vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1947 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import bisect
4
+ import gc
5
+ import time
6
+ from typing import TYPE_CHECKING, Any, Optional, cast
7
+ from unittest.mock import patch
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ # TPU XLA related
13
+ import torch_xla.core.xla_model as xm
14
+ import torch_xla.distributed.spmd as xs
15
+ import torch_xla.runtime as xr
16
+
17
+ import vllm.envs as envs
18
+ from vllm.attention import Attention
19
+ from vllm.attention.backends.abstract import AttentionType
20
+ from vllm.attention.layers.chunked_local_attention import ChunkedLocalAttention
21
+ from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher
22
+ from vllm.config import (ParallelConfig, VllmConfig,
23
+ get_layers_from_vllm_config, update_config)
24
+ from vllm.distributed.kv_transfer import (get_kv_transfer_group,
25
+ has_kv_transfer_group)
26
+ from vllm.distributed.kv_transfer.kv_connector.utils import copy_kv_blocks
27
+ from vllm.forward_context import set_forward_context
28
+ from vllm.logger import init_logger
29
+ from vllm.lora.layers import BaseLayerWithLoRA
30
+ from vllm.model_executor.model_loader import get_model_loader
31
+ from vllm.model_executor.model_loader.tpu import TPUModelLoader
32
+ from vllm.model_executor.models.interfaces import supports_transcription
33
+ from vllm.model_executor.models.interfaces_base import (
34
+ is_pooling_model, is_text_generation_model)
35
+ from vllm.multimodal import MULTIMODAL_REGISTRY
36
+ from vllm.multimodal.inputs import (BatchedTensorInputs, MultiModalKwargsItem,
37
+ PlaceholderRange)
38
+ from vllm.multimodal.utils import group_mm_kwargs_by_modality
39
+ from vllm.sequence import IntermediateTensors
40
+ from vllm.tasks import GenerationTask, PoolingTask, SupportedTask
41
+ from vllm.utils import (LayerBlockType, cdiv, is_pin_memory_available,
42
+ prev_power_of_2)
43
+ from vllm.v1.attention.backends.pallas import (TPU_STR_DTYPE_TO_TORCH_DTYPE,
44
+ PallasAttentionBackend,
45
+ PallasMetadata,
46
+ get_page_size_bytes)
47
+ from vllm.v1.kv_cache_interface import (AttentionSpec, FullAttentionSpec,
48
+ KVCacheConfig, KVCacheSpec,
49
+ SlidingWindowSpec)
50
+ from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, LogprobsLists,
51
+ LogprobsTensors, ModelRunnerOutput)
52
+ from vllm.v1.sample.tpu.metadata import TPUSupportedSamplingMetadata
53
+ from vllm.v1.sample.tpu.sampler import Sampler as TPUSampler
54
+ from vllm.v1.worker.kv_connector_model_runner_mixin import (
55
+ KVConnectorModelRunnerMixin, KVConnectorOutput)
56
+ from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin
57
+ from vllm.v1.worker.tpu_input_batch import CachedRequestState, InputBatch
58
+
59
+ from .utils import (MultiModalBudget, add_kv_sharing_layers_to_kv_cache_groups,
60
+ bind_kv_cache, sanity_check_mm_encoder_outputs)
61
+
62
+ if TYPE_CHECKING:
63
+ from vllm.v1.core.sched.output import SchedulerOutput
64
+
65
+ logger = init_logger(__name__)
66
+
67
+ INVALID_TOKEN_ID = -1
68
+ # Smallest output size
69
+ MIN_NUM_SEQS = 8
70
+
71
+
72
+ #########################################################
73
+ # Ways to avoid recompilation
74
+ #########################################################
75
+ #
76
+ # The model executor has two primary components:
77
+ # 1. preparing the model and sampler inputs
78
+ # 2. executing the model and sampler.
79
+ # The core idea is to avoid any TPU computation during input preparation. For
80
+ # better compilation tracking and increased flexibility, the model execution and
81
+ # sampler are divided into several distinct components.
82
+ #
83
+ # Below are the detailed steps:
84
+ #
85
+ # Step 1
86
+ # It is recommended to avoid TPU operations when preparing the model and sampler
87
+ # inputs. CPU tensors can be prepared and transferred to the XLA device using
88
+ # cpu_tensor.to(xla_device), which only triggers CPU to TPU transfers and avoids
89
+ # compilation.
90
+ #
91
+ # Step 2
92
+ # The TPU execution should be decomposed into subgraphs (4 at the moment):
93
+ # 1. the main model
94
+ # 2. selecting hidden states for each request
95
+ # 3. sampler
96
+ # 4. encoder.
97
+ # Each subgraph should be decorated in a torch.compile. This is used to make
98
+ # sure that we have the same subgraph topology in both dummy_run and
99
+ # xecute_model. The results from these subgraphs should either be passed to
100
+ # other subgraphs, or transferred from TPU to CPU using xla_tensor.cpu() for
101
+ # subsequent processing on the CPU.
102
+ #
103
+ # Step 3
104
+ # The dummy_run should be comprehensive, ensuring all potential input shapes and
105
+ # branch predictions are included as subgraph inputs to facilitate
106
+ # pre-compilation.
107
+ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
108
+
109
+ def __init__(
110
+ self,
111
+ vllm_config: VllmConfig,
112
+ device: torch.device,
113
+ original_parallel_config: Optional[ParallelConfig] = None,
114
+ ):
115
+ self.vllm_config = vllm_config
116
+ self.model_config = vllm_config.model_config
117
+ self.cache_config = vllm_config.cache_config
118
+ self.lora_config = vllm_config.lora_config
119
+ self.load_config = vllm_config.load_config
120
+ self.parallel_config = vllm_config.parallel_config
121
+ self.original_parallel_config = original_parallel_config
122
+ self.scheduler_config = vllm_config.scheduler_config
123
+ self.speculative_config = vllm_config.speculative_config
124
+ self.observability_config = vllm_config.observability_config
125
+ self.device_config = vllm_config.device_config
126
+
127
+ model_config = self.model_config
128
+ cache_config = self.cache_config
129
+ scheduler_config = self.scheduler_config
130
+ parallel_config = self.parallel_config
131
+ self.device = device
132
+ self.check_recompilation = envs.VLLM_XLA_CHECK_RECOMPILATION
133
+
134
+ # SPMD Related
135
+ self.use_spmd = envs.VLLM_XLA_USE_SPMD
136
+ if self.use_spmd:
137
+ num_devices = xr.global_runtime_device_count()
138
+ mesh_shape = (num_devices, 1)
139
+ device_ids = np.array(range(num_devices))
140
+ self.mesh = xs.Mesh(device_ids, mesh_shape, ('x', 'y'))
141
+
142
+ self.enforce_eager = model_config.enforce_eager
143
+
144
+ self.num_xla_graphs = 0
145
+ self._update_num_xla_graphs("init")
146
+
147
+ self.pin_memory = is_pin_memory_available()
148
+ self.dtype = self.model_config.dtype
149
+ if cache_config.cache_dtype == "auto":
150
+ model_dtype = self.dtype
151
+ if isinstance(model_dtype, str):
152
+ self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
153
+ else:
154
+ self.kv_cache_dtype = model_dtype
155
+ else:
156
+ self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[
157
+ cache_config.cache_dtype]
158
+ self._hidden_states_dtype = self.dtype
159
+
160
+ self.sliding_window = model_config.get_sliding_window()
161
+ self.block_size = cache_config.block_size
162
+ self.max_model_len = model_config.max_model_len
163
+ self.most_model_len = envs.VLLM_TPU_MOST_MODEL_LEN
164
+ self.max_num_blocks_per_req = cdiv(self.max_model_len, self.block_size)
165
+ self.num_blocks_per_most_len_req = cdiv(
166
+ self.most_model_len,
167
+ self.block_size) if self.most_model_len is not None else None
168
+ # InputBatch needs to work with sampling tensors greater than padding
169
+ # to avoid dynamic shapes. Also, avoid suboptimal alignment.
170
+ self.max_num_reqs = max(scheduler_config.max_num_seqs, MIN_NUM_SEQS)
171
+ self.num_tokens_paddings = _get_token_paddings(
172
+ min_token_size=16,
173
+ max_token_size=scheduler_config.max_num_batched_tokens,
174
+ padding_gap=envs.VLLM_TPU_BUCKET_PADDING_GAP)
175
+ # In case `max_num_tokens < max(num_tokens_paddings)` use the actual
176
+ # padded max value to pre-allocate data structures and pre-compile.
177
+ self.max_num_tokens = self.num_tokens_paddings[-1]
178
+
179
+ # Model-related.
180
+ self.num_attn_layers = model_config.get_num_layers_by_block_type(
181
+ parallel_config, LayerBlockType.attention)
182
+ self.num_query_heads = model_config.get_num_attention_heads(
183
+ parallel_config)
184
+ self.num_kv_heads = model_config.get_num_kv_heads(parallel_config)
185
+ self.head_size = model_config.get_head_size()
186
+ self.hidden_size = model_config.get_hidden_size()
187
+ self.vocab_size = model_config.get_vocab_size()
188
+
189
+ if self.lora_config is not None:
190
+ self.vocab_size += self.lora_config.lora_extra_vocab_size
191
+
192
+ # Multi-modal data support
193
+ self.mm_registry = MULTIMODAL_REGISTRY
194
+ self.uses_mrope = model_config.uses_mrope
195
+ self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
196
+ model_config)
197
+ # TODO: Support M-RoPE (e.g, Qwen2-VL)
198
+ assert not self.uses_mrope, "TPU does not support M-RoPE yet."
199
+
200
+ self._num_slices_per_kv_cache_update_block = \
201
+ _get_num_slices_per_kv_cache_update_block(get_page_size_bytes(
202
+ block_size=self.block_size,
203
+ num_kv_heads=self.num_kv_heads,
204
+ head_size=self.head_size,
205
+ kv_cache_dtype=self.kv_cache_dtype,
206
+ ))
207
+
208
+ # Lazy initialization
209
+ self.model: nn.Module # Set after load_model
210
+ self.kv_caches: list[torch.Tensor] = []
211
+ # mm_hash -> encoder_output
212
+ self.encoder_cache: dict[str, torch.Tensor] = {}
213
+
214
+ # Request states.
215
+ self.requests: dict[str, CachedRequestState] = {}
216
+
217
+ # Initialize input batch early to avoid AttributeError in _update_states
218
+ self.input_batch = InputBatch(
219
+ max_num_reqs=self.max_num_reqs,
220
+ max_model_len=self.max_model_len,
221
+ max_num_batched_tokens=self.max_num_tokens,
222
+ device=self.device,
223
+ pin_memory=self.pin_memory,
224
+ vocab_size=self.model_config.get_vocab_size(),
225
+ block_sizes=[self.block_size],
226
+ )
227
+
228
+ # Cached torch/numpy tensor
229
+ # The pytorch tensor and numpy array share the same buffer.
230
+ # Sometimes the numpy op is faster so we create both.
231
+ self.input_ids_cpu = torch.zeros(self.max_num_tokens,
232
+ dtype=torch.int32,
233
+ device="cpu")
234
+
235
+ self.positions_cpu = torch.zeros(self.max_num_tokens,
236
+ dtype=torch.int32,
237
+ device="cpu")
238
+ self.positions_np = self.positions_cpu.numpy()
239
+ self.block_table_cpu = torch.zeros(
240
+ (self.max_num_reqs, self.max_num_blocks_per_req),
241
+ dtype=torch.int32,
242
+ device="cpu")
243
+ # adjust num_reqs to avoid SMEM OOM.
244
+ self.num_reqs_most_model_len = min(
245
+ PallasAttentionBackend.get_max_num_seqs(self.most_model_len,
246
+ self.block_size),
247
+ self.max_num_reqs) if self.most_model_len is not None else None
248
+ self.num_reqs_max_model_len = min(
249
+ PallasAttentionBackend.get_max_num_seqs(self.max_model_len,
250
+ self.block_size),
251
+ self.max_num_reqs)
252
+ self.query_start_loc_cpu = torch.zeros(self.max_num_tokens + 1,
253
+ dtype=torch.int32,
254
+ device="cpu",
255
+ pin_memory=self.pin_memory)
256
+ self.query_start_loc_np = self.query_start_loc_cpu.numpy()
257
+
258
+ self.seq_lens_cpu = torch.zeros(self.max_num_tokens,
259
+ dtype=torch.int32,
260
+ device="cpu",
261
+ pin_memory=self.pin_memory)
262
+ self.seq_lens_np = self.seq_lens_cpu.numpy()
263
+
264
+ # Range tensor with values [0 .. self.max_num_tokens - 1].
265
+ # Used to initialize positions / context_lens / seq_lens
266
+ # Keep in int64 to avoid overflow with long context
267
+ self.arange_np = np.arange(self.max_num_tokens, dtype=np.int64)
268
+ self.num_reqs_paddings = _get_req_paddings(
269
+ min_req_size=MIN_NUM_SEQS, max_req_size=self.max_num_reqs)
270
+
271
+ # Layer pairings for cross-layer KV sharing.
272
+ # If an Attention layer `layer_name` is in the keys of this dict, it
273
+ # means this layer will perform attention using the keys and values
274
+ # from the KV cache of `shared_kv_cache_layers[layer_name]`.
275
+ self.shared_kv_cache_layers: dict[str, str] = {}
276
+
277
+ # tensors for structured decoding
278
+ self.grammar_bitmask_cpu = torch.zeros(
279
+ (self.max_num_reqs, cdiv(self.vocab_size, 32)),
280
+ dtype=torch.int32,
281
+ device="cpu",
282
+ pin_memory=self.pin_memory)
283
+ self.require_structured_out_cpu = torch.zeros(
284
+ (self.max_num_reqs, 1),
285
+ dtype=torch.bool,
286
+ device="cpu",
287
+ pin_memory=self.pin_memory)
288
+ self.structured_decode_arange = torch.arange(
289
+ 0, 32, device="cpu", pin_memory=self.pin_memory)
290
+
291
+ self.mm_budget = (MultiModalBudget(
292
+ self.model_config,
293
+ self.scheduler_config,
294
+ self.mm_registry,
295
+ ) if self.supports_mm_inputs else None)
296
+
297
+ if not self.use_spmd:
298
+ self.sample_from_logits_func = torch.compile(
299
+ self.sample_from_logits,
300
+ backend="openxla",
301
+ fullgraph=True,
302
+ dynamic=False)
303
+ else:
304
+ self.sample_from_logits_func = self.sample_from_logits
305
+
306
+ def _update_num_xla_graphs(self, case_str):
307
+ check_comp = self.check_recompilation and not self.enforce_eager
308
+ if not check_comp:
309
+ return
310
+
311
+ total_cached_graphs = xr.get_num_cached_compilation_graph()
312
+ new_compiled_graphs = total_cached_graphs - self.num_xla_graphs
313
+ if new_compiled_graphs == 0:
314
+ return
315
+
316
+ logger.info("Add new %d compiled XLA graphs due to %s",
317
+ new_compiled_graphs, case_str)
318
+ self.num_xla_graphs += new_compiled_graphs
319
+
320
+ def _verify_num_xla_graphs(self, case_str):
321
+ check_comp = self.check_recompilation and not self.enforce_eager
322
+ if not check_comp:
323
+ return
324
+
325
+ curr_cached_graph = xr.get_num_cached_compilation_graph()
326
+ assert self.num_xla_graphs == curr_cached_graph, (
327
+ "Recompilation after warm up is detected during {}."
328
+ " num_xla_graphs = {} curr_cached_graph = {}".format(
329
+ case_str, self.num_xla_graphs, curr_cached_graph))
330
+
331
+ def _update_states(self, scheduler_output: "SchedulerOutput") -> bool:
332
+ """Update the cached states and the persistent batch with the scheduler
333
+ output.
334
+
335
+ The updated states are used by the `_prepare_inputs` function to create
336
+ the input GPU tensors for the model.
337
+
338
+ Returns:
339
+ True if there is a new/resumed/paused/finished request.
340
+ If False, we can skip copying SamplingMetadata to the GPU.
341
+ """
342
+ # Remove finished requests from the cached states.
343
+ for req_id in scheduler_output.finished_req_ids:
344
+ self.requests.pop(req_id, None)
345
+
346
+ # Remove the finished requests from the persistent batch.
347
+ # NOTE(woosuk): There could be an edge case where finished_req_ids and
348
+ # scheduled_req_ids overlap. This happens when a request is aborted and
349
+ # then resubmitted with the same ID. In this case, we treat them as two
350
+ # distinct requests - clearing the cached states for the first request
351
+ # and handling the second as a new request.
352
+ removed_req_indices: list[int] = []
353
+ for req_id in scheduler_output.finished_req_ids:
354
+ req_index = self.input_batch.remove_request(req_id)
355
+ if req_index is not None:
356
+ removed_req_indices.append(req_index)
357
+
358
+ # Free the cached encoder outputs.
359
+ for mm_hash in scheduler_output.free_encoder_mm_hashes:
360
+ self.encoder_cache.pop(mm_hash, None)
361
+
362
+ # Remove the unscheduled requests from the persistent batch.
363
+ # NOTE(woosuk): The unscheduled requests are either preempted requests
364
+ # or running requests that are not scheduled in this step. We remove
365
+ # them from the persistent batch but keep their cached states since
366
+ # they will be scheduled again sometime in the future.
367
+ scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
368
+ cached_req_ids = self.input_batch.req_id_to_index.keys()
369
+ unscheduled_req_ids = cached_req_ids - scheduled_req_ids
370
+ # NOTE(woosuk): The persistent batch optimization assumes that
371
+ # consecutive batches contain mostly the same requests. If batches
372
+ # have low request overlap (e.g., alternating between two distinct
373
+ # sets of requests), this optimization becomes very inefficient.
374
+ for req_id in unscheduled_req_ids:
375
+ req_index = self.input_batch.remove_request(req_id)
376
+ assert req_index is not None
377
+ removed_req_indices.append(req_index)
378
+
379
+ req_ids_to_add: list[str] = []
380
+ # Add new requests to the cached states.
381
+ for new_req_data in scheduler_output.scheduled_new_reqs:
382
+ assert new_req_data.sampling_params is not None,\
383
+ "Pooling is not supported in TPU yet"
384
+ req_id = new_req_data.req_id
385
+ sampling_params = new_req_data.sampling_params
386
+
387
+ self.requests[req_id] = CachedRequestState(
388
+ req_id=req_id,
389
+ prompt_token_ids=new_req_data.prompt_token_ids,
390
+ mm_kwargs=new_req_data.mm_kwargs,
391
+ mm_positions=new_req_data.mm_positions,
392
+ mm_hashes=new_req_data.mm_hashes,
393
+ sampling_params=sampling_params,
394
+ pooling_params=None,
395
+ generator=None,
396
+ block_ids=new_req_data.block_ids,
397
+ num_computed_tokens=new_req_data.num_computed_tokens,
398
+ output_token_ids=[],
399
+ lora_request=new_req_data.lora_request,
400
+ )
401
+
402
+ req_ids_to_add.append(req_id)
403
+
404
+ # Update the states of the running/resumed requests.
405
+ req_data = scheduler_output.scheduled_cached_reqs
406
+ for i, req_id in enumerate(req_data.req_ids):
407
+ req_state = self.requests[req_id]
408
+ num_computed_tokens = req_data.num_computed_tokens[i]
409
+ new_block_ids = req_data.new_block_ids[i]
410
+ resumed_from_preemption = req_data.resumed_from_preemption[i]
411
+
412
+ # Update the cached states.
413
+ req_state.num_computed_tokens = num_computed_tokens
414
+ if not resumed_from_preemption:
415
+ if new_block_ids is not None:
416
+ # Append the new blocks to the existing block IDs.
417
+ for block_ids, new_ids in zip(req_state.block_ids,
418
+ new_block_ids):
419
+ block_ids.extend(new_ids)
420
+ else:
421
+ assert new_block_ids is not None
422
+ # The request is resumed from preemption.
423
+ # Replace the existing block IDs with the new ones.
424
+ req_state.block_ids = new_block_ids
425
+
426
+ req_index = self.input_batch.req_id_to_index.get(req_id)
427
+ if req_index is None:
428
+ # The request is not in the persistent batch.
429
+ # The request was either preempted and resumed later, or was not
430
+ # scheduled in the previous step and needs to be added again.
431
+ req_ids_to_add.append(req_id)
432
+ continue
433
+
434
+ # Update the persistent batch.
435
+ self.input_batch.num_computed_tokens_cpu[req_index] = (
436
+ num_computed_tokens)
437
+ if new_block_ids is not None:
438
+ self.input_batch.block_table.append_row(
439
+ new_block_ids, req_index)
440
+
441
+ # Add the new or resumed requests to the persistent batch.
442
+ # The smaller empty indices are filled first.
443
+ removed_req_indices = sorted(removed_req_indices, reverse=True)
444
+ for req_id in req_ids_to_add:
445
+ req_state = self.requests[req_id]
446
+ if removed_req_indices:
447
+ # Fill the empty index.
448
+ req_index = removed_req_indices.pop()
449
+ else:
450
+ # Append to the end.
451
+ req_index = None
452
+ self.input_batch.add_request(req_state, req_index)
453
+
454
+ # Condense the batched states if there are empty indices.
455
+ if removed_req_indices:
456
+ self.input_batch.condense(removed_req_indices)
457
+
458
+ return len(unscheduled_req_ids) > 0 or len(req_ids_to_add) > 0
459
+
460
+ def get_model(self) -> nn.Module:
461
+ return self.model
462
+
463
+ def get_supported_generation_tasks(self) -> list[GenerationTask]:
464
+ model = self.get_model()
465
+ supported_tasks = list[GenerationTask]()
466
+
467
+ if is_text_generation_model(model):
468
+ supported_tasks.append("generate")
469
+
470
+ if supports_transcription(model):
471
+ if model.supports_transcription_only:
472
+ return ["transcription"]
473
+
474
+ supported_tasks.append("transcription")
475
+
476
+ return supported_tasks
477
+
478
+ def get_supported_pooling_tasks(self) -> list[PoolingTask]:
479
+ model = self.get_model()
480
+ if not is_pooling_model(model):
481
+ return []
482
+
483
+ return list(model.pooler.get_supported_tasks())
484
+
485
+ def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
486
+ tasks = list[SupportedTask]()
487
+
488
+ if self.model_config.runner_type == "generate":
489
+ tasks.extend(self.get_supported_generation_tasks())
490
+ if self.model_config.runner_type == "pooling":
491
+ tasks.extend(self.get_supported_pooling_tasks())
492
+
493
+ return tuple(tasks)
494
+
495
+ def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
496
+ """
497
+ Generates the KVCacheSpec by parsing the kv cache format from each
498
+ Attention module in the static forward context.
499
+ Returns:
500
+ KVCacheSpec: A dictionary mapping layer names to their KV cache
501
+ format. Layers that do not need KV cache are not included.
502
+ """
503
+
504
+ layers = get_layers_from_vllm_config(self.vllm_config, Attention)
505
+ block_size = self.vllm_config.cache_config.block_size
506
+ kv_cache_spec: dict[str, KVCacheSpec] = {}
507
+ for layer_name, attn_module in layers.items():
508
+ if (kv_tgt_layer :=
509
+ attn_module.kv_sharing_target_layer_name) is not None:
510
+ # The layer doesn't need its own KV cache and will use that of
511
+ # the target layer. We skip creating a KVCacheSpec for it, so
512
+ # that KV cache management logic will act as this layer does
513
+ # not exist, and doesn't allocate KV cache for the layer. This
514
+ # enables the memory saving of cross-layer kv sharing, allowing
515
+ # a given amount of memory to accommodate longer context lengths
516
+ # or enable more requests to be processed simultaneously.
517
+ self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
518
+ continue
519
+
520
+ if attn_module.attn_type == AttentionType.DECODER:
521
+ if isinstance(attn_module, ChunkedLocalAttention):
522
+ logger.warning_once(
523
+ "Using irope in Pallas is not supported yet, it "
524
+ "will fall back to global attention for long context.")
525
+ if attn_module.sliding_window is not None:
526
+ kv_cache_spec[layer_name] = SlidingWindowSpec(
527
+ block_size=block_size,
528
+ num_kv_heads=attn_module.num_kv_heads,
529
+ head_size=attn_module.head_size,
530
+ dtype=self.kv_cache_dtype,
531
+ sliding_window=attn_module.sliding_window,
532
+ use_mla=False,
533
+ )
534
+ else:
535
+ kv_cache_spec[layer_name] = FullAttentionSpec(
536
+ block_size=block_size,
537
+ num_kv_heads=attn_module.num_kv_heads,
538
+ head_size=attn_module.head_size,
539
+ dtype=self.kv_cache_dtype,
540
+ use_mla=False,
541
+ )
542
+ elif attn_module.attn_type in (AttentionType.ENCODER,
543
+ AttentionType.ENCODER_ONLY):
544
+ # encoder-only attention does not need KV cache.
545
+ continue
546
+ elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
547
+ raise NotImplementedError
548
+ else:
549
+ raise ValueError(
550
+ f"Unknown attention type: {attn_module.attn_type}")
551
+
552
+ return kv_cache_spec
553
+
554
+ def _get_slot_mapping_metadata(self, num_reqs,
555
+ num_scheduled_tokens_per_req) -> np.ndarray:
556
+ """
557
+ Computes metadata for mapping slots to blocks in the key-value (KV)
558
+ cache for a batch of requests.
559
+
560
+ This function determines, for each request in the batch, how the
561
+ scheduled tokens are distributed across memory blocks, and generates
562
+ metadata needed to map slices of tokens to their corresponding positions
563
+ in the KV cache.
564
+
565
+ Args:
566
+ num_reqs (int): Number of requests in the current batch.
567
+ num_scheduled_tokens_per_req (int or np.ndarray): Number of tokens
568
+ to be scheduled for each request.
569
+
570
+ Returns:
571
+ np.ndarray: A 2D array of shape (total_block_len, 3), where each row
572
+ contains:
573
+ - kv_cache_start_index (int): The starting index in the KV cache
574
+ for the corresponding slice.
575
+ - new_kv_start_index (int): The starting index in the new KV
576
+ cache for the corresponding slice.
577
+ - slice_len (int): The length of the slice.
578
+ """
579
+ slices_start = self.input_batch.num_computed_tokens_cpu[:num_reqs]
580
+ slices_end = self.input_batch.num_computed_tokens_cpu[:num_reqs] + \
581
+ num_scheduled_tokens_per_req
582
+ local_block_start_idx = slices_start // self.block_size
583
+ local_block_end_idx = (slices_end - 1) // self.block_size
584
+ no_repeat_req_indices = self.arange_np[:num_reqs]
585
+ global_block_start_idx = (
586
+ no_repeat_req_indices * self.max_num_blocks_per_req +
587
+ local_block_start_idx)
588
+ block_lens = local_block_end_idx - local_block_start_idx + 1
589
+ global_block_start_idx = np.repeat(global_block_start_idx, block_lens)
590
+ slice_arange = np.concatenate([self.arange_np[:n] for n in block_lens])
591
+ global_block_indices = global_block_start_idx + slice_arange
592
+ block_table_cpu = self.input_batch.block_table[0].get_cpu_tensor()
593
+ block_numbers = block_table_cpu.flatten()[global_block_indices].numpy()
594
+ total_block_len = np.sum(block_lens)
595
+ slot_mapping_slices = np.repeat(np.array([[0, self.block_size]],
596
+ dtype=np.int32),
597
+ total_block_len,
598
+ axis=0)
599
+ cu_block_lens = np.zeros(len(block_lens) + 1, dtype=np.int32)
600
+ np.cumsum(block_lens, out=cu_block_lens[1:])
601
+ for req_idx in range(num_reqs):
602
+ slot_mapping_slices[cu_block_lens[req_idx]][
603
+ 0] = slices_start[req_idx] % self.block_size
604
+ slot_mapping_slices[
605
+ cu_block_lens[req_idx + 1] -
606
+ 1][1] = (slices_end[req_idx] - 1) % self.block_size + 1
607
+ slice_lens = slot_mapping_slices[:, 1] - slot_mapping_slices[:, 0]
608
+ cu_slices_lens = np.zeros(len(slice_lens) + 1, dtype=np.int32)
609
+ np.cumsum(slice_lens, out=cu_slices_lens[1:])
610
+ kv_cache_start_indices = slot_mapping_slices[:, 0] + \
611
+ (block_numbers * self.block_size)
612
+ new_kv_start_indices = cu_slices_lens[:-1]
613
+ slot_mapping_metadata = np.stack(
614
+ [kv_cache_start_indices, new_kv_start_indices, slice_lens], axis=1)
615
+ return slot_mapping_metadata
616
+
617
+ def _prepare_inputs(self, scheduler_output: "SchedulerOutput",
618
+ start_index: int):
619
+ assert scheduler_output.total_num_scheduled_tokens > 0
620
+ num_reqs = self.input_batch.num_reqs
621
+ assert num_reqs > 0
622
+ assert start_index < num_reqs
623
+
624
+ # Get the number of scheduled tokens for each request.
625
+ use_max_model_len = self.most_model_len is None
626
+ num_scheduled_tokens_per_req = []
627
+ max_num_scheduled_tokens_all_reqs = 0
628
+ end_index = start_index
629
+
630
+ # Use either most_model_len or max_model_len depending on request size.
631
+ for i in range(start_index, num_reqs):
632
+ req_id = self.input_batch.req_ids[i]
633
+ assert req_id is not None
634
+ num_tokens = scheduler_output.num_scheduled_tokens[req_id]
635
+ if not use_max_model_len and num_tokens > self.most_model_len:
636
+ use_max_model_len = True
637
+ num_scheduled_tokens_per_req.append(num_tokens)
638
+ if use_max_model_len:
639
+ if len(num_scheduled_tokens_per_req) > self.num_reqs_max_model_len:
640
+ num_scheduled_tokens_per_req = \
641
+ num_scheduled_tokens_per_req[:self.num_reqs_max_model_len]
642
+ end_index = start_index + self.num_reqs_max_model_len
643
+ else:
644
+ end_index = num_reqs
645
+ else:
646
+ if len(num_scheduled_tokens_per_req
647
+ ) > self.num_reqs_most_model_len:
648
+ num_scheduled_tokens_per_req = \
649
+ num_scheduled_tokens_per_req[:self.num_reqs_most_model_len]
650
+ end_index = start_index + self.num_reqs_most_model_len
651
+ else:
652
+ end_index = num_reqs
653
+ max_num_scheduled_tokens_all_reqs = max(num_scheduled_tokens_per_req)
654
+ num_scheduled_tokens_per_req = np.array(num_scheduled_tokens_per_req,
655
+ dtype=np.int32)
656
+ total_num_scheduled_tokens = sum(num_scheduled_tokens_per_req)
657
+ assert max_num_scheduled_tokens_all_reqs > 0
658
+
659
+ num_reqs = len(num_scheduled_tokens_per_req)
660
+
661
+ # Get request indices.
662
+ # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
663
+ # For each scheduled token, what are the corresponding req index.
664
+ req_indices = np.repeat(self.arange_np[:num_reqs],
665
+ num_scheduled_tokens_per_req)
666
+
667
+ # Get batched arange.
668
+ # E.g., [2, 5, 3] -> [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
669
+ # For each scheduled token, what is its position in corresponding req.
670
+ arange = np.concatenate(
671
+ [self.arange_np[:n] for n in num_scheduled_tokens_per_req])
672
+
673
+ # Get positions.
674
+ positions_np = self.positions_np[:total_num_scheduled_tokens]
675
+ np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
676
+ arange,
677
+ out=positions_np)
678
+
679
+ # Get token indices.
680
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
681
+ # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
682
+ # where M is the max_model_len.
683
+ token_indices = (positions_np +
684
+ req_indices * self.input_batch.token_ids_cpu.shape[1])
685
+
686
+ # NOTE(woosuk): We use torch.index_select instead of np.take here
687
+ # because torch.index_select is much faster than np.take for large
688
+ # tensors.
689
+ torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
690
+ 0,
691
+ torch.from_numpy(token_indices),
692
+ out=self.input_ids_cpu[:total_num_scheduled_tokens])
693
+
694
+ # Prepare the attention metadata.
695
+ self.query_start_loc_np[0] = 0
696
+ np.cumsum(num_scheduled_tokens_per_req,
697
+ out=self.query_start_loc_np[1:num_reqs + 1])
698
+ self.query_start_loc_np[num_reqs + 1:] = 1
699
+
700
+ self.seq_lens_np[:num_reqs] = (
701
+ self.input_batch.num_computed_tokens_cpu[:num_reqs] +
702
+ num_scheduled_tokens_per_req)
703
+
704
+ # Do the padding and copy the tensors to the TPU.
705
+ padded_total_num_scheduled_tokens = _get_padded_token_len(
706
+ self.num_tokens_paddings, total_num_scheduled_tokens)
707
+ # Zero out to avoid spurious values from prev iteration (last cp chunk)
708
+ self.input_ids_cpu[
709
+ total_num_scheduled_tokens:padded_total_num_scheduled_tokens] = 0
710
+ self.input_ids = self.input_ids_cpu[:
711
+ padded_total_num_scheduled_tokens].to(
712
+ self.device)
713
+ self.position_ids = self.positions_cpu[:
714
+ padded_total_num_scheduled_tokens].to(
715
+ self.device)
716
+ if use_max_model_len:
717
+ block_tables = self.block_table_cpu[:self.num_reqs_max_model_len, :
718
+ self.max_num_blocks_per_req]
719
+ block_tables[:num_reqs, :self.max_num_blocks_per_req] = (
720
+ self.input_batch.block_table[0].get_cpu_tensor()[:num_reqs])
721
+ query_start_loc = self.query_start_loc_cpu[:self.
722
+ num_reqs_max_model_len +
723
+ 1].to(self.device)
724
+ seq_lens = self.seq_lens_cpu[:self.num_reqs_max_model_len].to(
725
+ self.device)
726
+ else:
727
+ block_tables = self.block_table_cpu[:self.
728
+ num_reqs_most_model_len, :self.
729
+ num_blocks_per_most_len_req]
730
+ block_tables[:num_reqs, :self.num_blocks_per_most_len_req] = (
731
+ self.input_batch.block_table[0].get_cpu_tensor()
732
+ [:num_reqs, :self.num_blocks_per_most_len_req])
733
+ query_start_loc = self.query_start_loc_cpu[:self.
734
+ num_reqs_most_model_len +
735
+ 1].to(self.device)
736
+ seq_lens = self.seq_lens_cpu[:self.num_reqs_most_model_len].to(
737
+ self.device)
738
+ block_tables = block_tables.to(self.device)
739
+
740
+ # Calculate the slot mapping
741
+ slot_mapping_metadata = self._get_slot_mapping_metadata(
742
+ num_reqs, num_scheduled_tokens_per_req)
743
+ num_kv_update_slices = slot_mapping_metadata.shape[0]
744
+ padded_num_slices = _get_padded_num_kv_cache_update_slices(
745
+ padded_total_num_scheduled_tokens, self.max_num_reqs,
746
+ self.block_size)
747
+ slot_mapping_metadata = np.pad(
748
+ slot_mapping_metadata,
749
+ [[0, padded_num_slices - len(slot_mapping_metadata)], [0, 0]],
750
+ constant_values=0)
751
+ slot_mapping_metadata = np.transpose(slot_mapping_metadata)
752
+ slot_mapping_metadata = torch.tensor(slot_mapping_metadata,
753
+ device=self.device)
754
+
755
+ if self.lora_config is not None:
756
+ # We need to respect padding when activating LoRA adapters
757
+ padded_num_scheduled_tokens_per_req = np.copy(
758
+ num_scheduled_tokens_per_req
759
+ ) # Copying to avoid accidental state corruption bugs
760
+ padded_num_scheduled_tokens_per_req[-1] += \
761
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
762
+
763
+ self.set_active_loras(self.input_batch,
764
+ padded_num_scheduled_tokens_per_req)
765
+
766
+ attn_metadata = PallasMetadata(
767
+ slot_mapping=slot_mapping_metadata,
768
+ block_tables=block_tables,
769
+ context_lens=seq_lens,
770
+ query_start_loc=query_start_loc,
771
+ num_seqs=torch.tensor([num_reqs],
772
+ dtype=torch.int32,
773
+ device=self.device),
774
+ num_kv_update_slices=torch.tensor([num_kv_update_slices],
775
+ dtype=torch.int32,
776
+ device=self.device),
777
+ num_slices_per_kv_cache_update_block=self.
778
+ _num_slices_per_kv_cache_update_block,
779
+ )
780
+ # NOTE(woosuk): Due to chunked prefills, there can be at most 1 partial
781
+ # request in the batch. While we should not sample any token from this
782
+ # partial request, we do so for simplicity. We will ignore the sampled
783
+ # token from the partial request.
784
+ # TODO: Support prompt logprobs.
785
+ padded_num_reqs = _get_padded_num_reqs_with_upper_limit(
786
+ num_reqs, self.max_num_reqs)
787
+ # Indices at which we sample (positions of last token in the sequence).
788
+ # Padded to avoid recompiling when `num_reqs` varies.
789
+ logits_indices = self.query_start_loc_cpu[1:padded_num_reqs + 1] - 1
790
+ logits_indices = logits_indices.to(self.device)
791
+
792
+ if self.lora_config is not None:
793
+ # We need to respect padding when activating LoRA adapters
794
+ padded_num_scheduled_tokens_per_req = np.copy(
795
+ num_scheduled_tokens_per_req
796
+ ) # Copying to avoid accidental state corruption bugs
797
+ padded_num_scheduled_tokens_per_req[-1] += \
798
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
799
+
800
+ self.set_active_loras(self.input_batch,
801
+ padded_num_scheduled_tokens_per_req)
802
+
803
+ layer_names = get_layers_from_vllm_config(self.vllm_config,
804
+ Attention).keys()
805
+ per_layer_attn_metadata = {
806
+ layer_name: attn_metadata
807
+ for layer_name in layer_names
808
+ }
809
+ return per_layer_attn_metadata, logits_indices, padded_num_reqs,\
810
+ num_reqs, end_index
811
+
812
+ def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
813
+ scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
814
+ if not scheduled_encoder_inputs:
815
+ return
816
+
817
+ # Batch the multi-modal inputs.
818
+ mm_kwargs = list[MultiModalKwargsItem]()
819
+ # List of tuple (mm_hash, pos_info)
820
+ mm_hashes_pos = list[tuple[str, PlaceholderRange]]()
821
+ for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
822
+ req_state = self.requests[req_id]
823
+
824
+ for mm_input_id in encoder_input_ids:
825
+ mm_hash = req_state.mm_hashes[mm_input_id]
826
+ mm_kwargs.append(req_state.mm_kwargs[mm_input_id])
827
+ mm_hashes_pos.append(
828
+ (mm_hash, req_state.mm_positions[mm_input_id]))
829
+
830
+ # Batch mm inputs as much as we can: if a request in the batch has
831
+ # multiple modalities or a different modality than the previous one,
832
+ # we process it separately to preserve item order.
833
+ # FIXME(ywang96): This is a hacky way to deal with multiple modalities
834
+ # in the same batch while still being able to benefit from batching
835
+ # multimodal inputs. The proper solution should be reordering the
836
+ # encoder outputs.
837
+ encoder_outputs = []
838
+ for _, num_items, mm_kwargs_group in group_mm_kwargs_by_modality(
839
+ mm_kwargs,
840
+ device=self.device,
841
+ pin_memory=self.pin_memory,
842
+ ):
843
+ # Run the encoder.
844
+ # `curr_group_outputs` is either of the following:
845
+ # 1. A tensor of shape (num_items, feature_size, hidden_size)
846
+ # in case feature_size is fixed across all multimodal items.
847
+ # 2. A list or tuple (length: num_items) of tensors, each of shape
848
+ # (feature_size, hidden_size) in case the feature size is dynamic
849
+ # depending on the input multimodal items.
850
+ xm.mark_step()
851
+ curr_group_outputs = self.model.get_multimodal_embeddings(
852
+ **mm_kwargs_group)
853
+ xm.mark_step()
854
+
855
+ sanity_check_mm_encoder_outputs(
856
+ curr_group_outputs,
857
+ expected_num_items=num_items,
858
+ )
859
+
860
+ if isinstance(curr_group_outputs, torch.Tensor):
861
+ encoder_outputs.append(curr_group_outputs)
862
+ else:
863
+ assert isinstance(curr_group_outputs, (list, tuple))
864
+ for output in curr_group_outputs:
865
+ encoder_outputs.append(output)
866
+
867
+ # Cache the encoder outputs.
868
+ # NOTE (NickLucche) here we diverge from logic in other runners, as we
869
+ # assume to only have whole mm items to process. Hence we avoid the
870
+ # intrinsic dynamism that `scatter_mm_placeholders` introduces.
871
+ for (mm_hash, pos_info), output in zip(mm_hashes_pos, encoder_outputs):
872
+ assert pos_info.is_embed is None, "Expected all positions to be"\
873
+ " contiguous and embeddings."
874
+ self.encoder_cache[mm_hash] = output
875
+
876
+ def _gather_mm_embeddings(
877
+ self,
878
+ scheduler_output: "SchedulerOutput",
879
+ ) -> list[torch.Tensor]:
880
+ mm_embeds: list[torch.Tensor] = []
881
+ for req_id in self.input_batch.req_ids:
882
+ num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
883
+ req_id]
884
+ req_state = self.requests[req_id]
885
+ num_computed_tokens = req_state.num_computed_tokens
886
+ mm_positions = req_state.mm_positions
887
+ mm_hashes = req_state.mm_hashes
888
+ # TODO unroll loop and assume/enforce --disable_chunked_mm_input
889
+ # NOTE (NickLucche) here we diverge from logic in other runners, as
890
+ # we assume to only have whole mm items to process. Hence we avoid
891
+ # the intrinsic dynamism that `gather_mm_placeholders` introduces.
892
+ for i, pos_info in enumerate(mm_positions):
893
+ start_pos = pos_info.offset
894
+ num_encoder_tokens = pos_info.length
895
+
896
+ # The encoder output is needed if the two ranges overlap:
897
+ # [num_computed_tokens,
898
+ # num_computed_tokens + num_scheduled_tokens) and
899
+ # [start_pos, start_pos + num_encoder_tokens)
900
+ if start_pos >= num_computed_tokens + num_scheduled_tokens:
901
+ # The encoder output is not needed in this step.
902
+ break
903
+ if start_pos + num_encoder_tokens <= num_computed_tokens:
904
+ # The encoder output is already processed and stored
905
+ # in the decoder's KV cache.
906
+ continue
907
+
908
+ mm_hash = mm_hashes[i]
909
+ encoder_output = self.encoder_cache.get(mm_hash, None)
910
+ assert encoder_output is not None,\
911
+ f"Encoder cache miss for {mm_hash}."
912
+ assert pos_info.is_embed is None, "Expected all positions to"\
913
+ " be contiguous and embeddings."
914
+ encoder_output = self.encoder_cache[mm_hash]
915
+ mm_embeds.append(encoder_output)
916
+ return mm_embeds
917
+
918
+ def _get_model_inputs(self, input_ids: torch.Tensor,
919
+ mm_embeds: list[torch.Tensor]):
920
+ if self.supports_mm_inputs:
921
+ # NOTE(woosuk): To unify token ids and soft tokens (vision
922
+ # embeddings), we always use embeddings (rather than token ids)
923
+ # as input to the multimodal model, even when the input is text.
924
+ inputs_embeds = self.model.get_input_embeddings(
925
+ input_ids=input_ids,
926
+ multimodal_embeddings=mm_embeds,
927
+ )
928
+ return None, inputs_embeds
929
+ else:
930
+ # For text-only models, we use token ids as input.
931
+ # While it is possible to use embeddings as input just like the
932
+ # multimodal models, it is not desirable for performance since
933
+ # then the embedding layer is not included in the CUDA graph.
934
+ return input_ids, None
935
+
936
+ @torch.no_grad()
937
+ def execute_model(
938
+ self,
939
+ scheduler_output: "SchedulerOutput",
940
+ intermediate_tensors: Optional[IntermediateTensors] = None,
941
+ ) -> ModelRunnerOutput:
942
+ # Update cached state
943
+ self._update_states(scheduler_output)
944
+ if not scheduler_output.total_num_scheduled_tokens:
945
+ if not has_kv_transfer_group():
946
+ # Return empty ModelRunnerOutput if there's no work to do.
947
+ return EMPTY_MODEL_RUNNER_OUTPUT
948
+
949
+ return self.kv_connector_no_forward(scheduler_output,
950
+ self.vllm_config)
951
+
952
+ if self.supports_mm_inputs:
953
+ # Run the multimodal encoder if any.
954
+ self._execute_mm_encoder(scheduler_output)
955
+ mm_embeds = self._gather_mm_embeddings(scheduler_output)
956
+ else:
957
+ mm_embeds = []
958
+ xm.mark_step()
959
+ # Prepare inputs, the requests might be split into multiple
960
+ # executions, combine the result of each execution.
961
+ start_index = 0
962
+ combined_selected_tokens: list[torch.Tensor] = []
963
+ combined_logprobs: list[LogprobsLists] = []
964
+
965
+ # NOTE: setup current batch's metadata for kv connector.
966
+ # Currently, only verified with NixlConnector
967
+ with set_forward_context(None, self.vllm_config):
968
+ self.maybe_setup_kv_connector(scheduler_output)
969
+
970
+ while start_index < self.input_batch.num_reqs:
971
+ attn_metadata, logits_indices, padded_num_reqs, num_reqs,\
972
+ end_index = self._prepare_inputs(scheduler_output, start_index)
973
+ input_ids, inputs_embeds = self._get_model_inputs(
974
+ self.input_ids, mm_embeds)
975
+ xm.mark_step()
976
+ # Run the decoder
977
+ with set_forward_context(
978
+ attn_metadata,
979
+ self.vllm_config,
980
+ num_tokens=scheduler_output.total_num_scheduled_tokens):
981
+ hidden_states = self.model(
982
+ input_ids=input_ids,
983
+ positions=self.position_ids,
984
+ inputs_embeds=inputs_embeds,
985
+ )
986
+ hidden_states = self.select_hidden_states(hidden_states,
987
+ logits_indices)
988
+ logits = self.compute_logits(hidden_states)
989
+ tpu_sampling_metadata = TPUSupportedSamplingMetadata.\
990
+ from_input_batch(self.input_batch, padded_num_reqs, self.device)
991
+ if scheduler_output.grammar_bitmask is not None:
992
+ require_struct_decoding, grammar_bitmask_padded, arange = \
993
+ self.prepare_structured_decoding_input(logits,
994
+ scheduler_output)
995
+ logits = self.structured_decode(require_struct_decoding,
996
+ grammar_bitmask_padded, logits,
997
+ arange)
998
+ selected_token_ids = self.sample_from_logits_func(
999
+ logits, tpu_sampling_metadata)
1000
+ # NOTE (NickLucche) Use the original logits (before any penalties or
1001
+ # temperature scaling) for the top-k logprobs. We can't enforce it
1002
+ # due to recompilations outside torch.compiled code, so just make
1003
+ # sure `sample_from_logits` does not modify the logits in-place.
1004
+ logprobs = self.gather_logprobs(logits, selected_token_ids) \
1005
+ if tpu_sampling_metadata.logprobs else None
1006
+
1007
+ # Remove padding on cpu and keep dynamic op outside of xla graph.
1008
+ selected_token_ids = selected_token_ids.cpu()[:num_reqs]
1009
+
1010
+ combined_selected_tokens.append(selected_token_ids)
1011
+ if tpu_sampling_metadata.logprobs:
1012
+ combined_logprobs.append(logprobs.tolists())
1013
+
1014
+ start_index = end_index
1015
+
1016
+ # NOTE: current kv load and save get h2d/d2h copies involved.
1017
+ # Those copies are blocking. Once they become async., kv_save
1018
+ # should be called right after each single forward pass,
1019
+ # instead of the forwards of the entire input batch.
1020
+ self.maybe_wait_for_kv_save()
1021
+ finished_sending, finished_recving = (
1022
+ self.get_finished_kv_transfers(scheduler_output))
1023
+
1024
+ selected_token_ids = torch.cat(combined_selected_tokens, dim=0)
1025
+ if tpu_sampling_metadata.logprobs:
1026
+
1027
+ def concat_lists(input_lists):
1028
+ result = []
1029
+ for input_list in input_lists:
1030
+ result.extend(input_list)
1031
+ return result
1032
+
1033
+ logprobs_lists = LogprobsLists(logprob_token_ids=concat_lists(
1034
+ [lp.logprob_token_ids for lp in combined_logprobs]),
1035
+ logprobs=concat_lists([
1036
+ lp.logprobs
1037
+ for lp in combined_logprobs
1038
+ ]),
1039
+ sampled_token_ranks=concat_lists([
1040
+ lp.sampled_token_ranks
1041
+ for lp in combined_logprobs
1042
+ ]))
1043
+ else:
1044
+ logprobs_lists = None
1045
+
1046
+ # Update the cache state concurrently. Code above will not block until
1047
+ # we use `selected_token_ids`. Add mark_step if post-processing changes
1048
+ request_seq_lens: list[tuple[int, CachedRequestState, int]] = []
1049
+ discard_sampled_tokens_req_indices = []
1050
+ num_reqs = self.input_batch.num_reqs
1051
+ for i, req_id in zip(range(num_reqs), self.input_batch.req_ids):
1052
+ assert req_id is not None
1053
+ req_state = self.requests[req_id]
1054
+ seq_len = (req_state.num_computed_tokens +
1055
+ scheduler_output.num_scheduled_tokens[req_id])
1056
+ if seq_len >= req_state.num_tokens:
1057
+ request_seq_lens.append((i, req_state, seq_len))
1058
+ else:
1059
+ # Ignore the sampled token from the partial request.
1060
+ # Rewind the generator state as if the token was not sampled.
1061
+ generator = self.input_batch.generators.get(i)
1062
+ if generator is not None:
1063
+ # This relies on cuda-specific torch-internal impl details
1064
+ generator.set_offset(generator.get_offset() - 4)
1065
+
1066
+ # Record the index of the request that should not be sampled,
1067
+ # so that we could clear the sampled tokens before returning.
1068
+ discard_sampled_tokens_req_indices.append(i)
1069
+
1070
+ assert all(
1071
+ req_id is not None for req_id in
1072
+ self.input_batch.req_ids[:num_reqs]), "req_ids contains None"
1073
+ req_ids = cast(list[str], self.input_batch.req_ids[:num_reqs])
1074
+
1075
+ prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}
1076
+ for req_id in self.input_batch.req_ids[:num_reqs]:
1077
+ prompt_logprobs_dict[req_id] = None
1078
+
1079
+ max_gen_len = selected_token_ids.shape[-1]
1080
+ if max_gen_len == 1:
1081
+ valid_sampled_token_ids = selected_token_ids.tolist()
1082
+
1083
+ # Mask out the sampled tokens that should not be sampled.
1084
+ # TODO: Keep in sync with gpu_model_runner.py, in particular
1085
+ # the "else" case here
1086
+ for i in discard_sampled_tokens_req_indices:
1087
+ valid_sampled_token_ids[i].clear()
1088
+
1089
+ # Append sampled tokens
1090
+ for i, req_state, seq_len in request_seq_lens:
1091
+ token_id = valid_sampled_token_ids[i][0]
1092
+ self.input_batch.token_ids_cpu[i, seq_len] = token_id
1093
+ req_state.output_token_ids.append(token_id)
1094
+ self.input_batch.num_tokens[i] += 1
1095
+
1096
+ else:
1097
+ valid_mask = selected_token_ids != INVALID_TOKEN_ID
1098
+ gen_lens = valid_mask.sum(dim=1).tolist()
1099
+ valid_sampled_token_ids = [
1100
+ seq.tolist()
1101
+ for seq in selected_token_ids[valid_mask].split(gen_lens)
1102
+ ]
1103
+ self.input_batch.num_tokens[:num_reqs] += gen_lens
1104
+ for i, req_state, seq_len in request_seq_lens:
1105
+ target_slice = slice(seq_len - gen_lens[i] + 1, seq_len + 1)
1106
+ self.input_batch.token_ids_cpu[
1107
+ i, target_slice] = valid_sampled_token_ids[i]
1108
+ req_state.output_token_ids.extend(valid_sampled_token_ids[i])
1109
+
1110
+ kv_connector_output = None if (
1111
+ finished_sending is None
1112
+ and finished_recving is None) else KVConnectorOutput(
1113
+ finished_sending=finished_sending,
1114
+ finished_recving=finished_recving,
1115
+ )
1116
+
1117
+ model_runner_output = ModelRunnerOutput(
1118
+ req_ids=req_ids,
1119
+ req_id_to_index=self.input_batch.req_id_to_index,
1120
+ sampled_token_ids=valid_sampled_token_ids,
1121
+ logprobs=logprobs_lists,
1122
+ prompt_logprobs_dict=prompt_logprobs_dict,
1123
+ pooler_output=[],
1124
+ kv_connector_output=kv_connector_output,
1125
+ )
1126
+
1127
+ # Check there are no new graphs compiled - all the graphs should be
1128
+ # captured and compiled during warm up.
1129
+ self._verify_num_xla_graphs("execute_model")
1130
+
1131
+ return model_runner_output
1132
+
1133
+ def update_config(self, overrides: dict[str, Any]) -> None:
1134
+ # TODO: TPU config may need extra validation
1135
+ # https://github.com/vllm-project/vllm/pull/20095#discussion_r2201497754
1136
+ allowed_config_names = {"load_config", "model_config"}
1137
+ for config_name, config_overrides in overrides.items():
1138
+ assert config_name in allowed_config_names, \
1139
+ f"Config `{config_name}` not supported. " \
1140
+ f"Allowed configs: {allowed_config_names}"
1141
+ config = getattr(self, config_name)
1142
+ new_config = update_config(config, config_overrides)
1143
+ setattr(self, config_name, new_config)
1144
+
1145
+ def load_model(self) -> None:
1146
+ self.device = self.device_config.device
1147
+
1148
+ # NOTE(woosuk): While the executor assigns the TP ranks to the worker
1149
+ # process, the ranks can be different from the ranks internally assigned
1150
+ # by the xm runtime. Therefore, there is a mismatch in the rank
1151
+ # assignment between the gloo (cpu) runtime and the xm (tpu) runtime.
1152
+ # This is not a problem in linear layers because all-reduce is
1153
+ # rank-agnostic. However, it matters for all-gather as the ranks
1154
+ # determine the order of concatenating the output tensors.
1155
+ # As a workaround, we use the xm's rank assignment only when loading
1156
+ # the embedding weights.
1157
+ xm_tp_rank = xr.global_ordinal()
1158
+ with patch(
1159
+ "vllm.model_executor.layers.vocab_parallel_embedding."
1160
+ "get_tensor_model_parallel_rank",
1161
+ return_value=xm_tp_rank):
1162
+ try:
1163
+ if self.use_spmd:
1164
+ tpu_loader = TPUModelLoader(
1165
+ load_config=self.vllm_config.load_config)
1166
+ model = tpu_loader.load_model(
1167
+ vllm_config=self.vllm_config,
1168
+ model_config=self.vllm_config.model_config,
1169
+ mesh=self.mesh)
1170
+ else:
1171
+ model_loader = get_model_loader(self.load_config)
1172
+ logger.info("Loading model from scratch...")
1173
+ model = model_loader.load_model(
1174
+ vllm_config=self.vllm_config,
1175
+ model_config=self.model_config)
1176
+ except RuntimeError as e:
1177
+ raise RuntimeError(
1178
+ f"Unable to load model, a likely reason is the model is "
1179
+ "too large for the current device's HBM memory. "
1180
+ "Consider switching to a smaller model "
1181
+ "or sharding the weights on more chips. "
1182
+ f"See the detailed error: {e}") from e
1183
+ if self.lora_config is not None:
1184
+ model = self.load_lora_model(model, self.model_config,
1185
+ self.scheduler_config,
1186
+ self.lora_config, self.device)
1187
+ replace_set_lora(model)
1188
+
1189
+ # Sync all pending XLA execution during model initialization and weight
1190
+ # loading.
1191
+ xm.mark_step()
1192
+ xm.wait_device_ops()
1193
+ if not hasattr(self, "model"):
1194
+ self.model = model
1195
+ self.sampler = TPUSampler()
1196
+
1197
+ def reload_weights(self) -> None:
1198
+ assert getattr(self, "model", None) is not None, \
1199
+ "Cannot reload weights before model is loaded."
1200
+ model_loader = get_model_loader(self.load_config)
1201
+ logger.info("Reloading weights inplace...")
1202
+ model_loader.load_weights(self.model, model_config=self.model_config)
1203
+
1204
+ @torch.no_grad()
1205
+ def _dummy_run(self, num_tokens: int, num_reqs: int,
1206
+ num_blocks: int) -> None:
1207
+ if self.supports_mm_inputs:
1208
+ input_ids = None
1209
+ inputs_embeds = torch.zeros((num_tokens, self.hidden_size),
1210
+ dtype=self.dtype,
1211
+ device=self.device)
1212
+ else:
1213
+ input_ids = torch.zeros((num_tokens),
1214
+ dtype=torch.int32).to(self.device)
1215
+ inputs_embeds = None
1216
+ actual_num_reqs = min(num_tokens, num_reqs)
1217
+ position_ids = torch.zeros(num_tokens,
1218
+ dtype=torch.int32).to(self.device)
1219
+ padded_num_slices = _get_padded_num_kv_cache_update_slices(
1220
+ num_tokens, self.max_num_reqs, self.block_size)
1221
+ num_kv_update_slices = torch.tensor([padded_num_slices],
1222
+ dtype=torch.int32).to(self.device)
1223
+ slot_mapping = torch.zeros((3, padded_num_slices),
1224
+ dtype=torch.int32).to(self.device)
1225
+ block_tables = torch.zeros((num_reqs, num_blocks),
1226
+ dtype=torch.int32).to(self.device)
1227
+ query_lens = [1] * num_reqs
1228
+ query_start_loc = torch.cumsum(torch.tensor([0] + query_lens,
1229
+ dtype=torch.int32),
1230
+ dim=0,
1231
+ dtype=torch.int32).to(self.device)
1232
+ context_lens = torch.ones((num_reqs, ),
1233
+ dtype=torch.int32).to(self.device)
1234
+ num_seqs = torch.tensor([actual_num_reqs],
1235
+ dtype=torch.int32).to(self.device)
1236
+ attn_metadata = PallasMetadata(
1237
+ slot_mapping=slot_mapping,
1238
+ block_tables=block_tables,
1239
+ context_lens=context_lens,
1240
+ query_start_loc=query_start_loc,
1241
+ num_seqs=num_seqs,
1242
+ num_kv_update_slices=num_kv_update_slices,
1243
+ num_slices_per_kv_cache_update_block=self.
1244
+ _num_slices_per_kv_cache_update_block,
1245
+ )
1246
+
1247
+ if self.supports_mm_inputs:
1248
+ torch._dynamo.mark_dynamic(inputs_embeds, 0)
1249
+ else:
1250
+ torch._dynamo.mark_dynamic(input_ids, 0)
1251
+ torch._dynamo.mark_dynamic(position_ids, 0)
1252
+ torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
1253
+ torch._dynamo.mark_dynamic(attn_metadata.block_tables, (0, 1))
1254
+ torch._dynamo.mark_dynamic(attn_metadata.context_lens, 0)
1255
+ torch._dynamo.mark_dynamic(attn_metadata.query_start_loc, 0)
1256
+
1257
+ layer_names = get_layers_from_vllm_config(self.vllm_config,
1258
+ Attention).keys()
1259
+ per_layer_attn_metadata = {
1260
+ layer_name: attn_metadata
1261
+ for layer_name in layer_names
1262
+ }
1263
+
1264
+ with self.maybe_select_dummy_loras(
1265
+ self.lora_config,
1266
+ np.array([num_tokens], dtype=np.int32)), set_forward_context(
1267
+ per_layer_attn_metadata, self.vllm_config, 0):
1268
+ out = self.model(input_ids=input_ids,
1269
+ positions=position_ids,
1270
+ inputs_embeds=inputs_embeds)
1271
+ self._hidden_states_dtype = out.dtype
1272
+
1273
+ def _set_active_loras(self, prompt_lora_mapping, token_lora_mapping,
1274
+ lora_requests) -> None:
1275
+ xm.mark_step() # Captures input updates
1276
+ super()._set_active_loras(prompt_lora_mapping, token_lora_mapping,
1277
+ lora_requests)
1278
+ xm.mark_step() # Captures metadata updates
1279
+
1280
+ def _precompile_mm_encoder(self) -> None:
1281
+ if not self.supports_mm_inputs:
1282
+ return
1283
+
1284
+ # Pre-compile MM encoder for all supported data modalities.
1285
+ hf_config = self.vllm_config.model_config.hf_config
1286
+
1287
+ mm_budget = self.mm_budget
1288
+ assert mm_budget is not None
1289
+
1290
+ max_items_per_seq_by_modality = mm_budget.max_items_per_batch_by_modality # noqa: E501
1291
+
1292
+ for mode, max_items_per_seq in max_items_per_seq_by_modality.items():
1293
+ logger.info(
1294
+ "Compiling Multimodal %s Encoder with different input"
1295
+ " shapes.", mode)
1296
+ start = time.perf_counter()
1297
+ # No padding for MM encoder just yet.
1298
+ for num_items in range(1, max_items_per_seq + 1):
1299
+ logger.info(" -- mode: %s items: %d", mode, num_items)
1300
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1301
+ mode,
1302
+ num_items,
1303
+ )
1304
+ # Run multimodal encoder.
1305
+ xm.mark_step()
1306
+ mm_embeds = self.model.get_multimodal_embeddings(
1307
+ **batched_dummy_mm_inputs)
1308
+ xm.mark_step()
1309
+ num_patches = mm_embeds[0].shape[0]
1310
+ items_size = num_patches * num_items
1311
+
1312
+ # NOTE (NickLucche) pre-compile `get_input_embeddings` when mm
1313
+ # embeddings are present. We assume `--disable-mm-chunked`,
1314
+ # hence only whole items can be scheduled. This implies we just
1315
+ # need to compile when `num_items` fit the (padded) `input_ids`
1316
+ for num_tokens in self.num_tokens_paddings:
1317
+ if num_tokens >= items_size:
1318
+ # XLA Workaround: if torch.zeros(..device) is used, XLA
1319
+ # compiles a scalar+expansion op, which won't match
1320
+ # the graph generated at runtime. CPU->TPU must be used
1321
+ placeholders_ids = torch.zeros(num_tokens,
1322
+ dtype=torch.int32,
1323
+ device="cpu")
1324
+ # Align placeholders and actual num mm_embeddings.
1325
+ placeholders_ids[:items_size] = \
1326
+ hf_config.image_token_index
1327
+
1328
+ placeholders_ids = placeholders_ids.to(self.device)
1329
+ # Assign outputs or the graph will be cut short.
1330
+ a, b = self._get_model_inputs(placeholders_ids,
1331
+ [mm_embeds])
1332
+ assert a is None
1333
+ xm.mark_step()
1334
+
1335
+ # Pre-compile `get_input_embeddings` when mm_embeddings are not
1336
+ # present. Chunk is only made of text, no mm_placeholders.
1337
+ for num_tokens in self.num_tokens_paddings:
1338
+ placeholders_ids = torch.zeros(num_tokens,
1339
+ dtype=torch.int32,
1340
+ device="cpu")
1341
+ placeholders_ids = placeholders_ids.to(self.device)
1342
+ a, b = self._get_model_inputs(placeholders_ids, [])
1343
+ assert a is None
1344
+ xm.mark_step()
1345
+
1346
+ xm.wait_device_ops()
1347
+ end = time.perf_counter()
1348
+ logger.info(
1349
+ "Multimodal %s Encoder compilation finished in in %.2f "
1350
+ "[secs].", mode, end - start)
1351
+
1352
+ def _precompile_backbone(self) -> None:
1353
+ logger.info("Compiling the model with different input shapes.")
1354
+ start = time.perf_counter()
1355
+ for num_tokens in self.num_tokens_paddings:
1356
+ logger.info(" -- num_tokens: %d", num_tokens)
1357
+ self._dummy_run(num_tokens, self.num_reqs_max_model_len,
1358
+ self.max_num_blocks_per_req)
1359
+ if self.most_model_len is not None:
1360
+ self._dummy_run(num_tokens, self.num_reqs_most_model_len,
1361
+ self.num_blocks_per_most_len_req)
1362
+ xm.wait_device_ops()
1363
+ end = time.perf_counter()
1364
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1365
+ self._update_num_xla_graphs("model backbone")
1366
+
1367
+ def _precompile_select_hidden_states(self) -> None:
1368
+ # Compile hidden state selection function for bucketed
1369
+ # n_tokens x max_num_reqs. Graph is really small so this is fine.
1370
+ logger.info(
1371
+ "Compiling select_hidden_states with different input shapes.")
1372
+ start = time.perf_counter()
1373
+ hsize = self.model_config.get_hidden_size()
1374
+ for num_tokens in self.num_tokens_paddings:
1375
+ dummy_hidden = torch.zeros((num_tokens, hsize),
1376
+ device=self.device,
1377
+ dtype=self._hidden_states_dtype)
1378
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1379
+ for num_reqs in self.num_reqs_paddings:
1380
+ indices = torch.zeros(num_reqs,
1381
+ dtype=torch.int32,
1382
+ device=self.device)
1383
+ torch._dynamo.mark_dynamic(indices, 0)
1384
+ self.select_hidden_states(dummy_hidden, indices)
1385
+ logger.info(" -- num_tokens: %d, num_seqs: %d", num_tokens,
1386
+ num_reqs)
1387
+ # Requests can't be more than tokens. But do compile for the
1388
+ # next bigger value in case num_tokens uses bucketed padding.
1389
+ if num_reqs >= min(num_tokens, self.max_num_reqs):
1390
+ break
1391
+ xm.wait_device_ops()
1392
+ end = time.perf_counter()
1393
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1394
+ self._update_num_xla_graphs("select_hidden_states")
1395
+
1396
+ def _precompile_compute_logits(self) -> None:
1397
+ logger.info("Compiling compute_logits with different input shapes.")
1398
+ start = time.perf_counter()
1399
+ hsize = self.model_config.get_hidden_size()
1400
+ for num_reqs in self.num_reqs_paddings:
1401
+ dummy_hidden = torch.zeros((num_reqs, hsize),
1402
+ device=self.device,
1403
+ dtype=self._hidden_states_dtype)
1404
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1405
+ self.compute_logits(dummy_hidden)
1406
+ logger.info(" -- num_seqs: %d", num_reqs)
1407
+ xm.wait_device_ops()
1408
+ end = time.perf_counter()
1409
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1410
+ self._update_num_xla_graphs("compute_logits")
1411
+
1412
+ def _precompile_structured_decoding(self) -> None:
1413
+ logger.info(
1414
+ "Compiling structured_decoding with different input shapes.")
1415
+ start = time.perf_counter()
1416
+ for num_reqs in self.num_reqs_paddings:
1417
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1418
+ device=self.device,
1419
+ dtype=self._hidden_states_dtype)
1420
+ dummy_require_struct_decoding = \
1421
+ self.require_structured_out_cpu[:num_reqs].to(self.device)
1422
+ dummy_grammar_bitmask = \
1423
+ self.grammar_bitmask_cpu[:num_reqs].to(self.device)
1424
+ # The first dimension of the above 3 dummy tensors cannot be
1425
+ # mark_dynamic because some operations in structured_decode require
1426
+ # them to be static.
1427
+ arange = self.structured_decode_arange.to(self.device)
1428
+ self.structured_decode(dummy_require_struct_decoding,
1429
+ dummy_grammar_bitmask, dummy_logits, arange)
1430
+ logger.info(" -- num_seqs: %d", num_reqs)
1431
+ xm.wait_device_ops()
1432
+ end = time.perf_counter()
1433
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1434
+ self._update_num_xla_graphs("structured_decoding")
1435
+
1436
+ def _precompile_sample_from_logits(self) -> None:
1437
+ logger.info(
1438
+ "Compiling sample_from_logits with different input shapes.")
1439
+ start = time.perf_counter()
1440
+ for num_reqs in self.num_reqs_paddings:
1441
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1442
+ device=self.device,
1443
+ dtype=self._hidden_states_dtype)
1444
+ # The first dimension of dummy_logits cannot be mark_dynamic
1445
+ # because some operations in the sampler require it to be static.
1446
+ for all_greedy in [False, True]:
1447
+ generate_params_if_all_greedy = not all_greedy
1448
+ sampling_metadata = (
1449
+ TPUSupportedSamplingMetadata.from_input_batch(
1450
+ self.input_batch,
1451
+ num_reqs,
1452
+ self.device,
1453
+ generate_params_if_all_greedy,
1454
+ ))
1455
+ sampling_metadata.all_greedy = all_greedy
1456
+ with self.maybe_select_dummy_loras(
1457
+ self.lora_config, np.array([num_reqs],
1458
+ dtype=np.int32)):
1459
+ self.sample_from_logits_func(dummy_logits,
1460
+ sampling_metadata)
1461
+ logger.info(" -- num_seqs: %d", num_reqs)
1462
+ xm.wait_device_ops()
1463
+ end = time.perf_counter()
1464
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1465
+ self._update_num_xla_graphs("sample_from_logits")
1466
+
1467
+ def _precompile_gather_logprobs(self) -> None:
1468
+ logger.info("Compiling gather_logprobs with different input shapes.")
1469
+ start = time.perf_counter()
1470
+ for num_reqs in self.num_reqs_paddings:
1471
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1472
+ device=self.device,
1473
+ dtype=self._hidden_states_dtype)
1474
+ dummy_tokens = torch.zeros((num_reqs, 1),
1475
+ dtype=torch.int64).to(self.device)
1476
+ with self.maybe_select_dummy_loras(
1477
+ self.lora_config, np.array([num_reqs], dtype=np.int32)):
1478
+ self.gather_logprobs(dummy_logits, dummy_tokens)
1479
+ logger.info(" -- num_seqs: %d", num_reqs)
1480
+ xm.wait_device_ops()
1481
+ end = time.perf_counter()
1482
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1483
+ self._update_num_xla_graphs("gather_logprobs")
1484
+
1485
+ def capture_model(self) -> None:
1486
+ """
1487
+ Precompile all the subgraphs with possible input shapes.
1488
+ """
1489
+ with self.maybe_setup_dummy_loras(self.lora_config):
1490
+ self._precompile_mm_encoder()
1491
+ self._precompile_backbone()
1492
+ self._precompile_select_hidden_states()
1493
+ self._precompile_compute_logits()
1494
+ self._precompile_structured_decoding()
1495
+ self._precompile_sample_from_logits()
1496
+ self._precompile_gather_logprobs()
1497
+
1498
+ def profile_run(
1499
+ self,
1500
+ num_tokens: int,
1501
+ ) -> None:
1502
+ # Profile with multimodal encoder & encoder cache.
1503
+ if self.supports_mm_inputs:
1504
+ if self.model_config.multimodal_config.skip_mm_profiling:
1505
+ logger.info(
1506
+ "Skipping memory profiling for multimodal encoder and "
1507
+ "encoder cache.")
1508
+ else:
1509
+ mm_budget = self.mm_budget
1510
+ assert mm_budget is not None
1511
+
1512
+ # TODO: handle encoder-decoder models once we support them.
1513
+ if (encoder_budget := mm_budget.get_encoder_budget()) > 0:
1514
+ # NOTE: Currently model is profiled with a single non-text
1515
+ # modality with the max possible input tokens even when
1516
+ # it supports multiple.
1517
+ dummy_modality = mm_budget.get_modality_with_max_tokens()
1518
+ max_mm_items_per_batch = mm_budget \
1519
+ .max_items_per_batch_by_modality[dummy_modality]
1520
+
1521
+ logger.info(
1522
+ "Encoder cache will be initialized with a budget of "
1523
+ "%s tokens, and profiled with %s %s items of the "
1524
+ "maximum feature size.",
1525
+ encoder_budget,
1526
+ max_mm_items_per_batch,
1527
+ dummy_modality,
1528
+ )
1529
+
1530
+ # Create dummy batch of multimodal inputs.
1531
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1532
+ dummy_modality,
1533
+ max_mm_items_per_batch,
1534
+ )
1535
+
1536
+ # Run multimodal encoder.
1537
+ # Isolate encoder graph from post-processing to minimize
1538
+ # impact of recompilation until it's fixed.
1539
+ start = time.perf_counter()
1540
+ xm.mark_step()
1541
+ dummy_encoder_outputs = \
1542
+ self.model.get_multimodal_embeddings(
1543
+ **batched_dummy_mm_inputs)
1544
+ xm.mark_step()
1545
+ xm.wait_device_ops()
1546
+ end = time.perf_counter()
1547
+ logger.info(
1548
+ "Multimodal Encoder profiling finished in %.2f [secs].",
1549
+ end - start)
1550
+
1551
+ sanity_check_mm_encoder_outputs(
1552
+ dummy_encoder_outputs,
1553
+ expected_num_items=max_mm_items_per_batch,
1554
+ )
1555
+
1556
+ # Cache the dummy encoder outputs.
1557
+ self.encoder_cache["tmp"] = dict(
1558
+ enumerate(dummy_encoder_outputs))
1559
+
1560
+ # Trigger compilation for general shape.
1561
+ self._dummy_run(num_tokens, self.num_reqs_max_model_len,
1562
+ self.max_num_blocks_per_req)
1563
+ if self.most_model_len is not None:
1564
+ self._dummy_run(num_tokens, self.num_reqs_most_model_len,
1565
+ self.num_blocks_per_most_len_req)
1566
+
1567
+ xm.mark_step()
1568
+ xm.wait_device_ops()
1569
+ self.encoder_cache.clear()
1570
+ gc.collect()
1571
+
1572
+ def maybe_setup_cross_layer_kv_sharing(
1573
+ self,
1574
+ kv_caches: dict[str, torch.Tensor],
1575
+ kv_cache_config: KVCacheConfig,
1576
+ ) -> None:
1577
+ """
1578
+ Add layers that re-use KV cache to KV cache group of its target layer.
1579
+ Mapping of KV cache tensors happens in `initialize_kv_cache_tensors()`
1580
+ """
1581
+ if not self.shared_kv_cache_layers:
1582
+ # No cross-layer KV sharing, return
1583
+ return
1584
+
1585
+ add_kv_sharing_layers_to_kv_cache_groups(
1586
+ self.shared_kv_cache_layers,
1587
+ kv_cache_config.kv_cache_groups,
1588
+ )
1589
+
1590
+ for layer_name, target_layer_name in self.shared_kv_cache_layers.items(
1591
+ ):
1592
+ logger.debug("%s reuses KV cache of %s", layer_name,
1593
+ target_layer_name)
1594
+ kv_caches[layer_name] = kv_caches[target_layer_name]
1595
+
1596
+ def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
1597
+ """
1598
+ Initialize KV cache based on `kv_cache_config`.
1599
+ Args:
1600
+ kv_cache_config: Configuration for the KV cache, including the KV
1601
+ cache size of each layer
1602
+ """
1603
+ if len(kv_cache_config.kv_cache_groups) > 1:
1604
+ raise NotImplementedError(
1605
+ "Hybrid models with more than one KV cache type are not "
1606
+ "supported yet.")
1607
+
1608
+ if kv_cache_config.kv_cache_groups[
1609
+ 0].kv_cache_spec.block_size != self.block_size:
1610
+ self.input_batch = InputBatch(
1611
+ max_num_reqs=self.max_num_reqs,
1612
+ max_model_len=self.max_model_len,
1613
+ max_num_batched_tokens=self.max_num_tokens,
1614
+ device=self.device,
1615
+ pin_memory=self.pin_memory,
1616
+ vocab_size=self.model_config.get_vocab_size(),
1617
+ block_sizes=[
1618
+ kv_cache_config.kv_cache_groups[0].kv_cache_spec.block_size
1619
+ ],
1620
+ )
1621
+ # Verify dtype compatibility between block_table_cpu and input_batch
1622
+ assert self.block_table_cpu.dtype == self.input_batch.block_table[
1623
+ 0].get_cpu_tensor().dtype
1624
+
1625
+ kv_cache_sizes = {}
1626
+ for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
1627
+ assert len(kv_cache_tensor.shared_by) == 1, (
1628
+ "KV cache tensor shared by multiple layers is not supported in "
1629
+ "TPU.")
1630
+ kv_cache_sizes[kv_cache_tensor.shared_by[0]] = kv_cache_tensor.size
1631
+
1632
+ kv_caches: dict[str, torch.Tensor] = {}
1633
+ for kv_cache_group in kv_cache_config.kv_cache_groups:
1634
+ kv_cache_spec = kv_cache_group.kv_cache_spec
1635
+ for layer_name in kv_cache_group.layer_names:
1636
+ tensor_size = kv_cache_sizes[layer_name]
1637
+ assert tensor_size % kv_cache_spec.page_size_bytes == 0
1638
+ num_blocks = tensor_size // kv_cache_spec.page_size_bytes # noqa
1639
+ if isinstance(kv_cache_spec, AttentionSpec):
1640
+ if self.use_spmd:
1641
+ num_kv_heads = kv_cache_spec.num_kv_heads
1642
+ assert self.original_parallel_config is not None
1643
+ tp_size = \
1644
+ self.original_parallel_config.tensor_parallel_size
1645
+ # TODO: Handle kv cache duplication under SPMD mode.
1646
+ assert num_kv_heads % tp_size == 0, (
1647
+ f"num_kv_heads {num_kv_heads} must be divisible by "
1648
+ f"tp_size {tp_size} under SPMD mode")
1649
+ kv_cache_shape = PallasAttentionBackend.get_kv_cache_shape(
1650
+ num_blocks, kv_cache_spec.block_size,
1651
+ kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
1652
+ dtype = kv_cache_spec.dtype
1653
+
1654
+ tpu_kv_cache = torch.zeros(kv_cache_shape,
1655
+ dtype=dtype).to(self.device)
1656
+
1657
+ kv_caches[layer_name] = tpu_kv_cache
1658
+ else:
1659
+ raise NotImplementedError
1660
+
1661
+ # Set up cross-layer KV cache sharing if needed
1662
+ self.maybe_setup_cross_layer_kv_sharing(kv_caches, kv_cache_config)
1663
+
1664
+ bind_kv_cache(
1665
+ kv_caches,
1666
+ self.vllm_config.compilation_config.static_forward_context,
1667
+ self.kv_caches)
1668
+
1669
+ if self.use_spmd:
1670
+ # Shard KV Cache
1671
+ for cache in self.kv_caches:
1672
+ xs.mark_sharding(cache, self.mesh, (None, 'x', None, None))
1673
+
1674
+ if has_kv_transfer_group():
1675
+ get_kv_transfer_group().register_kv_caches(kv_caches)
1676
+ get_kv_transfer_group().set_host_xfer_buffer_ops(copy_kv_blocks)
1677
+
1678
+ def reset_dynamo_cache(self):
1679
+
1680
+ # NOTE: We check `is_multimodal_model` instead of `supports_mm_inputs`
1681
+ # since the compiled model object of the language backbone of a
1682
+ # multimodal model needs to be extracted via `get_language_model`.
1683
+ if self.model_config.is_multimodal_model:
1684
+ compiled_model = self.model.get_language_model().model
1685
+ else:
1686
+ compiled_model = self.model.model
1687
+ if isinstance(compiled_model, TorchCompileWrapperWithCustomDispatcher):
1688
+ logger.info("Clear dynamo cache and cached dynamo bytecode.")
1689
+ torch._dynamo.eval_frame.remove_from_cache(
1690
+ compiled_model.original_code_object)
1691
+ compiled_model.compiled_codes.clear()
1692
+
1693
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1694
+ def select_hidden_states(self, hidden_states, indices_do_sample):
1695
+ return hidden_states[indices_do_sample]
1696
+
1697
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1698
+ def compute_logits(self,
1699
+ sample_hidden_states: torch.Tensor) -> torch.Tensor:
1700
+ return self.model.compute_logits(sample_hidden_states, None)
1701
+
1702
+ # TODO: Under SPMD mode, sample_from_logits has correctness issue.
1703
+ # Re-enable the torch.compile once the issue is fixed in torchxla.
1704
+ # @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1705
+ def sample_from_logits(
1706
+ self, logits: torch.Tensor,
1707
+ sampling_metadata: TPUSupportedSamplingMetadata) -> torch.Tensor:
1708
+ """
1709
+ Sample with xla-friendly function. This function is to be traced
1710
+ separately from `forward` for lighter compilation overhead.
1711
+ """
1712
+ if sampling_metadata.all_greedy:
1713
+ out_tokens = torch.argmax(logits, dim=-1, keepdim=True)
1714
+ else:
1715
+ out_tokens = self.sampler(logits,
1716
+ sampling_metadata).sampled_token_ids
1717
+ return out_tokens
1718
+
1719
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1720
+ def gather_logprobs(self, logits: torch.Tensor,
1721
+ sampled_tokens: torch.Tensor) -> LogprobsTensors:
1722
+ """
1723
+ Gather the top_logprobs with corresponding tokens. Use a fixed number
1724
+ of logprobs as an alternative to having multiple pre-compiled graphs.
1725
+ Select the number of logprobs actually demanded by each request on CPU.
1726
+ """
1727
+ logprobs = self.sampler.compute_logprobs(logits)
1728
+ return self.sampler.gather_logprobs(
1729
+ logprobs,
1730
+ self.model_config.max_logprobs,
1731
+ token_ids=sampled_tokens.squeeze(-1))
1732
+
1733
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1734
+ def structured_decode(self, require_struct_decoding: torch.Tensor,
1735
+ grammar_bitmask: torch.Tensor, logits: torch.Tensor,
1736
+ arange: torch.Tensor) -> torch.Tensor:
1737
+ return torch.where(
1738
+ require_struct_decoding,
1739
+ self.apply_grammar_bitmask(logits, grammar_bitmask, arange),
1740
+ logits)
1741
+
1742
+ def apply_grammar_bitmask(self, logits: torch.Tensor,
1743
+ grammar_bitmask: torch.Tensor,
1744
+ arange: torch.Tensor):
1745
+ assert (logits.shape[0] == grammar_bitmask.shape[0])
1746
+ logits_cloned = logits.clone()
1747
+ for i in range(logits.shape[0]):
1748
+ unpacked_bitmask = (torch.bitwise_right_shift(
1749
+ grammar_bitmask[i][:, None], arange[None, :]) & 1) == 0
1750
+ unpacked_bitmask = unpacked_bitmask.reshape(-1)[:self.vocab_size]
1751
+ logits_cloned[i] = logits_cloned[i].masked_fill(
1752
+ unpacked_bitmask, -float("inf"))
1753
+ return logits_cloned
1754
+
1755
+ def get_multimodal_embeddings(self, *args, **kwargs):
1756
+ return self.model.get_multimodal_embeddings(*args, **kwargs)
1757
+
1758
+ def get_input_embeddings(self, *args, **kwargs):
1759
+ return self.model.get_input_embeddings(*args, **kwargs)
1760
+
1761
+ def prepare_structured_decoding_input(
1762
+ self, logits: torch.Tensor, scheduler_output: "SchedulerOutput"
1763
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1764
+ grammar_bitmask = scheduler_output.grammar_bitmask
1765
+ assert grammar_bitmask is not None
1766
+ num_reqs, _ = logits.shape
1767
+
1768
+ # Reset pre-allocated tensors
1769
+ self.grammar_bitmask_cpu.zero_()
1770
+ self.require_structured_out_cpu.zero_()
1771
+
1772
+ sorted_struct_requests = sorted(
1773
+ scheduler_output.structured_output_request_ids.items(),
1774
+ key=lambda item: item[1])
1775
+ cumulative_mask_idx = 0
1776
+ for req_id, _ in sorted_struct_requests:
1777
+ if req_id not in self.input_batch.req_id_to_index:
1778
+ continue
1779
+ batch_index = self.input_batch.req_id_to_index[req_id]
1780
+ self.grammar_bitmask_cpu[batch_index] = torch.from_numpy(
1781
+ grammar_bitmask[cumulative_mask_idx])
1782
+ # It's not guaranteed that all requests in this batch require
1783
+ # structured output, so create a bool tensor to represent
1784
+ # the requests that need structured output.
1785
+ self.require_structured_out_cpu[batch_index] = True
1786
+ cumulative_mask_idx += 1
1787
+
1788
+ return self.require_structured_out_cpu[:num_reqs].to(logits.device), \
1789
+ self.grammar_bitmask_cpu[:num_reqs].to(logits.device), \
1790
+ self.structured_decode_arange.to(logits.device)
1791
+
1792
+ def _get_mm_dummy_batch(
1793
+ self,
1794
+ modality: str,
1795
+ max_items_per_batch: int,
1796
+ ) -> BatchedTensorInputs:
1797
+ """Dummy data for profiling and precompiling multimodal models."""
1798
+ assert self.mm_budget is not None
1799
+
1800
+ dummy_decoder_data = self.mm_registry.get_decoder_dummy_data(
1801
+ model_config=self.model_config,
1802
+ seq_len=self.max_num_tokens,
1803
+ mm_counts={modality: 1},
1804
+ cache=self.mm_budget.cache,
1805
+ )
1806
+ dummy_mm_data = dummy_decoder_data.multi_modal_data
1807
+
1808
+ # Result in the maximum GPU consumption of the model
1809
+ dummy_mm_item = dummy_mm_data[modality][0]
1810
+ dummy_mm_items = [dummy_mm_item] * max_items_per_batch
1811
+
1812
+ return next(grouped_mm_kwargs
1813
+ for _, _, grouped_mm_kwargs in group_mm_kwargs_by_modality(
1814
+ dummy_mm_items,
1815
+ device=self.device,
1816
+ pin_memory=self.pin_memory,
1817
+ ))
1818
+
1819
+
1820
+ def _get_req_paddings(min_req_size: int, max_req_size: int) -> list[int]:
1821
+ logger.info("Preparing request paddings:")
1822
+ # assert min_req_size is power of 2
1823
+ assert (min_req_size & (min_req_size - 1) == 0) and min_req_size > 0
1824
+ paddings: list = []
1825
+ num = max(MIN_NUM_SEQS, min_req_size)
1826
+ while num <= max_req_size and (len(paddings) == 0 or paddings[-1] != num):
1827
+ paddings.append(num)
1828
+ logger.info(" %d", num)
1829
+ num = _get_padded_num_reqs_with_upper_limit(num + 1, max_req_size)
1830
+ return paddings
1831
+
1832
+
1833
+ def _get_padded_num_reqs_with_upper_limit(x: int, upper_limit: int) -> int:
1834
+ res = MIN_NUM_SEQS if x <= MIN_NUM_SEQS else 1 << (x - 1).bit_length()
1835
+ return min(res, upper_limit)
1836
+
1837
+
1838
+ def _get_token_paddings(min_token_size: int, max_token_size: int,
1839
+ padding_gap: int) -> list[int]:
1840
+ """Generate a list of padding size, starting from min_token_size,
1841
+ ending with a number that can cover max_token_size
1842
+
1843
+ If padding_gap == 0 then:
1844
+ increase 2X each time (exponential)
1845
+ else:
1846
+ first increase the size to twice,
1847
+ then increase the padding size by padding_gap.
1848
+ """
1849
+ # assert min_token_size is power of 2
1850
+ assert (min_token_size & (min_token_size - 1) == 0) and min_token_size > 0
1851
+ paddings = []
1852
+ num = min_token_size
1853
+
1854
+ if padding_gap == 0:
1855
+ logger.info("Using exponential token paddings:")
1856
+ while True:
1857
+ logger.info(" %d", num)
1858
+ paddings.append(num)
1859
+ if num >= max_token_size:
1860
+ break
1861
+ num *= 2
1862
+ else:
1863
+ logger.info("Using incremental token paddings:")
1864
+ while num <= padding_gap:
1865
+ logger.info(" %d", num)
1866
+ paddings.append(num)
1867
+ num *= 2
1868
+ num //= 2
1869
+ while num < max_token_size:
1870
+ num += padding_gap
1871
+ logger.info(" %d", num)
1872
+ paddings.append(num)
1873
+
1874
+ return paddings
1875
+
1876
+
1877
+ def _get_padded_token_len(paddings: list[int], x: int) -> int:
1878
+ """Return the first element in paddings list greater or equal to x.
1879
+ """
1880
+ index = bisect.bisect_left(paddings, x)
1881
+ assert index < len(paddings)
1882
+ return paddings[index]
1883
+
1884
+
1885
+ def _get_padded_num_kv_cache_update_slices(num_tokens: int, max_num_reqs: int,
1886
+ page_size: int) -> int:
1887
+ """Calculates the padded number of KV cache update slices to avoid
1888
+ recompilation."""
1889
+ # NOTE(chengjiyao): let's say R_i is the token num for i-th request,
1890
+ # so it occupies most 2 + R_i // page_size pages. The total maximum
1891
+ # possible number of pages needed is sum(2 + R_i // page_size), which
1892
+ # is <= 2 * max_num_reqs + sum(R_i) // page_size
1893
+ # = 2 * max_num_reqs + num_tokens // page_size
1894
+ padded_num_slices = 2 * max_num_reqs + num_tokens // page_size
1895
+ padded_num_slices = min(padded_num_slices, num_tokens)
1896
+ return padded_num_slices
1897
+
1898
+
1899
+ def _get_num_slices_per_kv_cache_update_block(page_size_bytes: int) -> int:
1900
+ """Find the optimum number of slices to copy per Pallas program instance.
1901
+
1902
+ Increasing the number of slices copied in one instance of the kernel program
1903
+ will increase HBM bandwidth utilization via more in-flight DMAs.
1904
+
1905
+ However, it will also use more VMEM, and experimentally, we observed
1906
+ performance regression at 128 slices on v6e, likely due to running
1907
+ out of scalar registers. Thus this function will limit the number of
1908
+ slices to 64.
1909
+ """
1910
+ # The default vmem_limit_bytes of a pallas kernel is 32MB. Here we
1911
+ # calculate num_slices_per_block based on 16MB in case any register spills.
1912
+ vmem_limit = 16 * 1024 * 1024
1913
+ num_slices_per_block = vmem_limit // page_size_bytes
1914
+ assert num_slices_per_block > 0, "Number of slices should be positive"
1915
+ num_slices_per_block = prev_power_of_2(num_slices_per_block)
1916
+ if num_slices_per_block > 64:
1917
+ num_slices_per_block = 64
1918
+ return num_slices_per_block
1919
+
1920
+
1921
+ def replace_set_lora(model):
1922
+
1923
+ def _tpu_set_lora(
1924
+ self,
1925
+ index: int,
1926
+ lora_a: torch.Tensor,
1927
+ lora_b: torch.Tensor,
1928
+ embeddings_tensor: Optional[torch.Tensor],
1929
+ bias: Optional[torch.Tensor] = None,
1930
+ ):
1931
+ # TODO: The integer index leads to a recompilation, but converting it
1932
+ # to a tensor doesn't seem to work anymore. This might be fixed with a
1933
+ # later release of torch_xla.
1934
+ self._original_set_lora(index, lora_a, lora_b, embeddings_tensor, bias)
1935
+ xm.mark_step()
1936
+
1937
+ def _tpu_reset_lora(self, index: int):
1938
+ self._original_reset_lora(index)
1939
+ xm.mark_step()
1940
+
1941
+ for _, module in model.named_modules():
1942
+ if isinstance(module, BaseLayerWithLoRA):
1943
+ module._original_set_lora = module.set_lora
1944
+ module._original_reset_lora = module.reset_lora
1945
+ module.set_lora = _tpu_set_lora.__get__(module, module.__class__)
1946
+ module.reset_lora = _tpu_reset_lora.__get__(
1947
+ module, module.__class__)