nn/_inputs.py +0 -608
- brainstate/nn/_ltp.py +0 -28
- brainstate/nn/_neuron.py +0 -705
- brainstate/nn/_neuron_test.py +0 -161
- brainstate/nn/_others.py +0 -46
- brainstate/nn/_projection.py +0 -486
- brainstate/nn/_rate_rnns_test.py +0 -63
- brainstate/nn/_readout.py +0 -209
- brainstate/nn/_readout_test.py +0 -53
- brainstate/nn/_stp.py +0 -236
- brainstate/nn/_synapse.py +0 -505
- brainstate/nn/_synapse_test.py +0 -131
- brainstate/nn/_synaptic_projection.py +0 -423
- brainstate/nn/_synouts.py +0 -162
- brainstate/nn/_synouts_test.py +0 -57
- brainstate/nn/metrics.py +0 -388
- brainstate/optim/__init__.py +0 -38
- brainstate/optim/_base.py +0 -64
- brainstate/optim/_lr_scheduler.py +0 -448
- brainstate/optim/_lr_scheduler_test.py +0 -50
- brainstate/optim/_optax_optimizer.py +0 -152
- brainstate/optim/_optax_optimizer_test.py +0 -53
- brainstate/optim/_sgd_optimizer.py +0 -1104
- brainstate/random/_random_for_unit.py +0 -52
- brainstate/surrogate.py +0 -1957
- brainstate/transform.py +0 -23
- brainstate/util/caller.py +0 -98
- brainstate/util/others.py +0 -540
- brainstate/util/pretty_pytree.py +0 -945
- brainstate/util/pretty_pytree_test.py +0 -159
- brainstate/util/pretty_table.py +0 -2954
- brainstate/util/scaling.py +0 -258
- brainstate-0.1.10.dist-info/RECORD +0 -130
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
- {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
brainstate/nn/_normalizations.py
CHANGED
@@ -1,975 +1,1334 @@
|
|
1
|
-
# Copyright 2024
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
# -*- coding: utf-8 -*-
|
17
|
-
|
18
|
-
from typing import Callable, Union, Sequence, Optional, Any
|
19
|
-
|
20
|
-
import
|
21
|
-
import jax
|
22
|
-
|
23
|
-
|
24
|
-
from brainstate import environ
|
25
|
-
from brainstate._state import ParamState, BatchState
|
26
|
-
from brainstate.typing import DTypeLike, ArrayLike, Size, Axes
|
27
|
-
from .
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
'
|
32
|
-
'
|
33
|
-
'
|
34
|
-
'
|
35
|
-
'
|
36
|
-
'
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
The
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
)
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
axes
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
|
470
|
-
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
|
508
|
-
|
509
|
-
|
510
|
-
|
511
|
-
|
512
|
-
|
513
|
-
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
|
524
|
-
|
525
|
-
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
532
|
-
|
533
|
-
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
|
539
|
-
|
540
|
-
|
541
|
-
|
542
|
-
|
543
|
-
|
544
|
-
|
545
|
-
|
546
|
-
|
547
|
-
|
548
|
-
|
549
|
-
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
|
556
|
-
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
|
572
|
-
|
573
|
-
|
574
|
-
|
575
|
-
|
576
|
-
|
577
|
-
|
578
|
-
|
579
|
-
|
580
|
-
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
597
|
-
|
598
|
-
|
599
|
-
|
600
|
-
|
601
|
-
|
602
|
-
|
603
|
-
|
604
|
-
|
605
|
-
|
606
|
-
|
607
|
-
|
608
|
-
|
609
|
-
|
610
|
-
|
611
|
-
|
612
|
-
|
613
|
-
|
614
|
-
|
615
|
-
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
|
645
|
-
|
646
|
-
|
647
|
-
|
648
|
-
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
|
662
|
-
|
663
|
-
|
664
|
-
|
665
|
-
|
666
|
-
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
675
|
-
|
676
|
-
|
677
|
-
|
678
|
-
|
679
|
-
|
680
|
-
|
681
|
-
|
682
|
-
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
705
|
-
|
706
|
-
|
707
|
-
|
708
|
-
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
|
713
|
-
|
714
|
-
|
715
|
-
|
716
|
-
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
723
|
-
|
724
|
-
|
725
|
-
|
726
|
-
|
727
|
-
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
736
|
-
|
737
|
-
|
738
|
-
|
739
|
-
|
740
|
-
|
741
|
-
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
|
761
|
-
|
762
|
-
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
768
|
-
|
769
|
-
|
770
|
-
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
|
778
|
-
|
779
|
-
|
780
|
-
|
781
|
-
|
782
|
-
class
|
783
|
-
"""
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
|
796
|
-
|
797
|
-
|
798
|
-
|
799
|
-
|
800
|
-
|
801
|
-
|
802
|
-
|
803
|
-
|
804
|
-
|
805
|
-
|
806
|
-
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
|
817
|
-
|
818
|
-
|
819
|
-
|
820
|
-
|
821
|
-
|
822
|
-
|
823
|
-
|
824
|
-
|
825
|
-
|
826
|
-
|
827
|
-
|
828
|
-
|
829
|
-
|
830
|
-
|
831
|
-
|
832
|
-
|
833
|
-
|
834
|
-
|
835
|
-
|
836
|
-
|
837
|
-
|
838
|
-
|
839
|
-
|
840
|
-
|
841
|
-
|
842
|
-
|
843
|
-
|
844
|
-
|
845
|
-
|
846
|
-
|
847
|
-
|
848
|
-
|
849
|
-
|
850
|
-
|
851
|
-
|
852
|
-
|
853
|
-
|
854
|
-
|
855
|
-
|
856
|
-
|
857
|
-
|
858
|
-
|
859
|
-
|
860
|
-
|
861
|
-
|
862
|
-
|
863
|
-
|
864
|
-
|
865
|
-
|
866
|
-
|
867
|
-
|
868
|
-
|
869
|
-
|
870
|
-
|
871
|
-
|
872
|
-
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
|
877
|
-
|
878
|
-
)
|
879
|
-
|
880
|
-
|
881
|
-
|
882
|
-
|
883
|
-
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
890
|
-
|
891
|
-
|
892
|
-
|
893
|
-
|
894
|
-
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
|
899
|
-
|
900
|
-
|
901
|
-
|
902
|
-
|
903
|
-
|
904
|
-
|
905
|
-
|
906
|
-
|
907
|
-
|
908
|
-
|
909
|
-
|
910
|
-
|
911
|
-
|
912
|
-
|
913
|
-
|
914
|
-
|
915
|
-
|
916
|
-
|
917
|
-
|
918
|
-
|
919
|
-
|
920
|
-
|
921
|
-
|
922
|
-
|
923
|
-
|
924
|
-
|
925
|
-
|
926
|
-
|
927
|
-
|
928
|
-
|
929
|
-
|
930
|
-
|
931
|
-
|
932
|
-
|
933
|
-
|
934
|
-
|
935
|
-
|
936
|
-
|
937
|
-
|
938
|
-
|
939
|
-
|
940
|
-
|
941
|
-
|
942
|
-
|
943
|
-
|
944
|
-
|
945
|
-
|
946
|
-
|
947
|
-
|
948
|
-
|
949
|
-
|
950
|
-
|
951
|
-
|
952
|
-
|
953
|
-
|
954
|
-
|
955
|
-
|
956
|
-
|
957
|
-
|
958
|
-
|
959
|
-
|
960
|
-
|
961
|
-
|
962
|
-
|
963
|
-
|
964
|
-
|
965
|
-
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
970
|
-
|
971
|
-
|
972
|
-
|
973
|
-
|
974
|
-
|
975
|
-
|
1
|
+
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
from typing import Callable, Union, Sequence, Optional, Any
|
19
|
+
|
20
|
+
import brainunit as u
|
21
|
+
import jax
|
22
|
+
import jax.numpy as jnp
|
23
|
+
|
24
|
+
from brainstate import environ
|
25
|
+
from brainstate._state import ParamState, BatchState
|
26
|
+
from brainstate.typing import DTypeLike, ArrayLike, Size, Axes
|
27
|
+
from . import init as init
|
28
|
+
from ._module import Module
|
29
|
+
|
30
|
+
__all__ = [
|
31
|
+
'weight_standardization',
|
32
|
+
'BatchNorm0d',
|
33
|
+
'BatchNorm1d',
|
34
|
+
'BatchNorm2d',
|
35
|
+
'BatchNorm3d',
|
36
|
+
'LayerNorm',
|
37
|
+
'RMSNorm',
|
38
|
+
'GroupNorm',
|
39
|
+
]
|
40
|
+
|
41
|
+
|
42
|
+
def weight_standardization(
|
43
|
+
w: ArrayLike,
|
44
|
+
eps: float = 1e-4,
|
45
|
+
gain: Optional[jax.Array] = None,
|
46
|
+
out_axis: int = -1,
|
47
|
+
) -> Union[jax.Array, u.Quantity]:
|
48
|
+
"""
|
49
|
+
Scaled Weight Standardization.
|
50
|
+
|
51
|
+
Applies weight standardization to improve training stability, as described in
|
52
|
+
"Micro-Batch Training with Batch-Channel Normalization and Weight Standardization" [1]_.
|
53
|
+
|
54
|
+
Parameters
|
55
|
+
----------
|
56
|
+
w : ArrayLike
|
57
|
+
The weight tensor to be standardized.
|
58
|
+
eps : float, optional
|
59
|
+
A small value added to variance to avoid division by zero. Default is 1e-4.
|
60
|
+
gain : jax.Array, optional
|
61
|
+
Optional gain parameter to scale the standardized weights. Default is None.
|
62
|
+
out_axis : int, optional
|
63
|
+
The output axis of the weight tensor. Default is -1.
|
64
|
+
|
65
|
+
Returns
|
66
|
+
-------
|
67
|
+
jax.Array or u.Quantity
|
68
|
+
The standardized weight tensor with the same shape as input.
|
69
|
+
|
70
|
+
References
|
71
|
+
----------
|
72
|
+
.. [1] Qiao, S., Wang, H., Liu, C., Shen, W., & Yuille, A. (2019).
|
73
|
+
Micro-Batch Training with Batch-Channel Normalization and Weight Standardization.
|
74
|
+
arXiv preprint arXiv:1903.10520.
|
75
|
+
|
76
|
+
Examples
|
77
|
+
--------
|
78
|
+
.. code-block:: python
|
79
|
+
|
80
|
+
>>> import brainstate as bst
|
81
|
+
>>> import jax.numpy as jnp
|
82
|
+
>>>
|
83
|
+
>>> # Standardize a weight matrix
|
84
|
+
>>> w = jnp.ones((3, 4))
|
85
|
+
>>> w_std = bst.nn.weight_standardization(w)
|
86
|
+
>>>
|
87
|
+
>>> # With custom gain
|
88
|
+
>>> gain = jnp.ones((4,))
|
89
|
+
>>> w_std = bst.nn.weight_standardization(w, gain=gain)
|
90
|
+
"""
|
91
|
+
w = u.maybe_custom_array(w)
|
92
|
+
if out_axis < 0:
|
93
|
+
out_axis = w.ndim + out_axis
|
94
|
+
fan_in = 1 # get the fan-in of the weight tensor
|
95
|
+
axes = [] # get the axes of the weight tensor
|
96
|
+
for i in range(w.ndim):
|
97
|
+
if i != out_axis:
|
98
|
+
fan_in *= w.shape[i]
|
99
|
+
axes.append(i)
|
100
|
+
# normalize the weight
|
101
|
+
mean = u.math.mean(w, axis=axes, keepdims=True)
|
102
|
+
var = u.math.var(w, axis=axes, keepdims=True)
|
103
|
+
|
104
|
+
temp = u.math.maximum(var * fan_in, eps)
|
105
|
+
if isinstance(temp, u.Quantity):
|
106
|
+
unit = temp.unit
|
107
|
+
temp = temp.mantissa
|
108
|
+
if unit.is_unitless:
|
109
|
+
scale = jax.lax.rsqrt(temp)
|
110
|
+
else:
|
111
|
+
scale = u.Quantity(jax.lax.rsqrt(temp), unit=1 / unit ** 0.5)
|
112
|
+
else:
|
113
|
+
scale = jax.lax.rsqrt(temp)
|
114
|
+
if gain is not None:
|
115
|
+
scale = gain * scale
|
116
|
+
shift = mean * scale
|
117
|
+
return w * scale - shift
|
118
|
+
|
119
|
+
|
120
|
+
def canonicalize_dtype(
|
121
|
+
*args,
|
122
|
+
dtype: jax.typing.DTypeLike | None = None,
|
123
|
+
inexact: bool = True
|
124
|
+
) -> jax.typing.DTypeLike:
|
125
|
+
"""
|
126
|
+
Canonicalize an optional dtype to the definitive dtype.
|
127
|
+
|
128
|
+
If the ``dtype`` is None, this function will infer the dtype from the input
|
129
|
+
arguments using ``jnp.result_type``. If it is not None, it will be returned
|
130
|
+
unmodified or an exception is raised if the dtype is invalid.
|
131
|
+
|
132
|
+
Parameters
|
133
|
+
----------
|
134
|
+
*args : ArrayLike
|
135
|
+
JAX array compatible values. None values are ignored.
|
136
|
+
dtype : jax.typing.DTypeLike, optional
|
137
|
+
Optional dtype override. If specified, the arguments are cast to the
|
138
|
+
specified dtype and dtype inference is disabled. Default is None.
|
139
|
+
inexact : bool, optional
|
140
|
+
When True, the output dtype must be a subtype of ``jnp.inexact``.
|
141
|
+
Inexact dtypes are real or complex floating points. This is useful
|
142
|
+
when applying operations that don't work directly on integers like
|
143
|
+
taking a mean. Default is True.
|
144
|
+
|
145
|
+
Returns
|
146
|
+
-------
|
147
|
+
jax.typing.DTypeLike
|
148
|
+
The dtype that ``*args`` should be cast to.
|
149
|
+
|
150
|
+
Raises
|
151
|
+
------
|
152
|
+
ValueError
|
153
|
+
If ``inexact=True`` and the resulting dtype is not an inexact type.
|
154
|
+
|
155
|
+
Examples
|
156
|
+
--------
|
157
|
+
.. code-block:: python
|
158
|
+
|
159
|
+
>>> import jax.numpy as jnp
|
160
|
+
>>>
|
161
|
+
>>> # Infer dtype from arguments
|
162
|
+
>>> x = jnp.array([1, 2, 3])
|
163
|
+
>>> dtype = canonicalize_dtype(x)
|
164
|
+
>>>
|
165
|
+
>>> # Specify explicit dtype
|
166
|
+
>>> dtype = canonicalize_dtype(x, dtype=jnp.float64)
|
167
|
+
"""
|
168
|
+
if dtype is None:
|
169
|
+
args_filtered = [jnp.asarray(x) for x in args if x is not None]
|
170
|
+
dtype = jnp.result_type(*args_filtered)
|
171
|
+
if inexact and not jnp.issubdtype(dtype, jnp.inexact):
|
172
|
+
dtype = jnp.promote_types(jnp.float32, dtype)
|
173
|
+
if inexact and not jnp.issubdtype(dtype, jnp.inexact):
|
174
|
+
raise ValueError(f'Dtype must be inexact: {dtype}')
|
175
|
+
return dtype
|
176
|
+
|
177
|
+
|
178
|
+
def _canonicalize_axes(ndim: int, feature_axes: Sequence[int]):
|
179
|
+
axes = []
|
180
|
+
for axis in feature_axes:
|
181
|
+
if axis < 0:
|
182
|
+
axis += ndim
|
183
|
+
if axis < 0 or axis >= ndim:
|
184
|
+
raise ValueError(f'Invalid axis {axis} for {ndim}D input')
|
185
|
+
axes.append(axis)
|
186
|
+
return tuple(axes)
|
187
|
+
|
188
|
+
|
189
|
+
def _abs_sq(x):
|
190
|
+
"""Computes the elementwise square of the absolute value |x|^2."""
|
191
|
+
if jnp.iscomplexobj(x):
|
192
|
+
return jax.lax.square(jax.lax.real(x)) + jax.lax.square(jax.lax.imag(x))
|
193
|
+
else:
|
194
|
+
return jax.lax.square(x)
|
195
|
+
|
196
|
+
|
197
|
+
class NormalizationParamState(ParamState):
|
198
|
+
# This is a dummy class to be used as a compatibility
|
199
|
+
# usage of `ETraceParam` for the layers in "brainetrace"
|
200
|
+
def execute(self, x):
|
201
|
+
param = self.value
|
202
|
+
if 'scale' in param:
|
203
|
+
x = x * param['scale']
|
204
|
+
if 'bias' in param:
|
205
|
+
x = x + param['bias']
|
206
|
+
return x
|
207
|
+
|
208
|
+
|
209
|
+
def _compute_stats(
|
210
|
+
x: ArrayLike,
|
211
|
+
axes: Sequence[int],
|
212
|
+
dtype: DTypeLike,
|
213
|
+
axis_name: Optional[str] = None,
|
214
|
+
axis_index_groups: Optional[Sequence[int]] = None,
|
215
|
+
use_mean: bool = True,
|
216
|
+
use_fast_variance: bool = True,
|
217
|
+
mask: Optional[jax.Array] = None,
|
218
|
+
):
|
219
|
+
"""
|
220
|
+
Compute mean and variance statistics for normalization.
|
221
|
+
|
222
|
+
This implementation includes several optimizations:
|
223
|
+
|
224
|
+
- Computes in float32 precision for stability in half precision training.
|
225
|
+
- If ``use_fast_variance`` is True, uses the formula Var = E[|x|^2] - |E[x]|^2
|
226
|
+
instead of Var = E[|x - E[x]|^2] in a single XLA fusion.
|
227
|
+
- Clips negative variances to zero to avoid downstream NaNs from roundoff errors.
|
228
|
+
- Supports averaging across parallel axes and subgroups with a single
|
229
|
+
``lax.pmean`` call to reduce latency.
|
230
|
+
|
231
|
+
Parameters
|
232
|
+
----------
|
233
|
+
x : ArrayLike
|
234
|
+
Input array.
|
235
|
+
axes : Sequence[int]
|
236
|
+
The axes in ``x`` to compute mean and variance statistics for.
|
237
|
+
dtype : DTypeLike
|
238
|
+
Optional dtype specifying the minimal precision. Statistics are always
|
239
|
+
at least float32 for stability. If None, uses the dtype of x.
|
240
|
+
axis_name : str, optional
|
241
|
+
Optional name for the pmapped axis to compute mean over. Only used for
|
242
|
+
pmap and shard map. For SPMD jit, axes should be correctly annotated
|
243
|
+
and XLA:SPMD will insert necessary collectives. Default is None.
|
244
|
+
axis_index_groups : Sequence[int], optional
|
245
|
+
Optional axis indices for grouped reductions. Default is None.
|
246
|
+
use_mean : bool, optional
|
247
|
+
If True, calculate the mean from the input and use it when computing
|
248
|
+
the variance. If False, set the mean to zero and compute the variance
|
249
|
+
without subtracting the mean. Default is True.
|
250
|
+
use_fast_variance : bool, optional
|
251
|
+
If True, use a faster but less numerically stable calculation for the
|
252
|
+
variance. Default is True.
|
253
|
+
mask : jax.Array, optional
|
254
|
+
Binary array of shape broadcastable to ``x``, indicating the positions
|
255
|
+
for which the mean and variance should be computed. Default is None.
|
256
|
+
|
257
|
+
Returns
|
258
|
+
-------
|
259
|
+
tuple of jax.Array
|
260
|
+
A pair ``(mean, var)`` containing the computed mean and variance.
|
261
|
+
"""
|
262
|
+
if dtype is None:
|
263
|
+
dtype = jax.numpy.result_type(x)
|
264
|
+
# promote x to at least float32, this avoids half precision computation
|
265
|
+
# but preserves double or complex floating points
|
266
|
+
dtype = jax.numpy.promote_types(dtype, jnp.float32)
|
267
|
+
x = jnp.asarray(x, dtype)
|
268
|
+
axes = _canonicalize_axes(x.ndim, axes)
|
269
|
+
|
270
|
+
def maybe_distributed_mean(*xs, mask=None):
|
271
|
+
mus = tuple(x.mean(axes, where=mask) for x in xs)
|
272
|
+
if axis_name is None:
|
273
|
+
return mus if len(xs) > 1 else mus[0]
|
274
|
+
else:
|
275
|
+
# In the distributed case we stack multiple arrays to speed comms.
|
276
|
+
if len(xs) > 1:
|
277
|
+
reduced_mus = jax.lax.pmean(
|
278
|
+
jnp.stack(mus, axis=0),
|
279
|
+
axis_name,
|
280
|
+
axis_index_groups=axis_index_groups,
|
281
|
+
)
|
282
|
+
return tuple(reduced_mus[i] for i in range(len(xs)))
|
283
|
+
else:
|
284
|
+
return jax.lax.pmean(
|
285
|
+
mus[0],
|
286
|
+
axis_name,
|
287
|
+
axis_index_groups=axis_index_groups
|
288
|
+
)
|
289
|
+
|
290
|
+
if use_mean:
|
291
|
+
if use_fast_variance:
|
292
|
+
mu, mu2 = maybe_distributed_mean(x, _abs_sq(x), mask=mask)
|
293
|
+
# mean2 - _abs_sq(mean) is not guaranteed to be non-negative due
|
294
|
+
# to floating point round-off errors.
|
295
|
+
var = jnp.maximum(0.0, mu2 - _abs_sq(mu))
|
296
|
+
else:
|
297
|
+
mu = maybe_distributed_mean(x, mask=mask)
|
298
|
+
var = maybe_distributed_mean(_abs_sq(x - jnp.expand_dims(mu, axes)), mask=mask)
|
299
|
+
else:
|
300
|
+
var = maybe_distributed_mean(_abs_sq(x), mask=mask)
|
301
|
+
mu = jnp.zeros_like(var)
|
302
|
+
return mu, var
|
303
|
+
|
304
|
+
|
305
|
+
def _normalize(
|
306
|
+
x: ArrayLike,
|
307
|
+
mean: Optional[ArrayLike],
|
308
|
+
var: Optional[ArrayLike],
|
309
|
+
weights: Optional[NormalizationParamState],
|
310
|
+
reduction_axes: Axes,
|
311
|
+
feature_axes: Axes,
|
312
|
+
dtype: DTypeLike,
|
313
|
+
epsilon: jax.typing.ArrayLike,
|
314
|
+
):
|
315
|
+
"""
|
316
|
+
Normalize the input and optionally apply learned scale and bias.
|
317
|
+
|
318
|
+
Parameters
|
319
|
+
----------
|
320
|
+
x : ArrayLike
|
321
|
+
The input array.
|
322
|
+
mean : ArrayLike, optional
|
323
|
+
Mean to use for normalization. If None, normalization is skipped.
|
324
|
+
var : ArrayLike, optional
|
325
|
+
Variance to use for normalization. If None, normalization is skipped.
|
326
|
+
weights : NormalizationParamState, optional
|
327
|
+
The scale and bias parameters. If None, no affine transformation is applied.
|
328
|
+
reduction_axes : Axes
|
329
|
+
The axes in ``x`` to reduce.
|
330
|
+
feature_axes : Axes
|
331
|
+
The feature axes to apply the scale and bias.
|
332
|
+
dtype : DTypeLike
|
333
|
+
The dtype of the result. If None, inferred from input and parameters.
|
334
|
+
epsilon : jax.typing.ArrayLike
|
335
|
+
A small value added to variance to avoid division by zero.
|
336
|
+
|
337
|
+
Returns
|
338
|
+
-------
|
339
|
+
jax.Array
|
340
|
+
The normalized input array.
|
341
|
+
"""
|
342
|
+
if mean is not None:
|
343
|
+
assert var is not None, 'mean and val must be both None or not None.'
|
344
|
+
reduction_axes = _canonicalize_axes(x.ndim, reduction_axes)
|
345
|
+
feature_axes = _canonicalize_axes(x.ndim, feature_axes)
|
346
|
+
stats_shape = list(x.shape)
|
347
|
+
for axis in reduction_axes:
|
348
|
+
stats_shape[axis] = 1
|
349
|
+
mean = mean.reshape(stats_shape)
|
350
|
+
var = var.reshape(stats_shape)
|
351
|
+
feature_shape = [1] * x.ndim
|
352
|
+
for ax in feature_axes:
|
353
|
+
feature_shape[ax] = x.shape[ax]
|
354
|
+
y = x - mean
|
355
|
+
mul = jax.lax.rsqrt(var + epsilon)
|
356
|
+
y = y * mul
|
357
|
+
if weights is not None:
|
358
|
+
y = weights.execute(y)
|
359
|
+
dtype = canonicalize_dtype(x, *jax.tree.leaves(weights.value), dtype=dtype)
|
360
|
+
else:
|
361
|
+
assert var is None, 'mean and val must be both None or not None.'
|
362
|
+
assert weights is None, 'scale and bias are not supported without mean and val'
|
363
|
+
y = x
|
364
|
+
return jnp.asarray(y, dtype)
|
365
|
+
|
366
|
+
|
367
|
+
class _BatchNorm(Module):
|
368
|
+
__module__ = 'brainstate.nn'
|
369
|
+
num_spatial_dims: int
|
370
|
+
|
371
|
+
def __init__(
|
372
|
+
self,
|
373
|
+
in_size: Size,
|
374
|
+
feature_axis: Axes = -1,
|
375
|
+
*,
|
376
|
+
track_running_stats: bool = True,
|
377
|
+
epsilon: float = 1e-5,
|
378
|
+
momentum: float = 0.99,
|
379
|
+
affine: bool = True,
|
380
|
+
bias_initializer: Union[ArrayLike, Callable] = init.Constant(0.),
|
381
|
+
scale_initializer: Union[ArrayLike, Callable] = init.Constant(1.),
|
382
|
+
axis_name: Optional[Union[str, Sequence[str]]] = None,
|
383
|
+
axis_index_groups: Optional[Sequence[Sequence[int]]] = None,
|
384
|
+
use_fast_variance: bool = True,
|
385
|
+
name: Optional[str] = None,
|
386
|
+
dtype: Any = None,
|
387
|
+
param_type: type = NormalizationParamState,
|
388
|
+
mean_type: type = BatchState,
|
389
|
+
):
|
390
|
+
super().__init__(name=name)
|
391
|
+
|
392
|
+
# parameters
|
393
|
+
self.in_size = in_size
|
394
|
+
self.out_size = in_size
|
395
|
+
self.affine = affine
|
396
|
+
self.bias_initializer = bias_initializer
|
397
|
+
self.scale_initializer = scale_initializer
|
398
|
+
self.dtype = dtype or environ.dftype()
|
399
|
+
self.track_running_stats = track_running_stats
|
400
|
+
self.momentum = jnp.asarray(momentum, dtype=self.dtype)
|
401
|
+
self.epsilon = jnp.asarray(epsilon, dtype=self.dtype)
|
402
|
+
self.use_fast_variance = use_fast_variance
|
403
|
+
|
404
|
+
# parameters about axis
|
405
|
+
feature_axis = (feature_axis,) if isinstance(feature_axis, int) else feature_axis
|
406
|
+
self.feature_axes = _canonicalize_axes(len(self.in_size), feature_axis)
|
407
|
+
self.axis_name = axis_name
|
408
|
+
self.axis_index_groups = axis_index_groups
|
409
|
+
|
410
|
+
# variables
|
411
|
+
feature_shape = tuple([(ax if i in self.feature_axes else 1)
|
412
|
+
for i, ax in enumerate(self.in_size)])
|
413
|
+
if self.track_running_stats:
|
414
|
+
self.running_mean = mean_type(jnp.zeros(feature_shape, dtype=self.dtype))
|
415
|
+
self.running_var = mean_type(jnp.ones(feature_shape, dtype=self.dtype))
|
416
|
+
else:
|
417
|
+
self.running_mean = None
|
418
|
+
self.running_var = None
|
419
|
+
|
420
|
+
# parameters
|
421
|
+
if self.affine:
|
422
|
+
assert track_running_stats, "Affine parameters are not needed when track_running_stats is False."
|
423
|
+
bias = init.param(self.bias_initializer, feature_shape)
|
424
|
+
scale = init.param(self.scale_initializer, feature_shape)
|
425
|
+
self.weight = param_type(dict(bias=bias, scale=scale))
|
426
|
+
else:
|
427
|
+
self.weight = None
|
428
|
+
|
429
|
+
def update(self, x, mask: Optional[jax.Array] = None):
|
430
|
+
# input shape and batch mode or not
|
431
|
+
if x.ndim == self.num_spatial_dims + 2:
|
432
|
+
x_shape = x.shape[1:]
|
433
|
+
batch = True
|
434
|
+
elif x.ndim == self.num_spatial_dims + 1:
|
435
|
+
x_shape = x.shape
|
436
|
+
batch = False
|
437
|
+
else:
|
438
|
+
raise ValueError(f"expected {self.num_spatial_dims + 2}D (with batch) or "
|
439
|
+
f"{self.num_spatial_dims + 1}D (without batch) input (got {x.ndim}D input, {x.shape})")
|
440
|
+
if self.in_size != x_shape:
|
441
|
+
raise ValueError(f"The expected input shape is {self.in_size}, while we got {x_shape}.")
|
442
|
+
|
443
|
+
# reduce the feature axis
|
444
|
+
if batch:
|
445
|
+
reduction_axes = tuple(i for i in range(x.ndim) if (i - 1) not in self.feature_axes)
|
446
|
+
else:
|
447
|
+
reduction_axes = tuple(i for i in range(x.ndim) if i not in self.feature_axes)
|
448
|
+
|
449
|
+
# fitting phase
|
450
|
+
fit_phase = environ.get('fit', desc='Whether this is a fitting process. Bool.')
|
451
|
+
|
452
|
+
# compute the running mean and variance
|
453
|
+
if self.track_running_stats:
|
454
|
+
if fit_phase:
|
455
|
+
mean, var = _compute_stats(
|
456
|
+
x,
|
457
|
+
reduction_axes,
|
458
|
+
dtype=self.dtype,
|
459
|
+
axis_name=self.axis_name,
|
460
|
+
axis_index_groups=self.axis_index_groups,
|
461
|
+
use_fast_variance=self.use_fast_variance,
|
462
|
+
mask=mask,
|
463
|
+
)
|
464
|
+
self.running_mean.value = self.momentum * self.running_mean.value + (1 - self.momentum) * mean
|
465
|
+
self.running_var.value = self.momentum * self.running_var.value + (1 - self.momentum) * var
|
466
|
+
else:
|
467
|
+
mean = self.running_mean.value
|
468
|
+
var = self.running_var.value
|
469
|
+
else:
|
470
|
+
mean, var = None, None
|
471
|
+
|
472
|
+
# normalize
|
473
|
+
return _normalize(
|
474
|
+
x,
|
475
|
+
mean=mean,
|
476
|
+
var=var,
|
477
|
+
weights=self.weight,
|
478
|
+
reduction_axes=reduction_axes,
|
479
|
+
feature_axes=self.feature_axes,
|
480
|
+
dtype=self.dtype,
|
481
|
+
epsilon=self.epsilon
|
482
|
+
)
|
483
|
+
|
484
|
+
|
485
|
+
class BatchNorm0d(_BatchNorm):
|
486
|
+
"""
|
487
|
+
0-D batch normalization.
|
488
|
+
|
489
|
+
Normalizes a batch of 0-D data (vectors) by fixing the mean and variance
|
490
|
+
of inputs on each feature (channel). This layer aims to reduce the internal
|
491
|
+
covariate shift of data.
|
492
|
+
|
493
|
+
The input data should have shape ``(b, c)``, where ``b`` is the batch dimension
|
494
|
+
and ``c`` is the channel dimension.
|
495
|
+
|
496
|
+
The normalization is performed as:
|
497
|
+
|
498
|
+
.. math::
|
499
|
+
y = \\frac{x - \\mathrm{E}[x]}{\\sqrt{\\operatorname{Var}[x] + \\epsilon}} \\cdot \\gamma + \\beta
|
500
|
+
|
501
|
+
where :math:`\\gamma` and :math:`\\beta` are learnable affine parameters (if ``affine=True``).
|
502
|
+
|
503
|
+
Parameters
|
504
|
+
----------
|
505
|
+
in_size : tuple of int
|
506
|
+
The input shape, without batch dimension.
|
507
|
+
feature_axis : int or tuple of int, optional
|
508
|
+
The feature or non-batch axis of the input. Default is -1.
|
509
|
+
track_running_stats : bool, optional
|
510
|
+
If True, tracks the running mean and variance. If False, uses batch
|
511
|
+
statistics in both training and eval modes. Default is True.
|
512
|
+
epsilon : float, optional
|
513
|
+
A value added to the denominator for numerical stability. Default is 1e-5.
|
514
|
+
momentum : float, optional
|
515
|
+
The momentum value used for the ``running_mean`` and ``running_var``
|
516
|
+
computation. The update rule is:
|
517
|
+
:math:`\\hat{x}_{\\text{new}} = \\text{momentum} \\times \\hat{x} + (1 - \\text{momentum}) \\times x_t`.
|
518
|
+
Default is 0.99.
|
519
|
+
affine : bool, optional
|
520
|
+
If True, this module has learnable affine parameters (scale and bias).
|
521
|
+
Default is True.
|
522
|
+
bias_initializer : ArrayLike or Callable, optional
|
523
|
+
Initializer for the bias (beta) parameter. Default is ``init.Constant(0.)``.
|
524
|
+
scale_initializer : ArrayLike or Callable, optional
|
525
|
+
Initializer for the scale (gamma) parameter. Default is ``init.Constant(1.)``.
|
526
|
+
axis_name : str or sequence of str, optional
|
527
|
+
The axis name(s) for parallel reduction using ``jax.pmap`` or ``jax.vmap``.
|
528
|
+
If specified, batch statistics are calculated across all replicas on the
|
529
|
+
named axes. Default is None.
|
530
|
+
axis_index_groups : sequence of sequence of int, optional
|
531
|
+
Groups of axis indices within the named axis representing subsets of
|
532
|
+
devices to reduce over. For example, ``[[0, 1], [2, 3]]`` would
|
533
|
+
independently batch-normalize over the first two and last two devices.
|
534
|
+
See ``jax.lax.psum`` for more details. Default is None.
|
535
|
+
use_fast_variance : bool, optional
|
536
|
+
If True, use a faster but less numerically stable calculation for
|
537
|
+
the variance. Default is True.
|
538
|
+
|
539
|
+
Notes
|
540
|
+
-----
|
541
|
+
The ``momentum`` parameter is different from the conventional notion of
|
542
|
+
momentum used in optimizers.
|
543
|
+
|
544
|
+
References
|
545
|
+
----------
|
546
|
+
.. [1] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating
|
547
|
+
Deep Network Training by Reducing Internal Covariate Shift.
|
548
|
+
In International Conference on Machine Learning (pp. 448-456).
|
549
|
+
|
550
|
+
Examples
|
551
|
+
--------
|
552
|
+
.. code-block:: python
|
553
|
+
|
554
|
+
>>> import brainstate as bst
|
555
|
+
>>> import jax.numpy as jnp
|
556
|
+
>>>
|
557
|
+
>>> # Create a BatchNorm0d layer
|
558
|
+
>>> layer = bst.nn.BatchNorm0d(in_size=(10,))
|
559
|
+
>>>
|
560
|
+
>>> # Apply normalization to a batch of data
|
561
|
+
>>> x = jnp.ones((32, 10)) # batch_size=32, features=10
|
562
|
+
>>> y = layer(x)
|
563
|
+
>>>
|
564
|
+
>>> # Check output shape
|
565
|
+
>>> print(y.shape)
|
566
|
+
(32, 10)
|
567
|
+
"""
|
568
|
+
__module__ = 'brainstate.nn'
|
569
|
+
num_spatial_dims: int = 0
|
570
|
+
|
571
|
+
|
572
|
+
class BatchNorm1d(_BatchNorm):
|
573
|
+
"""
|
574
|
+
1-D batch normalization.
|
575
|
+
|
576
|
+
Normalizes a batch of 1-D data by fixing the mean and variance of inputs
|
577
|
+
on each feature (channel). This layer aims to reduce the internal covariate
|
578
|
+
shift of data.
|
579
|
+
|
580
|
+
The input data should have shape ``(b, l, c)``, where ``b`` is the batch
|
581
|
+
dimension, ``l`` is the spatial/sequence dimension, and ``c`` is the channel
|
582
|
+
dimension.
|
583
|
+
|
584
|
+
Parameters
|
585
|
+
----------
|
586
|
+
in_size : tuple of int
|
587
|
+
The input shape, without batch dimension. For 1-D data, typically ``(l, c)``.
|
588
|
+
feature_axis : int or tuple of int, optional
|
589
|
+
The feature or non-batch axis of the input. Default is -1.
|
590
|
+
track_running_stats : bool, optional
|
591
|
+
If True, tracks the running mean and variance. If False, uses batch
|
592
|
+
statistics in both training and eval modes. Default is True.
|
593
|
+
epsilon : float, optional
|
594
|
+
A value added to the denominator for numerical stability. Default is 1e-5.
|
595
|
+
momentum : float, optional
|
596
|
+
The momentum value for running statistics computation. Default is 0.99.
|
597
|
+
affine : bool, optional
|
598
|
+
If True, has learnable affine parameters (scale and bias). Default is True.
|
599
|
+
bias_initializer : ArrayLike or Callable, optional
|
600
|
+
Initializer for the bias parameter. Default is ``init.Constant(0.)``.
|
601
|
+
scale_initializer : ArrayLike or Callable, optional
|
602
|
+
Initializer for the scale parameter. Default is ``init.Constant(1.)``.
|
603
|
+
axis_name : str or sequence of str, optional
|
604
|
+
Axis name(s) for parallel reduction. Default is None.
|
605
|
+
axis_index_groups : sequence of sequence of int, optional
|
606
|
+
Groups of axis indices for device-grouped reduction. Default is None.
|
607
|
+
use_fast_variance : bool, optional
|
608
|
+
If True, use faster but less stable variance calculation. Default is True.
|
609
|
+
|
610
|
+
References
|
611
|
+
----------
|
612
|
+
.. [1] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating
|
613
|
+
Deep Network Training by Reducing Internal Covariate Shift.
|
614
|
+
In International Conference on Machine Learning (pp. 448-456).
|
615
|
+
|
616
|
+
See Also
|
617
|
+
--------
|
618
|
+
BatchNorm0d : 0-D batch normalization
|
619
|
+
BatchNorm2d : 2-D batch normalization
|
620
|
+
BatchNorm3d : 3-D batch normalization
|
621
|
+
|
622
|
+
Examples
|
623
|
+
--------
|
624
|
+
.. code-block:: python
|
625
|
+
|
626
|
+
>>> import brainstate as bst
|
627
|
+
>>> import jax.numpy as jnp
|
628
|
+
>>>
|
629
|
+
>>> # Create a BatchNorm1d layer for sequence data
|
630
|
+
>>> layer = bst.nn.BatchNorm1d(in_size=(100, 64)) # length=100, channels=64
|
631
|
+
>>>
|
632
|
+
>>> # Apply normalization
|
633
|
+
>>> x = jnp.ones((8, 100, 64)) # batch_size=8
|
634
|
+
>>> y = layer(x)
|
635
|
+
>>> print(y.shape)
|
636
|
+
(8, 100, 64)
|
637
|
+
"""
|
638
|
+
__module__ = 'brainstate.nn'
|
639
|
+
num_spatial_dims: int = 1
|
640
|
+
|
641
|
+
|
642
|
+
class BatchNorm2d(_BatchNorm):
|
643
|
+
"""
|
644
|
+
2-D batch normalization.
|
645
|
+
|
646
|
+
Normalizes a batch of 2-D data (e.g., images) by fixing the mean and variance
|
647
|
+
of inputs on each feature (channel). This layer aims to reduce the internal
|
648
|
+
covariate shift of data.
|
649
|
+
|
650
|
+
The input data should have shape ``(b, h, w, c)``, where ``b`` is the batch
|
651
|
+
dimension, ``h`` is the height dimension, ``w`` is the width dimension, and
|
652
|
+
``c`` is the channel dimension.
|
653
|
+
|
654
|
+
Parameters
|
655
|
+
----------
|
656
|
+
in_size : tuple of int
|
657
|
+
The input shape, without batch dimension. For 2-D data, typically ``(h, w, c)``.
|
658
|
+
feature_axis : int or tuple of int, optional
|
659
|
+
The feature or non-batch axis of the input. Default is -1.
|
660
|
+
track_running_stats : bool, optional
|
661
|
+
If True, tracks the running mean and variance. If False, uses batch
|
662
|
+
statistics in both training and eval modes. Default is True.
|
663
|
+
epsilon : float, optional
|
664
|
+
A value added to the denominator for numerical stability. Default is 1e-5.
|
665
|
+
momentum : float, optional
|
666
|
+
The momentum value for running statistics computation. Default is 0.99.
|
667
|
+
affine : bool, optional
|
668
|
+
If True, has learnable affine parameters (scale and bias). Default is True.
|
669
|
+
bias_initializer : ArrayLike or Callable, optional
|
670
|
+
Initializer for the bias parameter. Default is ``init.Constant(0.)``.
|
671
|
+
scale_initializer : ArrayLike or Callable, optional
|
672
|
+
Initializer for the scale parameter. Default is ``init.Constant(1.)``.
|
673
|
+
axis_name : str or sequence of str, optional
|
674
|
+
Axis name(s) for parallel reduction. Default is None.
|
675
|
+
axis_index_groups : sequence of sequence of int, optional
|
676
|
+
Groups of axis indices for device-grouped reduction. Default is None.
|
677
|
+
use_fast_variance : bool, optional
|
678
|
+
If True, use faster but less stable variance calculation. Default is True.
|
679
|
+
|
680
|
+
References
|
681
|
+
----------
|
682
|
+
.. [1] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating
|
683
|
+
Deep Network Training by Reducing Internal Covariate Shift.
|
684
|
+
In International Conference on Machine Learning (pp. 448-456).
|
685
|
+
|
686
|
+
See Also
|
687
|
+
--------
|
688
|
+
BatchNorm0d : 0-D batch normalization
|
689
|
+
BatchNorm1d : 1-D batch normalization
|
690
|
+
BatchNorm3d : 3-D batch normalization
|
691
|
+
|
692
|
+
Examples
|
693
|
+
--------
|
694
|
+
.. code-block:: python
|
695
|
+
|
696
|
+
>>> import brainstate as bst
|
697
|
+
>>> import jax.numpy as jnp
|
698
|
+
>>>
|
699
|
+
>>> # Create a BatchNorm2d layer for image data
|
700
|
+
>>> layer = bst.nn.BatchNorm2d(in_size=(28, 28, 3)) # 28x28 RGB images
|
701
|
+
>>>
|
702
|
+
>>> # Apply normalization
|
703
|
+
>>> x = jnp.ones((16, 28, 28, 3)) # batch_size=16
|
704
|
+
>>> y = layer(x)
|
705
|
+
>>> print(y.shape)
|
706
|
+
(16, 28, 28, 3)
|
707
|
+
"""
|
708
|
+
__module__ = 'brainstate.nn'
|
709
|
+
num_spatial_dims: int = 2
|
710
|
+
|
711
|
+
|
712
|
+
class BatchNorm3d(_BatchNorm):
|
713
|
+
"""
|
714
|
+
3-D batch normalization.
|
715
|
+
|
716
|
+
Normalizes a batch of 3-D data (e.g., video or volumetric data) by fixing
|
717
|
+
the mean and variance of inputs on each feature (channel). This layer aims
|
718
|
+
to reduce the internal covariate shift of data.
|
719
|
+
|
720
|
+
The input data should have shape ``(b, h, w, d, c)``, where ``b`` is the
|
721
|
+
batch dimension, ``h`` is the height dimension, ``w`` is the width dimension,
|
722
|
+
``d`` is the depth dimension, and ``c`` is the channel dimension.
|
723
|
+
|
724
|
+
Parameters
|
725
|
+
----------
|
726
|
+
in_size : tuple of int
|
727
|
+
The input shape, without batch dimension. For 3-D data, typically ``(h, w, d, c)``.
|
728
|
+
feature_axis : int or tuple of int, optional
|
729
|
+
The feature or non-batch axis of the input. Default is -1.
|
730
|
+
track_running_stats : bool, optional
|
731
|
+
If True, tracks the running mean and variance. If False, uses batch
|
732
|
+
statistics in both training and eval modes. Default is True.
|
733
|
+
epsilon : float, optional
|
734
|
+
A value added to the denominator for numerical stability. Default is 1e-5.
|
735
|
+
momentum : float, optional
|
736
|
+
The momentum value for running statistics computation. Default is 0.99.
|
737
|
+
affine : bool, optional
|
738
|
+
If True, has learnable affine parameters (scale and bias). Default is True.
|
739
|
+
bias_initializer : ArrayLike or Callable, optional
|
740
|
+
Initializer for the bias parameter. Default is ``init.Constant(0.)``.
|
741
|
+
scale_initializer : ArrayLike or Callable, optional
|
742
|
+
Initializer for the scale parameter. Default is ``init.Constant(1.)``.
|
743
|
+
axis_name : str or sequence of str, optional
|
744
|
+
Axis name(s) for parallel reduction. Default is None.
|
745
|
+
axis_index_groups : sequence of sequence of int, optional
|
746
|
+
Groups of axis indices for device-grouped reduction. Default is None.
|
747
|
+
use_fast_variance : bool, optional
|
748
|
+
If True, use faster but less stable variance calculation. Default is True.
|
749
|
+
|
750
|
+
References
|
751
|
+
----------
|
752
|
+
.. [1] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating
|
753
|
+
Deep Network Training by Reducing Internal Covariate Shift.
|
754
|
+
In International Conference on Machine Learning (pp. 448-456).
|
755
|
+
|
756
|
+
See Also
|
757
|
+
--------
|
758
|
+
BatchNorm0d : 0-D batch normalization
|
759
|
+
BatchNorm1d : 1-D batch normalization
|
760
|
+
BatchNorm2d : 2-D batch normalization
|
761
|
+
|
762
|
+
Examples
|
763
|
+
--------
|
764
|
+
.. code-block:: python
|
765
|
+
|
766
|
+
>>> import brainstate as bst
|
767
|
+
>>> import jax.numpy as jnp
|
768
|
+
>>>
|
769
|
+
>>> # Create a BatchNorm3d layer for volumetric data
|
770
|
+
>>> layer = bst.nn.BatchNorm3d(in_size=(32, 32, 32, 1)) # 32x32x32 volumes
|
771
|
+
>>>
|
772
|
+
>>> # Apply normalization
|
773
|
+
>>> x = jnp.ones((4, 32, 32, 32, 1)) # batch_size=4
|
774
|
+
>>> y = layer(x)
|
775
|
+
>>> print(y.shape)
|
776
|
+
(4, 32, 32, 32, 1)
|
777
|
+
"""
|
778
|
+
__module__ = 'brainstate.nn'
|
779
|
+
num_spatial_dims: int = 3
|
780
|
+
|
781
|
+
|
782
|
+
class LayerNorm(Module):
|
783
|
+
"""
|
784
|
+
Layer normalization layer [1]_.
|
785
|
+
|
786
|
+
LayerNorm normalizes the activations of the layer for each given example in
|
787
|
+
a batch independently, rather than across a batch like Batch Normalization.
|
788
|
+
It applies a transformation that maintains the mean activation within each
|
789
|
+
example close to 0 and the activation standard deviation close to 1.
|
790
|
+
|
791
|
+
Parameters
|
792
|
+
----------
|
793
|
+
in_size : tuple of int
|
794
|
+
The input shape, without batch dimension.
|
795
|
+
reduction_axes : int or tuple of int, optional
|
796
|
+
Axes for computing normalization statistics. It is recommended to use
|
797
|
+
negative integers, as positive integers may cause issues when batch
|
798
|
+
dimensions are present. Default is -1.
|
799
|
+
feature_axes : int or tuple of int, optional
|
800
|
+
Feature axes for learned bias and scaling. Default is -1.
|
801
|
+
epsilon : float, optional
|
802
|
+
A small value added to variance to avoid division by zero. Default is 1e-6.
|
803
|
+
use_bias : bool, optional
|
804
|
+
If True, bias (beta) is added. Default is True.
|
805
|
+
use_scale : bool, optional
|
806
|
+
If True, multiply by scale (gamma). When the next layer is linear
|
807
|
+
(e.g., nn.relu), this can be disabled since scaling will be done by
|
808
|
+
the next layer. Default is True.
|
809
|
+
bias_init : Callable, optional
|
810
|
+
Initializer for bias parameter. Default is ``init.ZeroInit()``.
|
811
|
+
scale_init : Callable, optional
|
812
|
+
Initializer for scale parameter. Default is ``init.Constant(1.0)``.
|
813
|
+
axis_name : str, optional
|
814
|
+
The axis name used to combine batch statistics from multiple devices.
|
815
|
+
See ``jax.pmap`` for axis name description. Only needed if the model
|
816
|
+
is subdivided across devices. Default is None.
|
817
|
+
axis_index_groups : sequence, optional
|
818
|
+
Groups of axis indices within the named axis representing subsets of
|
819
|
+
devices to reduce over. For example, ``[[0, 1], [2, 3]]`` would
|
820
|
+
independently normalize over the first two and last two devices.
|
821
|
+
See ``jax.lax.psum`` for details. Default is None.
|
822
|
+
use_fast_variance : bool, optional
|
823
|
+
If True, use a faster but less numerically stable calculation for
|
824
|
+
the variance. Default is True.
|
825
|
+
dtype : jax.typing.DTypeLike, optional
|
826
|
+
The dtype of the result. If None, inferred from input and parameters.
|
827
|
+
Default is None.
|
828
|
+
|
829
|
+
References
|
830
|
+
----------
|
831
|
+
.. [1] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization.
|
832
|
+
arXiv preprint arXiv:1607.06450.
|
833
|
+
|
834
|
+
See Also
|
835
|
+
--------
|
836
|
+
RMSNorm : Root Mean Square Layer Normalization
|
837
|
+
GroupNorm : Group Normalization
|
838
|
+
BatchNorm1d : 1-D Batch Normalization
|
839
|
+
|
840
|
+
Examples
|
841
|
+
--------
|
842
|
+
.. code-block:: python
|
843
|
+
|
844
|
+
>>> import brainstate as bst
|
845
|
+
>>>
|
846
|
+
>>> # Create a LayerNorm layer
|
847
|
+
>>> x = bst.random.normal(size=(3, 4, 5, 6))
|
848
|
+
>>> layer = bst.nn.LayerNorm(x.shape)
|
849
|
+
>>>
|
850
|
+
>>> # Apply normalization
|
851
|
+
>>> y = layer(x)
|
852
|
+
>>> print(y.shape)
|
853
|
+
(3, 4, 5, 6)
|
854
|
+
>>>
|
855
|
+
>>> # Normalize only the last dimension
|
856
|
+
>>> layer = bst.nn.LayerNorm((10, 20), reduction_axes=-1, feature_axes=-1)
|
857
|
+
>>> x = bst.random.normal((5, 10, 20))
|
858
|
+
>>> y = layer(x)
|
859
|
+
"""
|
860
|
+
|
861
|
+
def __init__(
|
862
|
+
self,
|
863
|
+
in_size: Size,
|
864
|
+
reduction_axes: Axes = -1,
|
865
|
+
feature_axes: Axes = -1,
|
866
|
+
*,
|
867
|
+
epsilon: float = 1e-6,
|
868
|
+
use_bias: bool = True,
|
869
|
+
use_scale: bool = True,
|
870
|
+
bias_init: Callable = init.ZeroInit(),
|
871
|
+
scale_init: Callable = init.Constant(1.0),
|
872
|
+
axis_name: Optional[str] = None,
|
873
|
+
axis_index_groups: Any = None,
|
874
|
+
use_fast_variance: bool = True,
|
875
|
+
dtype: Optional[jax.typing.DTypeLike] = None,
|
876
|
+
param_type: type = NormalizationParamState,
|
877
|
+
):
|
878
|
+
super().__init__()
|
879
|
+
|
880
|
+
self.in_size = in_size
|
881
|
+
self.out_size = in_size
|
882
|
+
|
883
|
+
# parameters about axis
|
884
|
+
feature_axes = (feature_axes,) if isinstance(feature_axes, int) else feature_axes
|
885
|
+
self.feature_axes = _canonicalize_axes(len(self.in_size), feature_axes)
|
886
|
+
self.reduction_axes = (reduction_axes,) if isinstance(reduction_axes, int) else reduction_axes
|
887
|
+
self.axis_name = axis_name
|
888
|
+
self.axis_index_groups = axis_index_groups
|
889
|
+
|
890
|
+
# variables
|
891
|
+
feature_shape = tuple([(ax if i in self.feature_axes else 1)
|
892
|
+
for i, ax in enumerate(self.in_size)])
|
893
|
+
|
894
|
+
weights = dict()
|
895
|
+
if use_scale:
|
896
|
+
weights['scale'] = init.param(scale_init, feature_shape)
|
897
|
+
if use_bias:
|
898
|
+
weights['bias'] = init.param(bias_init, feature_shape)
|
899
|
+
if len(weights):
|
900
|
+
self.weight = param_type(weights)
|
901
|
+
else:
|
902
|
+
self.weight = None
|
903
|
+
|
904
|
+
# parameters
|
905
|
+
self.epsilon = epsilon
|
906
|
+
self.dtype = dtype or environ.dftype()
|
907
|
+
self.use_bias = use_bias
|
908
|
+
self.use_scale = use_scale
|
909
|
+
self.bias_init = bias_init
|
910
|
+
self.scale_init = scale_init
|
911
|
+
self.use_fast_variance = use_fast_variance
|
912
|
+
|
913
|
+
def update(self, x, *, mask: Optional[jax.Array] = None):
|
914
|
+
"""
|
915
|
+
Apply layer normalization on the input.
|
916
|
+
|
917
|
+
Parameters
|
918
|
+
----------
|
919
|
+
x : jax.Array
|
920
|
+
The input array.
|
921
|
+
mask : jax.Array, optional
|
922
|
+
Binary array of shape broadcastable to ``x``, indicating the
|
923
|
+
positions for which normalization should be computed. Default is None.
|
924
|
+
|
925
|
+
Returns
|
926
|
+
-------
|
927
|
+
jax.Array
|
928
|
+
Normalized inputs with the same shape as the input.
|
929
|
+
"""
|
930
|
+
mean, var = _compute_stats(
|
931
|
+
x,
|
932
|
+
self.reduction_axes,
|
933
|
+
dtype=self.dtype,
|
934
|
+
axis_name=self.axis_name,
|
935
|
+
axis_index_groups=self.axis_index_groups,
|
936
|
+
use_fast_variance=self.use_fast_variance,
|
937
|
+
mask=mask,
|
938
|
+
)
|
939
|
+
|
940
|
+
return _normalize(
|
941
|
+
x,
|
942
|
+
mean=mean,
|
943
|
+
var=var,
|
944
|
+
weights=self.weight,
|
945
|
+
reduction_axes=self.reduction_axes,
|
946
|
+
feature_axes=self.feature_axes,
|
947
|
+
dtype=self.dtype,
|
948
|
+
epsilon=self.epsilon,
|
949
|
+
)
|
950
|
+
|
951
|
+
|
952
|
+
class RMSNorm(Module):
|
953
|
+
"""
|
954
|
+
Root Mean Square Layer Normalization [1]_.
|
955
|
+
|
956
|
+
RMSNorm normalizes the activations of the layer for each given example in a
|
957
|
+
batch independently, rather than across a batch like Batch Normalization.
|
958
|
+
Unlike LayerNorm which re-centers the mean to 0 and normalizes by the standard
|
959
|
+
deviation, RMSNorm does not re-center at all and instead normalizes by the
|
960
|
+
root mean square of the activations.
|
961
|
+
|
962
|
+
Parameters
|
963
|
+
----------
|
964
|
+
in_size : tuple of int
|
965
|
+
The input shape, without batch dimension.
|
966
|
+
epsilon : float, optional
|
967
|
+
A small value added to variance to avoid division by zero. Default is 1e-6.
|
968
|
+
dtype : jax.typing.DTypeLike, optional
|
969
|
+
The dtype of the result. If None, inferred from input and parameters.
|
970
|
+
Default is None.
|
971
|
+
use_scale : bool, optional
|
972
|
+
If True, multiply by scale (gamma). When the next layer is linear
|
973
|
+
(e.g., nn.relu), this can be disabled since scaling will be done by
|
974
|
+
the next layer. Default is True.
|
975
|
+
scale_init : Callable, optional
|
976
|
+
Initializer for scale parameter. Default is ``init.Constant(1.0)``.
|
977
|
+
reduction_axes : int or tuple of int, optional
|
978
|
+
Axes for computing normalization statistics. It is recommended to use
|
979
|
+
negative integers. Default is -1.
|
980
|
+
feature_axes : int or tuple of int, optional
|
981
|
+
Feature axes for learned scaling. Default is -1.
|
982
|
+
axis_name : str, optional
|
983
|
+
The axis name used to combine batch statistics from multiple devices.
|
984
|
+
See ``jax.pmap`` for details. Default is None.
|
985
|
+
axis_index_groups : sequence, optional
|
986
|
+
Groups of axis indices within the named axis representing subsets of
|
987
|
+
devices to reduce over. For example, ``[[0, 1], [2, 3]]`` would
|
988
|
+
independently normalize over the first two and last two devices.
|
989
|
+
Default is None.
|
990
|
+
use_fast_variance : bool, optional
|
991
|
+
If True, use a faster but less numerically stable calculation for
|
992
|
+
the variance. Default is True.
|
993
|
+
|
994
|
+
References
|
995
|
+
----------
|
996
|
+
.. [1] Zhang, B., & Sennrich, R. (2019). Root Mean Square Layer Normalization.
|
997
|
+
Advances in Neural Information Processing Systems, 32.
|
998
|
+
|
999
|
+
See Also
|
1000
|
+
--------
|
1001
|
+
LayerNorm : Layer Normalization
|
1002
|
+
GroupNorm : Group Normalization
|
1003
|
+
|
1004
|
+
Examples
|
1005
|
+
--------
|
1006
|
+
.. code-block:: python
|
1007
|
+
|
1008
|
+
>>> import brainstate as bst
|
1009
|
+
>>>
|
1010
|
+
>>> # Create an RMSNorm layer
|
1011
|
+
>>> x = bst.random.normal(size=(5, 6))
|
1012
|
+
>>> layer = bst.nn.RMSNorm(in_size=(6,))
|
1013
|
+
>>>
|
1014
|
+
>>> # Apply normalization
|
1015
|
+
>>> y = layer(x)
|
1016
|
+
>>> print(y.shape)
|
1017
|
+
(5, 6)
|
1018
|
+
>>>
|
1019
|
+
>>> # Without scaling
|
1020
|
+
>>> layer = bst.nn.RMSNorm(in_size=(10,), use_scale=False)
|
1021
|
+
>>> x = bst.random.normal((3, 10))
|
1022
|
+
>>> y = layer(x)
|
1023
|
+
"""
|
1024
|
+
|
1025
|
+
def __init__(
|
1026
|
+
self,
|
1027
|
+
in_size: Size,
|
1028
|
+
*,
|
1029
|
+
epsilon: float = 1e-6,
|
1030
|
+
dtype: Optional[jax.typing.DTypeLike] = None,
|
1031
|
+
use_scale: bool = True,
|
1032
|
+
scale_init: Callable = init.Constant(1.0),
|
1033
|
+
reduction_axes: Axes = -1,
|
1034
|
+
feature_axes: Axes = -1,
|
1035
|
+
axis_name: Optional[str] = None,
|
1036
|
+
axis_index_groups: Any = None,
|
1037
|
+
use_fast_variance: bool = True,
|
1038
|
+
param_type: type = NormalizationParamState,
|
1039
|
+
):
|
1040
|
+
super().__init__()
|
1041
|
+
|
1042
|
+
self.in_size = in_size
|
1043
|
+
self.out_size = in_size
|
1044
|
+
|
1045
|
+
# parameters about axis
|
1046
|
+
feature_axes = (feature_axes,) if isinstance(feature_axes, int) else feature_axes
|
1047
|
+
self.feature_axes = _canonicalize_axes(len(self.in_size), feature_axes)
|
1048
|
+
self.reduction_axes = (reduction_axes,) if isinstance(reduction_axes, int) else reduction_axes
|
1049
|
+
self.axis_name = axis_name
|
1050
|
+
self.axis_index_groups = axis_index_groups
|
1051
|
+
|
1052
|
+
# variables
|
1053
|
+
feature_shape = tuple([(ax if i in self.feature_axes else 1)
|
1054
|
+
for i, ax in enumerate(self.in_size)])
|
1055
|
+
if use_scale:
|
1056
|
+
self.scale = param_type({'scale': init.param(scale_init, feature_shape)})
|
1057
|
+
else:
|
1058
|
+
self.scale = None
|
1059
|
+
|
1060
|
+
# parameters
|
1061
|
+
self.epsilon = epsilon
|
1062
|
+
self.dtype = dtype or environ.dftype()
|
1063
|
+
self.use_scale = use_scale
|
1064
|
+
self.scale_init = scale_init
|
1065
|
+
self.use_fast_variance = use_fast_variance
|
1066
|
+
|
1067
|
+
def update(self, x, *, mask: Optional[jax.Array] = None):
|
1068
|
+
"""
|
1069
|
+
Apply RMS normalization on the input.
|
1070
|
+
|
1071
|
+
Parameters
|
1072
|
+
----------
|
1073
|
+
x : jax.Array
|
1074
|
+
The input array.
|
1075
|
+
mask : jax.Array, optional
|
1076
|
+
Binary array of shape broadcastable to ``x``, indicating the
|
1077
|
+
positions for which normalization should be computed. Default is None.
|
1078
|
+
|
1079
|
+
Returns
|
1080
|
+
-------
|
1081
|
+
jax.Array
|
1082
|
+
Normalized inputs with the same shape as the input.
|
1083
|
+
"""
|
1084
|
+
mean, var = _compute_stats(
|
1085
|
+
x,
|
1086
|
+
self.reduction_axes,
|
1087
|
+
dtype=self.dtype,
|
1088
|
+
axis_name=self.axis_name,
|
1089
|
+
axis_index_groups=self.axis_index_groups,
|
1090
|
+
use_mean=False,
|
1091
|
+
use_fast_variance=self.use_fast_variance,
|
1092
|
+
mask=mask,
|
1093
|
+
)
|
1094
|
+
|
1095
|
+
return _normalize(
|
1096
|
+
x,
|
1097
|
+
mean=mean,
|
1098
|
+
var=var,
|
1099
|
+
weights=self.scale,
|
1100
|
+
reduction_axes=self.reduction_axes,
|
1101
|
+
feature_axes=self.feature_axes,
|
1102
|
+
dtype=self.dtype,
|
1103
|
+
epsilon=self.epsilon,
|
1104
|
+
)
|
1105
|
+
|
1106
|
+
|
1107
|
+
class GroupNorm(Module):
|
1108
|
+
"""
|
1109
|
+
Group Normalization layer [1]_.
|
1110
|
+
|
1111
|
+
Group normalization is similar to batch normalization, but statistics are
|
1112
|
+
shared across equally-sized groups of channels and not shared across the
|
1113
|
+
batch dimension. Thus, group normalization does not depend on the batch
|
1114
|
+
composition and does not require maintaining internal state for storing statistics.
|
1115
|
+
|
1116
|
+
The user should specify either the total number of channel groups (``num_groups``)
|
1117
|
+
or the number of channels per group (``group_size``).
|
1118
|
+
|
1119
|
+
Parameters
|
1120
|
+
----------
|
1121
|
+
in_size : tuple of int
|
1122
|
+
The input shape, without batch dimension.
|
1123
|
+
feature_axis : int or tuple of int, optional
|
1124
|
+
The feature axis of the input. Default is -1.
|
1125
|
+
num_groups : int, optional
|
1126
|
+
The total number of channel groups. The default value of 32 is proposed
|
1127
|
+
by the original group normalization paper. Either ``num_groups`` or
|
1128
|
+
``group_size`` must be specified, but not both. Default is 32.
|
1129
|
+
group_size : int, optional
|
1130
|
+
The number of channels in each group. Either ``num_groups`` or
|
1131
|
+
``group_size`` must be specified, but not both. Default is None.
|
1132
|
+
epsilon : float, optional
|
1133
|
+
A small value added to variance to avoid division by zero. Default is 1e-6.
|
1134
|
+
dtype : jax.typing.DTypeLike, optional
|
1135
|
+
The dtype of the result. If None, inferred from input and parameters.
|
1136
|
+
Default is None.
|
1137
|
+
use_bias : bool, optional
|
1138
|
+
If True, bias (beta) is added. Default is True.
|
1139
|
+
use_scale : bool, optional
|
1140
|
+
If True, multiply by scale (gamma). When the next layer is linear
|
1141
|
+
(e.g., nn.relu), this can be disabled. Default is True.
|
1142
|
+
bias_init : Callable, optional
|
1143
|
+
Initializer for bias parameter. Default is ``init.ZeroInit()``.
|
1144
|
+
scale_init : Callable, optional
|
1145
|
+
Initializer for scale parameter. Default is ``init.Constant(1.)``.
|
1146
|
+
reduction_axes : int or tuple of int, optional
|
1147
|
+
List of axes used for computing normalization statistics. Must include
|
1148
|
+
the final dimension (feature axis). It is recommended to use negative
|
1149
|
+
integers. Default is None.
|
1150
|
+
axis_name : str, optional
|
1151
|
+
The axis name used to combine batch statistics from multiple devices.
|
1152
|
+
See ``jax.pmap`` for details. Default is None.
|
1153
|
+
axis_index_groups : sequence, optional
|
1154
|
+
Groups of axis indices within the named axis representing subsets of
|
1155
|
+
devices to reduce over. For example, ``[[0, 1], [2, 3]]`` would
|
1156
|
+
independently normalize over the first two and last two devices.
|
1157
|
+
Default is None.
|
1158
|
+
use_fast_variance : bool, optional
|
1159
|
+
If True, use a faster but less numerically stable calculation for
|
1160
|
+
the variance. Default is True.
|
1161
|
+
|
1162
|
+
Notes
|
1163
|
+
-----
|
1164
|
+
LayerNorm is a special case of GroupNorm where ``num_groups=1``.
|
1165
|
+
|
1166
|
+
References
|
1167
|
+
----------
|
1168
|
+
.. [1] Wu, Y., & He, K. (2018). Group Normalization.
|
1169
|
+
In Proceedings of the European Conference on Computer Vision (ECCV)
|
1170
|
+
(pp. 3-19).
|
1171
|
+
|
1172
|
+
See Also
|
1173
|
+
--------
|
1174
|
+
LayerNorm : Layer Normalization
|
1175
|
+
BatchNorm2d : 2-D Batch Normalization
|
1176
|
+
|
1177
|
+
Examples
|
1178
|
+
--------
|
1179
|
+
.. code-block:: python
|
1180
|
+
|
1181
|
+
>>> import numpy as np
|
1182
|
+
>>> import brainstate as bst
|
1183
|
+
>>>
|
1184
|
+
>>> # Create a GroupNorm layer with 3 groups
|
1185
|
+
>>> x = bst.random.normal(size=(3, 4, 5, 6))
|
1186
|
+
>>> layer = bst.nn.GroupNorm(x.shape, num_groups=3)
|
1187
|
+
>>> y = layer(x)
|
1188
|
+
>>>
|
1189
|
+
>>> # GroupNorm with num_groups=1 is equivalent to LayerNorm
|
1190
|
+
>>> y1 = bst.nn.GroupNorm(x.shape, num_groups=1)(x)
|
1191
|
+
>>> y2 = bst.nn.LayerNorm(x.shape, reduction_axes=(1, 2, 3))(x)
|
1192
|
+
>>> np.testing.assert_allclose(y1, y2, rtol=1e-5)
|
1193
|
+
>>>
|
1194
|
+
>>> # Specify group_size instead of num_groups
|
1195
|
+
>>> layer = bst.nn.GroupNorm((12,), num_groups=None, group_size=4)
|
1196
|
+
"""
|
1197
|
+
|
1198
|
+
def __init__(
|
1199
|
+
self,
|
1200
|
+
in_size: Size,
|
1201
|
+
feature_axis: Axes = -1,
|
1202
|
+
num_groups: Optional[int] = 32,
|
1203
|
+
group_size: Optional[int] = None,
|
1204
|
+
*,
|
1205
|
+
epsilon: float = 1e-6,
|
1206
|
+
dtype: Optional[jax.typing.DTypeLike] = None,
|
1207
|
+
use_bias: bool = True,
|
1208
|
+
use_scale: bool = True,
|
1209
|
+
bias_init: Callable = init.ZeroInit(),
|
1210
|
+
scale_init: Callable = init.Constant(1.),
|
1211
|
+
reduction_axes: Optional[Axes] = None,
|
1212
|
+
axis_name: Optional[str] = None,
|
1213
|
+
axis_index_groups: Any = None,
|
1214
|
+
use_fast_variance: bool = True,
|
1215
|
+
param_type: type = NormalizationParamState,
|
1216
|
+
):
|
1217
|
+
super().__init__()
|
1218
|
+
|
1219
|
+
self.in_size = in_size
|
1220
|
+
self.out_size = in_size
|
1221
|
+
|
1222
|
+
# parameters about axis
|
1223
|
+
feature_axis = (feature_axis,) if isinstance(feature_axis, int) else feature_axis
|
1224
|
+
self.feature_axes = _canonicalize_axes(len(self.in_size), feature_axis)
|
1225
|
+
self.reduction_axes = (reduction_axes,) if isinstance(reduction_axes, int) else reduction_axes
|
1226
|
+
self.axis_name = axis_name
|
1227
|
+
self.axis_index_groups = axis_index_groups
|
1228
|
+
|
1229
|
+
if (num_groups is None and group_size is None) or (
|
1230
|
+
num_groups is not None and group_size is not None
|
1231
|
+
):
|
1232
|
+
raise ValueError(
|
1233
|
+
'Either `num_groups` or `group_size` should be '
|
1234
|
+
'specified. If `group_size` is to be specified, '
|
1235
|
+
'pass `num_groups=None` as argument to override '
|
1236
|
+
'the default `num_groups` value of 32.'
|
1237
|
+
)
|
1238
|
+
|
1239
|
+
feature_shape = tuple([(ax if i in self.feature_axes else 1)
|
1240
|
+
for i, ax in enumerate(self.in_size)])
|
1241
|
+
assert len(feature_shape) == 1, 'GroupNorm only supports 1D feature axis.'
|
1242
|
+
num_features = feature_shape[0]
|
1243
|
+
if group_size is not None:
|
1244
|
+
if num_features % group_size != 0:
|
1245
|
+
raise ValueError(
|
1246
|
+
'Number of features ({}) is not multiple of the '
|
1247
|
+
'group size ({}).'.format(num_features, group_size)
|
1248
|
+
)
|
1249
|
+
self.num_groups = num_features // group_size
|
1250
|
+
self.group_size = group_size
|
1251
|
+
else:
|
1252
|
+
if not isinstance(num_groups, int) or num_groups <= 0 or (
|
1253
|
+
num_features % num_groups != 0
|
1254
|
+
):
|
1255
|
+
raise ValueError(
|
1256
|
+
'Number of groups ({}) does not divide the number'
|
1257
|
+
' of channels ({}).'.format(num_groups, num_features)
|
1258
|
+
)
|
1259
|
+
self.num_groups = num_groups
|
1260
|
+
self.group_size = num_features // num_groups
|
1261
|
+
|
1262
|
+
# variables
|
1263
|
+
weights = dict()
|
1264
|
+
if use_scale:
|
1265
|
+
weights['scale'] = init.param(scale_init, feature_shape)
|
1266
|
+
if use_bias:
|
1267
|
+
weights['bias'] = init.param(bias_init, feature_shape)
|
1268
|
+
if len(weights):
|
1269
|
+
self.weight = param_type(weights)
|
1270
|
+
else:
|
1271
|
+
self.weight = None
|
1272
|
+
|
1273
|
+
# parameters
|
1274
|
+
self.epsilon = epsilon
|
1275
|
+
self.dtype = dtype
|
1276
|
+
self.use_bias = use_bias
|
1277
|
+
self.use_scale = use_scale
|
1278
|
+
self.bias_init = bias_init
|
1279
|
+
self.scale_init = scale_init
|
1280
|
+
self.use_fast_variance = use_fast_variance
|
1281
|
+
|
1282
|
+
def update(self, x, *, mask: Optional[jax.Array] = None):
|
1283
|
+
"""
|
1284
|
+
Apply group normalization to the input.
|
1285
|
+
|
1286
|
+
Parameters
|
1287
|
+
----------
|
1288
|
+
x : jax.Array
|
1289
|
+
The input of shape ``...C`` where ``C`` is the channels dimension
|
1290
|
+
and ``...`` represents an arbitrary number of extra dimensions. If no
|
1291
|
+
reduction axes have been specified, all additional dimensions will be
|
1292
|
+
used to accumulate statistics apart from the leading dimension which
|
1293
|
+
is assumed to represent the batch.
|
1294
|
+
mask : jax.Array, optional
|
1295
|
+
Binary array of shape broadcastable to ``x``, indicating the
|
1296
|
+
positions for which the mean and variance should be computed.
|
1297
|
+
Default is None.
|
1298
|
+
|
1299
|
+
Returns
|
1300
|
+
-------
|
1301
|
+
jax.Array
|
1302
|
+
Normalized inputs with the same shape as the input.
|
1303
|
+
"""
|
1304
|
+
if self.reduction_axes is not None:
|
1305
|
+
reduction_axes = self.reduction_axes
|
1306
|
+
else:
|
1307
|
+
reduction_axes = list(range(1, x.ndim - 1)) + [-1]
|
1308
|
+
reduction_axes = _canonicalize_axes(x.ndim, reduction_axes)
|
1309
|
+
|
1310
|
+
group_shape = x.shape[:-1] + (self.num_groups, self.group_size)
|
1311
|
+
if mask is not None:
|
1312
|
+
mask = mask.reshape(mask.shape[:-1] + (self.num_groups, self.group_size))
|
1313
|
+
|
1314
|
+
mean, var = _compute_stats(
|
1315
|
+
x.reshape(group_shape),
|
1316
|
+
list(reduction_axes[:-1]) + [-1],
|
1317
|
+
dtype=self.dtype,
|
1318
|
+
axis_name=self.axis_name,
|
1319
|
+
axis_index_groups=self.axis_index_groups,
|
1320
|
+
use_fast_variance=self.use_fast_variance,
|
1321
|
+
mask=mask,
|
1322
|
+
)
|
1323
|
+
mean = jnp.repeat(mean, self.group_size, axis=1)
|
1324
|
+
var = jnp.repeat(var, self.group_size, axis=1)
|
1325
|
+
return _normalize(
|
1326
|
+
x,
|
1327
|
+
mean=mean,
|
1328
|
+
var=var,
|
1329
|
+
weights=self.weight,
|
1330
|
+
reduction_axes=reduction_axes[:-1],
|
1331
|
+
feature_axes=self.feature_axes,
|
1332
|
+
dtype=self.dtype,
|
1333
|
+
epsilon=self.epsilon,
|
1334
|
+
)
|