vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1849 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import time
5
+ from collections import Counter as collectionsCounter
6
+ from collections import deque
7
+ from contextlib import contextmanager
8
+ from dataclasses import dataclass
9
+ from functools import partial
10
+ from typing import (TYPE_CHECKING, Any, Callable, ClassVar, Deque, Dict,
11
+ Iterable, List, Literal, Mapping, NamedTuple, Optional)
12
+ from typing import Sequence as GenericSequence
13
+ from typing import Set, Type, Union, cast
14
+
15
+ import torch
16
+ from typing_extensions import TypeVar
17
+
18
+ import vllm.envs as envs
19
+ from vllm.config import (DecodingConfig, ModelConfig, ObservabilityConfig,
20
+ ParallelConfig, SchedulerConfig, VllmConfig)
21
+ from vllm.config.lora import LoRAConfig
22
+ from vllm.core.scheduler import ScheduledSequenceGroup, SchedulerOutputs
23
+ from vllm.engine.arg_utils import EngineArgs
24
+ from vllm.engine.metrics_types import StatLoggerBase, Stats
25
+ from vllm.engine.output_processor.interfaces import (
26
+ SequenceGroupOutputProcessor)
27
+ from vllm.engine.output_processor.stop_checker import StopChecker
28
+ from vllm.entrypoints.openai.logits_processors import (
29
+ get_logits_processors as get_openai_logits_processors)
30
+ from vllm.executor.executor_base import ExecutorBase
31
+ from vllm.inputs import ProcessorInputs, PromptType, SingletonInputs
32
+ from vllm.inputs.parse import split_enc_dec_inputs
33
+ from vllm.inputs.preprocess import InputPreprocessor
34
+ from vllm.logger import init_logger
35
+ from vllm.logits_process import get_bad_words_logits_processors
36
+ from vllm.lora.request import LoRARequest
37
+ from vllm.model_executor.layers.sampler import SamplerOutput
38
+ from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
39
+ from vllm.multimodal.cache import processor_only_cache_from_config
40
+ from vllm.multimodal.processing import EncDecMultiModalProcessor
41
+ from vllm.outputs import (PoolingRequestOutput, RequestOutput,
42
+ RequestOutputFactory)
43
+ from vllm.sampling_params import RequestOutputKind, SamplingParams
44
+ from vllm.sequence import (ExecuteModelRequest, ParallelSampleSequenceGroup,
45
+ Sequence, SequenceGroup, SequenceGroupBase,
46
+ SequenceGroupMetadata, SequenceGroupOutput,
47
+ SequenceStatus)
48
+ from vllm.tracing import (SpanAttributes, SpanKind, extract_trace_context,
49
+ init_tracer)
50
+ from vllm.transformers_utils.detokenizer import Detokenizer
51
+ from vllm.transformers_utils.tokenizer import AnyTokenizer
52
+ from vllm.transformers_utils.tokenizer_group import (
53
+ TokenizerGroup, init_tokenizer_from_configs)
54
+ from vllm.usage.usage_lib import (UsageContext, is_usage_stats_enabled,
55
+ usage_message)
56
+ from vllm.utils import Counter, Device, resolve_obj_by_qualname, weak_bind
57
+ from vllm.version import __version__ as VLLM_VERSION
58
+ from vllm.worker.model_runner_base import InputProcessingError
59
+
60
+ logger = init_logger(__name__)
61
+ _LOCAL_LOGGING_INTERVAL_SEC = 5
62
+
63
+ _O = TypeVar("_O", RequestOutput, PoolingRequestOutput)
64
+ _R = TypeVar("_R", default=Any)
65
+
66
+
67
+ @dataclass
68
+ class SchedulerOutputState:
69
+ """Caches the scheduler outputs for a virtual engine. Used for Multi-Step"""
70
+ seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None
71
+ scheduler_outputs: Optional[SchedulerOutputs] = None
72
+ allow_async_output_proc: bool = False
73
+ last_output: Optional[SamplerOutput] = None
74
+
75
+
76
+ class OutputData(NamedTuple):
77
+ outputs: List[SamplerOutput]
78
+ seq_group_metadata_list: List[SequenceGroupMetadata]
79
+ scheduler_outputs: SchedulerOutputs
80
+ is_async: bool
81
+ is_last_step: bool
82
+ # Indicates if this output is from the first step of the
83
+ # multi-step. When multi-step is disabled, this is always
84
+ # set to True.
85
+ # is_first_step_output is invalid when `outputs` has
86
+ # outputs from multiple steps.
87
+ is_first_step_output: Optional[bool]
88
+ skip: List[int]
89
+
90
+
91
+ class SchedulerContext:
92
+
93
+ def __init__(self) -> None:
94
+ self.output_queue: Deque[OutputData] = deque()
95
+ self.request_outputs: List[RequestOutput] = []
96
+ self.seq_group_metadata_list: Optional[
97
+ List[SequenceGroupMetadata]] = None
98
+ self.scheduler_outputs: Optional[SchedulerOutputs] = None
99
+
100
+ def append_output(self, outputs: List[SamplerOutput],
101
+ seq_group_metadata_list: List[SequenceGroupMetadata],
102
+ scheduler_outputs: SchedulerOutputs, is_async: bool,
103
+ is_last_step: bool,
104
+ is_first_step_output: Optional[bool]):
105
+ self.output_queue.append(
106
+ OutputData(outputs=outputs,
107
+ seq_group_metadata_list=seq_group_metadata_list,
108
+ scheduler_outputs=scheduler_outputs,
109
+ is_async=is_async,
110
+ is_last_step=is_last_step,
111
+ is_first_step_output=is_first_step_output,
112
+ skip=[]))
113
+
114
+
115
+ class LLMEngine:
116
+ """An LLM engine that receives requests and generates texts.
117
+
118
+ This is the main class for the vLLM engine. It receives requests
119
+ from clients and generates texts from the LLM. It includes a tokenizer, a
120
+ language model (possibly distributed across multiple GPUs), and GPU memory
121
+ space allocated for intermediate states (aka KV cache). This class utilizes
122
+ iteration-level scheduling and efficient memory management to maximize the
123
+ serving throughput.
124
+
125
+ The [`LLM`][vllm.LLM] class wraps this class for offline batched inference
126
+ and the [`AsyncLLMEngine`][vllm.engine.async_llm_engine.AsyncLLMEngine]
127
+ class wraps this class for online serving.
128
+
129
+ The config arguments are derived from [`EngineArgs`][vllm.EngineArgs].
130
+
131
+ Args:
132
+ vllm_config: The configuration for initializing and running vLLM.
133
+ executor_class: The model executor class for managing distributed
134
+ execution.
135
+ log_stats: Whether to log statistics.
136
+ usage_context: Specified entry point, used for usage info collection.
137
+ """
138
+
139
+ DO_VALIDATE_OUTPUT: ClassVar[bool] = False
140
+ """A flag to toggle whether to validate the type of request output."""
141
+
142
+ @classmethod
143
+ @contextmanager
144
+ def enable_output_validation(cls):
145
+ cls.DO_VALIDATE_OUTPUT = True
146
+
147
+ yield
148
+
149
+ cls.DO_VALIDATE_OUTPUT = False
150
+
151
+ @classmethod
152
+ def validate_output(
153
+ cls,
154
+ output: object,
155
+ output_type: Type[_O],
156
+ ) -> _O:
157
+ do_validate = cls.DO_VALIDATE_OUTPUT
158
+
159
+ if ((TYPE_CHECKING or do_validate)
160
+ and not isinstance(output, output_type)):
161
+ raise TypeError(f"Expected output of type {output_type}, "
162
+ f"but found type {type(output)}")
163
+
164
+ return cast(_O, output)
165
+
166
+ @classmethod
167
+ def validate_outputs(
168
+ cls,
169
+ outputs: GenericSequence[object],
170
+ output_type: Type[_O],
171
+ ) -> List[_O]:
172
+ do_validate = cls.DO_VALIDATE_OUTPUT
173
+
174
+ outputs_: List[_O]
175
+ if TYPE_CHECKING or do_validate:
176
+ outputs_ = []
177
+ for output in outputs:
178
+ if not isinstance(output, output_type):
179
+ raise TypeError(f"Expected output of type {output_type}, "
180
+ f"but found type {type(output)}")
181
+
182
+ outputs_.append(output)
183
+ else:
184
+ outputs_ = outputs
185
+
186
+ return outputs_
187
+
188
+ tokenizer: Optional[TokenizerGroup]
189
+
190
+ def __init__(
191
+ self,
192
+ vllm_config: VllmConfig,
193
+ executor_class: Type[ExecutorBase],
194
+ log_stats: bool,
195
+ usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
196
+ stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
197
+ mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
198
+ use_cached_outputs: bool = False,
199
+ ) -> None:
200
+ if envs.VLLM_USE_V1:
201
+ raise ValueError(
202
+ "Using V0 LLMEngine, but envs.VLLM_USE_V1=True. "
203
+ "This should not happen. As a workaround, try using "
204
+ "LLMEngine.from_vllm_config(...) or explicitly set "
205
+ "VLLM_USE_V1=0 or 1 and report this issue on Github.")
206
+
207
+ self.vllm_config = vllm_config
208
+ self.model_config = vllm_config.model_config
209
+ self.cache_config = vllm_config.cache_config
210
+ self.lora_config = vllm_config.lora_config
211
+ self.parallel_config = vllm_config.parallel_config
212
+ self.scheduler_config = vllm_config.scheduler_config
213
+ self.device_config = vllm_config.device_config
214
+ self.speculative_config = vllm_config.speculative_config # noqa
215
+ self.load_config = vllm_config.load_config
216
+ self.decoding_config = vllm_config.decoding_config or DecodingConfig( # noqa
217
+ )
218
+ self.observability_config = vllm_config.observability_config or ObservabilityConfig( # noqa
219
+ )
220
+
221
+ logger.info(
222
+ "Initializing a V0 LLM engine (v%s) with config: %s, "
223
+ "use_cached_outputs=%s, ",
224
+ VLLM_VERSION,
225
+ vllm_config,
226
+ use_cached_outputs,
227
+ )
228
+
229
+ self.log_stats = log_stats
230
+ self.use_cached_outputs = use_cached_outputs
231
+
232
+ if self.model_config.skip_tokenizer_init:
233
+ self.tokenizer = None
234
+ self.detokenizer = None
235
+ tokenizer_group = None
236
+ else:
237
+ self.tokenizer = self._init_tokenizer()
238
+ self.detokenizer = Detokenizer(self.tokenizer)
239
+ tokenizer_group = self.get_tokenizer_group()
240
+
241
+ # Ensure that the function doesn't contain a reference to self,
242
+ # to avoid engine GC issues
243
+ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer:
244
+ assert tokenizer_group, ("tokenizer_group cannot be None, "
245
+ "make sure skip_tokenizer_init is False")
246
+ return tokenizer_group.get_lora_tokenizer(sequence.lora_request)
247
+
248
+ self.seq_counter = Counter()
249
+ self.generation_config_fields = (
250
+ self.model_config.try_get_generation_config())
251
+
252
+ self.input_preprocessor = InputPreprocessor(
253
+ self.model_config,
254
+ self.tokenizer,
255
+ mm_registry,
256
+ mm_processor_cache=processor_only_cache_from_config(
257
+ self.model_config, mm_registry),
258
+ )
259
+
260
+ self.model_executor = executor_class(vllm_config=vllm_config)
261
+
262
+ self._initialize_kv_caches()
263
+
264
+ # If usage stat is enabled, collect relevant info.
265
+ if is_usage_stats_enabled():
266
+ from vllm.model_executor.model_loader import (
267
+ get_architecture_class_name)
268
+ usage_message.report_usage(
269
+ get_architecture_class_name(self.model_config),
270
+ usage_context,
271
+ extra_kvs={
272
+ # Common configuration
273
+ "dtype":
274
+ str(self.model_config.dtype),
275
+ "tensor_parallel_size":
276
+ self.parallel_config.tensor_parallel_size,
277
+ "block_size":
278
+ self.cache_config.block_size,
279
+ "gpu_memory_utilization":
280
+ self.cache_config.gpu_memory_utilization,
281
+ "kv_cache_memory_bytes":
282
+ self.cache_config.kv_cache_memory_bytes,
283
+ # Quantization
284
+ "quantization":
285
+ self.model_config.quantization,
286
+ "kv_cache_dtype":
287
+ str(self.cache_config.cache_dtype),
288
+
289
+ # Feature flags
290
+ "enable_lora":
291
+ bool(self.lora_config),
292
+ "enable_prefix_caching":
293
+ self.cache_config.enable_prefix_caching,
294
+ "enforce_eager":
295
+ self.model_config.enforce_eager,
296
+ "disable_custom_all_reduce":
297
+ self.parallel_config.disable_custom_all_reduce,
298
+ })
299
+
300
+ self.cached_scheduler_outputs = [
301
+ SchedulerOutputState()
302
+ for _ in range(self.parallel_config.pipeline_parallel_size)
303
+ ]
304
+
305
+ self.scheduler_contexts = [
306
+ SchedulerContext()
307
+ for _ in range(self.parallel_config.pipeline_parallel_size)
308
+ ]
309
+
310
+ if self.model_config.use_async_output_proc:
311
+ process_model_outputs = weak_bind(self._process_model_outputs)
312
+
313
+ self.async_callbacks = [
314
+ partial(process_model_outputs,
315
+ ctx=self.scheduler_contexts[v_id])
316
+ for v_id in range(self.parallel_config.pipeline_parallel_size)
317
+ ]
318
+ else:
319
+ self.async_callbacks = []
320
+
321
+ # Currently used by AsyncLLMEngine to ensure quick append
322
+ # of request outputs to asyncio queues
323
+ self.process_request_outputs_callback: Optional[Callable] = None
324
+
325
+ # Create the scheduler.
326
+ # NOTE: the cache_config here have been updated with the numbers of
327
+ # GPU and CPU blocks, which are profiled in the distributed executor.
328
+ if isinstance(self.vllm_config.scheduler_config.scheduler_cls, str):
329
+ Scheduler = resolve_obj_by_qualname(
330
+ self.vllm_config.scheduler_config.scheduler_cls)
331
+ else:
332
+ Scheduler = self.vllm_config.scheduler_config.scheduler_cls
333
+ self.scheduler = [
334
+ Scheduler(
335
+ self.scheduler_config, self.cache_config, self.lora_config,
336
+ self.parallel_config.pipeline_parallel_size,
337
+ self.async_callbacks[v_id]
338
+ if self.model_config.use_async_output_proc else None)
339
+ for v_id in range(self.parallel_config.pipeline_parallel_size)
340
+ ]
341
+
342
+ # Metric Logging.
343
+ if self.log_stats:
344
+ if stat_loggers is not None:
345
+ self.stat_loggers = stat_loggers
346
+ else:
347
+ # Lazy import for prometheus multiprocessing.
348
+ # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
349
+ # before prometheus_client is imported.
350
+ # See https://prometheus.github.io/client_python/multiprocess/
351
+ from vllm.engine.metrics import (LoggingStatLogger,
352
+ PrometheusStatLogger)
353
+
354
+ self.stat_loggers = {
355
+ "logging":
356
+ LoggingStatLogger(
357
+ local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
358
+ vllm_config=vllm_config),
359
+ "prometheus":
360
+ PrometheusStatLogger(
361
+ local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
362
+ labels=dict(
363
+ model_name=self.model_config.served_model_name),
364
+ vllm_config=vllm_config),
365
+ }
366
+ self.stat_loggers["prometheus"].info("cache_config",
367
+ self.cache_config)
368
+
369
+ self.tracer = None
370
+ if self.observability_config.otlp_traces_endpoint:
371
+ self.tracer = init_tracer(
372
+ "vllm.llm_engine",
373
+ self.observability_config.otlp_traces_endpoint)
374
+
375
+ # Create sequence output processor, e.g. for beam search or
376
+ # speculative decoding.
377
+ self.output_processor = (
378
+ SequenceGroupOutputProcessor.create_output_processor(
379
+ self.scheduler_config,
380
+ self.detokenizer,
381
+ self.scheduler,
382
+ self.seq_counter,
383
+ get_tokenizer_for_seq,
384
+ stop_checker=StopChecker(self.scheduler_config.max_model_len,
385
+ get_tokenizer_for_seq),
386
+ ))
387
+
388
+ self.seq_id_to_seq_group: Dict[str, SequenceGroupBase] = {}
389
+
390
+ # Flag to set when an input fails to process and the engine should run
391
+ # the next step without re-scheduling.
392
+ self._skip_scheduling_next_step = False
393
+
394
+ # Don't keep the dummy data in memory
395
+ self.reset_mm_cache()
396
+
397
+ def _initialize_kv_caches(self) -> None:
398
+ """Initialize the KV cache in the worker(s).
399
+
400
+ The workers will determine the number of blocks in both the GPU cache
401
+ and the swap CPU cache.
402
+ """
403
+ start = time.time()
404
+ num_gpu_blocks, num_cpu_blocks = (
405
+ self.model_executor.determine_num_available_blocks())
406
+
407
+ if self.cache_config.num_gpu_blocks_override is not None:
408
+ num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override
409
+ logger.info(
410
+ "Overriding num_gpu_blocks=%d with "
411
+ "num_gpu_blocks_override=%d", num_gpu_blocks,
412
+ num_gpu_blocks_override)
413
+ num_gpu_blocks = num_gpu_blocks_override
414
+
415
+ self.cache_config.num_gpu_blocks = num_gpu_blocks
416
+ self.cache_config.num_cpu_blocks = num_cpu_blocks
417
+
418
+ self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks)
419
+ elapsed = time.time() - start
420
+ logger.info(("init engine (profile, create kv cache, "
421
+ "warmup model) took %.2f seconds"), elapsed)
422
+
423
+ @classmethod
424
+ def _get_executor_cls(cls,
425
+ engine_config: VllmConfig) -> Type[ExecutorBase]:
426
+ # distributed_executor_backend must be set in VllmConfig.__post_init__
427
+ distributed_executor_backend = (
428
+ engine_config.parallel_config.distributed_executor_backend)
429
+ # Initialize the cluster and specify the executor class.
430
+ if isinstance(distributed_executor_backend, type):
431
+ if not issubclass(distributed_executor_backend, ExecutorBase):
432
+ raise TypeError(
433
+ "distributed_executor_backend must be a subclass of "
434
+ f"ExecutorBase. Got {distributed_executor_backend}.")
435
+ executor_class = distributed_executor_backend
436
+ elif distributed_executor_backend == "ray":
437
+ from vllm.executor.ray_distributed_executor import (
438
+ RayDistributedExecutor)
439
+ executor_class = RayDistributedExecutor
440
+ elif distributed_executor_backend == "mp":
441
+ from vllm.executor.mp_distributed_executor import (
442
+ MultiprocessingDistributedExecutor)
443
+ assert not envs.VLLM_USE_RAY_SPMD_WORKER, (
444
+ "multiprocessing distributed executor backend does not "
445
+ "support VLLM_USE_RAY_SPMD_WORKER=1")
446
+ executor_class = MultiprocessingDistributedExecutor
447
+ elif distributed_executor_backend == "uni":
448
+ # JAX-style, single-process, multi-device executor.
449
+ from vllm.executor.uniproc_executor import UniProcExecutor
450
+ executor_class = UniProcExecutor
451
+ elif distributed_executor_backend == "external_launcher":
452
+ # executor with external launcher
453
+ from vllm.executor.uniproc_executor import ( # noqa
454
+ ExecutorWithExternalLauncher)
455
+ executor_class = ExecutorWithExternalLauncher
456
+ else:
457
+ raise ValueError("unrecognized distributed_executor_backend: "
458
+ f"{distributed_executor_backend}")
459
+ return executor_class
460
+
461
+ @classmethod
462
+ def from_vllm_config(
463
+ cls,
464
+ vllm_config: VllmConfig,
465
+ usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
466
+ stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
467
+ disable_log_stats: bool = False,
468
+ ) -> "LLMEngine":
469
+ return cls(
470
+ vllm_config=vllm_config,
471
+ executor_class=cls._get_executor_cls(vllm_config),
472
+ log_stats=(not disable_log_stats),
473
+ usage_context=usage_context,
474
+ stat_loggers=stat_loggers,
475
+ )
476
+
477
+ @classmethod
478
+ def from_engine_args(
479
+ cls,
480
+ engine_args: EngineArgs,
481
+ usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
482
+ stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
483
+ ) -> "LLMEngine":
484
+ """Creates an LLM engine from the engine arguments."""
485
+ # Create the engine configs.
486
+ vllm_config = engine_args.create_engine_config(usage_context)
487
+
488
+ engine_cls = cls
489
+ if envs.VLLM_USE_V1:
490
+ from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
491
+ engine_cls = V1LLMEngine
492
+
493
+ return engine_cls.from_vllm_config(
494
+ vllm_config=vllm_config,
495
+ usage_context=usage_context,
496
+ stat_loggers=stat_loggers,
497
+ disable_log_stats=engine_args.disable_log_stats,
498
+ )
499
+
500
+ def __reduce__(self):
501
+ # This is to ensure that the LLMEngine is not referenced in
502
+ # the closure used to initialize Ray worker actors
503
+ raise RuntimeError("LLMEngine should not be pickled!")
504
+
505
+ def __del__(self):
506
+ # Shutdown model executor when engine is garbage collected
507
+ # Use getattr since __init__ can fail before the field is set
508
+ if model_executor := getattr(self, "model_executor", None):
509
+ model_executor.shutdown()
510
+
511
+ def get_tokenizer_group(self) -> TokenizerGroup:
512
+ if self.tokenizer is None:
513
+ raise ValueError("Unable to get tokenizer because "
514
+ "skip_tokenizer_init is True")
515
+
516
+ return self.tokenizer
517
+
518
+ def get_tokenizer(
519
+ self,
520
+ lora_request: Optional[LoRARequest] = None,
521
+ ) -> AnyTokenizer:
522
+ return self.get_tokenizer_group().get_lora_tokenizer(lora_request)
523
+
524
+ def _init_tokenizer(self) -> TokenizerGroup:
525
+ return init_tokenizer_from_configs(
526
+ model_config=self.model_config,
527
+ scheduler_config=self.scheduler_config,
528
+ lora_config=self.lora_config)
529
+
530
+ def _verify_args(self) -> None:
531
+ self.model_config.verify_with_parallel_config(self.parallel_config)
532
+ self.cache_config.verify_with_parallel_config(self.parallel_config)
533
+ if self.lora_config:
534
+ self.lora_config.verify_with_model_config(self.model_config)
535
+ self.lora_config.verify_with_scheduler_config(
536
+ self.scheduler_config)
537
+
538
+ def _add_processed_request(
539
+ self,
540
+ request_id: str,
541
+ processed_inputs: ProcessorInputs,
542
+ params: SamplingParams,
543
+ arrival_time: float,
544
+ lora_request: Optional[LoRARequest],
545
+ trace_headers: Optional[Mapping[str, str]] = None,
546
+ priority: int = 0,
547
+ ) -> Optional[SequenceGroup]:
548
+ """Add a processed request to the engine's request pool.
549
+ return the created sequence group.
550
+ """
551
+ if isinstance(params, SamplingParams) and params.n > 1:
552
+ ParallelSampleSequenceGroup.add_request(
553
+ request_id,
554
+ self,
555
+ params,
556
+ processed_inputs=processed_inputs,
557
+ arrival_time=arrival_time,
558
+ lora_request=lora_request,
559
+ trace_headers=trace_headers,
560
+ priority=priority,
561
+ )
562
+ return None
563
+
564
+ self._validate_model_inputs(processed_inputs, lora_request)
565
+ # Create the sequences.
566
+ block_size = self.cache_config.block_size
567
+ seq_id = next(self.seq_counter)
568
+ eos_token_id = self.input_preprocessor.get_eos_token_id(lora_request)
569
+
570
+ encoder_inputs, decoder_inputs = split_enc_dec_inputs(processed_inputs)
571
+
572
+ seq = Sequence(seq_id, decoder_inputs, block_size, eos_token_id,
573
+ lora_request)
574
+
575
+ encoder_seq = (None if encoder_inputs is None else Sequence(
576
+ seq_id, encoder_inputs, block_size, eos_token_id, lora_request))
577
+
578
+ # Create a SequenceGroup based on SamplingParams
579
+ if isinstance(params, SamplingParams):
580
+ seq_group = self._create_sequence_group_with_sampling(
581
+ request_id,
582
+ seq,
583
+ params,
584
+ arrival_time=arrival_time,
585
+ lora_request=lora_request,
586
+ trace_headers=trace_headers,
587
+ encoder_seq=encoder_seq,
588
+ priority=priority)
589
+ else:
590
+ raise ValueError("SamplingParams must be provided.")
591
+
592
+ # Add the sequence group to the scheduler with least unfinished seqs.
593
+ costs = [
594
+ scheduler.get_num_unfinished_seq_groups()
595
+ for scheduler in self.scheduler
596
+ ]
597
+ min_cost_scheduler = self.scheduler[costs.index(min(costs))]
598
+ min_cost_scheduler.add_seq_group(seq_group)
599
+
600
+ return seq_group
601
+
602
+ def stop_remote_worker_execution_loop(self) -> None:
603
+ self.model_executor.stop_remote_worker_execution_loop()
604
+
605
+ def add_request(
606
+ self,
607
+ request_id: str,
608
+ prompt: PromptType,
609
+ params: SamplingParams,
610
+ arrival_time: Optional[float] = None,
611
+ lora_request: Optional[LoRARequest] = None,
612
+ tokenization_kwargs: Optional[dict[str, Any]] = None,
613
+ trace_headers: Optional[Mapping[str, str]] = None,
614
+ priority: int = 0,
615
+ ) -> None:
616
+ """Add a request to the engine's request pool.
617
+
618
+ The request is added to the request pool and will be processed by the
619
+ scheduler as `engine.step()` is called. The exact scheduling policy is
620
+ determined by the scheduler.
621
+
622
+ Args:
623
+ request_id: The unique ID of the request.
624
+ prompt: The prompt to the LLM. See
625
+ [PromptType][vllm.inputs.PromptType]
626
+ for more details about the format of each input.
627
+ params: Parameters for sampling.
628
+ [SamplingParams][vllm.SamplingParams] for text generation.
629
+ arrival_time: The arrival time of the request. If None, we use
630
+ the current monotonic time.
631
+ lora_request: The LoRA request to add.
632
+ trace_headers: OpenTelemetry trace headers.
633
+ priority: The priority of the request.
634
+ Only applicable with priority scheduling.
635
+
636
+ Details:
637
+ - Set arrival_time to the current time if it is None.
638
+ - Set prompt_token_ids to the encoded prompt if it is None.
639
+ - Create `n` number of [Sequence][vllm.sequence.Sequence] objects.
640
+ - Create a [SequenceGroup][vllm.sequence.SequenceGroup] object
641
+ from the list of [Sequence][vllm.sequence.Sequence].
642
+ - Add the [SequenceGroup][vllm.sequence.SequenceGroup] object to the
643
+ scheduler.
644
+
645
+ Example:
646
+ >>> # initialize engine
647
+ >>> engine = LLMEngine.from_engine_args(engine_args)
648
+ >>> # set request arguments
649
+ >>> example_prompt = "Who is the president of the United States?"
650
+ >>> sampling_params = SamplingParams(temperature=0.0)
651
+ >>> request_id = 0
652
+ >>>
653
+ >>> # add the request to the engine
654
+ >>> engine.add_request(
655
+ >>> str(request_id),
656
+ >>> example_prompt,
657
+ >>> SamplingParams(temperature=0.0))
658
+ >>> # continue the request processing
659
+ >>> ...
660
+ """
661
+ if not isinstance(request_id, str):
662
+ raise TypeError(
663
+ f"request_id must be a string, got {type(request_id)}")
664
+
665
+ if lora_request is not None and not self.lora_config:
666
+ raise ValueError(f"Got lora_request {lora_request} but LoRA is "
667
+ "not enabled!")
668
+
669
+ if priority != 0 and not self.scheduler_config.policy == "priority":
670
+ raise ValueError(f"Got priority {priority} but "
671
+ "Priority scheduling is not enabled.")
672
+
673
+ if isinstance(params, SamplingParams) \
674
+ and params.logits_processors:
675
+ raise ValueError(
676
+ "Logits processors are not supported in multi-step decoding")
677
+
678
+ if arrival_time is None:
679
+ arrival_time = time.time()
680
+
681
+ if (isinstance(prompt, dict)
682
+ and prompt.get("prompt_embeds", None) is not None
683
+ and not prompt.get("prompt_token_ids", None)):
684
+ seq_len = prompt["prompt_embeds"].shape[0]
685
+ prompt["prompt_token_ids"] = [0] * seq_len
686
+
687
+ processed_inputs = self.input_preprocessor.preprocess(
688
+ prompt,
689
+ tokenization_kwargs=tokenization_kwargs,
690
+ lora_request=lora_request,
691
+ )
692
+
693
+ self._add_processed_request(
694
+ request_id=request_id,
695
+ processed_inputs=processed_inputs,
696
+ params=params,
697
+ arrival_time=arrival_time,
698
+ lora_request=lora_request,
699
+ trace_headers=trace_headers,
700
+ priority=priority,
701
+ )
702
+
703
+ def _create_sequence_group_with_sampling(
704
+ self,
705
+ request_id: str,
706
+ seq: Sequence,
707
+ sampling_params: SamplingParams,
708
+ arrival_time: float,
709
+ lora_request: Optional[LoRARequest],
710
+ trace_headers: Optional[Mapping[str, str]] = None,
711
+ encoder_seq: Optional[Sequence] = None,
712
+ priority: int = 0,
713
+ ) -> SequenceGroup:
714
+ """Creates a SequenceGroup with SamplingParams."""
715
+ max_logprobs = self.get_model_config().max_logprobs
716
+ if (sampling_params.logprobs
717
+ and sampling_params.logprobs > max_logprobs) or (
718
+ sampling_params.prompt_logprobs
719
+ and sampling_params.prompt_logprobs > max_logprobs):
720
+ raise ValueError(f"Cannot request more than "
721
+ f"{max_logprobs} logprobs.")
722
+
723
+ sampling_params = self._build_logits_processors(
724
+ sampling_params, lora_request)
725
+
726
+ # Defensive copy of SamplingParams, which are used by the sampler,
727
+ # this doesn't deep-copy LogitsProcessor objects
728
+ sampling_params = sampling_params.clone()
729
+
730
+ sampling_params.update_from_generation_config(
731
+ self.generation_config_fields, seq.eos_token_id)
732
+
733
+ # Create the sequence group.
734
+ draft_size = 1
735
+ if self.vllm_config.speculative_config is not None:
736
+ draft_size = \
737
+ self.vllm_config.speculative_config.num_speculative_tokens + 1
738
+ seq_group = SequenceGroup(request_id=request_id,
739
+ seqs=[seq],
740
+ arrival_time=arrival_time,
741
+ sampling_params=sampling_params,
742
+ lora_request=lora_request,
743
+ trace_headers=trace_headers,
744
+ encoder_seq=encoder_seq,
745
+ priority=priority,
746
+ draft_size=draft_size)
747
+
748
+ return seq_group
749
+
750
+ def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
751
+ """Aborts a request(s) with the given ID.
752
+
753
+ Args:
754
+ request_id: The ID(s) of the request to abort.
755
+
756
+ Details:
757
+ - Refer to [vllm.core.scheduler.Scheduler.abort_seq_group][].
758
+
759
+ Example:
760
+ >>> # initialize engine and add a request with request_id
761
+ >>> request_id = str(0)
762
+ >>> # abort the request
763
+ >>> engine.abort_request(request_id)
764
+ """
765
+ for scheduler in self.scheduler:
766
+ scheduler.abort_seq_group(
767
+ request_id, seq_id_to_seq_group=self.seq_id_to_seq_group)
768
+
769
+ def get_vllm_config(self) -> VllmConfig:
770
+ """Gets the vllm configuration."""
771
+ return self.vllm_config
772
+
773
+ def get_model_config(self) -> ModelConfig:
774
+ """Gets the model configuration."""
775
+ return self.model_config
776
+
777
+ def get_parallel_config(self) -> ParallelConfig:
778
+ """Gets the parallel configuration."""
779
+ return self.parallel_config
780
+
781
+ def get_decoding_config(self) -> DecodingConfig:
782
+ """Gets the decoding configuration."""
783
+ return self.decoding_config
784
+
785
+ def get_scheduler_config(self) -> SchedulerConfig:
786
+ """Gets the scheduler configuration."""
787
+ return self.scheduler_config
788
+
789
+ def get_lora_config(self) -> LoRAConfig:
790
+ """Gets the LoRA configuration."""
791
+ return self.lora_config
792
+
793
+ def get_num_unfinished_requests(self) -> int:
794
+ """Gets the number of unfinished requests."""
795
+ return sum(scheduler.get_num_unfinished_seq_groups()
796
+ for scheduler in self.scheduler)
797
+
798
+ def has_unfinished_requests(self) -> bool:
799
+ """Returns True if there are unfinished requests."""
800
+ return any(scheduler.has_unfinished_seqs()
801
+ for scheduler in self.scheduler)
802
+
803
+ def has_unfinished_requests_for_virtual_engine(
804
+ self, virtual_engine: int) -> bool:
805
+ """
806
+ Returns True if there are unfinished requests for the virtual engine.
807
+ """
808
+ return self.scheduler[virtual_engine].has_unfinished_seqs()
809
+
810
+ def reset_mm_cache(self) -> bool:
811
+ """Reset the multi-modal cache."""
812
+ self.input_preprocessor.clear_cache()
813
+ return True
814
+
815
+ def reset_prefix_cache(self, device: Optional[Device] = None) -> bool:
816
+ """Reset prefix cache for all devices."""
817
+
818
+ success = True
819
+ for scheduler in self.scheduler:
820
+ success = success and scheduler.reset_prefix_cache(device)
821
+ return success
822
+
823
+ def _process_model_outputs(self,
824
+ ctx: SchedulerContext,
825
+ request_id: Optional[str] = None) -> None:
826
+ """Apply the model output to the sequences in the scheduled seq groups
827
+ and return responses.
828
+
829
+ ctx: The virtual engine context to work on
830
+ request_id: If provided, then only this request is going to be processed
831
+ """
832
+
833
+ now = time.time()
834
+
835
+ if len(ctx.output_queue) == 0:
836
+ return None
837
+
838
+ # Get pending async postprocessor
839
+ if request_id:
840
+ # When we process only one request, no pop is required
841
+ # (since later we will process all of the rest)
842
+ (outputs, seq_group_metadata_list, scheduler_outputs, is_async,
843
+ is_last_step, is_first_step_output, skip) = ctx.output_queue[0]
844
+ else:
845
+ (outputs, seq_group_metadata_list, scheduler_outputs, is_async,
846
+ is_last_step, is_first_step_output,
847
+ skip) = ctx.output_queue.popleft()
848
+
849
+ # Sanity check
850
+ assert len(seq_group_metadata_list) == len(
851
+ scheduler_outputs.scheduled_seq_groups)
852
+
853
+ has_multiple_outputs: bool = len(outputs) > 1
854
+ outputs_by_sequence_group: List[List[SequenceGroupOutput]]
855
+ assert not has_multiple_outputs
856
+ outputs_by_sequence_group = outputs
857
+
858
+ # Determine the requests we need to operate on
859
+ if request_id:
860
+ indices = []
861
+ for i, seq_group_meta in enumerate(seq_group_metadata_list):
862
+ if seq_group_meta.request_id == request_id:
863
+ assert i not in skip # Cannot be called twice
864
+ indices.append(i)
865
+ break
866
+
867
+ # If the request_id was not found, then it means that
868
+ # this is a new request that has no pending async
869
+ # postprocessor
870
+ if not indices:
871
+ return
872
+ else:
873
+ indices = range(len(seq_group_metadata_list)) # type: ignore
874
+
875
+ finished_before: List[int] = []
876
+ finished_now: List[int] = []
877
+ for i in indices:
878
+ if i in skip:
879
+ continue
880
+
881
+ seq_group_meta = seq_group_metadata_list[i]
882
+ scheduled_seq_group = scheduler_outputs.scheduled_seq_groups[i]
883
+
884
+ seq_group: SequenceGroup = scheduled_seq_group.seq_group
885
+
886
+ if seq_group.is_finished():
887
+ finished_before.append(i)
888
+ continue
889
+
890
+ output: List[SequenceGroupOutput]
891
+ if has_multiple_outputs:
892
+ output = outputs_by_sequence_group[i]
893
+ else:
894
+ output = [outputs_by_sequence_group[0][i]]
895
+
896
+ if not is_async:
897
+ seq_group.update_num_computed_tokens(
898
+ seq_group_meta.token_chunk_size or 0)
899
+
900
+ if outputs:
901
+ for o in outputs:
902
+ if (isinstance(o, SamplerOutput)
903
+ and seq_group.metrics is not None):
904
+ if seq_group.metrics.model_forward_time is not None:
905
+ seq_group.metrics.model_forward_time += (
906
+ o.model_forward_time or 0)
907
+ else:
908
+ seq_group.metrics.model_forward_time = (
909
+ o.model_forward_time)
910
+ if seq_group.metrics.model_execute_time is not None:
911
+ seq_group.metrics.model_execute_time += (
912
+ o.model_execute_time or 0)
913
+ else:
914
+ seq_group.metrics.model_execute_time = (
915
+ o.model_execute_time)
916
+
917
+ self.output_processor.process_prompt_logprob(seq_group, output)
918
+ if seq_group_meta.do_sample:
919
+ self.output_processor.process_outputs(seq_group, output,
920
+ is_async)
921
+
922
+ if seq_group.is_finished():
923
+ finished_now.append(i)
924
+
925
+ # Generate outputs for the requests that finished this iteration
926
+ for i in finished_now:
927
+ scheduled_seq_group = scheduler_outputs.scheduled_seq_groups[i]
928
+
929
+ seq_group = scheduled_seq_group.seq_group
930
+ seq_group.maybe_set_first_token_time(now)
931
+ if not seq_group.is_prefill():
932
+ seq_group.set_last_token_time(now)
933
+ request_output = RequestOutputFactory.create(
934
+ seq_group,
935
+ self.seq_id_to_seq_group,
936
+ use_cache=self.use_cached_outputs)
937
+ if request_output:
938
+ ctx.request_outputs.append(request_output)
939
+
940
+ # When we process a single request, we skip it for the next time,
941
+ # and invoke the request output callback (if there was final output)
942
+ if request_id:
943
+ assert len(indices) == 1
944
+ skip.append(indices[0])
945
+
946
+ if (finished_now
947
+ and self.process_request_outputs_callback is not None):
948
+ self.process_request_outputs_callback(ctx.request_outputs)
949
+ ctx.request_outputs.clear()
950
+ return
951
+
952
+ # Free currently finished requests
953
+ if finished_now:
954
+ for scheduler in self.scheduler:
955
+ scheduler.free_finished_seq_groups()
956
+
957
+ # Create the outputs
958
+ for i in indices:
959
+ if i in skip or i in finished_before or i in finished_now:
960
+ continue # Avoids double processing
961
+
962
+ scheduled_seq_group = scheduler_outputs.scheduled_seq_groups[i]
963
+
964
+ seq_group = scheduled_seq_group.seq_group
965
+ seq_group.maybe_set_first_token_time(now)
966
+ if not seq_group.is_prefill():
967
+ seq_group.set_last_token_time(now)
968
+ request_output = RequestOutputFactory.create(
969
+ seq_group,
970
+ self.seq_id_to_seq_group,
971
+ use_cache=self.use_cached_outputs)
972
+ if request_output:
973
+ ctx.request_outputs.append(request_output)
974
+
975
+ # Create outputs only after processing the scheduler's results
976
+
977
+ for seq_group in scheduler_outputs.ignored_seq_groups:
978
+ params = seq_group.sampling_params
979
+ if params is not None and params.output_kind == (
980
+ RequestOutputKind.DELTA) and not seq_group.is_finished():
981
+ continue
982
+
983
+ request_output = RequestOutputFactory.create(
984
+ seq_group,
985
+ self.seq_id_to_seq_group,
986
+ use_cache=self.use_cached_outputs,
987
+ )
988
+ if request_output:
989
+ ctx.request_outputs.append(request_output)
990
+
991
+ # Immediately process request outputs here (if callback is given)
992
+ if (ctx.request_outputs
993
+ and self.process_request_outputs_callback is not None):
994
+ self.process_request_outputs_callback(ctx.request_outputs)
995
+ ctx.request_outputs.clear()
996
+
997
+ # For async case, we need to record the stats here.
998
+ # For non-async case, the stats are done in the
999
+ # LLMEngine/AsyncLLMEngine directly
1000
+ if is_async:
1001
+ # Log stats.
1002
+ self.do_log_stats(scheduler_outputs, outputs, finished_before,
1003
+ skip)
1004
+
1005
+ # Tracing
1006
+ self.do_tracing(scheduler_outputs, finished_before)
1007
+
1008
+ return None
1009
+
1010
+ def _advance_to_next_step(
1011
+ self, output: SamplerOutput,
1012
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1013
+ scheduled_seq_groups: List[ScheduledSequenceGroup]) -> None:
1014
+ """Given model output from a single run, append the tokens to the
1015
+ sequences. This is normally done inside output processor, but it is
1016
+ required if the worker is to perform async forward pass to next step.
1017
+ """
1018
+ for seq_group_metadata, sequence_group_outputs, scheduled_seq_group in \
1019
+ zip(seq_group_metadata_list, output, scheduled_seq_groups):
1020
+ seq_group = scheduled_seq_group.seq_group
1021
+
1022
+ if seq_group.is_finished():
1023
+ continue
1024
+
1025
+ token_chunk_size = (seq_group_metadata.token_chunk_size
1026
+ if seq_group_metadata.token_chunk_size
1027
+ is not None else 0)
1028
+ seq_group.update_num_computed_tokens(token_chunk_size)
1029
+
1030
+ if seq_group_metadata.do_sample:
1031
+ assert len(sequence_group_outputs.samples) == 1, (
1032
+ "Async output processor expects a single sample"
1033
+ " (i.e sampling_params.n == 1)")
1034
+ sample = sequence_group_outputs.samples[0]
1035
+
1036
+ assert len(seq_group.seqs) == 1
1037
+ seq = seq_group.seqs[0]
1038
+
1039
+ seq.append_token_id(sample.output_token, sample.logprobs,
1040
+ sample.output_embed)
1041
+
1042
+ def step(self) -> List[RequestOutput]:
1043
+ """Performs one decoding iteration and returns newly generated results.
1044
+
1045
+ <figure markdown="span">
1046
+ ![Overview of the step function](https://i.imgur.com/sv2HssD.png)
1047
+ <figcaption>Overview of the step function</figcaption>
1048
+ </figure>
1049
+
1050
+ Details:
1051
+ - Step 1: Schedules the sequences to be executed in the next
1052
+ iteration and the token blocks to be swapped in/out/copy.
1053
+
1054
+ - Depending on the scheduling policy,
1055
+ sequences may be `preempted/reordered`.
1056
+ - A Sequence Group (SG) refer to a group of sequences
1057
+ that are generated from the same prompt.
1058
+
1059
+ - Step 2: Calls the distributed executor to execute the model.
1060
+ - Step 3: Processes the model output. This mainly includes:
1061
+
1062
+ - Decodes the relevant outputs.
1063
+ - Updates the scheduled sequence groups with model outputs
1064
+ based on its `sampling parameters` (`use_beam_search` or not).
1065
+ - Frees the finished sequence groups.
1066
+
1067
+ - Finally, it creates and returns the newly generated results.
1068
+
1069
+ Example:
1070
+ ```
1071
+ # Please see the example/ folder for more detailed examples.
1072
+
1073
+ # initialize engine and request arguments
1074
+ engine = LLMEngine.from_engine_args(engine_args)
1075
+ example_inputs = [(0, "What is LLM?",
1076
+ SamplingParams(temperature=0.0))]
1077
+
1078
+ # Start the engine with an event loop
1079
+ while True:
1080
+ if example_inputs:
1081
+ req_id, prompt, sampling_params = example_inputs.pop(0)
1082
+ engine.add_request(str(req_id),prompt,sampling_params)
1083
+
1084
+ # continue the request processing
1085
+ request_outputs = engine.step()
1086
+ for request_output in request_outputs:
1087
+ if request_output.finished:
1088
+ # return or show the request output
1089
+
1090
+ if not (engine.has_unfinished_requests() or example_inputs):
1091
+ break
1092
+ ```
1093
+ """
1094
+ if self.parallel_config.pipeline_parallel_size > 1:
1095
+ raise NotImplementedError(
1096
+ "Pipeline parallelism is only supported through AsyncLLMEngine "
1097
+ "as performance will be severely degraded otherwise.")
1098
+
1099
+ # For llm_engine, there is no pipeline parallel support, so the engine
1100
+ # used is always 0.
1101
+ virtual_engine = 0
1102
+
1103
+ # These are cached outputs from previous iterations. None if on first
1104
+ # iteration
1105
+ cached_outputs = self.cached_scheduler_outputs[virtual_engine]
1106
+ seq_group_metadata_list = cached_outputs.seq_group_metadata_list
1107
+ scheduler_outputs = cached_outputs.scheduler_outputs
1108
+ allow_async_output_proc = cached_outputs.allow_async_output_proc
1109
+
1110
+ ctx = self.scheduler_contexts[virtual_engine]
1111
+
1112
+ # Clear outputs for each new scheduler iteration
1113
+ ctx.request_outputs.clear()
1114
+
1115
+ # Skip the scheduler if there are any remaining steps in the seq groups.
1116
+ # This ensures that the scheduler is only called again when the current
1117
+ # batch has completed.
1118
+ # The scheduler is also skipped if a single request caused the last
1119
+ # engine step to fail, and the previous schedule needs to be rerun.
1120
+ if not self._has_remaining_steps(
1121
+ seq_group_metadata_list
1122
+ ) and not self._skip_scheduling_next_step:
1123
+ # Schedule iteration
1124
+ (seq_group_metadata_list, scheduler_outputs,
1125
+ allow_async_output_proc
1126
+ ) = self.scheduler[virtual_engine].schedule()
1127
+
1128
+ ctx.seq_group_metadata_list = seq_group_metadata_list
1129
+ ctx.scheduler_outputs = scheduler_outputs
1130
+
1131
+ finished_requests_ids = self.scheduler[
1132
+ virtual_engine].get_and_reset_finished_requests_ids()
1133
+ # When n>1, elements in self.seq_id_to_seq_group should be deleted
1134
+ # here, otherwise memory leaks.
1135
+ for finished_request_id in finished_requests_ids:
1136
+ if finished_request_id in self.seq_id_to_seq_group:
1137
+ del self.seq_id_to_seq_group[finished_request_id]
1138
+
1139
+ # Maybe switch from async mode to sync mode
1140
+ if not allow_async_output_proc and len(ctx.output_queue) > 0:
1141
+ self._process_model_outputs(ctx=ctx)
1142
+
1143
+ else:
1144
+ finished_requests_ids = list()
1145
+
1146
+ assert seq_group_metadata_list is not None
1147
+ assert scheduler_outputs is not None
1148
+
1149
+ if not scheduler_outputs.is_empty():
1150
+
1151
+ # Check if we have a cached last_output from the previous iteration.
1152
+ # For supporting PP this is probably the best way to pass the
1153
+ # sampled_token_ids, as a separate broadcast over all the PP stages
1154
+ # will cause one virtual engine's microbatch to block the pipeline.
1155
+ last_sampled_token_ids = \
1156
+ self._get_last_sampled_token_ids(virtual_engine)
1157
+
1158
+ execute_model_req = ExecuteModelRequest(
1159
+ seq_group_metadata_list=seq_group_metadata_list,
1160
+ blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
1161
+ blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
1162
+ blocks_to_copy=scheduler_outputs.blocks_to_copy,
1163
+ num_lookahead_slots=scheduler_outputs.num_lookahead_slots,
1164
+ running_queue_size=scheduler_outputs.running_queue_size,
1165
+ finished_requests_ids=finished_requests_ids,
1166
+ # We use ExecuteModelRequest to pass the last sampled_token_ids
1167
+ # to each of the non-last PP stages for in-place prepare_input.
1168
+ last_sampled_token_ids=last_sampled_token_ids)
1169
+
1170
+ if allow_async_output_proc:
1171
+ execute_model_req.async_callback = self.async_callbacks[
1172
+ virtual_engine]
1173
+
1174
+ try:
1175
+ outputs = self.model_executor.execute_model(
1176
+ execute_model_req=execute_model_req)
1177
+ self._skip_scheduling_next_step = False
1178
+ except InputProcessingError as e:
1179
+ # The input for this request cannot be processed, so we must
1180
+ # abort it. If there are remaining requests in the batch that
1181
+ # have been scheduled, they will be retried on the next step.
1182
+ invalid_request_id = e.request_id
1183
+ self._abort_and_cache_schedule(
1184
+ request_id=invalid_request_id,
1185
+ virtual_engine=virtual_engine,
1186
+ seq_group_metadata_list=seq_group_metadata_list,
1187
+ scheduler_outputs=scheduler_outputs,
1188
+ allow_async_output_proc=allow_async_output_proc)
1189
+ # Raise so the caller is notified that this request failed
1190
+ raise
1191
+
1192
+ else:
1193
+ # Nothing scheduled => If there is pending async postprocessor,
1194
+ # then finish it here.
1195
+ if len(ctx.output_queue) > 0:
1196
+ self._process_model_outputs(ctx=ctx)
1197
+ # No outputs in this case
1198
+ outputs = []
1199
+
1200
+ if not self._has_remaining_steps(seq_group_metadata_list):
1201
+ # is_first_step_output is True only when the num_steps of all
1202
+ # the sequences are 1.
1203
+ is_first_step_output: bool = False if not seq_group_metadata_list \
1204
+ else seq_group_metadata_list[0].state.num_steps == 1
1205
+
1206
+ # Add results to the output_queue
1207
+ ctx.append_output(outputs=outputs,
1208
+ seq_group_metadata_list=seq_group_metadata_list,
1209
+ scheduler_outputs=scheduler_outputs,
1210
+ is_async=allow_async_output_proc,
1211
+ is_last_step=True,
1212
+ is_first_step_output=is_first_step_output)
1213
+
1214
+ if outputs and allow_async_output_proc:
1215
+ assert len(outputs) == 1, (
1216
+ "Async postprocessor expects only a single output set")
1217
+
1218
+ self._advance_to_next_step(
1219
+ outputs[0], seq_group_metadata_list,
1220
+ scheduler_outputs.scheduled_seq_groups)
1221
+
1222
+ # Check if need to run the usual non-async path
1223
+ if not allow_async_output_proc:
1224
+ self._process_model_outputs(ctx=ctx)
1225
+
1226
+ # Log stats.
1227
+ self.do_log_stats(scheduler_outputs, outputs)
1228
+
1229
+ # Tracing
1230
+ self.do_tracing(scheduler_outputs)
1231
+ else:
1232
+ # Multi-step case
1233
+ return ctx.request_outputs
1234
+
1235
+ if not self.has_unfinished_requests():
1236
+ # Drain async postprocessor (if exists)
1237
+ if len(ctx.output_queue) > 0:
1238
+ self._process_model_outputs(ctx=ctx)
1239
+ assert len(ctx.output_queue) == 0
1240
+
1241
+ # Stop the execute model loop in parallel workers until there are
1242
+ # more requests to process. This avoids waiting indefinitely in
1243
+ # torch.distributed ops which may otherwise time out, and unblocks
1244
+ # the RPC thread in the workers so that they can process any other
1245
+ # queued control plane messages, such as add/remove lora adapters.
1246
+ logger.debug("Stopping remote worker execution loop.")
1247
+ self.model_executor.stop_remote_worker_execution_loop()
1248
+
1249
+ return ctx.request_outputs
1250
+
1251
+ def _abort_and_cache_schedule(
1252
+ self, request_id: str, virtual_engine: int,
1253
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1254
+ scheduler_outputs: SchedulerOutputs,
1255
+ allow_async_output_proc: bool) -> None:
1256
+ """Aborts a single request, and caches the scheduler outputs minus that
1257
+ request. This allows the next step to continue processing the remaining
1258
+ requests without having to re-run the scheduler."""
1259
+
1260
+ # Abort the request and remove its sequence group from the current
1261
+ # schedule
1262
+ self.abort_request(request_id)
1263
+ for i, metadata in enumerate(seq_group_metadata_list):
1264
+ if metadata.request_id == request_id:
1265
+ del seq_group_metadata_list[i]
1266
+ break
1267
+ for i, group in enumerate(scheduler_outputs.scheduled_seq_groups):
1268
+ if group.seq_group.request_id == request_id:
1269
+ del scheduler_outputs.scheduled_seq_groups[i]
1270
+ break
1271
+
1272
+ # If there are still other sequence groups left in the schedule, cache
1273
+ # them and flag the engine to reuse the schedule.
1274
+ if len(seq_group_metadata_list) > 0:
1275
+ self._skip_scheduling_next_step = True
1276
+ # Reuse multi-step caching logic
1277
+ self._cache_scheduler_outputs_for_multi_step(
1278
+ virtual_engine=virtual_engine,
1279
+ scheduler_outputs=scheduler_outputs,
1280
+ seq_group_metadata_list=seq_group_metadata_list,
1281
+ allow_async_output_proc=allow_async_output_proc)
1282
+
1283
+ def _has_remaining_steps(
1284
+ self, seq_group_metadata_list: Optional[List[SequenceGroupMetadata]]
1285
+ ) -> bool:
1286
+ return False
1287
+
1288
+ def _cache_scheduler_outputs_for_multi_step(
1289
+ self, virtual_engine: int,
1290
+ seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
1291
+ scheduler_outputs: SchedulerOutputs,
1292
+ allow_async_output_proc: bool) -> None:
1293
+ co = self.cached_scheduler_outputs[virtual_engine]
1294
+
1295
+ co.seq_group_metadata_list = seq_group_metadata_list
1296
+ co.scheduler_outputs = scheduler_outputs
1297
+ co.allow_async_output_proc = allow_async_output_proc
1298
+ co.last_output = None
1299
+
1300
+ def _update_cached_scheduler_output(
1301
+ self, virtual_engine: int,
1302
+ output: List[Optional[SamplerOutput]]) -> None:
1303
+ if (self.parallel_config.pipeline_parallel_size > 1 and len(output) > 0
1304
+ and output[0] is not None):
1305
+ last_output = output[-1]
1306
+ assert last_output is not None
1307
+ assert last_output.sampled_token_ids_cpu is not None
1308
+ assert last_output.sampled_token_ids is None
1309
+ assert last_output.sampled_token_probs is None
1310
+ self.cached_scheduler_outputs[
1311
+ virtual_engine].last_output = last_output
1312
+
1313
+ def _get_last_sampled_token_ids(
1314
+ self, virtual_engine: int) -> Optional[torch.Tensor]:
1315
+ return None
1316
+
1317
+ def add_logger(self, logger_name: str, logger: StatLoggerBase) -> None:
1318
+ if not self.log_stats:
1319
+ raise RuntimeError(
1320
+ "Stat logging is disabled. Set `disable_log_stats=False` "
1321
+ "argument to enable.")
1322
+ if logger_name in self.stat_loggers:
1323
+ raise KeyError(f"Logger with name {logger_name} already exists.")
1324
+ self.stat_loggers[logger_name] = logger
1325
+
1326
+ def remove_logger(self, logger_name: str) -> None:
1327
+ if not self.log_stats:
1328
+ raise RuntimeError(
1329
+ "Stat logging is disabled. Set `disable_log_stats=False` "
1330
+ "argument to enable.")
1331
+ if logger_name not in self.stat_loggers:
1332
+ raise KeyError(f"Logger with name {logger_name} does not exist.")
1333
+ del self.stat_loggers[logger_name]
1334
+
1335
+ def do_log_stats(self,
1336
+ scheduler_outputs: Optional[SchedulerOutputs] = None,
1337
+ model_output: Optional[List[SamplerOutput]] = None,
1338
+ finished_before: Optional[List[int]] = None,
1339
+ skip: Optional[List[int]] = None) -> None:
1340
+ """Forced log when no requests active."""
1341
+ if self.log_stats:
1342
+ stats = self._get_stats(scheduler_outputs, model_output,
1343
+ finished_before, skip)
1344
+ for logger in self.stat_loggers.values():
1345
+ logger.log(stats)
1346
+
1347
+ def _get_stats(self,
1348
+ scheduler_outputs: Optional[SchedulerOutputs],
1349
+ model_output: Optional[List[SamplerOutput]] = None,
1350
+ finished_before: Optional[List[int]] = None,
1351
+ skip: Optional[List[int]] = None) -> Stats:
1352
+ """Get Stats to be Logged to Prometheus.
1353
+
1354
+ Args:
1355
+ scheduler_outputs: Optional, used to populate metrics related to
1356
+ the scheduled batch,
1357
+ model_output: Optional, used to emit speculative decoding metrics
1358
+ which are created by the workers.
1359
+ finished_before: Optional, indices of sequences that were finished
1360
+ before. These sequences will be ignored.
1361
+ skip: Optional, indices of sequences that were preempted. These
1362
+ sequences will be ignored.
1363
+ """
1364
+ now = time.time()
1365
+
1366
+ # System State
1367
+ # Scheduler State
1368
+ num_running_sys = sum(
1369
+ len(scheduler.running) for scheduler in self.scheduler)
1370
+ num_swapped_sys = sum(
1371
+ len(scheduler.swapped) for scheduler in self.scheduler)
1372
+ num_waiting_sys = sum(
1373
+ len(scheduler.waiting) for scheduler in self.scheduler)
1374
+
1375
+ # KV Cache Usage in %
1376
+ num_total_gpu = self.cache_config.num_gpu_blocks
1377
+ gpu_cache_usage_sys = 0.
1378
+ if num_total_gpu: # Guard against both None and 0
1379
+ num_free_gpu = sum(
1380
+ scheduler.block_manager.get_num_free_gpu_blocks()
1381
+ for scheduler in self.scheduler)
1382
+ gpu_cache_usage_sys = 1.0 - (num_free_gpu / num_total_gpu)
1383
+
1384
+ num_total_cpu = self.cache_config.num_cpu_blocks
1385
+ cpu_cache_usage_sys = 0.
1386
+ if num_total_cpu: # Guard against both None and 0
1387
+ num_free_cpu = sum(
1388
+ scheduler.block_manager.get_num_free_cpu_blocks()
1389
+ for scheduler in self.scheduler)
1390
+ cpu_cache_usage_sys = 1.0 - (num_free_cpu / num_total_cpu)
1391
+
1392
+ # Prefix Cache Hit Rate. Note that we always use
1393
+ # the cache hit rate of the first virtual engine.
1394
+ cpu_prefix_cache_hit_rate = self.scheduler[
1395
+ 0].get_prefix_cache_hit_rate(Device.CPU)
1396
+ gpu_prefix_cache_hit_rate = self.scheduler[
1397
+ 0].get_prefix_cache_hit_rate(Device.GPU)
1398
+
1399
+ # Exchange the uasge and cache hit stats between gpu and cpu when
1400
+ # running on cpu because the cpu_worker.py intentionally reports the
1401
+ # number of cpu blocks as gpu blocks in favor of cache management.
1402
+ if self.device_config.device_type == "cpu":
1403
+ num_total_gpu, num_total_cpu = num_total_cpu, num_total_gpu
1404
+ gpu_cache_usage_sys, cpu_cache_usage_sys = (
1405
+ cpu_cache_usage_sys,
1406
+ gpu_cache_usage_sys,
1407
+ )
1408
+ gpu_prefix_cache_hit_rate, cpu_prefix_cache_hit_rate = (
1409
+ cpu_prefix_cache_hit_rate,
1410
+ gpu_prefix_cache_hit_rate,
1411
+ )
1412
+
1413
+ # Iteration stats
1414
+ num_prompt_tokens_iter = 0
1415
+ num_generation_tokens_iter = 0
1416
+ num_tokens_iter = 0
1417
+ time_to_first_tokens_iter: List[float] = []
1418
+ inter_token_latencies_iter: List[float] = []
1419
+ num_preemption_iter = (0 if scheduler_outputs is None else
1420
+ scheduler_outputs.preempted)
1421
+
1422
+ # Request stats
1423
+ # Latency
1424
+ time_e2e_requests: List[float] = []
1425
+ time_queue_requests: List[float] = []
1426
+ time_inference_requests: List[float] = []
1427
+ time_prefill_requests: List[float] = []
1428
+ time_decode_requests: List[float] = []
1429
+ # Metadata
1430
+ num_prompt_tokens_requests: List[int] = []
1431
+ num_generation_tokens_requests: List[int] = []
1432
+ n_requests: List[int] = []
1433
+ max_num_generation_tokens_requests: List[int] = []
1434
+ max_tokens_requests: List[int] = []
1435
+ finished_reason_requests: List[str] = []
1436
+
1437
+ # LoRA requests
1438
+ running_lora_adapters = dict(
1439
+ collectionsCounter([
1440
+ running_request.lora_request.lora_name
1441
+ for scheduler in self.scheduler
1442
+ for running_request in scheduler.running
1443
+ if running_request.lora_request
1444
+ ]))
1445
+ waiting_lora_adapters = dict(
1446
+ collectionsCounter([
1447
+ waiting_request.lora_request.lora_name
1448
+ for scheduler in self.scheduler
1449
+ for waiting_request in scheduler.waiting
1450
+ if waiting_request.lora_request
1451
+ ]))
1452
+ max_lora_stat = "0"
1453
+ if self.lora_config:
1454
+ max_lora_stat = str(self.lora_config.max_loras)
1455
+
1456
+ # NOTE: This loop assumes prefill seq_groups are before
1457
+ # decode seq_groups in scheduled_seq_groups.
1458
+ if scheduler_outputs is not None:
1459
+ # For async postprocessor, already finished sequences need to be
1460
+ # not counted (to avoid double counting)
1461
+ actual_num_batched_tokens = scheduler_outputs.num_batched_tokens # type: ignore
1462
+
1463
+ num_generation_tokens_from_prefill_groups = 0
1464
+ # NOTE: if scheduler_outputs.num_prefill_groups > 0 and
1465
+ # the len of scheduler_outputs.scheduled_seq_groups is !=
1466
+ # scheduler_outputs.num_prefill_groups, this means that
1467
+ # chunked prefills have been detected.
1468
+
1469
+ for idx, scheduled_seq_group in enumerate(
1470
+ scheduler_outputs.scheduled_seq_groups):
1471
+ # Skip double logging when using async output proc
1472
+ if finished_before and idx in finished_before:
1473
+ actual_num_batched_tokens -= 1
1474
+ continue
1475
+
1476
+ # Currently, skip == preempted sequences, so we need to skip
1477
+ # their log stats
1478
+ if skip and idx in skip:
1479
+ continue
1480
+
1481
+ group_was_prefill = idx < scheduler_outputs.num_prefill_groups
1482
+ seq_group = scheduled_seq_group.seq_group
1483
+
1484
+ # NOTE: a seq_group that completed all of its prefill tokens
1485
+ # in the last iteration will have seq_group.is_prefill() = False
1486
+ # with group_was_prefill = True
1487
+ if group_was_prefill:
1488
+ # Number of prompt tokens.
1489
+ num_prompt_tokens_iter += (
1490
+ scheduled_seq_group.token_chunk_size)
1491
+
1492
+ # If the seq_group just finished the prefill state
1493
+ # get TTFT.
1494
+ if not seq_group.is_prefill():
1495
+ latency = seq_group.get_last_token_latency()
1496
+ time_to_first_tokens_iter.append(latency)
1497
+
1498
+ # One generation token per finished prefill.
1499
+ num_generation_tokens_from_prefill_groups += (
1500
+ seq_group.num_seqs())
1501
+ else:
1502
+ # ITLs
1503
+ latency = seq_group.get_last_token_latency()
1504
+ inter_token_latencies_iter.append(latency)
1505
+ if seq_group.state.current_step == 0:
1506
+ # For async_output_proc, the do_log_stats()
1507
+ # is called following init_multi_step(), which
1508
+ # sets the current_step to zero.
1509
+ actual_num_batched_tokens +=\
1510
+ seq_group.state.num_steps - 1
1511
+ else:
1512
+ actual_num_batched_tokens +=\
1513
+ seq_group.state.current_step - 1
1514
+
1515
+ # Because of chunked prefill, we can have a single sequence
1516
+ # group that does multiple prompt_runs. To prevent logging
1517
+ # the same metadata more than once per request, we standardize
1518
+ # on logging request level information for finished requests,
1519
+ # which can only happen once.
1520
+ if seq_group.is_finished():
1521
+ # Latency timings
1522
+ time_e2e_requests.append(now -
1523
+ seq_group.metrics.arrival_time)
1524
+ if (seq_group.metrics.first_scheduled_time is not None and
1525
+ seq_group.metrics.first_token_time is not None):
1526
+ time_queue_requests.append(
1527
+ seq_group.metrics.first_scheduled_time -
1528
+ seq_group.metrics.arrival_time)
1529
+ time_prefill_requests.append(
1530
+ seq_group.metrics.first_token_time -
1531
+ seq_group.metrics.first_scheduled_time)
1532
+ time_decode_requests.append(
1533
+ now - seq_group.metrics.first_token_time)
1534
+ time_inference_requests.append(
1535
+ now - seq_group.metrics.first_scheduled_time)
1536
+ # Metadata
1537
+ num_prompt_tokens_requests.append(
1538
+ len(seq_group.prompt_token_ids))
1539
+ num_generation_tokens_requests.extend([
1540
+ seq.get_output_len()
1541
+ for seq in seq_group.get_finished_seqs()
1542
+ ])
1543
+ max_num_generation_tokens_requests.append(
1544
+ max(seq.get_output_len()
1545
+ for seq in seq_group.get_seqs()))
1546
+ if seq_group.sampling_params is not None:
1547
+ n_requests.append(seq_group.sampling_params.n)
1548
+ max_tokens_requests.append(
1549
+ seq_group.sampling_params.max_tokens)
1550
+ finished_reason_requests.extend([
1551
+ SequenceStatus.get_finished_reason(seq.status)
1552
+ for seq in seq_group.get_finished_seqs()
1553
+ ])
1554
+
1555
+ # Number of generation tokens.
1556
+ # num_batched_tokens equals the number of prompt_tokens plus the
1557
+ # number of decode_tokens in a single iteration. So,
1558
+ # num_generation_tokens = num_batched_tokens - num_prompt_tokens
1559
+ # + num_generation_tokens_from_prefill_groups (since we generate
1560
+ # one token on prefills on iters where the prefill finishes).
1561
+ num_generation_tokens_iter = (
1562
+ actual_num_batched_tokens - num_prompt_tokens_iter +
1563
+ num_generation_tokens_from_prefill_groups)
1564
+ num_tokens_iter = (num_generation_tokens_iter +
1565
+ num_prompt_tokens_iter)
1566
+
1567
+ return Stats(
1568
+ now=now,
1569
+ # System stats
1570
+ # Scheduler State
1571
+ num_running_sys=num_running_sys,
1572
+ num_swapped_sys=num_swapped_sys,
1573
+ num_waiting_sys=num_waiting_sys,
1574
+ # KV Cache Usage in %
1575
+ gpu_cache_usage_sys=gpu_cache_usage_sys,
1576
+ cpu_cache_usage_sys=cpu_cache_usage_sys,
1577
+ # Prefix Cache Hit Rate
1578
+ cpu_prefix_cache_hit_rate=cpu_prefix_cache_hit_rate,
1579
+ gpu_prefix_cache_hit_rate=gpu_prefix_cache_hit_rate,
1580
+
1581
+ # Iteration stats
1582
+ num_prompt_tokens_iter=num_prompt_tokens_iter,
1583
+ num_generation_tokens_iter=num_generation_tokens_iter,
1584
+ num_tokens_iter=num_tokens_iter,
1585
+ time_to_first_tokens_iter=time_to_first_tokens_iter,
1586
+ inter_token_latencies_iter=inter_token_latencies_iter,
1587
+ num_preemption_iter=num_preemption_iter,
1588
+
1589
+ # Request stats
1590
+ # Latency
1591
+ time_e2e_requests=time_e2e_requests,
1592
+ time_queue_requests=time_queue_requests,
1593
+ time_inference_requests=time_inference_requests,
1594
+ time_prefill_requests=time_prefill_requests,
1595
+ time_decode_requests=time_decode_requests,
1596
+ # Metadata
1597
+ num_prompt_tokens_requests=num_prompt_tokens_requests,
1598
+ num_generation_tokens_requests=num_generation_tokens_requests,
1599
+ max_num_generation_tokens_requests=
1600
+ max_num_generation_tokens_requests,
1601
+ n_requests=n_requests,
1602
+ max_tokens_requests=max_tokens_requests,
1603
+ finished_reason_requests=finished_reason_requests,
1604
+ max_lora=str(max_lora_stat),
1605
+ waiting_lora_adapters=list(waiting_lora_adapters.keys()),
1606
+ running_lora_adapters=list(running_lora_adapters.keys()))
1607
+
1608
+ def add_lora(self, lora_request: LoRARequest) -> bool:
1609
+ return self.model_executor.add_lora(lora_request)
1610
+
1611
+ def remove_lora(self, lora_id: int) -> bool:
1612
+ return self.model_executor.remove_lora(lora_id)
1613
+
1614
+ def list_loras(self) -> Set[int]:
1615
+ return self.model_executor.list_loras()
1616
+
1617
+ def pin_lora(self, lora_id: int) -> bool:
1618
+ return self.model_executor.pin_lora(lora_id)
1619
+
1620
+ def start_profile(self) -> None:
1621
+ self.model_executor.start_profile()
1622
+
1623
+ def stop_profile(self) -> None:
1624
+ self.model_executor.stop_profile()
1625
+
1626
+ def sleep(self, level: int = 1) -> None:
1627
+ assert self.vllm_config.model_config.enable_sleep_mode, (
1628
+ "Sleep mode is not enabled in the model config")
1629
+ self.model_executor.sleep(level=level)
1630
+
1631
+ def wake_up(self, tags: Optional[list[str]] = None) -> None:
1632
+ assert self.vllm_config.model_config.enable_sleep_mode, (
1633
+ "Sleep mode is not enabled in the model config")
1634
+ self.model_executor.wake_up(tags)
1635
+
1636
+ def is_sleeping(self) -> bool:
1637
+ return self.model_executor.is_sleeping
1638
+
1639
+ def check_health(self) -> None:
1640
+ self.model_executor.check_health()
1641
+
1642
+ def is_tracing_enabled(self) -> bool:
1643
+ return self.tracer is not None
1644
+
1645
+ def do_tracing(self,
1646
+ scheduler_outputs: SchedulerOutputs,
1647
+ finished_before: Optional[List[int]] = None) -> None:
1648
+ if self.tracer is None:
1649
+ return
1650
+
1651
+ for idx, scheduled_seq_group in enumerate(
1652
+ scheduler_outputs.scheduled_seq_groups):
1653
+ # Skip double tracing when using async output proc
1654
+ if finished_before and idx in finished_before:
1655
+ continue
1656
+
1657
+ seq_group = scheduled_seq_group.seq_group
1658
+ if seq_group.is_finished():
1659
+ self.create_trace_span(seq_group)
1660
+
1661
+ def create_trace_span(self, seq_group: SequenceGroup) -> None:
1662
+ if self.tracer is None or seq_group.sampling_params is None:
1663
+ return
1664
+ arrival_time_nano_seconds = int(seq_group.metrics.arrival_time * 1e9)
1665
+
1666
+ trace_context = extract_trace_context(seq_group.trace_headers)
1667
+
1668
+ with self.tracer.start_as_current_span(
1669
+ "llm_request",
1670
+ kind=SpanKind.SERVER,
1671
+ context=trace_context,
1672
+ start_time=arrival_time_nano_seconds) as seq_span:
1673
+ metrics = seq_group.metrics
1674
+
1675
+ # Handle potential None values for cancelled/aborted requests
1676
+ ttft = (metrics.first_token_time - metrics.arrival_time
1677
+ if metrics.first_token_time is not None else None)
1678
+
1679
+ e2e_time = (metrics.finished_time - metrics.arrival_time
1680
+ if metrics.finished_time is not None else None)
1681
+
1682
+ seq_span.set_attribute(SpanAttributes.GEN_AI_RESPONSE_MODEL,
1683
+ self.model_config.model)
1684
+ seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_ID,
1685
+ seq_group.request_id)
1686
+ seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_TEMPERATURE,
1687
+ seq_group.sampling_params.temperature)
1688
+ seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_TOP_P,
1689
+ seq_group.sampling_params.top_p)
1690
+ seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS,
1691
+ seq_group.sampling_params.max_tokens)
1692
+ seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_N,
1693
+ seq_group.sampling_params.n)
1694
+ seq_span.set_attribute(SpanAttributes.GEN_AI_USAGE_NUM_SEQUENCES,
1695
+ seq_group.num_seqs())
1696
+ seq_span.set_attribute(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS,
1697
+ len(seq_group.prompt_token_ids))
1698
+ seq_span.set_attribute(
1699
+ SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS,
1700
+ sum([
1701
+ seq.get_output_len()
1702
+ for seq in seq_group.get_finished_seqs()
1703
+ ]))
1704
+
1705
+ # Only set timing attributes if the values are available
1706
+ if metrics.time_in_queue is not None:
1707
+ seq_span.set_attribute(
1708
+ SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE,
1709
+ metrics.time_in_queue)
1710
+ if ttft is not None:
1711
+ seq_span.set_attribute(
1712
+ SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN, ttft)
1713
+ if e2e_time is not None:
1714
+ seq_span.set_attribute(SpanAttributes.GEN_AI_LATENCY_E2E,
1715
+ e2e_time)
1716
+ if metrics.scheduler_time is not None:
1717
+ seq_span.set_attribute(
1718
+ SpanAttributes.GEN_AI_LATENCY_TIME_IN_SCHEDULER,
1719
+ metrics.scheduler_time)
1720
+ if metrics.model_forward_time is not None:
1721
+ seq_span.set_attribute(
1722
+ SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_FORWARD,
1723
+ metrics.model_forward_time / 1000.0)
1724
+ if metrics.model_execute_time is not None:
1725
+ seq_span.set_attribute(
1726
+ SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_EXECUTE,
1727
+ metrics.model_execute_time)
1728
+
1729
+ def _validate_model_inputs(self, inputs: ProcessorInputs,
1730
+ lora_request: Optional[LoRARequest]):
1731
+ encoder_inputs, decoder_inputs = split_enc_dec_inputs(inputs)
1732
+
1733
+ if encoder_inputs is not None:
1734
+ self._validate_model_input(encoder_inputs,
1735
+ lora_request,
1736
+ prompt_type="encoder")
1737
+
1738
+ self._validate_model_input(decoder_inputs,
1739
+ lora_request,
1740
+ prompt_type="decoder")
1741
+
1742
+ def _validate_model_input(
1743
+ self,
1744
+ prompt_inputs: SingletonInputs,
1745
+ lora_request: Optional[LoRARequest],
1746
+ *,
1747
+ prompt_type: Literal["encoder", "decoder"],
1748
+ ):
1749
+ model_config = self.model_config
1750
+ tokenizer = (None if self.tokenizer is None else
1751
+ self.tokenizer.get_lora_tokenizer(lora_request))
1752
+
1753
+ prompt_ids = prompt_inputs.get("prompt_token_ids", [])
1754
+ if not prompt_ids:
1755
+ if prompt_type == "encoder" and model_config.is_multimodal_model:
1756
+ pass # Mllama may have empty encoder inputs for text-only data
1757
+ elif prompt_inputs["type"] == "embeds":
1758
+ pass
1759
+ else:
1760
+ raise ValueError(f"The {prompt_type} prompt cannot be empty")
1761
+
1762
+ if tokenizer is not None:
1763
+ max_input_id = max(prompt_ids, default=0)
1764
+ if max_input_id > tokenizer.max_token_id:
1765
+ raise ValueError(
1766
+ f"Token id {max_input_id} is out of vocabulary")
1767
+
1768
+ max_prompt_len = self.model_config.max_model_len
1769
+ if len(prompt_ids) > max_prompt_len:
1770
+ if prompt_type == "encoder" and model_config.is_multimodal_model:
1771
+ mm_registry = self.input_preprocessor.mm_registry
1772
+ mm_processor = mm_registry.create_processor(
1773
+ model_config,
1774
+ tokenizer=tokenizer or object(), # Dummy if no tokenizer
1775
+ )
1776
+ assert isinstance(mm_processor, EncDecMultiModalProcessor)
1777
+
1778
+ if mm_processor.pad_dummy_encoder_prompt:
1779
+ return # Skip encoder length check for Whisper and Donut
1780
+
1781
+ if model_config.is_multimodal_model:
1782
+ suggestion = (
1783
+ "Make sure that `max_model_len` is no smaller than the "
1784
+ "number of text tokens plus multimodal tokens. For image "
1785
+ "inputs, the number of image tokens depends on the number "
1786
+ "of images, and possibly their aspect ratios as well.")
1787
+ else:
1788
+ suggestion = (
1789
+ "Make sure that `max_model_len` is no smaller than the "
1790
+ "number of text tokens.")
1791
+
1792
+ raise ValueError(
1793
+ f"The {prompt_type} prompt (length {len(prompt_ids)}) is "
1794
+ f"longer than the maximum model length of {max_prompt_len}. "
1795
+ f"{suggestion}")
1796
+
1797
+ # TODO: Find out how many placeholder tokens are there so we can
1798
+ # check that chunked prefill does not truncate them
1799
+ # max_batch_len = self.scheduler_config.max_num_batched_tokens
1800
+
1801
+ def _build_logits_processors(
1802
+ self, sampling_params: SamplingParams,
1803
+ lora_request: Optional[LoRARequest]) -> SamplingParams:
1804
+ """Constructs logits processors based on the logits_bias, and
1805
+ allowed_token_ids fields in sampling_params. Deletes those fields and
1806
+ adds the constructed logits processors to the logits_processors field.
1807
+ Returns the modified sampling params."""
1808
+
1809
+ logits_processors = []
1810
+
1811
+ if (sampling_params.logit_bias or sampling_params.allowed_token_ids):
1812
+ tokenizer = self.get_tokenizer(lora_request=lora_request)
1813
+
1814
+ processors = get_openai_logits_processors(
1815
+ logit_bias=sampling_params.logit_bias,
1816
+ allowed_token_ids=sampling_params.allowed_token_ids,
1817
+ tokenizer=tokenizer)
1818
+ logits_processors.extend(processors)
1819
+
1820
+ # Unset so these don't get passed down to the model
1821
+ sampling_params.logit_bias = None
1822
+ sampling_params.allowed_token_ids = None
1823
+
1824
+ if len(sampling_params.bad_words) > 0:
1825
+ tokenizer = self.get_tokenizer(lora_request)
1826
+ processors = get_bad_words_logits_processors(
1827
+ bad_words=sampling_params.bad_words, tokenizer=tokenizer)
1828
+ logits_processors.extend(processors)
1829
+
1830
+ if logits_processors:
1831
+ if sampling_params.logits_processors is None:
1832
+ sampling_params.logits_processors = logits_processors
1833
+ else:
1834
+ sampling_params.logits_processors.extend(logits_processors)
1835
+
1836
+ return sampling_params
1837
+
1838
+ def collective_rpc(self,
1839
+ method: Union[str, Callable[..., _R]],
1840
+ timeout: Optional[float] = None,
1841
+ args: tuple = (),
1842
+ kwargs: Optional[dict[str, Any]] = None) -> list[_R]:
1843
+ return self.model_executor.collective_rpc(method, timeout, args,
1844
+ kwargs)
1845
+
1846
+
1847
+ if envs.is_set("VLLM_USE_V1") and envs.VLLM_USE_V1:
1848
+ from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
1849
+ LLMEngine = V1LLMEngine # type: ignore