brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (163) hide show
  1. brainstate/__init__.py +169 -58
  2. brainstate/_compatible_import.py +340 -148
  3. brainstate/_compatible_import_test.py +681 -0
  4. brainstate/_deprecation.py +210 -0
  5. brainstate/_deprecation_test.py +2319 -0
  6. brainstate/{util/error.py → _error.py} +45 -55
  7. brainstate/_state.py +1652 -1605
  8. brainstate/_state_test.py +52 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -563
  11. brainstate/environ_test.py +1223 -62
  12. brainstate/graph/__init__.py +22 -29
  13. brainstate/graph/_node.py +240 -0
  14. brainstate/graph/_node_test.py +589 -0
  15. brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
  16. brainstate/graph/_operation_test.py +1147 -0
  17. brainstate/mixin.py +1433 -365
  18. brainstate/mixin_test.py +1017 -77
  19. brainstate/nn/__init__.py +137 -135
  20. brainstate/nn/_activations.py +1100 -808
  21. brainstate/nn/_activations_test.py +354 -331
  22. brainstate/nn/_collective_ops.py +633 -514
  23. brainstate/nn/_collective_ops_test.py +774 -43
  24. brainstate/nn/_common.py +226 -178
  25. brainstate/nn/_common_test.py +154 -0
  26. brainstate/nn/_conv.py +2010 -501
  27. brainstate/nn/_conv_test.py +849 -238
  28. brainstate/nn/_delay.py +575 -588
  29. brainstate/nn/_delay_test.py +243 -238
  30. brainstate/nn/_dropout.py +618 -426
  31. brainstate/nn/_dropout_test.py +477 -100
  32. brainstate/nn/_dynamics.py +1267 -1343
  33. brainstate/nn/_dynamics_test.py +67 -78
  34. brainstate/nn/_elementwise.py +1298 -1119
  35. brainstate/nn/_elementwise_test.py +830 -169
  36. brainstate/nn/_embedding.py +408 -58
  37. brainstate/nn/_embedding_test.py +156 -0
  38. brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
  39. brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
  40. brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
  41. brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
  42. brainstate/nn/_exp_euler.py +254 -92
  43. brainstate/nn/_exp_euler_test.py +377 -35
  44. brainstate/nn/_linear.py +744 -424
  45. brainstate/nn/_linear_test.py +475 -107
  46. brainstate/nn/_metrics.py +1070 -0
  47. brainstate/nn/_metrics_test.py +611 -0
  48. brainstate/nn/_module.py +384 -377
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -975
  51. brainstate/nn/_normalizations_test.py +699 -73
  52. brainstate/nn/_paddings.py +1020 -0
  53. brainstate/nn/_paddings_test.py +723 -0
  54. brainstate/nn/_poolings.py +2239 -1177
  55. brainstate/nn/_poolings_test.py +953 -217
  56. brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
  57. brainstate/nn/_rnns_test.py +593 -0
  58. brainstate/nn/_utils.py +216 -89
  59. brainstate/nn/_utils_test.py +402 -0
  60. brainstate/{init/_random_inits.py → nn/init.py} +809 -553
  61. brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
  62. brainstate/random/__init__.py +270 -24
  63. brainstate/random/_rand_funs.py +3938 -3616
  64. brainstate/random/_rand_funs_test.py +640 -567
  65. brainstate/random/_rand_seed.py +675 -210
  66. brainstate/random/_rand_seed_test.py +48 -48
  67. brainstate/random/_rand_state.py +1617 -1409
  68. brainstate/random/_rand_state_test.py +551 -0
  69. brainstate/transform/__init__.py +59 -0
  70. brainstate/transform/_ad_checkpoint.py +176 -0
  71. brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
  72. brainstate/{augment → transform}/_autograd.py +1025 -778
  73. brainstate/{augment → transform}/_autograd_test.py +1289 -1289
  74. brainstate/transform/_conditions.py +316 -0
  75. brainstate/{compile → transform}/_conditions_test.py +220 -220
  76. brainstate/{compile → transform}/_error_if.py +94 -92
  77. brainstate/{compile → transform}/_error_if_test.py +52 -52
  78. brainstate/transform/_eval_shape.py +145 -0
  79. brainstate/{augment → transform}/_eval_shape_test.py +38 -38
  80. brainstate/{compile → transform}/_jit.py +399 -346
  81. brainstate/{compile → transform}/_jit_test.py +143 -143
  82. brainstate/{compile → transform}/_loop_collect_return.py +675 -536
  83. brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
  84. brainstate/{compile → transform}/_loop_no_collection.py +283 -184
  85. brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
  86. brainstate/transform/_make_jaxpr.py +2016 -0
  87. brainstate/transform/_make_jaxpr_test.py +1510 -0
  88. brainstate/transform/_mapping.py +529 -0
  89. brainstate/transform/_mapping_test.py +194 -0
  90. brainstate/{compile → transform}/_progress_bar.py +255 -202
  91. brainstate/{augment → transform}/_random.py +171 -151
  92. brainstate/{compile → transform}/_unvmap.py +256 -159
  93. brainstate/transform/_util.py +286 -0
  94. brainstate/typing.py +837 -304
  95. brainstate/typing_test.py +780 -0
  96. brainstate/util/__init__.py +27 -50
  97. brainstate/util/_others.py +1025 -0
  98. brainstate/util/_others_test.py +962 -0
  99. brainstate/util/_pretty_pytree.py +1301 -0
  100. brainstate/util/_pretty_pytree_test.py +675 -0
  101. brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
  102. brainstate/util/_pretty_repr_test.py +696 -0
  103. brainstate/util/filter.py +945 -469
  104. brainstate/util/filter_test.py +912 -0
  105. brainstate/util/struct.py +910 -523
  106. brainstate/util/struct_test.py +602 -0
  107. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
  108. brainstate-0.2.1.dist-info/RECORD +111 -0
  109. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
  110. brainstate/augment/__init__.py +0 -30
  111. brainstate/augment/_eval_shape.py +0 -99
  112. brainstate/augment/_mapping.py +0 -1060
  113. brainstate/augment/_mapping_test.py +0 -597
  114. brainstate/compile/__init__.py +0 -38
  115. brainstate/compile/_ad_checkpoint.py +0 -204
  116. brainstate/compile/_conditions.py +0 -256
  117. brainstate/compile/_make_jaxpr.py +0 -888
  118. brainstate/compile/_make_jaxpr_test.py +0 -156
  119. brainstate/compile/_util.py +0 -147
  120. brainstate/functional/__init__.py +0 -27
  121. brainstate/graph/_graph_node.py +0 -244
  122. brainstate/graph/_graph_node_test.py +0 -73
  123. brainstate/graph/_graph_operation_test.py +0 -563
  124. brainstate/init/__init__.py +0 -26
  125. brainstate/init/_base.py +0 -52
  126. brainstate/init/_generic.py +0 -244
  127. brainstate/init/_regular_inits.py +0 -105
  128. brainstate/init/_regular_inits_test.py +0 -50
  129. brainstate/nn/_inputs.py +0 -608
  130. brainstate/nn/_ltp.py +0 -28
  131. brainstate/nn/_neuron.py +0 -705
  132. brainstate/nn/_neuron_test.py +0 -161
  133. brainstate/nn/_others.py +0 -46
  134. brainstate/nn/_projection.py +0 -486
  135. brainstate/nn/_rate_rnns_test.py +0 -63
  136. brainstate/nn/_readout.py +0 -209
  137. brainstate/nn/_readout_test.py +0 -53
  138. brainstate/nn/_stp.py +0 -236
  139. brainstate/nn/_synapse.py +0 -505
  140. brainstate/nn/_synapse_test.py +0 -131
  141. brainstate/nn/_synaptic_projection.py +0 -423
  142. brainstate/nn/_synouts.py +0 -162
  143. brainstate/nn/_synouts_test.py +0 -57
  144. brainstate/nn/metrics.py +0 -388
  145. brainstate/optim/__init__.py +0 -38
  146. brainstate/optim/_base.py +0 -64
  147. brainstate/optim/_lr_scheduler.py +0 -448
  148. brainstate/optim/_lr_scheduler_test.py +0 -50
  149. brainstate/optim/_optax_optimizer.py +0 -152
  150. brainstate/optim/_optax_optimizer_test.py +0 -53
  151. brainstate/optim/_sgd_optimizer.py +0 -1104
  152. brainstate/random/_random_for_unit.py +0 -52
  153. brainstate/surrogate.py +0 -1957
  154. brainstate/transform.py +0 -23
  155. brainstate/util/caller.py +0 -98
  156. brainstate/util/others.py +0 -540
  157. brainstate/util/pretty_pytree.py +0 -945
  158. brainstate/util/pretty_pytree_test.py +0 -159
  159. brainstate/util/pretty_table.py +0 -2954
  160. brainstate/util/scaling.py +0 -258
  161. brainstate-0.1.10.dist-info/RECORD +0 -130
  162. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
  163. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -1,149 +1,180 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- import unittest
19
-
20
- import brainstate
21
-
22
-
23
- class TestNormalInit(unittest.TestCase):
24
-
25
- def test_normal_init1(self):
26
- init = brainstate.init.Normal()
27
- for size in [(100,), (10, 20), (10, 20, 30)]:
28
- weights = init(size)
29
- assert weights.shape == size
30
-
31
- def test_normal_init2(self):
32
- init = brainstate.init.Normal(scale=0.5)
33
- for size in [(100,), (10, 20)]:
34
- weights = init(size)
35
- assert weights.shape == size
36
-
37
- def test_normal_init3(self):
38
- init1 = brainstate.init.Normal(scale=0.5, seed=10)
39
- init2 = brainstate.init.Normal(scale=0.5, seed=10)
40
- size = (10,)
41
- weights1 = init1(size)
42
- weights2 = init2(size)
43
- assert weights1.shape == size
44
- assert (weights1 == weights2).all()
45
-
46
-
47
- class TestUniformInit(unittest.TestCase):
48
- def test_uniform_init1(self):
49
- init = brainstate.init.Normal()
50
- for size in [(100,), (10, 20), (10, 20, 30)]:
51
- weights = init(size)
52
- assert weights.shape == size
53
-
54
- def test_uniform_init2(self):
55
- init = brainstate.init.Uniform(min_val=10, max_val=20)
56
- for size in [(100,), (10, 20)]:
57
- weights = init(size)
58
- assert weights.shape == size
59
-
60
-
61
- class TestVarianceScaling(unittest.TestCase):
62
- def test_var_scaling1(self):
63
- init = brainstate.init.VarianceScaling(scale=1., mode='fan_in', distribution='truncated_normal')
64
- for size in [(10, 20), (10, 20, 30)]:
65
- weights = init(size)
66
- assert weights.shape == size
67
-
68
- def test_var_scaling2(self):
69
- init = brainstate.init.VarianceScaling(scale=2, mode='fan_out', distribution='normal')
70
- for size in [(10, 20), (10, 20, 30)]:
71
- weights = init(size)
72
- assert weights.shape == size
73
-
74
- def test_var_scaling3(self):
75
- init = brainstate.init.VarianceScaling(scale=2 / 4, mode='fan_avg', in_axis=0, out_axis=1,
76
- distribution='uniform')
77
- for size in [(10, 20), (10, 20, 30)]:
78
- weights = init(size)
79
- assert weights.shape == size
80
-
81
-
82
- class TestKaimingUniformUnit(unittest.TestCase):
83
- def test_kaiming_uniform_init(self):
84
- init = brainstate.init.KaimingUniform()
85
- for size in [(10, 20), (10, 20, 30)]:
86
- weights = init(size)
87
- assert weights.shape == size
88
-
89
-
90
- class TestKaimingNormalUnit(unittest.TestCase):
91
- def test_kaiming_normal_init(self):
92
- init = brainstate.init.KaimingNormal()
93
- for size in [(10, 20), (10, 20, 30)]:
94
- weights = init(size)
95
- assert weights.shape == size
96
-
97
-
98
- class TestXavierUniformUnit(unittest.TestCase):
99
- def test_xavier_uniform_init(self):
100
- init = brainstate.init.XavierUniform()
101
- for size in [(10, 20), (10, 20, 30)]:
102
- weights = init(size)
103
- assert weights.shape == size
104
-
105
-
106
- class TestXavierNormalUnit(unittest.TestCase):
107
- def test_xavier_normal_init(self):
108
- init = brainstate.init.XavierNormal()
109
- for size in [(10, 20), (10, 20, 30)]:
110
- weights = init(size)
111
- assert weights.shape == size
112
-
113
-
114
- class TestLecunUniformUnit(unittest.TestCase):
115
- def test_lecun_uniform_init(self):
116
- init = brainstate.init.LecunUniform()
117
- for size in [(10, 20), (10, 20, 30)]:
118
- weights = init(size)
119
- assert weights.shape == size
120
-
121
-
122
- class TestLecunNormalUnit(unittest.TestCase):
123
- def test_lecun_normal_init(self):
124
- init = brainstate.init.LecunNormal()
125
- for size in [(10, 20), (10, 20, 30)]:
126
- weights = init(size)
127
- assert weights.shape == size
128
-
129
-
130
- class TestOrthogonalUnit(unittest.TestCase):
131
- def test_orthogonal_init1(self):
132
- init = brainstate.init.Orthogonal()
133
- for size in [(20, 20), (10, 20, 30)]:
134
- weights = init(size)
135
- assert weights.shape == size
136
-
137
- def test_orthogonal_init2(self):
138
- init = brainstate.init.Orthogonal(scale=2., axis=0)
139
- for size in [(10, 20), (10, 20, 30)]:
140
- weights = init(size)
141
- assert weights.shape == size
142
-
143
-
144
- class TestDeltaOrthogonalUnit(unittest.TestCase):
145
- def test_delta_orthogonal_init1(self):
146
- init = brainstate.init.DeltaOrthogonal()
147
- for size in [(20, 20, 20), (10, 20, 30, 40), (50, 40, 30, 20, 20)]:
148
- weights = init(size)
149
- assert weights.shape == size
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+ import unittest
19
+
20
+ import brainstate
21
+
22
+
23
+ class TestNormalInit(unittest.TestCase):
24
+
25
+ def test_normal_init1(self):
26
+ init = brainstate.nn.init.Normal()
27
+ for size in [(100,), (10, 20), (10, 20, 30)]:
28
+ weights = init(size)
29
+ assert weights.shape == size
30
+
31
+ def test_normal_init2(self):
32
+ init = brainstate.nn.init.Normal(scale=0.5)
33
+ for size in [(100,), (10, 20)]:
34
+ weights = init(size)
35
+ assert weights.shape == size
36
+
37
+ def test_normal_init3(self):
38
+ init1 = brainstate.nn.init.Normal(scale=0.5, seed=10)
39
+ init2 = brainstate.nn.init.Normal(scale=0.5, seed=10)
40
+ size = (10,)
41
+ weights1 = init1(size)
42
+ weights2 = init2(size)
43
+ assert weights1.shape == size
44
+ assert (weights1 == weights2).all()
45
+
46
+
47
+ class TestUniformInit(unittest.TestCase):
48
+ def test_uniform_init1(self):
49
+ init = brainstate.nn.init.Normal()
50
+ for size in [(100,), (10, 20), (10, 20, 30)]:
51
+ weights = init(size)
52
+ assert weights.shape == size
53
+
54
+ def test_uniform_init2(self):
55
+ init = brainstate.nn.init.Uniform(min_val=10, max_val=20)
56
+ for size in [(100,), (10, 20)]:
57
+ weights = init(size)
58
+ assert weights.shape == size
59
+
60
+
61
+ class TestVarianceScaling(unittest.TestCase):
62
+ def test_var_scaling1(self):
63
+ init = brainstate.nn.init.VarianceScaling(scale=1., mode='fan_in', distribution='truncated_normal')
64
+ for size in [(10, 20), (10, 20, 30)]:
65
+ weights = init(size)
66
+ assert weights.shape == size
67
+
68
+ def test_var_scaling2(self):
69
+ init = brainstate.nn.init.VarianceScaling(scale=2, mode='fan_out', distribution='normal')
70
+ for size in [(10, 20), (10, 20, 30)]:
71
+ weights = init(size)
72
+ assert weights.shape == size
73
+
74
+ def test_var_scaling3(self):
75
+ init = brainstate.nn.init.VarianceScaling(
76
+ scale=2 / 4, mode='fan_avg', in_axis=0, out_axis=1, distribution='uniform'
77
+ )
78
+ for size in [(10, 20), (10, 20, 30)]:
79
+ weights = init(size)
80
+ assert weights.shape == size
81
+
82
+
83
+ class TestKaimingUniformUnit(unittest.TestCase):
84
+ def test_kaiming_uniform_init(self):
85
+ init = brainstate.nn.init.KaimingUniform()
86
+ for size in [(10, 20), (10, 20, 30)]:
87
+ weights = init(size)
88
+ assert weights.shape == size
89
+
90
+
91
+ class TestKaimingNormalUnit(unittest.TestCase):
92
+ def test_kaiming_normal_init(self):
93
+ init = brainstate.nn.init.KaimingNormal()
94
+ for size in [(10, 20), (10, 20, 30)]:
95
+ weights = init(size)
96
+ assert weights.shape == size
97
+
98
+
99
+ class TestXavierUniformUnit(unittest.TestCase):
100
+ def test_xavier_uniform_init(self):
101
+ init = brainstate.nn.init.XavierUniform()
102
+ for size in [(10, 20), (10, 20, 30)]:
103
+ weights = init(size)
104
+ assert weights.shape == size
105
+
106
+
107
+ class TestXavierNormalUnit(unittest.TestCase):
108
+ def test_xavier_normal_init(self):
109
+ init = brainstate.nn.init.XavierNormal()
110
+ for size in [(10, 20), (10, 20, 30)]:
111
+ weights = init(size)
112
+ assert weights.shape == size
113
+
114
+
115
+ class TestLecunUniformUnit(unittest.TestCase):
116
+ def test_lecun_uniform_init(self):
117
+ init = brainstate.nn.init.LecunUniform()
118
+ for size in [(10, 20), (10, 20, 30)]:
119
+ weights = init(size)
120
+ assert weights.shape == size
121
+
122
+
123
+ class TestLecunNormalUnit(unittest.TestCase):
124
+ def test_lecun_normal_init(self):
125
+ init = brainstate.nn.init.LecunNormal()
126
+ for size in [(10, 20), (10, 20, 30)]:
127
+ weights = init(size)
128
+ assert weights.shape == size
129
+
130
+
131
+ class TestOrthogonalUnit(unittest.TestCase):
132
+ def test_orthogonal_init1(self):
133
+ init = brainstate.nn.init.Orthogonal()
134
+ for size in [(20, 20), (10, 20, 30)]:
135
+ weights = init(size)
136
+ assert weights.shape == size
137
+
138
+ def test_orthogonal_init2(self):
139
+ init = brainstate.nn.init.Orthogonal(scale=2., axis=0)
140
+ for size in [(10, 20), (10, 20, 30)]:
141
+ weights = init(size)
142
+ assert weights.shape == size
143
+
144
+
145
+ class TestDeltaOrthogonalUnit(unittest.TestCase):
146
+ def test_delta_orthogonal_init1(self):
147
+ init = brainstate.nn.init.DeltaOrthogonal()
148
+ for size in [(20, 20, 20), (10, 20, 30, 40), (50, 40, 30, 20, 20)]:
149
+ weights = init(size)
150
+ assert weights.shape == size
151
+
152
+
153
+ class TestZeroInit(unittest.TestCase):
154
+ def test_zero_init(self):
155
+ init = brainstate.nn.init.ZeroInit()
156
+ for size in [(100,), (10, 20), (10, 20, 30)]:
157
+ weights = init(size)
158
+ assert weights.shape == size
159
+
160
+
161
+ class TestOneInit(unittest.TestCase):
162
+ def test_one_init(self):
163
+ for size in [(100,), (10, 20), (10, 20, 30)]:
164
+ for value in [0., 1., -1.]:
165
+ init = brainstate.nn.init.Constant(value=value)
166
+ weights = init(size)
167
+ assert weights.shape == size
168
+ assert (weights == value).all()
169
+
170
+
171
+ class TestIdentityInit(unittest.TestCase):
172
+ def test_identity_init(self):
173
+ for size in [(100,), (10, 20)]:
174
+ for value in [0., 1., -1.]:
175
+ init = brainstate.nn.init.Identity(value=value)
176
+ weights = init(size)
177
+ if len(size) == 1:
178
+ assert weights.shape == (size[0], size[0])
179
+ else:
180
+ assert weights.shape == size
@@ -1,24 +1,270 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from ._rand_funs import *
17
- from ._rand_funs import __all__ as __all_random__
18
- from ._rand_seed import *
19
- from ._rand_seed import __all__ as __all_seed__
20
- from ._rand_state import *
21
- from ._rand_state import __all__ as __all_state__
22
-
23
- __all__ = __all_random__ + __all_state__ + __all_seed__
24
- del __all_random__, __all_state__, __all_seed__
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """
17
+ Random number generation module for BrainState.
18
+
19
+ This module provides a comprehensive set of random number generation functions and utilities
20
+ for neural network simulations and scientific computing. It wraps JAX's random number
21
+ generation capabilities with a stateful interface that simplifies usage while maintaining
22
+ reproducibility and performance.
23
+
24
+ The module includes:
25
+
26
+ - Standard random distributions (uniform, normal, exponential, etc.)
27
+ - Random state management with automatic key splitting
28
+ - Seed management utilities for reproducible simulations
29
+ - NumPy-compatible API for easy migration
30
+
31
+ Key Features
32
+ ------------
33
+
34
+ - **Stateful random generation**: Automatic management of JAX's PRNG keys
35
+ - **NumPy compatibility**: Drop-in replacement for most NumPy random functions
36
+ - **Reproducibility**: Robust seed management and state tracking
37
+ - **Performance**: JIT-compiled random functions for efficient generation
38
+ - **Thread-safe**: Proper handling of random state in parallel computations
39
+
40
+ Random State Management
41
+ -----------------------
42
+
43
+ The module uses a global `DEFAULT` RandomState instance that automatically manages
44
+ JAX's PRNG keys. This eliminates the need to manually track and split keys:
45
+
46
+ .. code-block:: python
47
+
48
+ >>> import brainstate as bs
49
+ >>> import brainstate.random as bsr
50
+ >>>
51
+ >>> # Set a global seed for reproducibility
52
+ >>> bsr.seed(42)
53
+ >>>
54
+ >>> # Generate random numbers without manual key management
55
+ >>> x = bsr.normal(0, 1, size=(3, 3))
56
+ >>> y = bsr.uniform(0, 1, size=(100,))
57
+
58
+ Custom Random States
59
+ --------------------
60
+
61
+ For more control, you can create custom RandomState instances:
62
+
63
+ .. code-block:: python
64
+
65
+ >>> import brainstate.random as bsr
66
+ >>>
67
+ >>> # Create a custom random state
68
+ >>> rng = bsr.RandomState(seed=123)
69
+ >>>
70
+ >>> # Use it for generation
71
+ >>> data = rng.normal(0, 1, size=(10, 10))
72
+ >>>
73
+ >>> # Get the current key
74
+ >>> current_key = rng.value
75
+
76
+ Available Distributions
77
+ -----------------------
78
+
79
+ The module provides a wide range of probability distributions:
80
+
81
+ **Uniform Distributions:**
82
+
83
+ - `rand`, `random`, `random_sample`, `ranf`, `sample` - Uniform [0, 1)
84
+ - `randint`, `random_integers` - Uniform integers
85
+ - `choice` - Random selection from array
86
+ - `permutation`, `shuffle` - Random ordering
87
+
88
+ **Normal Distributions:**
89
+
90
+ - `randn`, `normal` - Normal (Gaussian) distribution
91
+ - `standard_normal` - Standard normal distribution
92
+ - `multivariate_normal` - Multivariate normal distribution
93
+ - `truncated_normal` - Truncated normal distribution
94
+
95
+ **Other Continuous Distributions:**
96
+
97
+ - `beta` - Beta distribution
98
+ - `exponential`, `standard_exponential` - Exponential distribution
99
+ - `gamma`, `standard_gamma` - Gamma distribution
100
+ - `gumbel` - Gumbel distribution
101
+ - `laplace` - Laplace distribution
102
+ - `logistic` - Logistic distribution
103
+ - `pareto` - Pareto distribution
104
+ - `rayleigh` - Rayleigh distribution
105
+ - `standard_cauchy` - Cauchy distribution
106
+ - `standard_t` - Student's t-distribution
107
+ - `uniform` - Uniform distribution over [low, high)
108
+ - `weibull` - Weibull distribution
109
+
110
+ **Discrete Distributions:**
111
+
112
+ - `bernoulli` - Bernoulli distribution
113
+ - `binomial` - Binomial distribution
114
+ - `poisson` - Poisson distribution
115
+
116
+ Seed Management
117
+ ---------------
118
+
119
+ The module provides utilities for managing random seeds:
120
+
121
+ .. code-block:: python
122
+
123
+ >>> import brainstate.random as bsr
124
+ >>>
125
+ >>> # Set a global seed
126
+ >>> bsr.seed(42)
127
+ >>>
128
+ >>> # Get current seed/key
129
+ >>> key = bsr.get_key()
130
+ >>>
131
+ >>> # Split the key for parallel operations
132
+ >>> keys = bsr.split_key(n=4)
133
+ >>>
134
+ >>> # Use context manager for temporary seed
135
+ >>> with bsr.local_seed(123):
136
+ ... x = bsr.normal(0, 1, (5,)) # Uses seed 123
137
+ >>> y = bsr.normal(0, 1, (5,)) # Uses original seed
138
+
139
+ Examples
140
+ --------
141
+
142
+ **Basic random number generation:**
143
+
144
+ .. code-block:: python
145
+
146
+ >>> import brainstate.random as bsr
147
+ >>> import jax.numpy as jnp
148
+ >>>
149
+ >>> # Set seed for reproducibility
150
+ >>> bsr.seed(0)
151
+ >>>
152
+ >>> # Generate uniform random numbers
153
+ >>> uniform_data = bsr.random((3, 3))
154
+ >>> print(uniform_data.shape)
155
+ (3, 3)
156
+ >>>
157
+ >>> # Generate normal random numbers
158
+ >>> normal_data = bsr.normal(loc=0, scale=1, size=(100,))
159
+ >>> print(f"Mean: {normal_data.mean():.3f}, Std: {normal_data.std():.3f}")
160
+ Mean: -0.045, Std: 0.972
161
+
162
+ **Sampling and shuffling:**
163
+
164
+ .. code-block:: python
165
+
166
+ >>> import brainstate.random as bsr
167
+ >>> import jax.numpy as jnp
168
+ >>>
169
+ >>> bsr.seed(42)
170
+ >>>
171
+ >>> # Random choice from array
172
+ >>> arr = jnp.array([1, 2, 3, 4, 5])
173
+ >>> samples = bsr.choice(arr, size=3, replace=False)
174
+ >>> print(samples)
175
+ [4 1 5]
176
+ >>>
177
+ >>> # Random permutation
178
+ >>> perm = bsr.permutation(10)
179
+ >>> print(perm)
180
+ [3 5 1 7 9 0 2 8 4 6]
181
+ >>>
182
+ >>> # In-place shuffle
183
+ >>> data = jnp.arange(5)
184
+ >>> bsr.shuffle(data)
185
+ >>> print(data)
186
+ [2 0 4 1 3]
187
+
188
+ **Advanced distributions:**
189
+
190
+ .. code-block:: python
191
+
192
+ >>> import brainstate.random as bsr
193
+ >>> import matplotlib.pyplot as plt
194
+ >>>
195
+ >>> bsr.seed(123)
196
+ >>>
197
+ >>> # Generate samples from different distributions
198
+ >>> normal_samples = bsr.normal(0, 1, 1000)
199
+ >>> exponential_samples = bsr.exponential(1.0, 1000)
200
+ >>> beta_samples = bsr.beta(2, 5, 1000)
201
+ >>>
202
+ >>> # Plot histograms
203
+ >>> fig, axes = plt.subplots(1, 3, figsize=(12, 4))
204
+ >>> axes[0].hist(normal_samples, bins=30, density=True)
205
+ >>> axes[0].set_title('Normal Distribution')
206
+ >>> axes[1].hist(exponential_samples, bins=30, density=True)
207
+ >>> axes[1].set_title('Exponential Distribution')
208
+ >>> axes[2].hist(beta_samples, bins=30, density=True)
209
+ >>> axes[2].set_title('Beta Distribution')
210
+ >>> plt.show()
211
+
212
+ **Using with neural network simulations:**
213
+
214
+ .. code-block:: python
215
+
216
+ >>> import brainstate as bs
217
+ >>> import brainstate.random as bsr
218
+ >>> import brainstate.nn as nn
219
+ >>>
220
+ >>> class NoisyNeuron(bs.Module):
221
+ ... def __init__(self, n_neurons, noise_scale=0.1):
222
+ ... super().__init__()
223
+ ... self.n_neurons = n_neurons
224
+ ... self.noise_scale = noise_scale
225
+ ... self.membrane = bs.State(jnp.zeros(n_neurons))
226
+ ...
227
+ ... def update(self, input_current):
228
+ ... # Add noise to input current
229
+ ... noise = bsr.normal(0, self.noise_scale, self.n_neurons)
230
+ ... self.membrane.value += input_current + noise
231
+ ... return self.membrane.value
232
+ >>>
233
+ >>> # Create and run noisy neuron model
234
+ >>> bsr.seed(42)
235
+ >>> neuron = NoisyNeuron(100)
236
+ >>> output = neuron.update(jnp.ones(100) * 0.5)
237
+
238
+ Notes
239
+ -----
240
+
241
+ - This module is designed to work seamlessly with JAX's functional programming model
242
+ - Random functions are JIT-compilable for optimal performance
243
+ - The global DEFAULT state is thread-local to avoid race conditions
244
+ - For deterministic results, always set a seed before random operations
245
+
246
+ See Also
247
+ --------
248
+
249
+ jax.random : JAX's random number generation module
250
+ numpy.random : NumPy's random number generation module
251
+ RandomState : The stateful random number generator class
252
+
253
+ References
254
+ ----------
255
+ .. [1] JAX Random Number Generation:
256
+ https://jax.readthedocs.io/en/latest/jax.random.html
257
+ .. [2] NumPy Random Sampling:
258
+ https://numpy.org/doc/stable/reference/random/index.html
259
+
260
+ """
261
+
262
+ from ._rand_funs import *
263
+ from ._rand_funs import __all__ as __all_random__
264
+ from ._rand_seed import *
265
+ from ._rand_seed import __all__ as __all_seed__
266
+ from ._rand_state import *
267
+ from ._rand_state import __all__ as __all_state__
268
+
269
+ __all__ = __all_random__ + __all_state__ + __all_seed__
270
+ del __all_random__, __all_state__, __all_seed__