brainstate 0.1.10__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (163) hide show
  1. brainstate/__init__.py +169 -58
  2. brainstate/_compatible_import.py +340 -148
  3. brainstate/_compatible_import_test.py +681 -0
  4. brainstate/_deprecation.py +210 -0
  5. brainstate/_deprecation_test.py +2319 -0
  6. brainstate/{util/error.py → _error.py} +45 -55
  7. brainstate/_state.py +1652 -1605
  8. brainstate/_state_test.py +52 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -563
  11. brainstate/environ_test.py +1223 -62
  12. brainstate/graph/__init__.py +22 -29
  13. brainstate/graph/_node.py +240 -0
  14. brainstate/graph/_node_test.py +589 -0
  15. brainstate/graph/{_graph_operation.py → _operation.py} +1624 -1738
  16. brainstate/graph/_operation_test.py +1147 -0
  17. brainstate/mixin.py +1433 -365
  18. brainstate/mixin_test.py +1017 -77
  19. brainstate/nn/__init__.py +137 -135
  20. brainstate/nn/_activations.py +1100 -808
  21. brainstate/nn/_activations_test.py +354 -331
  22. brainstate/nn/_collective_ops.py +633 -514
  23. brainstate/nn/_collective_ops_test.py +774 -43
  24. brainstate/nn/_common.py +226 -178
  25. brainstate/nn/_common_test.py +154 -0
  26. brainstate/nn/_conv.py +2010 -501
  27. brainstate/nn/_conv_test.py +849 -238
  28. brainstate/nn/_delay.py +575 -588
  29. brainstate/nn/_delay_test.py +243 -238
  30. brainstate/nn/_dropout.py +618 -426
  31. brainstate/nn/_dropout_test.py +477 -100
  32. brainstate/nn/_dynamics.py +1267 -1343
  33. brainstate/nn/_dynamics_test.py +67 -78
  34. brainstate/nn/_elementwise.py +1298 -1119
  35. brainstate/nn/_elementwise_test.py +830 -169
  36. brainstate/nn/_embedding.py +408 -58
  37. brainstate/nn/_embedding_test.py +156 -0
  38. brainstate/nn/{_fixedprob.py → _event_fixedprob.py} +233 -239
  39. brainstate/nn/{_fixedprob_test.py → _event_fixedprob_test.py} +115 -114
  40. brainstate/nn/{_linear_mv.py → _event_linear.py} +83 -83
  41. brainstate/nn/{_linear_mv_test.py → _event_linear_test.py} +121 -120
  42. brainstate/nn/_exp_euler.py +254 -92
  43. brainstate/nn/_exp_euler_test.py +377 -35
  44. brainstate/nn/_linear.py +744 -424
  45. brainstate/nn/_linear_test.py +475 -107
  46. brainstate/nn/_metrics.py +1070 -0
  47. brainstate/nn/_metrics_test.py +611 -0
  48. brainstate/nn/_module.py +384 -377
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -975
  51. brainstate/nn/_normalizations_test.py +699 -73
  52. brainstate/nn/_paddings.py +1020 -0
  53. brainstate/nn/_paddings_test.py +723 -0
  54. brainstate/nn/_poolings.py +2239 -1177
  55. brainstate/nn/_poolings_test.py +953 -217
  56. brainstate/nn/{_rate_rnns.py → _rnns.py} +946 -554
  57. brainstate/nn/_rnns_test.py +593 -0
  58. brainstate/nn/_utils.py +216 -89
  59. brainstate/nn/_utils_test.py +402 -0
  60. brainstate/{init/_random_inits.py → nn/init.py} +809 -553
  61. brainstate/{init/_random_inits_test.py → nn/init_test.py} +180 -149
  62. brainstate/random/__init__.py +270 -24
  63. brainstate/random/_rand_funs.py +3938 -3616
  64. brainstate/random/_rand_funs_test.py +640 -567
  65. brainstate/random/_rand_seed.py +675 -210
  66. brainstate/random/_rand_seed_test.py +48 -48
  67. brainstate/random/_rand_state.py +1617 -1409
  68. brainstate/random/_rand_state_test.py +551 -0
  69. brainstate/transform/__init__.py +59 -0
  70. brainstate/transform/_ad_checkpoint.py +176 -0
  71. brainstate/{compile → transform}/_ad_checkpoint_test.py +49 -49
  72. brainstate/{augment → transform}/_autograd.py +1025 -778
  73. brainstate/{augment → transform}/_autograd_test.py +1289 -1289
  74. brainstate/transform/_conditions.py +316 -0
  75. brainstate/{compile → transform}/_conditions_test.py +220 -220
  76. brainstate/{compile → transform}/_error_if.py +94 -92
  77. brainstate/{compile → transform}/_error_if_test.py +52 -52
  78. brainstate/transform/_eval_shape.py +145 -0
  79. brainstate/{augment → transform}/_eval_shape_test.py +38 -38
  80. brainstate/{compile → transform}/_jit.py +399 -346
  81. brainstate/{compile → transform}/_jit_test.py +143 -143
  82. brainstate/{compile → transform}/_loop_collect_return.py +675 -536
  83. brainstate/{compile → transform}/_loop_collect_return_test.py +58 -58
  84. brainstate/{compile → transform}/_loop_no_collection.py +283 -184
  85. brainstate/{compile → transform}/_loop_no_collection_test.py +50 -50
  86. brainstate/transform/_make_jaxpr.py +2016 -0
  87. brainstate/transform/_make_jaxpr_test.py +1510 -0
  88. brainstate/transform/_mapping.py +529 -0
  89. brainstate/transform/_mapping_test.py +194 -0
  90. brainstate/{compile → transform}/_progress_bar.py +255 -202
  91. brainstate/{augment → transform}/_random.py +171 -151
  92. brainstate/{compile → transform}/_unvmap.py +256 -159
  93. brainstate/transform/_util.py +286 -0
  94. brainstate/typing.py +837 -304
  95. brainstate/typing_test.py +780 -0
  96. brainstate/util/__init__.py +27 -50
  97. brainstate/util/_others.py +1025 -0
  98. brainstate/util/_others_test.py +962 -0
  99. brainstate/util/_pretty_pytree.py +1301 -0
  100. brainstate/util/_pretty_pytree_test.py +675 -0
  101. brainstate/util/{pretty_repr.py → _pretty_repr.py} +462 -328
  102. brainstate/util/_pretty_repr_test.py +696 -0
  103. brainstate/util/filter.py +945 -469
  104. brainstate/util/filter_test.py +912 -0
  105. brainstate/util/struct.py +910 -523
  106. brainstate/util/struct_test.py +602 -0
  107. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -91
  108. brainstate-0.2.1.dist-info/RECORD +111 -0
  109. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
  110. brainstate/augment/__init__.py +0 -30
  111. brainstate/augment/_eval_shape.py +0 -99
  112. brainstate/augment/_mapping.py +0 -1060
  113. brainstate/augment/_mapping_test.py +0 -597
  114. brainstate/compile/__init__.py +0 -38
  115. brainstate/compile/_ad_checkpoint.py +0 -204
  116. brainstate/compile/_conditions.py +0 -256
  117. brainstate/compile/_make_jaxpr.py +0 -888
  118. brainstate/compile/_make_jaxpr_test.py +0 -156
  119. brainstate/compile/_util.py +0 -147
  120. brainstate/functional/__init__.py +0 -27
  121. brainstate/graph/_graph_node.py +0 -244
  122. brainstate/graph/_graph_node_test.py +0 -73
  123. brainstate/graph/_graph_operation_test.py +0 -563
  124. brainstate/init/__init__.py +0 -26
  125. brainstate/init/_base.py +0 -52
  126. brainstate/init/_generic.py +0 -244
  127. brainstate/init/_regular_inits.py +0 -105
  128. brainstate/init/_regular_inits_test.py +0 -50
  129. brainstate/nn/_inputs.py +0 -608
  130. brainstate/nn/_ltp.py +0 -28
  131. brainstate/nn/_neuron.py +0 -705
  132. brainstate/nn/_neuron_test.py +0 -161
  133. brainstate/nn/_others.py +0 -46
  134. brainstate/nn/_projection.py +0 -486
  135. brainstate/nn/_rate_rnns_test.py +0 -63
  136. brainstate/nn/_readout.py +0 -209
  137. brainstate/nn/_readout_test.py +0 -53
  138. brainstate/nn/_stp.py +0 -236
  139. brainstate/nn/_synapse.py +0 -505
  140. brainstate/nn/_synapse_test.py +0 -131
  141. brainstate/nn/_synaptic_projection.py +0 -423
  142. brainstate/nn/_synouts.py +0 -162
  143. brainstate/nn/_synouts_test.py +0 -57
  144. brainstate/nn/metrics.py +0 -388
  145. brainstate/optim/__init__.py +0 -38
  146. brainstate/optim/_base.py +0 -64
  147. brainstate/optim/_lr_scheduler.py +0 -448
  148. brainstate/optim/_lr_scheduler_test.py +0 -50
  149. brainstate/optim/_optax_optimizer.py +0 -152
  150. brainstate/optim/_optax_optimizer_test.py +0 -53
  151. brainstate/optim/_sgd_optimizer.py +0 -1104
  152. brainstate/random/_random_for_unit.py +0 -52
  153. brainstate/surrogate.py +0 -1957
  154. brainstate/transform.py +0 -23
  155. brainstate/util/caller.py +0 -98
  156. brainstate/util/others.py +0 -540
  157. brainstate/util/pretty_pytree.py +0 -945
  158. brainstate/util/pretty_pytree_test.py +0 -159
  159. brainstate/util/pretty_table.py +0 -2954
  160. brainstate/util/scaling.py +0 -258
  161. brainstate-0.1.10.dist-info/RECORD +0 -130
  162. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
  163. {brainstate-0.1.10.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -1,567 +1,640 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import platform
18
- import unittest
19
-
20
- import jax.numpy as jnp
21
- import jax.random as jr
22
- import numpy as np
23
- import pytest
24
-
25
- import brainstate
26
-
27
-
28
- class TestRandom(unittest.TestCase):
29
-
30
- def test_rand(self):
31
- brainstate.random.seed()
32
- a = brainstate.random.rand(3, 2)
33
- self.assertTupleEqual(a.shape, (3, 2))
34
- self.assertTrue((a >= 0).all() and (a < 1).all())
35
-
36
- key = jr.PRNGKey(123)
37
- jres = jr.uniform(key, shape=(10, 100))
38
- self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=key)))
39
- self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=123)))
40
-
41
- def test_randint1(self):
42
- brainstate.random.seed()
43
- a = brainstate.random.randint(5)
44
- self.assertTupleEqual(a.shape, ())
45
- self.assertTrue(0 <= a < 5)
46
-
47
- def test_randint2(self):
48
- brainstate.random.seed()
49
- a = brainstate.random.randint(2, 6, size=(4, 3))
50
- self.assertTupleEqual(a.shape, (4, 3))
51
- self.assertTrue((a >= 2).all() and (a < 6).all())
52
-
53
- def test_randint3(self):
54
- brainstate.random.seed()
55
- a = brainstate.random.randint([1, 2, 3], [10, 7, 8])
56
- self.assertTupleEqual(a.shape, (3,))
57
- self.assertTrue((a - jnp.array([1, 2, 3]) >= 0).all()
58
- and (-a + jnp.array([10, 7, 8]) > 0).all())
59
-
60
- def test_randint4(self):
61
- brainstate.random.seed()
62
- a = brainstate.random.randint([1, 2, 3], [10, 7, 8], size=(2, 3))
63
- self.assertTupleEqual(a.shape, (2, 3))
64
-
65
- def test_randn(self):
66
- brainstate.random.seed()
67
- a = brainstate.random.randn(3, 2)
68
- self.assertTupleEqual(a.shape, (3, 2))
69
-
70
- def test_random1(self):
71
- brainstate.random.seed()
72
- a = brainstate.random.random()
73
- self.assertTrue(0. <= a < 1)
74
-
75
- def test_random2(self):
76
- brainstate.random.seed()
77
- a = brainstate.random.random(size=(3, 2))
78
- self.assertTupleEqual(a.shape, (3, 2))
79
- self.assertTrue((a >= 0).all() and (a < 1).all())
80
-
81
- def test_random_sample(self):
82
- brainstate.random.seed()
83
- a = brainstate.random.random_sample(size=(3, 2))
84
- self.assertTupleEqual(a.shape, (3, 2))
85
- self.assertTrue((a >= 0).all() and (a < 1).all())
86
-
87
- def test_choice1(self):
88
- brainstate.random.seed()
89
- a = brainstate.random.choice(5)
90
- self.assertTupleEqual(jnp.shape(a), ())
91
- self.assertTrue(0 <= a < 5)
92
-
93
- def test_choice2(self):
94
- brainstate.random.seed()
95
- a = brainstate.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0., 0.3])
96
- self.assertTupleEqual(a.shape, (3,))
97
- self.assertTrue((a >= 0).all() and (a < 5).all())
98
-
99
- def test_choice3(self):
100
- brainstate.random.seed()
101
- a = brainstate.random.choice(jnp.arange(2, 20), size=(4, 3), replace=False)
102
- self.assertTupleEqual(a.shape, (4, 3))
103
- self.assertTrue((a >= 2).all() and (a < 20).all())
104
- self.assertEqual(len(jnp.unique(a)), 12)
105
-
106
- def test_permutation1(self):
107
- brainstate.random.seed()
108
- a = brainstate.random.permutation(10)
109
- self.assertTupleEqual(a.shape, (10,))
110
- self.assertEqual(len(jnp.unique(a)), 10)
111
-
112
- def test_permutation2(self):
113
- brainstate.random.seed()
114
- a = brainstate.random.permutation(jnp.arange(10))
115
- self.assertTupleEqual(a.shape, (10,))
116
- self.assertEqual(len(jnp.unique(a)), 10)
117
-
118
- def test_shuffle1(self):
119
- brainstate.random.seed()
120
- a = jnp.arange(10)
121
- brainstate.random.shuffle(a)
122
- self.assertTupleEqual(a.shape, (10,))
123
- self.assertEqual(len(jnp.unique(a)), 10)
124
-
125
- def test_shuffle2(self):
126
- brainstate.random.seed()
127
- a = jnp.arange(12).reshape(4, 3)
128
- brainstate.random.shuffle(a, axis=1)
129
- self.assertTupleEqual(a.shape, (4, 3))
130
- self.assertEqual(len(jnp.unique(a)), 12)
131
-
132
- # test that a is only shuffled along axis 1
133
- uni = jnp.unique(jnp.diff(a, axis=0))
134
- self.assertEqual(uni, jnp.asarray([3]))
135
-
136
- def test_beta1(self):
137
- brainstate.random.seed()
138
- a = brainstate.random.beta(2, 2)
139
- self.assertTupleEqual(a.shape, ())
140
-
141
- def test_beta2(self):
142
- brainstate.random.seed()
143
- a = brainstate.random.beta([2, 2, 3], 2, size=(3,))
144
- self.assertTupleEqual(a.shape, (3,))
145
-
146
- def test_exponential1(self):
147
- brainstate.random.seed()
148
- a = brainstate.random.exponential(10., size=[3, 2])
149
- self.assertTupleEqual(a.shape, (3, 2))
150
-
151
- def test_exponential2(self):
152
- brainstate.random.seed()
153
- a = brainstate.random.exponential([1., 2., 5.])
154
- self.assertTupleEqual(a.shape, (3,))
155
-
156
- def test_gamma(self):
157
- brainstate.random.seed()
158
- a = brainstate.random.gamma(2, 10., size=[3, 2])
159
- self.assertTupleEqual(a.shape, (3, 2))
160
-
161
- def test_gumbel(self):
162
- brainstate.random.seed()
163
- a = brainstate.random.gumbel(0., 2., size=[3, 2])
164
- self.assertTupleEqual(a.shape, (3, 2))
165
-
166
- def test_laplace(self):
167
- brainstate.random.seed()
168
- a = brainstate.random.laplace(0., 2., size=[3, 2])
169
- self.assertTupleEqual(a.shape, (3, 2))
170
-
171
- def test_logistic(self):
172
- brainstate.random.seed()
173
- a = brainstate.random.logistic(0., 2., size=[3, 2])
174
- self.assertTupleEqual(a.shape, (3, 2))
175
-
176
- def test_normal1(self):
177
- brainstate.random.seed()
178
- a = brainstate.random.normal()
179
- self.assertTupleEqual(a.shape, ())
180
-
181
- def test_normal2(self):
182
- brainstate.random.seed()
183
- a = brainstate.random.normal(loc=[0., 2., 4.], scale=[1., 2., 3.])
184
- self.assertTupleEqual(a.shape, (3,))
185
-
186
- def test_normal3(self):
187
- brainstate.random.seed()
188
- a = brainstate.random.normal(loc=[0., 2., 4.], scale=[[1., 2., 3.], [1., 1., 1.]])
189
- print(a)
190
- self.assertTupleEqual(a.shape, (2, 3))
191
-
192
- def test_pareto(self):
193
- brainstate.random.seed()
194
- a = brainstate.random.pareto([1, 2, 2])
195
- self.assertTupleEqual(a.shape, (3,))
196
-
197
- def test_poisson(self):
198
- brainstate.random.seed()
199
- a = brainstate.random.poisson([1., 2., 2.], size=3)
200
- self.assertTupleEqual(a.shape, (3,))
201
-
202
- def test_standard_cauchy(self):
203
- brainstate.random.seed()
204
- a = brainstate.random.standard_cauchy(size=(3, 2))
205
- self.assertTupleEqual(a.shape, (3, 2))
206
-
207
- def test_standard_exponential(self):
208
- brainstate.random.seed()
209
- a = brainstate.random.standard_exponential(size=(3, 2))
210
- self.assertTupleEqual(a.shape, (3, 2))
211
-
212
- def test_standard_gamma(self):
213
- brainstate.random.seed()
214
- a = brainstate.random.standard_gamma(shape=[1, 2, 4], size=3)
215
- self.assertTupleEqual(a.shape, (3,))
216
-
217
- def test_standard_normal(self):
218
- brainstate.random.seed()
219
- a = brainstate.random.standard_normal(size=(3, 2))
220
- self.assertTupleEqual(a.shape, (3, 2))
221
-
222
- def test_standard_t(self):
223
- brainstate.random.seed()
224
- a = brainstate.random.standard_t(df=[1, 2, 4], size=3)
225
- self.assertTupleEqual(a.shape, (3,))
226
-
227
- def test_standard_uniform1(self):
228
- brainstate.random.seed()
229
- a = brainstate.random.uniform()
230
- self.assertTupleEqual(a.shape, ())
231
- self.assertTrue(0 <= a < 1)
232
-
233
- def test_uniform2(self):
234
- brainstate.random.seed()
235
- a = brainstate.random.uniform(low=[-1., 5., 2.], high=[2., 6., 10.], size=3)
236
- self.assertTupleEqual(a.shape, (3,))
237
- self.assertTrue((a - jnp.array([-1., 5., 2.]) >= 0).all()
238
- and (-a + jnp.array([2., 6., 10.]) > 0).all())
239
-
240
- def test_uniform3(self):
241
- brainstate.random.seed()
242
- a = brainstate.random.uniform(low=-1., high=[2., 6., 10.], size=(2, 3))
243
- self.assertTupleEqual(a.shape, (2, 3))
244
-
245
- def test_uniform4(self):
246
- brainstate.random.seed()
247
- a = brainstate.random.uniform(low=[-1., 5., 2.], high=[[2., 6., 10.], [10., 10., 10.]])
248
- self.assertTupleEqual(a.shape, (2, 3))
249
-
250
- def test_truncated_normal1(self):
251
- brainstate.random.seed()
252
- a = brainstate.random.truncated_normal(-1., 1.)
253
- self.assertTupleEqual(a.shape, ())
254
- self.assertTrue(-1. <= a <= 1.)
255
-
256
- def test_truncated_normal2(self):
257
- brainstate.random.seed()
258
- a = brainstate.random.truncated_normal(-1., [1., 2., 1.], size=(4, 3))
259
- self.assertTupleEqual(a.shape, (4, 3))
260
-
261
- def test_truncated_normal3(self):
262
- brainstate.random.seed()
263
- a = brainstate.random.truncated_normal([-1., 0., 1.], [[2., 2., 4.], [2., 2., 4.]])
264
- self.assertTupleEqual(a.shape, (2, 3))
265
- self.assertTrue((a - jnp.array([-1., 0., 1.]) >= 0.).all()
266
- and (- a + jnp.array([2., 2., 4.]) >= 0.).all())
267
-
268
- def test_bernoulli1(self):
269
- brainstate.random.seed()
270
- a = brainstate.random.bernoulli()
271
- self.assertTupleEqual(a.shape, ())
272
- self.assertTrue(a == 0 or a == 1)
273
-
274
- def test_bernoulli2(self):
275
- brainstate.random.seed()
276
- a = brainstate.random.bernoulli([0.5, 0.6, 0.8])
277
- self.assertTupleEqual(a.shape, (3,))
278
- self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
279
-
280
- def test_bernoulli3(self):
281
- brainstate.random.seed()
282
- a = brainstate.random.bernoulli([0.5, 0.6], size=(3, 2))
283
- self.assertTupleEqual(a.shape, (3, 2))
284
- self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
285
-
286
- def test_lognormal1(self):
287
- brainstate.random.seed()
288
- a = brainstate.random.lognormal()
289
- self.assertTupleEqual(a.shape, ())
290
-
291
- def test_lognormal2(self):
292
- brainstate.random.seed()
293
- a = brainstate.random.lognormal(sigma=[2., 1.], size=[3, 2])
294
- self.assertTupleEqual(a.shape, (3, 2))
295
-
296
- def test_lognormal3(self):
297
- brainstate.random.seed()
298
- a = brainstate.random.lognormal([2., 0.], [[2., 1.], [3., 1.2]])
299
- self.assertTupleEqual(a.shape, (2, 2))
300
-
301
- def test_binomial1(self):
302
- brainstate.random.seed()
303
- a = brainstate.random.binomial(5, 0.5)
304
- b = np.random.binomial(5, 0.5)
305
- print(a)
306
- print(b)
307
- self.assertTupleEqual(a.shape, ())
308
- self.assertTrue(a.dtype, int)
309
-
310
- def test_binomial2(self):
311
- brainstate.random.seed()
312
- a = brainstate.random.binomial(5, 0.5, size=(3, 2))
313
- self.assertTupleEqual(a.shape, (3, 2))
314
- self.assertTrue((a >= 0).all() and (a <= 5).all())
315
-
316
- def test_binomial3(self):
317
- brainstate.random.seed()
318
- a = brainstate.random.binomial(n=jnp.asarray([2, 3, 4]), p=jnp.asarray([[0.5, 0.5, 0.5], [0.6, 0.6, 0.6]]))
319
- self.assertTupleEqual(a.shape, (2, 3))
320
-
321
- def test_chisquare1(self):
322
- brainstate.random.seed()
323
- a = brainstate.random.chisquare(3)
324
- self.assertTupleEqual(a.shape, ())
325
- self.assertTrue(a.dtype, float)
326
-
327
- def test_chisquare2(self):
328
- brainstate.random.seed()
329
- with self.assertRaises(NotImplementedError):
330
- a = brainstate.random.chisquare(df=[2, 3, 4])
331
-
332
- def test_chisquare3(self):
333
- brainstate.random.seed()
334
- a = brainstate.random.chisquare(df=2, size=100)
335
- self.assertTupleEqual(a.shape, (100,))
336
-
337
- def test_chisquare4(self):
338
- brainstate.random.seed()
339
- a = brainstate.random.chisquare(df=2, size=(100, 10))
340
- self.assertTupleEqual(a.shape, (100, 10))
341
-
342
- def test_dirichlet1(self):
343
- brainstate.random.seed()
344
- a = brainstate.random.dirichlet((10, 5, 3))
345
- self.assertTupleEqual(a.shape, (3,))
346
-
347
- def test_dirichlet2(self):
348
- brainstate.random.seed()
349
- a = brainstate.random.dirichlet((10, 5, 3), 20)
350
- self.assertTupleEqual(a.shape, (20, 3))
351
-
352
- def test_f(self):
353
- brainstate.random.seed()
354
- a = brainstate.random.f(1., 48., 100)
355
- self.assertTupleEqual(a.shape, (100,))
356
-
357
- def test_geometric(self):
358
- brainstate.random.seed()
359
- a = brainstate.random.geometric([0.7, 0.5, 0.2])
360
- self.assertTupleEqual(a.shape, (3,))
361
-
362
- def test_hypergeometric1(self):
363
- brainstate.random.seed()
364
- a = brainstate.random.hypergeometric(10, 10, 10, 20)
365
- self.assertTupleEqual(a.shape, (20,))
366
-
367
- @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
368
- def test_hypergeometric2(self):
369
- brainstate.random.seed()
370
- a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]])
371
- self.assertTupleEqual(a.shape, (2, 2))
372
-
373
- @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
374
- def test_hypergeometric3(self):
375
- brainstate.random.seed()
376
- a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]], size=(3, 2, 2))
377
- self.assertTupleEqual(a.shape, (3, 2, 2))
378
-
379
- def test_logseries(self):
380
- brainstate.random.seed()
381
- a = brainstate.random.logseries([0.7, 0.5, 0.2], size=[4, 3])
382
- self.assertTupleEqual(a.shape, (4, 3))
383
-
384
- def test_multinominal1(self):
385
- brainstate.random.seed()
386
- a = np.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
387
- print(a, a.shape)
388
- b = brainstate.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
389
- print(b, b.shape)
390
- self.assertTupleEqual(a.shape, b.shape)
391
- self.assertTupleEqual(b.shape, (4, 2, 3))
392
-
393
- def test_multinominal2(self):
394
- brainstate.random.seed()
395
- a = brainstate.random.multinomial(100, (0.5, 0.2, 0.3))
396
- self.assertTupleEqual(a.shape, (3,))
397
- self.assertTrue(a.sum() == 100)
398
-
399
- def test_multivariate_normal1(self):
400
- brainstate.random.seed()
401
- # self.skipTest('Windows jaxlib error')
402
- a = np.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
403
- b = brainstate.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
404
- print('test_multivariate_normal1')
405
- print(a)
406
- print(b)
407
- self.assertTupleEqual(a.shape, b.shape)
408
- self.assertTupleEqual(a.shape, (3, 2))
409
-
410
- def test_multivariate_normal2(self):
411
- brainstate.random.seed()
412
- a = np.random.multivariate_normal([1, 2], [[1, 3], [3, 1]])
413
- b = brainstate.random.multivariate_normal([1, 2], [[1, 3], [3, 1]], method='svd')
414
- print(a)
415
- print(b)
416
- self.assertTupleEqual(a.shape, b.shape)
417
- self.assertTupleEqual(a.shape, (2,))
418
-
419
- def test_negative_binomial(self):
420
- brainstate.random.seed()
421
- a = np.random.negative_binomial([3., 10.], 0.5)
422
- b = brainstate.random.negative_binomial([3., 10.], 0.5)
423
- print(a)
424
- print(b)
425
- self.assertTupleEqual(a.shape, b.shape)
426
- self.assertTupleEqual(b.shape, (2,))
427
-
428
- def test_negative_binomial2(self):
429
- brainstate.random.seed()
430
- a = np.random.negative_binomial(3., 0.5, 10)
431
- b = brainstate.random.negative_binomial(3., 0.5, 10)
432
- print(a)
433
- print(b)
434
- self.assertTupleEqual(a.shape, b.shape)
435
- self.assertTupleEqual(b.shape, (10,))
436
-
437
- def test_noncentral_chisquare(self):
438
- brainstate.random.seed()
439
- a = np.random.noncentral_chisquare(3, [3., 2.], (4, 2))
440
- b = brainstate.random.noncentral_chisquare(3, [3., 2.], (4, 2))
441
- self.assertTupleEqual(a.shape, b.shape)
442
- self.assertTupleEqual(b.shape, (4, 2))
443
-
444
- def test_noncentral_chisquare2(self):
445
- brainstate.random.seed()
446
- a = brainstate.random.noncentral_chisquare(3, [3., 2.])
447
- self.assertTupleEqual(a.shape, (2,))
448
-
449
- def test_noncentral_f(self):
450
- brainstate.random.seed()
451
- a = brainstate.random.noncentral_f(3, 20, 3., 100)
452
- self.assertTupleEqual(a.shape, (100,))
453
-
454
- def test_power(self):
455
- brainstate.random.seed()
456
- a = np.random.power(2, (4, 2))
457
- b = brainstate.random.power(2, (4, 2))
458
- self.assertTupleEqual(a.shape, b.shape)
459
- self.assertTupleEqual(b.shape, (4, 2))
460
-
461
- def test_rayleigh(self):
462
- brainstate.random.seed()
463
- a = brainstate.random.power(2., (4, 2))
464
- self.assertTupleEqual(a.shape, (4, 2))
465
-
466
- def test_triangular(self):
467
- brainstate.random.seed()
468
- a = brainstate.random.triangular((2, 2))
469
- self.assertTupleEqual(a.shape, (2, 2))
470
-
471
- def test_vonmises(self):
472
- brainstate.random.seed()
473
- a = np.random.vonmises(2., 2.)
474
- b = brainstate.random.vonmises(2., 2.)
475
- print(a, b)
476
- self.assertTupleEqual(np.shape(a), b.shape)
477
- self.assertTupleEqual(b.shape, ())
478
-
479
- def test_vonmises2(self):
480
- brainstate.random.seed()
481
- a = np.random.vonmises(2., 2., 10)
482
- b = brainstate.random.vonmises(2., 2., 10)
483
- print(a, b)
484
- self.assertTupleEqual(a.shape, b.shape)
485
- self.assertTupleEqual(b.shape, (10,))
486
-
487
- def test_wald(self):
488
- brainstate.random.seed()
489
- a = np.random.wald([2., 0.5], 2.)
490
- b = brainstate.random.wald([2., 0.5], 2.)
491
- self.assertTupleEqual(a.shape, b.shape)
492
- self.assertTupleEqual(b.shape, (2,))
493
-
494
- def test_wald2(self):
495
- brainstate.random.seed()
496
- a = np.random.wald(2., 2., 100)
497
- b = brainstate.random.wald(2., 2., 100)
498
- self.assertTupleEqual(a.shape, b.shape)
499
- self.assertTupleEqual(b.shape, (100,))
500
-
501
- def test_weibull(self):
502
- brainstate.random.seed()
503
- a = brainstate.random.weibull(2., (4, 2))
504
- self.assertTupleEqual(a.shape, (4, 2))
505
-
506
- def test_weibull2(self):
507
- brainstate.random.seed()
508
- a = brainstate.random.weibull(2., )
509
- self.assertTupleEqual(a.shape, ())
510
-
511
- def test_weibull3(self):
512
- brainstate.random.seed()
513
- a = brainstate.random.weibull([2., 3.], )
514
- self.assertTupleEqual(a.shape, (2,))
515
-
516
- def test_weibull_min(self):
517
- brainstate.random.seed()
518
- a = brainstate.random.weibull_min(2., 2., (4, 2))
519
- self.assertTupleEqual(a.shape, (4, 2))
520
-
521
- def test_weibull_min2(self):
522
- brainstate.random.seed()
523
- a = brainstate.random.weibull_min(2., 2.)
524
- self.assertTupleEqual(a.shape, ())
525
-
526
- def test_weibull_min3(self):
527
- brainstate.random.seed()
528
- a = brainstate.random.weibull_min([2., 3.], 2.)
529
- self.assertTupleEqual(a.shape, (2,))
530
-
531
- def test_zipf(self):
532
- brainstate.random.seed()
533
- a = brainstate.random.zipf(2., (4, 2))
534
- self.assertTupleEqual(a.shape, (4, 2))
535
-
536
- def test_zipf2(self):
537
- brainstate.random.seed()
538
- a = np.random.zipf([1.1, 2.])
539
- b = brainstate.random.zipf([1.1, 2.])
540
- self.assertTupleEqual(a.shape, b.shape)
541
- self.assertTupleEqual(b.shape, (2,))
542
-
543
- def test_maxwell(self):
544
- brainstate.random.seed()
545
- a = brainstate.random.maxwell(10)
546
- self.assertTupleEqual(a.shape, (10,))
547
-
548
- def test_maxwell2(self):
549
- brainstate.random.seed()
550
- a = brainstate.random.maxwell()
551
- self.assertTupleEqual(a.shape, ())
552
-
553
- def test_t(self):
554
- brainstate.random.seed()
555
- a = brainstate.random.t(1., size=10)
556
- self.assertTupleEqual(a.shape, (10,))
557
-
558
- def test_t2(self):
559
- brainstate.random.seed()
560
- a = brainstate.random.t([1., 2.], size=None)
561
- self.assertTupleEqual(a.shape, (2,))
562
-
563
- # class TestRandomKey(unittest.TestCase):
564
- # def test_clear_memory(self):
565
- # brainstate.random.split_key()
566
- # print(brainstate.random.DEFAULT.value)
567
- # self.assertTrue(isinstance(brainstate.random.DEFAULT.value, np.ndarray))
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import platform
18
+ import unittest
19
+
20
+ import jax.numpy as jnp
21
+ import jax.random as jr
22
+ import numpy as np
23
+ import pytest
24
+
25
+ import brainstate
26
+
27
+
28
+ class TestRandomExamples(unittest.TestCase):
29
+ """Test cases that demonstrate usage examples from docstrings."""
30
+
31
+ def test_rand_examples(self):
32
+ """Test examples from rand function docstring."""
33
+ # Generate random values in a 3x2 array
34
+ arr = brainstate.random.rand(3, 2)
35
+ self.assertEqual(arr.shape, (3, 2))
36
+ self.assertTrue((arr >= 0).all() and (arr < 1).all())
37
+
38
+ def test_randint_examples(self):
39
+ """Test examples from randint function docstring."""
40
+ # Generate 10 random integers from 0 to 1 (exclusive)
41
+ arr = brainstate.random.randint(2, size=10)
42
+ self.assertEqual(arr.shape, (10,))
43
+ self.assertTrue((arr >= 0).all() and (arr < 2).all())
44
+
45
+ # Generate a 2x4 array of integers from 0 to 4 (exclusive)
46
+ arr = brainstate.random.randint(5, size=(2, 4))
47
+ self.assertEqual(arr.shape, (2, 4))
48
+ self.assertTrue((arr >= 0).all() and (arr < 5).all())
49
+
50
+ # Generate integers with different upper bounds using broadcasting
51
+ arr = brainstate.random.randint(1, [3, 5, 10])
52
+ self.assertEqual(arr.shape, (3,))
53
+
54
+ # Generate integers with different lower bounds
55
+ arr = brainstate.random.randint([1, 5, 7], 10)
56
+ self.assertEqual(arr.shape, (3,))
57
+ self.assertTrue((arr >= jnp.array([1, 5, 7])).all())
58
+
59
+ def test_randn_examples(self):
60
+ """Test examples from randn function docstring."""
61
+ # Generate standard normal distributed values
62
+ arr = brainstate.random.randn(3, 2)
63
+ self.assertEqual(arr.shape, (3, 2))
64
+
65
+ def test_choice_examples(self):
66
+ """Test examples from choice function docstring."""
67
+ # Choose from range
68
+ result = brainstate.random.choice(5)
69
+ self.assertTrue(0 <= result < 5)
70
+
71
+ # Choose multiple with probabilities
72
+ arr = brainstate.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0.0, 0.3])
73
+ self.assertEqual(arr.shape, (3,))
74
+ self.assertTrue((arr >= 0).all() and (arr < 5).all())
75
+
76
+ def test_normal_examples(self):
77
+ """Test examples from normal function docstring."""
78
+ # Standard normal
79
+ result = brainstate.random.normal()
80
+ self.assertEqual(result.shape, ())
81
+
82
+ # With different parameters
83
+ arr = brainstate.random.normal(loc=0.0, scale=1.0, size=(2, 3))
84
+ self.assertEqual(arr.shape, (2, 3))
85
+
86
+ def test_uniform_examples(self):
87
+ """Test examples from uniform function docstring."""
88
+ # Standard uniform
89
+ result = brainstate.random.uniform()
90
+ self.assertEqual(result.shape, ())
91
+ self.assertTrue(0.0 <= result < 1.0)
92
+
93
+ # With custom range
94
+ arr = brainstate.random.uniform(low=2.0, high=5.0, size=(3, 2))
95
+ self.assertEqual(arr.shape, (3, 2))
96
+ self.assertTrue((arr >= 2.0).all() and (arr < 5.0).all())
97
+
98
+
99
+ class TestRandom(unittest.TestCase):
100
+ def setUp(self):
101
+ brainstate.environ.set(precision=32)
102
+
103
+ def test_rand(self):
104
+ brainstate.random.seed()
105
+ a = brainstate.random.rand(3, 2)
106
+ self.assertTupleEqual(a.shape, (3, 2))
107
+ self.assertTrue((a >= 0).all() and (a < 1).all())
108
+
109
+ key = jr.PRNGKey(123)
110
+ jres = jr.uniform(key, shape=(10, 100))
111
+ self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=key)))
112
+ self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=123)))
113
+
114
+ def test_randint1(self):
115
+ brainstate.random.seed()
116
+ a = brainstate.random.randint(5)
117
+ self.assertTupleEqual(a.shape, ())
118
+ self.assertTrue(0 <= a < 5)
119
+
120
+ def test_randint2(self):
121
+ brainstate.random.seed()
122
+ a = brainstate.random.randint(2, 6, size=(4, 3))
123
+ self.assertTupleEqual(a.shape, (4, 3))
124
+ self.assertTrue((a >= 2).all() and (a < 6).all())
125
+
126
+ def test_randint3(self):
127
+ brainstate.random.seed()
128
+ a = brainstate.random.randint([1, 2, 3], [10, 7, 8])
129
+ self.assertTupleEqual(a.shape, (3,))
130
+ self.assertTrue((a - jnp.array([1, 2, 3]) >= 0).all()
131
+ and (-a + jnp.array([10, 7, 8]) > 0).all())
132
+
133
+ def test_randint4(self):
134
+ brainstate.random.seed()
135
+ a = brainstate.random.randint([1, 2, 3], [10, 7, 8], size=(2, 3))
136
+ self.assertTupleEqual(a.shape, (2, 3))
137
+
138
+ def test_randn(self):
139
+ brainstate.random.seed()
140
+ a = brainstate.random.randn(3, 2)
141
+ self.assertTupleEqual(a.shape, (3, 2))
142
+
143
+ def test_random1(self):
144
+ brainstate.random.seed()
145
+ a = brainstate.random.random()
146
+ self.assertTrue(0. <= a < 1)
147
+
148
+ def test_random2(self):
149
+ brainstate.random.seed()
150
+ a = brainstate.random.random(size=(3, 2))
151
+ self.assertTupleEqual(a.shape, (3, 2))
152
+ self.assertTrue((a >= 0).all() and (a < 1).all())
153
+
154
+ def test_random_sample(self):
155
+ brainstate.random.seed()
156
+ a = brainstate.random.random_sample(size=(3, 2))
157
+ self.assertTupleEqual(a.shape, (3, 2))
158
+ self.assertTrue((a >= 0).all() and (a < 1).all())
159
+
160
+ def test_choice1(self):
161
+ brainstate.random.seed()
162
+ a = brainstate.random.choice(5)
163
+ self.assertTupleEqual(jnp.shape(a), ())
164
+ self.assertTrue(0 <= a < 5)
165
+
166
+ def test_choice2(self):
167
+ brainstate.random.seed()
168
+ a = brainstate.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0., 0.3])
169
+ self.assertTupleEqual(a.shape, (3,))
170
+ self.assertTrue((a >= 0).all() and (a < 5).all())
171
+
172
+ def test_choice3(self):
173
+ brainstate.random.seed()
174
+ a = brainstate.random.choice(jnp.arange(2, 20), size=(4, 3), replace=False)
175
+ self.assertTupleEqual(a.shape, (4, 3))
176
+ self.assertTrue((a >= 2).all() and (a < 20).all())
177
+ self.assertEqual(len(jnp.unique(a)), 12)
178
+
179
+ def test_permutation1(self):
180
+ brainstate.random.seed()
181
+ a = brainstate.random.permutation(10)
182
+ self.assertTupleEqual(a.shape, (10,))
183
+ self.assertEqual(len(jnp.unique(a)), 10)
184
+
185
+ def test_permutation2(self):
186
+ brainstate.random.seed()
187
+ a = brainstate.random.permutation(jnp.arange(10))
188
+ self.assertTupleEqual(a.shape, (10,))
189
+ self.assertEqual(len(jnp.unique(a)), 10)
190
+
191
+ def test_shuffle1(self):
192
+ brainstate.random.seed()
193
+ a = jnp.arange(10)
194
+ brainstate.random.shuffle(a)
195
+ self.assertTupleEqual(a.shape, (10,))
196
+ self.assertEqual(len(jnp.unique(a)), 10)
197
+
198
+ def test_shuffle2(self):
199
+ brainstate.random.seed()
200
+ a = jnp.arange(12).reshape(4, 3)
201
+ brainstate.random.shuffle(a, axis=1)
202
+ self.assertTupleEqual(a.shape, (4, 3))
203
+ self.assertEqual(len(jnp.unique(a)), 12)
204
+
205
+ # test that a is only shuffled along axis 1
206
+ uni = jnp.unique(jnp.diff(a, axis=0))
207
+ self.assertEqual(uni, jnp.asarray([3]))
208
+
209
+ def test_beta1(self):
210
+ brainstate.random.seed()
211
+ a = brainstate.random.beta(2, 2)
212
+ self.assertTupleEqual(a.shape, ())
213
+
214
+ def test_beta2(self):
215
+ brainstate.random.seed()
216
+ a = brainstate.random.beta([2, 2, 3], 2, size=(3,))
217
+ self.assertTupleEqual(a.shape, (3,))
218
+
219
+ def test_exponential1(self):
220
+ brainstate.random.seed()
221
+ a = brainstate.random.exponential(10., size=[3, 2])
222
+ self.assertTupleEqual(a.shape, (3, 2))
223
+
224
+ def test_exponential2(self):
225
+ brainstate.random.seed()
226
+ a = brainstate.random.exponential([1., 2., 5.])
227
+ self.assertTupleEqual(a.shape, (3,))
228
+
229
+ def test_gamma(self):
230
+ brainstate.random.seed()
231
+ a = brainstate.random.gamma(2, 10., size=[3, 2])
232
+ self.assertTupleEqual(a.shape, (3, 2))
233
+
234
+ def test_gumbel(self):
235
+ brainstate.random.seed()
236
+ a = brainstate.random.gumbel(0., 2., size=[3, 2])
237
+ self.assertTupleEqual(a.shape, (3, 2))
238
+
239
+ def test_laplace(self):
240
+ brainstate.random.seed()
241
+ a = brainstate.random.laplace(0., 2., size=[3, 2])
242
+ self.assertTupleEqual(a.shape, (3, 2))
243
+
244
+ def test_logistic(self):
245
+ brainstate.random.seed()
246
+ a = brainstate.random.logistic(0., 2., size=[3, 2])
247
+ self.assertTupleEqual(a.shape, (3, 2))
248
+
249
+ def test_normal1(self):
250
+ brainstate.random.seed()
251
+ a = brainstate.random.normal()
252
+ self.assertTupleEqual(a.shape, ())
253
+
254
+ def test_normal2(self):
255
+ brainstate.random.seed()
256
+ a = brainstate.random.normal(loc=[0., 2., 4.], scale=[1., 2., 3.])
257
+ self.assertTupleEqual(a.shape, (3,))
258
+
259
+ def test_normal3(self):
260
+ brainstate.random.seed()
261
+ a = brainstate.random.normal(loc=[0., 2., 4.], scale=[[1., 2., 3.], [1., 1., 1.]])
262
+ print(a)
263
+ self.assertTupleEqual(a.shape, (2, 3))
264
+
265
+ def test_pareto(self):
266
+ brainstate.random.seed()
267
+ a = brainstate.random.pareto([1, 2, 2])
268
+ self.assertTupleEqual(a.shape, (3,))
269
+
270
+ def test_poisson(self):
271
+ brainstate.random.seed()
272
+ a = brainstate.random.poisson([1., 2., 2.], size=3)
273
+ self.assertTupleEqual(a.shape, (3,))
274
+
275
+ def test_standard_cauchy(self):
276
+ brainstate.random.seed()
277
+ a = brainstate.random.standard_cauchy(size=(3, 2))
278
+ self.assertTupleEqual(a.shape, (3, 2))
279
+
280
+ def test_standard_exponential(self):
281
+ brainstate.random.seed()
282
+ a = brainstate.random.standard_exponential(size=(3, 2))
283
+ self.assertTupleEqual(a.shape, (3, 2))
284
+
285
+ def test_standard_gamma(self):
286
+ brainstate.random.seed()
287
+ a = brainstate.random.standard_gamma(shape=[1, 2, 4], size=3)
288
+ self.assertTupleEqual(a.shape, (3,))
289
+
290
+ def test_standard_normal(self):
291
+ brainstate.random.seed()
292
+ a = brainstate.random.standard_normal(size=(3, 2))
293
+ self.assertTupleEqual(a.shape, (3, 2))
294
+
295
+ def test_standard_t(self):
296
+ brainstate.random.seed()
297
+ a = brainstate.random.standard_t(df=[1, 2, 4], size=3)
298
+ self.assertTupleEqual(a.shape, (3,))
299
+
300
+ def test_standard_uniform1(self):
301
+ brainstate.random.seed()
302
+ a = brainstate.random.uniform()
303
+ self.assertTupleEqual(a.shape, ())
304
+ self.assertTrue(0 <= a < 1)
305
+
306
+ def test_uniform2(self):
307
+ brainstate.random.seed()
308
+ a = brainstate.random.uniform(low=[-1., 5., 2.], high=[2., 6., 10.], size=3)
309
+ self.assertTupleEqual(a.shape, (3,))
310
+ self.assertTrue((a - jnp.array([-1., 5., 2.]) >= 0).all()
311
+ and (-a + jnp.array([2., 6., 10.]) > 0).all())
312
+
313
+ def test_uniform3(self):
314
+ brainstate.random.seed()
315
+ a = brainstate.random.uniform(low=-1., high=[2., 6., 10.], size=(2, 3))
316
+ self.assertTupleEqual(a.shape, (2, 3))
317
+
318
+ def test_uniform4(self):
319
+ brainstate.random.seed()
320
+ a = brainstate.random.uniform(low=[-1., 5., 2.], high=[[2., 6., 10.], [10., 10., 10.]])
321
+ self.assertTupleEqual(a.shape, (2, 3))
322
+
323
+ def test_truncated_normal1(self):
324
+ brainstate.random.seed()
325
+ a = brainstate.random.truncated_normal(-1., 1.)
326
+ self.assertTupleEqual(a.shape, ())
327
+ self.assertTrue(-1. <= a <= 1.)
328
+
329
+ def test_truncated_normal2(self):
330
+ brainstate.random.seed()
331
+ a = brainstate.random.truncated_normal(-1., [1., 2., 1.], size=(4, 3))
332
+ self.assertTupleEqual(a.shape, (4, 3))
333
+
334
+ def test_truncated_normal3(self):
335
+ brainstate.random.seed()
336
+ a = brainstate.random.truncated_normal([-1., 0., 1.], [[2., 2., 4.], [2., 2., 4.]])
337
+ self.assertTupleEqual(a.shape, (2, 3))
338
+ self.assertTrue((a - jnp.array([-1., 0., 1.]) >= 0.).all()
339
+ and (- a + jnp.array([2., 2., 4.]) >= 0.).all())
340
+
341
+ def test_bernoulli1(self):
342
+ brainstate.random.seed()
343
+ a = brainstate.random.bernoulli()
344
+ self.assertTupleEqual(a.shape, ())
345
+ self.assertTrue(a == 0 or a == 1)
346
+
347
+ def test_bernoulli2(self):
348
+ brainstate.random.seed()
349
+ a = brainstate.random.bernoulli([0.5, 0.6, 0.8])
350
+ self.assertTupleEqual(a.shape, (3,))
351
+ self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
352
+
353
+ def test_bernoulli3(self):
354
+ brainstate.random.seed()
355
+ a = brainstate.random.bernoulli([0.5, 0.6], size=(3, 2))
356
+ self.assertTupleEqual(a.shape, (3, 2))
357
+ self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
358
+
359
+ def test_lognormal1(self):
360
+ brainstate.random.seed()
361
+ a = brainstate.random.lognormal()
362
+ self.assertTupleEqual(a.shape, ())
363
+
364
+ def test_lognormal2(self):
365
+ brainstate.random.seed()
366
+ a = brainstate.random.lognormal(sigma=[2., 1.], size=[3, 2])
367
+ self.assertTupleEqual(a.shape, (3, 2))
368
+
369
+ def test_lognormal3(self):
370
+ brainstate.random.seed()
371
+ a = brainstate.random.lognormal([2., 0.], [[2., 1.], [3., 1.2]])
372
+ self.assertTupleEqual(a.shape, (2, 2))
373
+
374
+ def test_binomial1(self):
375
+ brainstate.random.seed()
376
+ a = brainstate.random.binomial(5, 0.5)
377
+ b = np.random.binomial(5, 0.5)
378
+ print(a)
379
+ print(b)
380
+ self.assertTupleEqual(a.shape, ())
381
+ self.assertTrue(a.dtype, int)
382
+
383
+ def test_binomial2(self):
384
+ brainstate.random.seed()
385
+ a = brainstate.random.binomial(5, 0.5, size=(3, 2))
386
+ self.assertTupleEqual(a.shape, (3, 2))
387
+ self.assertTrue((a >= 0).all() and (a <= 5).all())
388
+
389
+ def test_binomial3(self):
390
+ brainstate.random.seed()
391
+ a = brainstate.random.binomial(n=jnp.asarray([2, 3, 4]), p=jnp.asarray([[0.5, 0.5, 0.5], [0.6, 0.6, 0.6]]))
392
+ self.assertTupleEqual(a.shape, (2, 3))
393
+
394
+ def test_chisquare1(self):
395
+ brainstate.random.seed()
396
+ a = brainstate.random.chisquare(3)
397
+ self.assertTupleEqual(a.shape, ())
398
+ self.assertTrue(a.dtype, float)
399
+
400
+ def test_chisquare2(self):
401
+ brainstate.random.seed()
402
+ with self.assertRaises(NotImplementedError):
403
+ a = brainstate.random.chisquare(df=[2, 3, 4])
404
+
405
+ def test_chisquare3(self):
406
+ brainstate.random.seed()
407
+ a = brainstate.random.chisquare(df=2, size=100)
408
+ self.assertTupleEqual(a.shape, (100,))
409
+
410
+ def test_chisquare4(self):
411
+ brainstate.random.seed()
412
+ a = brainstate.random.chisquare(df=2, size=(100, 10))
413
+ self.assertTupleEqual(a.shape, (100, 10))
414
+
415
+ def test_dirichlet1(self):
416
+ brainstate.random.seed()
417
+ a = brainstate.random.dirichlet((10, 5, 3))
418
+ self.assertTupleEqual(a.shape, (3,))
419
+
420
+ def test_dirichlet2(self):
421
+ brainstate.random.seed()
422
+ a = brainstate.random.dirichlet((10, 5, 3), 20)
423
+ self.assertTupleEqual(a.shape, (20, 3))
424
+
425
+ def test_f(self):
426
+ brainstate.random.seed()
427
+ a = brainstate.random.f(1., 48., 100)
428
+ self.assertTupleEqual(a.shape, (100,))
429
+
430
+ def test_geometric(self):
431
+ brainstate.random.seed()
432
+ a = brainstate.random.geometric([0.7, 0.5, 0.2])
433
+ self.assertTupleEqual(a.shape, (3,))
434
+
435
+ def test_hypergeometric1(self):
436
+ brainstate.random.seed()
437
+ a = brainstate.random.hypergeometric(10, 10, 10, 20)
438
+ self.assertTupleEqual(a.shape, (20,))
439
+
440
+ @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
441
+ def test_hypergeometric2(self):
442
+ brainstate.random.seed()
443
+ a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]])
444
+ self.assertTupleEqual(a.shape, (2, 2))
445
+
446
+ @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
447
+ def test_hypergeometric3(self):
448
+ brainstate.random.seed()
449
+ a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]], size=(3, 2, 2))
450
+ self.assertTupleEqual(a.shape, (3, 2, 2))
451
+
452
+ def test_logseries(self):
453
+ brainstate.random.seed()
454
+ a = brainstate.random.logseries([0.7, 0.5, 0.2], size=[4, 3])
455
+ self.assertTupleEqual(a.shape, (4, 3))
456
+
457
+ def test_multinominal1(self):
458
+ brainstate.random.seed()
459
+ a = np.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
460
+ print(a, a.shape)
461
+ b = brainstate.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
462
+ print(b, b.shape)
463
+ self.assertTupleEqual(a.shape, b.shape)
464
+ self.assertTupleEqual(b.shape, (4, 2, 3))
465
+
466
+ def test_multinominal2(self):
467
+ brainstate.random.seed()
468
+ a = brainstate.random.multinomial(100, (0.5, 0.2, 0.3))
469
+ self.assertTupleEqual(a.shape, (3,))
470
+ self.assertTrue(a.sum() == 100)
471
+
472
+ def test_multivariate_normal1(self):
473
+ brainstate.random.seed()
474
+ # self.skipTest('Windows jaxlib error')
475
+ a = np.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
476
+ b = brainstate.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
477
+ print('test_multivariate_normal1')
478
+ print(a)
479
+ print(b)
480
+ self.assertTupleEqual(a.shape, b.shape)
481
+ self.assertTupleEqual(a.shape, (3, 2))
482
+
483
+ def test_multivariate_normal2(self):
484
+ brainstate.random.seed()
485
+ a = np.random.multivariate_normal([1, 2], [[1, 3], [3, 1]])
486
+ b = brainstate.random.multivariate_normal([1, 2], [[1, 3], [3, 1]], method='svd')
487
+ print(a)
488
+ print(b)
489
+ self.assertTupleEqual(a.shape, b.shape)
490
+ self.assertTupleEqual(a.shape, (2,))
491
+
492
+ def test_negative_binomial(self):
493
+ brainstate.random.seed()
494
+ a = np.random.negative_binomial([3., 10.], 0.5)
495
+ b = brainstate.random.negative_binomial([3., 10.], 0.5)
496
+ print(a)
497
+ print(b)
498
+ self.assertTupleEqual(a.shape, b.shape)
499
+ self.assertTupleEqual(b.shape, (2,))
500
+
501
+ def test_negative_binomial2(self):
502
+ brainstate.random.seed()
503
+ a = np.random.negative_binomial(3., 0.5, 10)
504
+ b = brainstate.random.negative_binomial(3., 0.5, 10)
505
+ print(a)
506
+ print(b)
507
+ self.assertTupleEqual(a.shape, b.shape)
508
+ self.assertTupleEqual(b.shape, (10,))
509
+
510
+ def test_noncentral_chisquare(self):
511
+ brainstate.random.seed()
512
+ a = np.random.noncentral_chisquare(3, [3., 2.], (4, 2))
513
+ b = brainstate.random.noncentral_chisquare(3, [3., 2.], (4, 2))
514
+ self.assertTupleEqual(a.shape, b.shape)
515
+ self.assertTupleEqual(b.shape, (4, 2))
516
+
517
+ def test_noncentral_chisquare2(self):
518
+ brainstate.random.seed()
519
+ a = brainstate.random.noncentral_chisquare(3, [3., 2.])
520
+ self.assertTupleEqual(a.shape, (2,))
521
+
522
+ def test_noncentral_f(self):
523
+ brainstate.random.seed()
524
+ a = brainstate.random.noncentral_f(3, 20, 3., 100)
525
+ self.assertTupleEqual(a.shape, (100,))
526
+
527
+ def test_power(self):
528
+ brainstate.random.seed()
529
+ a = np.random.power(2, (4, 2))
530
+ b = brainstate.random.power(2, (4, 2))
531
+ self.assertTupleEqual(a.shape, b.shape)
532
+ self.assertTupleEqual(b.shape, (4, 2))
533
+
534
+ def test_rayleigh(self):
535
+ brainstate.random.seed()
536
+ a = brainstate.random.power(2., (4, 2))
537
+ self.assertTupleEqual(a.shape, (4, 2))
538
+
539
+ def test_triangular(self):
540
+ brainstate.random.seed()
541
+ a = brainstate.random.triangular((2, 2))
542
+ self.assertTupleEqual(a.shape, (2, 2))
543
+
544
+ def test_vonmises(self):
545
+ brainstate.random.seed()
546
+ a = np.random.vonmises(2., 2.)
547
+ b = brainstate.random.vonmises(2., 2.)
548
+ print(a, b)
549
+ self.assertTupleEqual(np.shape(a), b.shape)
550
+ self.assertTupleEqual(b.shape, ())
551
+
552
+ def test_vonmises2(self):
553
+ brainstate.random.seed()
554
+ a = np.random.vonmises(2., 2., 10)
555
+ b = brainstate.random.vonmises(2., 2., 10)
556
+ print(a, b)
557
+ self.assertTupleEqual(a.shape, b.shape)
558
+ self.assertTupleEqual(b.shape, (10,))
559
+
560
+ def test_wald(self):
561
+ brainstate.random.seed()
562
+ a = np.random.wald([2., 0.5], 2.)
563
+ b = brainstate.random.wald([2., 0.5], 2.)
564
+ self.assertTupleEqual(a.shape, b.shape)
565
+ self.assertTupleEqual(b.shape, (2,))
566
+
567
+ def test_wald2(self):
568
+ brainstate.random.seed()
569
+ a = np.random.wald(2., 2., 100)
570
+ b = brainstate.random.wald(2., 2., 100)
571
+ self.assertTupleEqual(a.shape, b.shape)
572
+ self.assertTupleEqual(b.shape, (100,))
573
+
574
+ def test_weibull(self):
575
+ brainstate.random.seed()
576
+ a = brainstate.random.weibull(2., (4, 2))
577
+ self.assertTupleEqual(a.shape, (4, 2))
578
+
579
+ def test_weibull2(self):
580
+ brainstate.random.seed()
581
+ a = brainstate.random.weibull(2., )
582
+ self.assertTupleEqual(a.shape, ())
583
+
584
+ def test_weibull3(self):
585
+ brainstate.random.seed()
586
+ a = brainstate.random.weibull([2., 3.], )
587
+ self.assertTupleEqual(a.shape, (2,))
588
+
589
+ def test_weibull_min(self):
590
+ brainstate.random.seed()
591
+ a = brainstate.random.weibull_min(2., 2., (4, 2))
592
+ self.assertTupleEqual(a.shape, (4, 2))
593
+
594
+ def test_weibull_min2(self):
595
+ brainstate.random.seed()
596
+ a = brainstate.random.weibull_min(2., 2.)
597
+ self.assertTupleEqual(a.shape, ())
598
+
599
+ def test_weibull_min3(self):
600
+ brainstate.random.seed()
601
+ a = brainstate.random.weibull_min([2., 3.], 2.)
602
+ self.assertTupleEqual(a.shape, (2,))
603
+
604
+ def test_zipf(self):
605
+ brainstate.random.seed()
606
+ a = brainstate.random.zipf(2., (4, 2))
607
+ self.assertTupleEqual(a.shape, (4, 2))
608
+
609
+ def test_zipf2(self):
610
+ brainstate.random.seed()
611
+ a = np.random.zipf([1.1, 2.])
612
+ b = brainstate.random.zipf([1.1, 2.])
613
+ self.assertTupleEqual(a.shape, b.shape)
614
+ self.assertTupleEqual(b.shape, (2,))
615
+
616
+ def test_maxwell(self):
617
+ brainstate.random.seed()
618
+ a = brainstate.random.maxwell(10)
619
+ self.assertTupleEqual(a.shape, (10,))
620
+
621
+ def test_maxwell2(self):
622
+ brainstate.random.seed()
623
+ a = brainstate.random.maxwell()
624
+ self.assertTupleEqual(a.shape, ())
625
+
626
+ def test_t(self):
627
+ brainstate.random.seed()
628
+ a = brainstate.random.t(1., size=10)
629
+ self.assertTupleEqual(a.shape, (10,))
630
+
631
+ def test_t2(self):
632
+ brainstate.random.seed()
633
+ a = brainstate.random.t([1., 2.], size=None)
634
+ self.assertTupleEqual(a.shape, (2,))
635
+
636
+ # class TestRandomKey(unittest.TestCase):
637
+ # def test_clear_memory(self):
638
+ # brainstate.random.split_key()
639
+ # print(brainstate.random.DEFAULT.value)
640
+ # self.assertTrue(isinstance(brainstate.random.DEFAULT.value, np.ndarray))