vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +220 -0
- vllm/_bc_linter.py +59 -0
- vllm/_custom_ops.py +2022 -0
- vllm/_ipex_ops.py +404 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +50 -0
- vllm/assets/video.py +138 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +348 -0
- vllm/attention/backends/differential_flash_attn.py +935 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
- vllm/attention/backends/flash_attn.py +933 -0
- vllm/attention/backends/flashmla.py +238 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1310 -0
- vllm/attention/backends/placeholder_attn.py +340 -0
- vllm/attention/backends/rocm_aiter_mla.py +410 -0
- vllm/attention/backends/rocm_flash_attn.py +953 -0
- vllm/attention/backends/triton_mla.py +111 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +805 -0
- vllm/attention/layer.py +552 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +91 -0
- vllm/attention/layers/cross_attention.py +159 -0
- vllm/attention/layers/encoder_only_attention.py +86 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
- vllm/attention/ops/common.py +139 -0
- vllm/attention/ops/flashmla.py +123 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/paged_attn.py +261 -0
- vllm/attention/ops/pallas_kv_cache_update.py +124 -0
- vllm/attention/ops/prefix_prefill.py +928 -0
- vllm/attention/ops/rocm_aiter_mla.py +104 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +676 -0
- vllm/attention/ops/triton_flash_attention.py +984 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +854 -0
- vllm/attention/selector.py +243 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +85 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +2651 -0
- vllm/benchmarks/latency.py +170 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +510 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +80 -0
- vllm/benchmarks/serve.py +1247 -0
- vllm/benchmarks/throughput.py +696 -0
- vllm/collect_env.py +823 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +193 -0
- vllm/compilation/backends.py +641 -0
- vllm/compilation/base_static_graph.py +51 -0
- vllm/compilation/collective_fusion.py +1190 -0
- vllm/compilation/compiler_interface.py +572 -0
- vllm/compilation/counter.py +47 -0
- vllm/compilation/cuda_graph.py +193 -0
- vllm/compilation/cuda_piecewise_backend.py +117 -0
- vllm/compilation/decorators.py +316 -0
- vllm/compilation/fix_functionalization.py +208 -0
- vllm/compilation/fusion.py +600 -0
- vllm/compilation/fusion_attn.py +303 -0
- vllm/compilation/fx_utils.py +84 -0
- vllm/compilation/inductor_pass.py +136 -0
- vllm/compilation/monitor.py +57 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +165 -0
- vllm/compilation/pass_manager.py +88 -0
- vllm/compilation/sequence_parallelism.py +484 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +50 -0
- vllm/compilation/wrapper.py +138 -0
- vllm/config/__init__.py +3921 -0
- vllm/config/cache.py +214 -0
- vllm/config/compilation.py +580 -0
- vllm/config/kv_events.py +50 -0
- vllm/config/kv_transfer.py +111 -0
- vllm/config/load.py +113 -0
- vllm/config/lora.py +132 -0
- vllm/config/parallel.py +446 -0
- vllm/config/scheduler.py +304 -0
- vllm/config/utils.py +29 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +439 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +523 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +139 -0
- vllm/core/placeholder_block_space_manager.py +103 -0
- vllm/core/scheduler.py +2028 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +286 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +259 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
- vllm/distributed/device_communicators/base_device_communicator.py +277 -0
- vllm/distributed/device_communicators/cpu_communicator.py +201 -0
- vllm/distributed/device_communicators/cuda_communicator.py +294 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
- vllm/distributed/device_communicators/pynccl.py +290 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
- vllm/distributed/device_communicators/ray_communicator.py +258 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/symm_mem.py +136 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +69 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +619 -0
- vllm/distributed/eplb/rebalance_algo.py +234 -0
- vllm/distributed/eplb/rebalance_execute.py +424 -0
- vllm/distributed/kv_events.py +362 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +13 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
- vllm/distributed/parallel_state.py +1489 -0
- vllm/distributed/tpu_distributed_utils.py +178 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1857 -0
- vllm/engine/async_llm_engine.py +1044 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +1849 -0
- vllm/engine/metrics.py +577 -0
- vllm/engine/metrics_types.py +84 -0
- vllm/engine/multiprocessing/__init__.py +145 -0
- vllm/engine/multiprocessing/client.py +643 -0
- vllm/engine/multiprocessing/engine.py +470 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +61 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +343 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1535 -0
- vllm/entrypoints/cli/__init__.py +12 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +58 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +36 -0
- vllm/entrypoints/cli/main.py +60 -0
- vllm/entrypoints/cli/openai.py +214 -0
- vllm/entrypoints/cli/run_batch.py +69 -0
- vllm/entrypoints/cli/serve.py +232 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +444 -0
- vllm/entrypoints/harmony_utils.py +431 -0
- vllm/entrypoints/launcher.py +168 -0
- vllm/entrypoints/llm.py +1579 -0
- vllm/entrypoints/logger.py +79 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2011 -0
- vllm/entrypoints/openai/cli_args.py +281 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +2590 -0
- vllm/entrypoints/openai/run_batch.py +497 -0
- vllm/entrypoints/openai/serving_chat.py +1591 -0
- vllm/entrypoints/openai/serving_classification.py +176 -0
- vllm/entrypoints/openai/serving_completion.py +688 -0
- vllm/entrypoints/openai/serving_embedding.py +632 -0
- vllm/entrypoints/openai/serving_engine.py +996 -0
- vllm/entrypoints/openai/serving_models.py +288 -0
- vllm/entrypoints/openai/serving_pooling.py +277 -0
- vllm/entrypoints/openai/serving_responses.py +1690 -0
- vllm/entrypoints/openai/serving_score.py +479 -0
- vllm/entrypoints/openai/serving_tokenization.py +196 -0
- vllm/entrypoints/openai/serving_transcription.py +136 -0
- vllm/entrypoints/openai/speech_to_text.py +388 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
- vllm/entrypoints/renderer.py +395 -0
- vllm/entrypoints/score_utils.py +232 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/tool.py +139 -0
- vllm/entrypoints/tool_server.py +195 -0
- vllm/entrypoints/utils.py +328 -0
- vllm/env_override.py +23 -0
- vllm/envs.py +1354 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +378 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +35 -0
- vllm/executor/multiproc_worker_utils.py +279 -0
- vllm/executor/ray_distributed_executor.py +699 -0
- vllm/executor/ray_utils.py +410 -0
- vllm/executor/uniproc_executor.py +152 -0
- vllm/forward_context.py +273 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +356 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +973 -0
- vllm/inputs/registry.py +251 -0
- vllm/logger.py +229 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +81 -0
- vllm/logging_utils/formatter.py +79 -0
- vllm/logits_process.py +119 -0
- vllm/logprobs.py +28 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +34 -0
- vllm/lora/layers/base.py +69 -0
- vllm/lora/layers/base_linear.py +184 -0
- vllm/lora/layers/column_parallel_linear.py +622 -0
- vllm/lora/layers/logits_processor.py +247 -0
- vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
- vllm/lora/layers/replicated_linear.py +61 -0
- vllm/lora/layers/row_parallel_linear.py +201 -0
- vllm/lora/layers/utils.py +60 -0
- vllm/lora/layers/vocal_parallel_embedding.py +172 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +792 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +7 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
- vllm/lora/ops/triton_ops/utils.py +126 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +127 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +458 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +279 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +391 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +136 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +246 -0
- vllm/lora/worker_manager.py +256 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +575 -0
- vllm/model_executor/layers/attention_layer_base.py +23 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +225 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
- vllm/model_executor/layers/fla/ops/index.py +39 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
- vllm/model_executor/layers/fla/ops/op.py +39 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
- vllm/model_executor/layers/fla/ops/utils.py +180 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
- vllm/model_executor/layers/fused_moe/__init__.py +80 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
- vllm/model_executor/layers/fused_moe/config.py +497 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
- vllm/model_executor/layers/fused_moe/layer.py +1951 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
- vllm/model_executor/layers/fused_moe/utils.py +270 -0
- vllm/model_executor/layers/layernorm.py +381 -0
- vllm/model_executor/layers/lightning_attn.py +661 -0
- vllm/model_executor/layers/linear.py +1567 -0
- vllm/model_executor/layers/logits_processor.py +199 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +45 -0
- vllm/model_executor/layers/mamba/linear_attn.py +432 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
- vllm/model_executor/layers/mamba/short_conv.py +270 -0
- vllm/model_executor/layers/mla.py +158 -0
- vllm/model_executor/layers/pooler.py +732 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/auto_round.py +388 -0
- vllm/model_executor/layers/quantization/awq.py +228 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +164 -0
- vllm/model_executor/layers/quantization/bitblas.py +464 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepgemm.py +81 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
- vllm/model_executor/layers/quantization/experts_int8.py +215 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +1179 -0
- vllm/model_executor/layers/quantization/gguf.py +597 -0
- vllm/model_executor/layers/quantization/gptq.py +300 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
- vllm/model_executor/layers/quantization/inc.py +61 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/modelopt.py +1548 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
- vllm/model_executor/layers/quantization/mxfp4.py +951 -0
- vllm/model_executor/layers/quantization/petit.py +306 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +431 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/rtn.py +456 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +214 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
- vllm/model_executor/layers/rotary_embedding/base.py +156 -0
- vllm/model_executor/layers/rotary_embedding/common.py +105 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
- vllm/model_executor/layers/sampler.py +1198 -0
- vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
- vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
- vllm/model_executor/layers/utils.py +196 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +138 -0
- vllm/model_executor/model_loader/base_loader.py +52 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
- vllm/model_executor/model_loader/default_loader.py +278 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +155 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
- vllm/model_executor/model_loader/tensorizer.py +743 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
- vllm/model_executor/model_loader/tpu.py +114 -0
- vllm/model_executor/model_loader/utils.py +271 -0
- vllm/model_executor/model_loader/weight_utils.py +946 -0
- vllm/model_executor/models/__init__.py +30 -0
- vllm/model_executor/models/adapters.py +542 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/apertus.py +582 -0
- vllm/model_executor/models/arcee.py +423 -0
- vllm/model_executor/models/arctic.py +560 -0
- vllm/model_executor/models/aria.py +662 -0
- vllm/model_executor/models/aya_vision.py +470 -0
- vllm/model_executor/models/baichuan.py +475 -0
- vllm/model_executor/models/bailing_moe.py +529 -0
- vllm/model_executor/models/bamba.py +582 -0
- vllm/model_executor/models/bart.py +1343 -0
- vllm/model_executor/models/bert.py +613 -0
- vllm/model_executor/models/bert_with_rope.py +687 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +716 -0
- vllm/model_executor/models/bloom.py +374 -0
- vllm/model_executor/models/chameleon.py +1141 -0
- vllm/model_executor/models/chatglm.py +479 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/cohere2_vision.py +484 -0
- vllm/model_executor/models/commandr.py +467 -0
- vllm/model_executor/models/config.py +434 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +473 -0
- vllm/model_executor/models/deepseek.py +491 -0
- vllm/model_executor/models/deepseek_eagle.py +241 -0
- vllm/model_executor/models/deepseek_mtp.py +282 -0
- vllm/model_executor/models/deepseek_v2.py +1058 -0
- vllm/model_executor/models/deepseek_vl2.py +661 -0
- vllm/model_executor/models/donut.py +387 -0
- vllm/model_executor/models/dots1.py +547 -0
- vllm/model_executor/models/ernie45.py +43 -0
- vllm/model_executor/models/ernie45_moe.py +608 -0
- vllm/model_executor/models/ernie45_vl.py +1510 -0
- vllm/model_executor/models/ernie45_vl_moe.py +728 -0
- vllm/model_executor/models/ernie_mtp.py +287 -0
- vllm/model_executor/models/exaone.py +552 -0
- vllm/model_executor/models/exaone4.py +535 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +511 -0
- vllm/model_executor/models/falcon_h1.py +739 -0
- vllm/model_executor/models/florence2.py +1107 -0
- vllm/model_executor/models/fuyu.py +401 -0
- vllm/model_executor/models/gemma.py +428 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +542 -0
- vllm/model_executor/models/gemma3_mm.py +723 -0
- vllm/model_executor/models/gemma3n.py +830 -0
- vllm/model_executor/models/gemma3n_mm.py +767 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1669 -0
- vllm/model_executor/models/glm4_moe.py +703 -0
- vllm/model_executor/models/glm4_moe_mtp.py +306 -0
- vllm/model_executor/models/glm4v.py +654 -0
- vllm/model_executor/models/gpt2.py +383 -0
- vllm/model_executor/models/gpt_bigcode.py +346 -0
- vllm/model_executor/models/gpt_j.py +340 -0
- vllm/model_executor/models/gpt_neox.py +333 -0
- vllm/model_executor/models/gpt_oss.py +687 -0
- vllm/model_executor/models/granite.py +498 -0
- vllm/model_executor/models/granite_speech.py +799 -0
- vllm/model_executor/models/granitemoe.py +541 -0
- vllm/model_executor/models/granitemoehybrid.py +684 -0
- vllm/model_executor/models/granitemoeshared.py +342 -0
- vllm/model_executor/models/gritlm.py +262 -0
- vllm/model_executor/models/grok1.py +550 -0
- vllm/model_executor/models/h2ovl.py +536 -0
- vllm/model_executor/models/hunyuan_v1.py +937 -0
- vllm/model_executor/models/hyperclovax_vision.py +1206 -0
- vllm/model_executor/models/idefics2_vision_model.py +416 -0
- vllm/model_executor/models/idefics3.py +758 -0
- vllm/model_executor/models/interfaces.py +854 -0
- vllm/model_executor/models/interfaces_base.py +195 -0
- vllm/model_executor/models/intern_vit.py +481 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +148 -0
- vllm/model_executor/models/interns1.py +832 -0
- vllm/model_executor/models/interns1_vit.py +418 -0
- vllm/model_executor/models/internvl.py +1423 -0
- vllm/model_executor/models/jais.py +374 -0
- vllm/model_executor/models/jamba.py +630 -0
- vllm/model_executor/models/jina_vl.py +144 -0
- vllm/model_executor/models/keye.py +1684 -0
- vllm/model_executor/models/keye_vl1_5.py +601 -0
- vllm/model_executor/models/kimi_vl.py +620 -0
- vllm/model_executor/models/lfm2.py +558 -0
- vllm/model_executor/models/llama.py +671 -0
- vllm/model_executor/models/llama4.py +732 -0
- vllm/model_executor/models/llama4_eagle.py +241 -0
- vllm/model_executor/models/llama_eagle.py +171 -0
- vllm/model_executor/models/llama_eagle3.py +292 -0
- vllm/model_executor/models/llava.py +872 -0
- vllm/model_executor/models/llava_next.py +572 -0
- vllm/model_executor/models/llava_next_video.py +479 -0
- vllm/model_executor/models/llava_onevision.py +945 -0
- vllm/model_executor/models/mamba.py +310 -0
- vllm/model_executor/models/mamba2.py +346 -0
- vllm/model_executor/models/mamba_cache.py +83 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/midashenglm.py +788 -0
- vllm/model_executor/models/mimo.py +191 -0
- vllm/model_executor/models/mimo_mtp.py +273 -0
- vllm/model_executor/models/minicpm.py +593 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +804 -0
- vllm/model_executor/models/minicpmv.py +1786 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1027 -0
- vllm/model_executor/models/minimax_vl_01.py +431 -0
- vllm/model_executor/models/mistral3.py +628 -0
- vllm/model_executor/models/mixtral.py +494 -0
- vllm/model_executor/models/mllama.py +1697 -0
- vllm/model_executor/models/mllama4.py +1079 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +374 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1569 -0
- vllm/model_executor/models/moonvit.py +663 -0
- vllm/model_executor/models/motif.py +345 -0
- vllm/model_executor/models/mpt.py +332 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
- vllm/model_executor/models/nemotron.py +509 -0
- vllm/model_executor/models/nemotron_h.py +633 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nemotron_vl.py +655 -0
- vllm/model_executor/models/nvlm_d.py +203 -0
- vllm/model_executor/models/olmo.py +406 -0
- vllm/model_executor/models/olmo2.py +428 -0
- vllm/model_executor/models/olmoe.py +485 -0
- vllm/model_executor/models/opt.py +413 -0
- vllm/model_executor/models/orion.py +350 -0
- vllm/model_executor/models/ovis.py +572 -0
- vllm/model_executor/models/ovis2_5.py +644 -0
- vllm/model_executor/models/paligemma.py +414 -0
- vllm/model_executor/models/persimmon.py +345 -0
- vllm/model_executor/models/phi.py +357 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3v.py +701 -0
- vllm/model_executor/models/phi4_multimodal.py +1478 -0
- vllm/model_executor/models/phi4flash.py +737 -0
- vllm/model_executor/models/phi4mm.py +1281 -0
- vllm/model_executor/models/phi4mm_audio.py +1254 -0
- vllm/model_executor/models/phi4mm_utils.py +1875 -0
- vllm/model_executor/models/phimoe.py +681 -0
- vllm/model_executor/models/pixtral.py +1348 -0
- vllm/model_executor/models/plamo2.py +1126 -0
- vllm/model_executor/models/qwen.py +363 -0
- vllm/model_executor/models/qwen2.py +526 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
- vllm/model_executor/models/qwen2_5_vl.py +1256 -0
- vllm/model_executor/models/qwen2_audio.py +492 -0
- vllm/model_executor/models/qwen2_moe.py +558 -0
- vllm/model_executor/models/qwen2_rm.py +122 -0
- vllm/model_executor/models/qwen2_vl.py +1512 -0
- vllm/model_executor/models/qwen3.py +344 -0
- vllm/model_executor/models/qwen3_moe.py +704 -0
- vllm/model_executor/models/qwen3_next.py +1298 -0
- vllm/model_executor/models/qwen3_next_mtp.py +285 -0
- vllm/model_executor/models/qwen_vl.py +795 -0
- vllm/model_executor/models/registry.py +891 -0
- vllm/model_executor/models/roberta.py +252 -0
- vllm/model_executor/models/rvl.py +103 -0
- vllm/model_executor/models/seed_oss.py +488 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/siglip2navit.py +688 -0
- vllm/model_executor/models/skyworkr1v.py +914 -0
- vllm/model_executor/models/smolvlm.py +44 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +344 -0
- vllm/model_executor/models/starcoder2.py +357 -0
- vllm/model_executor/models/step3_text.py +521 -0
- vllm/model_executor/models/step3_vl.py +1091 -0
- vllm/model_executor/models/swin.py +475 -0
- vllm/model_executor/models/tarsier.py +649 -0
- vllm/model_executor/models/telechat2.py +151 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/terratorch.py +294 -0
- vllm/model_executor/models/transformers.py +883 -0
- vllm/model_executor/models/ultravox.py +667 -0
- vllm/model_executor/models/utils.py +770 -0
- vllm/model_executor/models/vision.py +125 -0
- vllm/model_executor/models/voxtral.py +789 -0
- vllm/model_executor/models/whisper.py +966 -0
- vllm/model_executor/models/zamba2.py +1056 -0
- vllm/model_executor/parameter.py +599 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +97 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
- vllm/model_executor/warmup/kernel_warmup.py +83 -0
- vllm/multimodal/__init__.py +35 -0
- vllm/multimodal/audio.py +116 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/cache.py +507 -0
- vllm/multimodal/hasher.py +110 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +979 -0
- vllm/multimodal/parse.py +496 -0
- vllm/multimodal/processing.py +1921 -0
- vllm/multimodal/profiling.py +313 -0
- vllm/multimodal/registry.py +375 -0
- vllm/multimodal/utils.py +754 -0
- vllm/multimodal/video.py +312 -0
- vllm/outputs.py +517 -0
- vllm/platforms/__init__.py +263 -0
- vllm/platforms/cpu.py +353 -0
- vllm/platforms/cuda.py +731 -0
- vllm/platforms/interface.py +599 -0
- vllm/platforms/rocm.py +504 -0
- vllm/platforms/tpu.py +236 -0
- vllm/platforms/xpu.py +243 -0
- vllm/plugins/__init__.py +72 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +67 -0
- vllm/plugins/lora_resolvers/README.md +16 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +183 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +22 -0
- vllm/ray/ray_env.py +72 -0
- vllm/reasoning/__init__.py +25 -0
- vllm/reasoning/abs_reasoning_parsers.py +202 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
- vllm/reasoning/gptoss_reasoning_parser.py +87 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
- vllm/reasoning/mistral_reasoning_parser.py +47 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/reasoning/step3_reasoning_parser.py +109 -0
- vllm/sampling_params.py +577 -0
- vllm/scalar_type.py +349 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1465 -0
- vllm/tasks.py +11 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +136 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +71 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1043 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +55 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/midashenglm.py +101 -0
- vllm/transformers_utils/configs/mistral.py +165 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +259 -0
- vllm/transformers_utils/configs/nemotron_vl.py +56 -0
- vllm/transformers_utils/configs/ovis.py +176 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +32 -0
- vllm/transformers_utils/configs/speculators/base.py +91 -0
- vllm/transformers_utils/configs/step3_vl.py +123 -0
- vllm/transformers_utils/configs/ultravox.py +120 -0
- vllm/transformers_utils/detokenizer.py +169 -0
- vllm/transformers_utils/detokenizer_utils.py +199 -0
- vllm/transformers_utils/dynamic_module.py +60 -0
- vllm/transformers_utils/processor.py +245 -0
- vllm/transformers_utils/processors/__init__.py +16 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/processors/ovis2_5.py +458 -0
- vllm/transformers_utils/runai_utils.py +99 -0
- vllm/transformers_utils/s3_utils.py +90 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +132 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +520 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +16 -0
- vllm/triton_utils/importing.py +95 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +259 -0
- vllm/utils/__init__.py +3438 -0
- vllm/utils/deep_gemm.py +212 -0
- vllm/utils/flashinfer.py +372 -0
- vllm/utils/jsontree.py +90 -0
- vllm/utils/tensor_schema.py +236 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +922 -0
- vllm/v1/attention/backends/flash_attn.py +800 -0
- vllm/v1/attention/backends/flashinfer.py +1128 -0
- vllm/v1/attention/backends/flex_attention.py +796 -0
- vllm/v1/attention/backends/gdn_attn.py +320 -0
- vllm/v1/attention/backends/linear_attn.py +68 -0
- vllm/v1/attention/backends/mamba1_attn.py +81 -0
- vllm/v1/attention/backends/mamba2_attn.py +224 -0
- vllm/v1/attention/backends/mamba_attn.py +52 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +1608 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
- vllm/v1/attention/backends/mla/flashmla.py +213 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
- vllm/v1/attention/backends/mla/triton_mla.py +175 -0
- vllm/v1/attention/backends/pallas.py +413 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
- vllm/v1/attention/backends/short_conv_attn.py +82 -0
- vllm/v1/attention/backends/tree_attn.py +450 -0
- vllm/v1/attention/backends/triton_attn.py +430 -0
- vllm/v1/attention/backends/utils.py +834 -0
- vllm/v1/attention/backends/xformers.py +437 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +330 -0
- vllm/v1/core/encoder_cache_manager.py +333 -0
- vllm/v1/core/kv_cache_coordinator.py +440 -0
- vllm/v1/core/kv_cache_manager.py +398 -0
- vllm/v1/core/kv_cache_utils.py +1169 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +47 -0
- vllm/v1/core/sched/interface.py +158 -0
- vllm/v1/core/sched/output.py +162 -0
- vllm/v1/core/sched/request_queue.py +224 -0
- vllm/v1/core/sched/scheduler.py +1287 -0
- vllm/v1/core/sched/utils.py +69 -0
- vllm/v1/core/single_type_kv_cache_manager.py +670 -0
- vllm/v1/cudagraph_dispatcher.py +121 -0
- vllm/v1/engine/__init__.py +202 -0
- vllm/v1/engine/async_llm.py +757 -0
- vllm/v1/engine/coordinator.py +357 -0
- vllm/v1/engine/core.py +1245 -0
- vllm/v1/engine/core_client.py +1333 -0
- vllm/v1/engine/detokenizer.py +300 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +332 -0
- vllm/v1/engine/logprobs.py +201 -0
- vllm/v1/engine/output_processor.py +558 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +524 -0
- vllm/v1/engine/utils.py +857 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +126 -0
- vllm/v1/executor/multiproc_executor.py +683 -0
- vllm/v1/executor/ray_distributed_executor.py +109 -0
- vllm/v1/kv_cache_interface.py +275 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +717 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +133 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +248 -0
- vllm/v1/outputs.py +147 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +77 -0
- vllm/v1/request.py +237 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +294 -0
- vllm/v1/sample/logits_processor/builtin.py +273 -0
- vllm/v1/sample/logits_processor/interface.py +97 -0
- vllm/v1/sample/logits_processor/state.py +161 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/logprobs.py +26 -0
- vllm/v1/sample/ops/penalties.py +43 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
- vllm/v1/sample/rejection_sampler.py +623 -0
- vllm/v1/sample/sampler.py +281 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +213 -0
- vllm/v1/serial_utils.py +395 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +740 -0
- vllm/v1/spec_decode/medusa.py +66 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +191 -0
- vllm/v1/spec_decode/ngram_proposer.py +157 -0
- vllm/v1/spec_decode/utils.py +14 -0
- vllm/v1/structured_output/__init__.py +297 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
- vllm/v1/structured_output/backend_outlines.py +320 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +323 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +373 -0
- vllm/v1/utils.py +382 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +221 -0
- vllm/v1/worker/cpu_model_runner.py +163 -0
- vllm/v1/worker/cpu_worker.py +183 -0
- vllm/v1/worker/gpu_input_batch.py +821 -0
- vllm/v1/worker/gpu_model_runner.py +3743 -0
- vllm/v1/worker/gpu_worker.py +697 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
- vllm/v1/worker/lora_model_runner_mixin.py +192 -0
- vllm/v1/worker/tpu_input_batch.py +585 -0
- vllm/v1/worker/tpu_model_runner.py +1947 -0
- vllm/v1/worker/tpu_worker.py +340 -0
- vllm/v1/worker/utils.py +290 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/v1/worker/xpu_model_runner.py +53 -0
- vllm/v1/worker/xpu_worker.py +179 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/enc_dec_model_runner.py +553 -0
- vllm/worker/model_runner.py +2016 -0
- vllm/worker/model_runner_base.py +307 -0
- vllm/worker/utils.py +49 -0
- vllm/worker/worker.py +670 -0
- vllm/worker/worker_base.py +651 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,123 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
from typing import Any, Optional, Union
|
|
4
|
+
|
|
5
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class Step3VisionEncoderConfig(PretrainedConfig):
|
|
9
|
+
model_type = "step3_vision_encoder"
|
|
10
|
+
|
|
11
|
+
def __init__(
|
|
12
|
+
self,
|
|
13
|
+
hidden_size=1792,
|
|
14
|
+
intermediate_size=3072,
|
|
15
|
+
output_hidden_size=4096,
|
|
16
|
+
num_hidden_layers=63,
|
|
17
|
+
num_attention_heads=16,
|
|
18
|
+
num_channels=3,
|
|
19
|
+
image_size=728,
|
|
20
|
+
patch_size=14,
|
|
21
|
+
hidden_act="quick_gelu",
|
|
22
|
+
layer_norm_eps=1e-5,
|
|
23
|
+
**kwargs,
|
|
24
|
+
):
|
|
25
|
+
self.hidden_size = hidden_size
|
|
26
|
+
self.intermediate_size = intermediate_size
|
|
27
|
+
self.output_hidden_size = output_hidden_size
|
|
28
|
+
self.num_hidden_layers = num_hidden_layers
|
|
29
|
+
self.num_attention_heads = num_attention_heads
|
|
30
|
+
self.num_channels = num_channels
|
|
31
|
+
self.patch_size = patch_size
|
|
32
|
+
self.image_size = image_size
|
|
33
|
+
self.layer_norm_eps = layer_norm_eps
|
|
34
|
+
self.hidden_act = hidden_act
|
|
35
|
+
super().__init__(**kwargs)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class Step3TextConfig(PretrainedConfig):
|
|
39
|
+
model_type = "step3_text"
|
|
40
|
+
architectures = ["Step3TextForCausalLM"]
|
|
41
|
+
|
|
42
|
+
def __init__(
|
|
43
|
+
self,
|
|
44
|
+
hidden_size: int = 7168,
|
|
45
|
+
intermediate_size: int = 18432,
|
|
46
|
+
num_attention_heads: int = 64,
|
|
47
|
+
num_attention_groups: int = 1,
|
|
48
|
+
num_hidden_layers: int = 61,
|
|
49
|
+
max_seq_len: int = 65536,
|
|
50
|
+
vocab_size: int = 128815,
|
|
51
|
+
rms_norm_eps: float = 1e-5,
|
|
52
|
+
moe_intermediate_size: int = 5120,
|
|
53
|
+
moe_num_experts: int = 48,
|
|
54
|
+
moe_top_k: int = 3,
|
|
55
|
+
rope_theta: float = 500000,
|
|
56
|
+
rope_scaling: Optional[dict[str, Any]] = None,
|
|
57
|
+
max_position_embedding: int = 65536,
|
|
58
|
+
share_expert_dim: int = 5120,
|
|
59
|
+
share_q_dim: int = 2048,
|
|
60
|
+
head_dim: int = 256,
|
|
61
|
+
norm_expert_weight: bool = False,
|
|
62
|
+
moe_layers_enum: tuple[int,
|
|
63
|
+
...] = (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
64
|
+
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
|
|
65
|
+
25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
|
|
66
|
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
|
|
67
|
+
45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
|
|
68
|
+
55, 56, 57, 58, 59),
|
|
69
|
+
**kwargs,
|
|
70
|
+
) -> None:
|
|
71
|
+
self.hidden_size = hidden_size
|
|
72
|
+
self.intermediate_size = intermediate_size
|
|
73
|
+
self.num_attention_heads = num_attention_heads
|
|
74
|
+
self.num_attention_groups = num_attention_groups
|
|
75
|
+
self.num_hidden_layers = num_hidden_layers
|
|
76
|
+
self.max_seq_len = max_seq_len
|
|
77
|
+
self.vocab_size = vocab_size
|
|
78
|
+
self.rms_norm_eps = rms_norm_eps
|
|
79
|
+
self.moe_intermediate_size = moe_intermediate_size
|
|
80
|
+
self.moe_num_experts = moe_num_experts
|
|
81
|
+
self.moe_top_k = moe_top_k
|
|
82
|
+
self.rope_theta = rope_theta
|
|
83
|
+
self.rope_scaling = rope_scaling
|
|
84
|
+
self.max_position_embedding = max_position_embedding
|
|
85
|
+
self.share_expert_dim = share_expert_dim
|
|
86
|
+
self.share_q_dim = share_q_dim
|
|
87
|
+
self.head_dim = head_dim
|
|
88
|
+
self.norm_expert_weight = norm_expert_weight
|
|
89
|
+
self.moe_layers_enum = moe_layers_enum
|
|
90
|
+
|
|
91
|
+
super().__init__(**kwargs)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
class Step3VLConfig(PretrainedConfig):
|
|
95
|
+
model_type = "step3_vl"
|
|
96
|
+
|
|
97
|
+
def __init__(
|
|
98
|
+
self,
|
|
99
|
+
vision_config: Optional[Union[dict, Step3VisionEncoderConfig]] = None,
|
|
100
|
+
text_config: Optional[Union[dict, Step3TextConfig]] = None,
|
|
101
|
+
understand_projector_stride: int = 1,
|
|
102
|
+
projector_bias: bool = True,
|
|
103
|
+
image_token_id: int = 128001,
|
|
104
|
+
**kwargs,
|
|
105
|
+
) -> None:
|
|
106
|
+
if vision_config is None:
|
|
107
|
+
vision_config = Step3VisionEncoderConfig()
|
|
108
|
+
elif isinstance(vision_config, dict):
|
|
109
|
+
vision_config = Step3VisionEncoderConfig(**vision_config)
|
|
110
|
+
self.vision_config = vision_config
|
|
111
|
+
|
|
112
|
+
if text_config is None:
|
|
113
|
+
text_config = Step3TextConfig()
|
|
114
|
+
elif isinstance(text_config, dict):
|
|
115
|
+
text_config = Step3TextConfig(**text_config)
|
|
116
|
+
self.text_config = text_config
|
|
117
|
+
|
|
118
|
+
self.understand_projector_stride = understand_projector_stride
|
|
119
|
+
self.projector_bias = projector_bias
|
|
120
|
+
self.hidden_size = text_config.hidden_size
|
|
121
|
+
self.image_token_id = image_token_id
|
|
122
|
+
|
|
123
|
+
super().__init__(**kwargs)
|
|
@@ -0,0 +1,120 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
# Adapted from https://github.com/fixie-ai/ultravox/blob/ecd58c4041030bae2ad15aa6bcf04ab43199ea02/ultravox/model/ultravox_config.py
|
|
5
|
+
from typing import Any, Optional
|
|
6
|
+
|
|
7
|
+
import transformers
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class UltravoxConfig(transformers.PretrainedConfig):
|
|
11
|
+
r"""
|
|
12
|
+
This is the configuration class to store the configuration of a
|
|
13
|
+
[`UltravoxForConditionalGeneration`]. It is used to instantiate an
|
|
14
|
+
Ultravox model according to the specified arguments, defining the model
|
|
15
|
+
architecture.
|
|
16
|
+
|
|
17
|
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to
|
|
18
|
+
control the model outputs. Read the documentation from [`PretrainedConfig`]
|
|
19
|
+
for more information.
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
audio_config (`Union[AutoConfig, dict]`, *optional*):
|
|
23
|
+
Custom audio config or dict.
|
|
24
|
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
|
25
|
+
The config object of the text backbone.
|
|
26
|
+
audio_model_id (`str`, *optional*):
|
|
27
|
+
The model ID of the audio backbone.
|
|
28
|
+
text_model_id (`str`, *optional*):
|
|
29
|
+
The model ID of the text backbone.
|
|
30
|
+
ignore_index (`int`, *optional*, defaults to -100):
|
|
31
|
+
The ignore index for the loss function.
|
|
32
|
+
audio_token_index (`int`, *optional*, defaults to 32000):
|
|
33
|
+
The audio token index to encode the audio prompt.
|
|
34
|
+
stack_factor (`int`, *optional*, defaults to 8):
|
|
35
|
+
Audio downsampling factor for the multimodal projector.
|
|
36
|
+
norm_init (`float`, *optional*, defaults to 0.4):
|
|
37
|
+
The initialization value for the layer normalization.
|
|
38
|
+
projector_act (`str`, *optional*, defaults to `"swiglu"`):
|
|
39
|
+
The activation function used by the multimodal projector.
|
|
40
|
+
text_model_lora_config (`LoraConfigSimplified`, *optional*):
|
|
41
|
+
The LoRA configuration for finetuning the text model.
|
|
42
|
+
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
|
43
|
+
The LoRA configuration for finetuning the audio model.
|
|
44
|
+
projector_ln_mid (`bool`, *optional*, defaults to `False`):
|
|
45
|
+
Whether to apply layer normalization at the middle of the
|
|
46
|
+
projector or at the end. Versions v0.4.1 and below
|
|
47
|
+
use `False`, but v0.5 and above use `True`.
|
|
48
|
+
"""
|
|
49
|
+
wrapped_model_config: transformers.PretrainedConfig
|
|
50
|
+
model_type = "ultravox"
|
|
51
|
+
audio_token = "<|audio|>"
|
|
52
|
+
is_composition = False
|
|
53
|
+
|
|
54
|
+
def __init__(
|
|
55
|
+
self,
|
|
56
|
+
audio_config: Optional[dict[str, Any]] = None,
|
|
57
|
+
text_config: Optional[dict[str, Any]] = None,
|
|
58
|
+
audio_model_id: Optional[str] = None,
|
|
59
|
+
text_model_id: Optional[str] = None,
|
|
60
|
+
ignore_index: int = -100,
|
|
61
|
+
audio_token_index: int = 32000,
|
|
62
|
+
hidden_size: int = 4096,
|
|
63
|
+
stack_factor: int = 8,
|
|
64
|
+
norm_init: float = 0.4,
|
|
65
|
+
projector_act: str = "swiglu",
|
|
66
|
+
projector_ln_mid: bool = False,
|
|
67
|
+
**kwargs,
|
|
68
|
+
):
|
|
69
|
+
self.ignore_index = ignore_index
|
|
70
|
+
self.audio_token_index = audio_token_index
|
|
71
|
+
|
|
72
|
+
self.hidden_size = hidden_size
|
|
73
|
+
self.stack_factor = stack_factor
|
|
74
|
+
self.norm_init = norm_init
|
|
75
|
+
self.projector_act = projector_act
|
|
76
|
+
self.projector_ln_mid = projector_ln_mid
|
|
77
|
+
|
|
78
|
+
# N.B. May set the wrapped_model_config below.
|
|
79
|
+
self.text_model_id = text_model_id
|
|
80
|
+
if text_model_id is None:
|
|
81
|
+
text_config = text_config or {}
|
|
82
|
+
self.wrapped_model_config = transformers.CONFIG_MAPPING[
|
|
83
|
+
text_config.get("model_type", "llama")](**text_config)
|
|
84
|
+
|
|
85
|
+
# N.B. May set the audio_config below.
|
|
86
|
+
self.audio_model_id = audio_model_id
|
|
87
|
+
if audio_model_id is None:
|
|
88
|
+
self.audio_model_id = None
|
|
89
|
+
audio_config = audio_config or {}
|
|
90
|
+
self.audio_config = transformers.CONFIG_MAPPING[audio_config.get(
|
|
91
|
+
"model_type", "whisper")](**audio_config)
|
|
92
|
+
|
|
93
|
+
super().__init__(**kwargs)
|
|
94
|
+
|
|
95
|
+
def __setattr__(self, key, value):
|
|
96
|
+
# Since --hf-overrides are applied _after_ the UltravoxConfig is
|
|
97
|
+
# instantiated, load the configs implicitly when assigning text_model_id
|
|
98
|
+
# or audio_model_id. This allows:
|
|
99
|
+
#
|
|
100
|
+
# --hf-overrides.text_model_id=<quantized variant>
|
|
101
|
+
#
|
|
102
|
+
# to behave as intended.
|
|
103
|
+
if key == "text_model_id" and value is not None:
|
|
104
|
+
from vllm.transformers_utils.config import get_config
|
|
105
|
+
|
|
106
|
+
self.wrapped_model_config = get_config(value,
|
|
107
|
+
trust_remote_code=False)
|
|
108
|
+
elif key == "audio_model_id" and value is not None:
|
|
109
|
+
from vllm.transformers_utils.config import get_config
|
|
110
|
+
|
|
111
|
+
self.audio_config = get_config(value, trust_remote_code=False)
|
|
112
|
+
|
|
113
|
+
return super().__setattr__(key, value)
|
|
114
|
+
|
|
115
|
+
@property
|
|
116
|
+
def text_config(self) -> transformers.PretrainedConfig:
|
|
117
|
+
# When Ultravox wraps a multi-modal model (e.g. Gemma), we instantiate
|
|
118
|
+
# the full model, but the text config is the text config of the inner
|
|
119
|
+
# model.
|
|
120
|
+
return self.wrapped_model_config.get_text_config()
|
|
@@ -0,0 +1,169 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from typing import Optional
|
|
5
|
+
|
|
6
|
+
from vllm.logprobs import Logprob
|
|
7
|
+
from vllm.sequence import (VLLM_INVALID_TOKEN_ID, SamplingParams, Sequence,
|
|
8
|
+
SequenceGroup)
|
|
9
|
+
|
|
10
|
+
from .detokenizer_utils import (convert_prompt_ids_to_tokens,
|
|
11
|
+
detokenize_incrementally)
|
|
12
|
+
from .tokenizer import AnyTokenizer
|
|
13
|
+
from .tokenizer_group import TokenizerGroup
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class Detokenizer:
|
|
17
|
+
"""Provides methods to decode the output of a model into text."""
|
|
18
|
+
|
|
19
|
+
def __init__(self, tokenizer_group: TokenizerGroup):
|
|
20
|
+
self.tokenizer_group = tokenizer_group
|
|
21
|
+
|
|
22
|
+
def get_tokenizer_for_seq(self, sequence: Sequence) -> AnyTokenizer:
|
|
23
|
+
"""Returns the HF tokenizer to use for a given sequence."""
|
|
24
|
+
return self.tokenizer_group.get_lora_tokenizer(sequence.lora_request)
|
|
25
|
+
|
|
26
|
+
def decode_prompt_logprobs_inplace(self, seq_group: SequenceGroup,
|
|
27
|
+
prompt_logprobs: list[Optional[dict[
|
|
28
|
+
int, Logprob]]],
|
|
29
|
+
position_offset: int) -> None:
|
|
30
|
+
"""Decodes the logprobs for the prompt of a sequence group.
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
seq_group: The sequence group to decode.
|
|
34
|
+
prompt_logprobs: The logprobs to decode.
|
|
35
|
+
position_offset: Offset of the first index of the logprobs
|
|
36
|
+
relative to the start of the sequence (for chunked prefill).
|
|
37
|
+
|
|
38
|
+
Returns:
|
|
39
|
+
The prompt logprobs with the decoded tokens.
|
|
40
|
+
"""
|
|
41
|
+
prms = seq_group.sampling_params
|
|
42
|
+
assert prms is not None
|
|
43
|
+
|
|
44
|
+
# We can pick any sequence for the prompt.
|
|
45
|
+
seq = seq_group.get_seqs()[0]
|
|
46
|
+
# Only prompt, without the generated token.
|
|
47
|
+
all_token_ids = seq.get_token_ids()
|
|
48
|
+
prompt_token_ids = all_token_ids[:-1]
|
|
49
|
+
tokenizer = self.get_tokenizer_for_seq(seq)
|
|
50
|
+
prefix_offset = 0
|
|
51
|
+
read_offset = 0
|
|
52
|
+
next_iter_prefix_offset = 0
|
|
53
|
+
next_iter_read_offset = 0
|
|
54
|
+
next_iter_tokens: list[str] = []
|
|
55
|
+
prev_tokens = None
|
|
56
|
+
|
|
57
|
+
for token_position_in_logprob, prompt_logprobs_for_token in enumerate(
|
|
58
|
+
prompt_logprobs):
|
|
59
|
+
|
|
60
|
+
# Absolute token position equals the index in the logprobs
|
|
61
|
+
# list plus the offset of the entire logprobs list relative
|
|
62
|
+
# to the start of the sequence.
|
|
63
|
+
token_position = token_position_in_logprob + position_offset
|
|
64
|
+
if not prompt_logprobs_for_token:
|
|
65
|
+
continue
|
|
66
|
+
for token_id, sample_logprob in prompt_logprobs_for_token.items():
|
|
67
|
+
if (sample_logprob.decoded_token is None
|
|
68
|
+
and token_id != VLLM_INVALID_TOKEN_ID):
|
|
69
|
+
prompt_token_ids_with_token = (
|
|
70
|
+
prompt_token_ids[:token_position] + [token_id])
|
|
71
|
+
(new_tokens, new_text, new_prefix_offset,
|
|
72
|
+
new_read_offset) = detokenize_incrementally(
|
|
73
|
+
tokenizer=tokenizer,
|
|
74
|
+
all_input_ids=prompt_token_ids_with_token,
|
|
75
|
+
prev_tokens=prev_tokens,
|
|
76
|
+
prefix_offset=prefix_offset,
|
|
77
|
+
read_offset=read_offset,
|
|
78
|
+
skip_special_tokens=prms.skip_special_tokens,
|
|
79
|
+
spaces_between_special_tokens=prms.
|
|
80
|
+
spaces_between_special_tokens,
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
sample_logprob.decoded_token = new_text
|
|
84
|
+
|
|
85
|
+
# Use the offsets & prev tokens corresponding to
|
|
86
|
+
# real tokens to ensure detokenization is consistent
|
|
87
|
+
# actual with prompt.
|
|
88
|
+
if token_id == all_token_ids[token_position]:
|
|
89
|
+
next_iter_prefix_offset = new_prefix_offset
|
|
90
|
+
next_iter_read_offset = new_read_offset
|
|
91
|
+
next_iter_tokens = new_tokens
|
|
92
|
+
|
|
93
|
+
# Advance to the next token position.
|
|
94
|
+
prefix_offset = next_iter_prefix_offset
|
|
95
|
+
read_offset = next_iter_read_offset
|
|
96
|
+
if prev_tokens is None:
|
|
97
|
+
prev_tokens = next_iter_tokens.copy()
|
|
98
|
+
else:
|
|
99
|
+
prev_tokens.extend(next_iter_tokens)
|
|
100
|
+
|
|
101
|
+
def decode_sequence_inplace(self, seq: Sequence,
|
|
102
|
+
prms: SamplingParams) -> int:
|
|
103
|
+
"""Decodes the new token for a sequence. In-place operation.
|
|
104
|
+
|
|
105
|
+
Args:
|
|
106
|
+
seq: The sequence to decode.
|
|
107
|
+
prms: The sampling parameters used to generate the sequence.
|
|
108
|
+
|
|
109
|
+
Returns:
|
|
110
|
+
The number of characters added to the output text.
|
|
111
|
+
"""
|
|
112
|
+
all_input_ids = seq.get_token_ids()
|
|
113
|
+
token_id_generated_this_iteration = all_input_ids[-1]
|
|
114
|
+
tokenizer = self.get_tokenizer_for_seq(seq)
|
|
115
|
+
|
|
116
|
+
# Convert prompt token IDs to tokens if necessary.
|
|
117
|
+
# Do it here so that we don't have to repeat this
|
|
118
|
+
# computation for each logprob.
|
|
119
|
+
if seq.tokens is None:
|
|
120
|
+
(seq.tokens, seq.prefix_offset,
|
|
121
|
+
seq.read_offset) = convert_prompt_ids_to_tokens(
|
|
122
|
+
tokenizer=tokenizer,
|
|
123
|
+
prompt_ids=all_input_ids[:-1],
|
|
124
|
+
skip_special_tokens=prms.skip_special_tokens,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
(new_tokens, new_decoded_token_text, prefix_offset,
|
|
128
|
+
read_offset) = detokenize_incrementally(
|
|
129
|
+
tokenizer=tokenizer,
|
|
130
|
+
all_input_ids=all_input_ids,
|
|
131
|
+
prev_tokens=seq.tokens,
|
|
132
|
+
prefix_offset=seq.prefix_offset,
|
|
133
|
+
read_offset=seq.read_offset,
|
|
134
|
+
skip_special_tokens=prms.skip_special_tokens,
|
|
135
|
+
spaces_between_special_tokens=prms.spaces_between_special_tokens,
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
# Decode logprobs
|
|
139
|
+
logprobs = seq.output_logprobs[-1]
|
|
140
|
+
if logprobs:
|
|
141
|
+
previous_tokens = all_input_ids[:-1]
|
|
142
|
+
for token_id, sample_logprob in logprobs.items():
|
|
143
|
+
# If the token was generated this iteration,
|
|
144
|
+
# use the provided text.
|
|
145
|
+
if token_id == token_id_generated_this_iteration:
|
|
146
|
+
sample_logprob.decoded_token = new_decoded_token_text
|
|
147
|
+
continue
|
|
148
|
+
|
|
149
|
+
if (sample_logprob.decoded_token is None
|
|
150
|
+
and token_id != VLLM_INVALID_TOKEN_ID):
|
|
151
|
+
all_input_ids_with_logprob = previous_tokens + [token_id]
|
|
152
|
+
(_, new_text, _, _) = detokenize_incrementally(
|
|
153
|
+
tokenizer=tokenizer,
|
|
154
|
+
all_input_ids=all_input_ids_with_logprob,
|
|
155
|
+
prev_tokens=seq.tokens,
|
|
156
|
+
prefix_offset=seq.prefix_offset,
|
|
157
|
+
read_offset=seq.read_offset,
|
|
158
|
+
skip_special_tokens=prms.skip_special_tokens,
|
|
159
|
+
spaces_between_special_tokens=prms.
|
|
160
|
+
spaces_between_special_tokens,
|
|
161
|
+
)
|
|
162
|
+
sample_logprob.decoded_token = new_text
|
|
163
|
+
|
|
164
|
+
seq.tokens.extend(new_tokens)
|
|
165
|
+
seq.prefix_offset = prefix_offset
|
|
166
|
+
seq.read_offset = read_offset
|
|
167
|
+
seq.output_text += new_decoded_token_text
|
|
168
|
+
|
|
169
|
+
return len(new_decoded_token_text)
|
|
@@ -0,0 +1,199 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from typing import Optional
|
|
5
|
+
|
|
6
|
+
from .tokenizer import AnyTokenizer
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def _replace_none_with_empty(tokens: list[Optional[str]]):
|
|
10
|
+
for i, token in enumerate(tokens):
|
|
11
|
+
if token is None:
|
|
12
|
+
tokens[i] = ""
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def _convert_tokens_to_string_with_added_encoders(
|
|
16
|
+
tokenizer: AnyTokenizer,
|
|
17
|
+
output_tokens: list[str],
|
|
18
|
+
skip_special_tokens: bool,
|
|
19
|
+
spaces_between_special_tokens: bool,
|
|
20
|
+
) -> str:
|
|
21
|
+
# Adapted from
|
|
22
|
+
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
|
|
23
|
+
# NOTE(woosuk): The following code is slow because it runs a for loop over
|
|
24
|
+
# the output_tokens. In Python, running a for loop over a list can be slow
|
|
25
|
+
# even when the loop body is very simple.
|
|
26
|
+
# Performance improvements: avoid repeated attribute and function lookups;
|
|
27
|
+
# localize frequently used objects;
|
|
28
|
+
|
|
29
|
+
sub_texts: list[str] = []
|
|
30
|
+
current_sub_text: list[str] = []
|
|
31
|
+
convert_tokens_to_string = tokenizer.convert_tokens_to_string
|
|
32
|
+
added_vocab_set = set(tokenizer.get_added_vocab())
|
|
33
|
+
all_special_tokens = set(
|
|
34
|
+
tokenizer.all_special_tokens) if skip_special_tokens else ()
|
|
35
|
+
|
|
36
|
+
for token in output_tokens:
|
|
37
|
+
# Use precomputed set for skip-special check
|
|
38
|
+
if token in all_special_tokens:
|
|
39
|
+
continue
|
|
40
|
+
if token in added_vocab_set:
|
|
41
|
+
if current_sub_text:
|
|
42
|
+
sub_texts.append(convert_tokens_to_string(current_sub_text))
|
|
43
|
+
current_sub_text.clear()
|
|
44
|
+
sub_texts.append(token)
|
|
45
|
+
else:
|
|
46
|
+
current_sub_text.append(token)
|
|
47
|
+
if current_sub_text:
|
|
48
|
+
sub_texts.append(convert_tokens_to_string(current_sub_text))
|
|
49
|
+
if spaces_between_special_tokens:
|
|
50
|
+
return " ".join(sub_texts)
|
|
51
|
+
return "".join(sub_texts)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
# 5 is an arbitrary value that should work for all
|
|
55
|
+
# tokenizers (bigger = more conservative).
|
|
56
|
+
INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET = 5
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def convert_prompt_ids_to_tokens(
|
|
60
|
+
tokenizer: AnyTokenizer,
|
|
61
|
+
prompt_ids: list[int],
|
|
62
|
+
skip_special_tokens: bool = False,
|
|
63
|
+
) -> tuple[list[str], int, int]:
|
|
64
|
+
"""Converts the prompt ids to tokens and returns the tokens and offsets
|
|
65
|
+
for incremental detokenization.
|
|
66
|
+
|
|
67
|
+
Note that not all tokens are converted to strings. Only the tokens that
|
|
68
|
+
are necessary for incremental detokenization are converted to strings.
|
|
69
|
+
"""
|
|
70
|
+
# We do not need to convert the whole prompt to tokens.
|
|
71
|
+
# Offset a little more in case we have special tokens.
|
|
72
|
+
new_tokens = tokenizer.convert_ids_to_tokens(
|
|
73
|
+
prompt_ids[-INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET - 2:],
|
|
74
|
+
skip_special_tokens=skip_special_tokens)
|
|
75
|
+
read_offset = len(new_tokens)
|
|
76
|
+
prefix_offset = max(
|
|
77
|
+
read_offset - INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET, 0)
|
|
78
|
+
# This is required to guard against out-of-vocab prompt token ids
|
|
79
|
+
_replace_none_with_empty(new_tokens) # type: ignore[arg-type]
|
|
80
|
+
return new_tokens, prefix_offset, read_offset
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def convert_ids_list_to_tokens(
|
|
84
|
+
tokenizer: AnyTokenizer,
|
|
85
|
+
token_ids: list[int],
|
|
86
|
+
) -> list[str]:
|
|
87
|
+
"""Detokenize the input ids individually.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
tokenizer: tokenizer used by model under test
|
|
91
|
+
token_ids: convert these tokens (Python list form)
|
|
92
|
+
|
|
93
|
+
Returns:
|
|
94
|
+
Python list of token string representations
|
|
95
|
+
|
|
96
|
+
"""
|
|
97
|
+
token_str_lst = []
|
|
98
|
+
for token_id in token_ids:
|
|
99
|
+
# use default skip_special_tokens.
|
|
100
|
+
token_str = tokenizer.decode([token_id])
|
|
101
|
+
if token_str is None:
|
|
102
|
+
token_str = ""
|
|
103
|
+
token_str_lst.append(token_str)
|
|
104
|
+
return token_str_lst
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
# Based on
|
|
108
|
+
# https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15
|
|
109
|
+
# under Apache 2.0 license
|
|
110
|
+
def detokenize_incrementally(
|
|
111
|
+
tokenizer: AnyTokenizer,
|
|
112
|
+
all_input_ids: list[int],
|
|
113
|
+
prev_tokens: Optional[list[str]],
|
|
114
|
+
prefix_offset: int,
|
|
115
|
+
read_offset: int,
|
|
116
|
+
skip_special_tokens: bool = False,
|
|
117
|
+
spaces_between_special_tokens: bool = True,
|
|
118
|
+
) -> tuple[list[str], str, int, int]:
|
|
119
|
+
"""Detokenizes the input ids incrementally and returns the new tokens
|
|
120
|
+
and the new text.
|
|
121
|
+
|
|
122
|
+
If `prev_tokens` is None, this function will convert the input ids to
|
|
123
|
+
tokens and return the tokens and the new text. Otherwise, it will return the
|
|
124
|
+
new tokens and the new text.
|
|
125
|
+
|
|
126
|
+
This function will also return the new prefix offset and the new read
|
|
127
|
+
offset to be used in the next iteration.
|
|
128
|
+
|
|
129
|
+
The offsets are necessary to defeat cleanup algorithms in the decode which
|
|
130
|
+
decide to add a space or not depending on the surrounding ids.
|
|
131
|
+
|
|
132
|
+
Args:
|
|
133
|
+
tokenizer: The tokenizer to use.
|
|
134
|
+
all_input_ids: The input ids. The last id is the new token id.
|
|
135
|
+
prev_tokens: The previous tokens. If None, this function will convert
|
|
136
|
+
the input ids to tokens and return the tokens and the new text.
|
|
137
|
+
prefix_offset: The prefix offset.
|
|
138
|
+
read_offset: The read offset.
|
|
139
|
+
skip_special_tokens: Whether to skip special tokens.
|
|
140
|
+
spaces_between_special_tokens: Whether to add spaces between special
|
|
141
|
+
tokens.
|
|
142
|
+
"""
|
|
143
|
+
new_token_id = all_input_ids[-1]
|
|
144
|
+
# This is the first iteration for this sequence
|
|
145
|
+
is_first_iter = prev_tokens is None
|
|
146
|
+
if is_first_iter:
|
|
147
|
+
(prev_tokens, prefix_offset,
|
|
148
|
+
read_offset) = convert_prompt_ids_to_tokens(
|
|
149
|
+
tokenizer,
|
|
150
|
+
all_input_ids[:-1],
|
|
151
|
+
skip_special_tokens=skip_special_tokens)
|
|
152
|
+
assert prev_tokens is not None
|
|
153
|
+
|
|
154
|
+
# If the new token id is out of bounds, return an empty string.
|
|
155
|
+
if 0 <= new_token_id < len(tokenizer):
|
|
156
|
+
# Put new_token_id in a list so skip_special_tokens is respected
|
|
157
|
+
new_tokens = tokenizer.convert_ids_to_tokens(
|
|
158
|
+
[new_token_id], skip_special_tokens=skip_special_tokens)
|
|
159
|
+
if isinstance(new_tokens, str):
|
|
160
|
+
new_tokens = [new_tokens]
|
|
161
|
+
else:
|
|
162
|
+
new_tokens = [""]
|
|
163
|
+
output_tokens = prev_tokens + new_tokens
|
|
164
|
+
|
|
165
|
+
# If this is the first iteration, return all tokens.
|
|
166
|
+
if is_first_iter:
|
|
167
|
+
new_tokens = output_tokens
|
|
168
|
+
|
|
169
|
+
# The prefix text is necessary only to defeat cleanup algorithms in
|
|
170
|
+
# the decode which decide to add a space or not depending on the
|
|
171
|
+
# surrounding ids.
|
|
172
|
+
if tokenizer.is_fast or not tokenizer.get_added_vocab():
|
|
173
|
+
prefix_text = tokenizer.convert_tokens_to_string(
|
|
174
|
+
output_tokens[prefix_offset:read_offset])
|
|
175
|
+
new_text = tokenizer.convert_tokens_to_string(
|
|
176
|
+
output_tokens[prefix_offset:])
|
|
177
|
+
else:
|
|
178
|
+
prefix_text = _convert_tokens_to_string_with_added_encoders(
|
|
179
|
+
tokenizer,
|
|
180
|
+
output_tokens[prefix_offset:read_offset],
|
|
181
|
+
skip_special_tokens=skip_special_tokens,
|
|
182
|
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
|
183
|
+
)
|
|
184
|
+
new_text = _convert_tokens_to_string_with_added_encoders(
|
|
185
|
+
tokenizer,
|
|
186
|
+
output_tokens[prefix_offset:],
|
|
187
|
+
skip_special_tokens=skip_special_tokens,
|
|
188
|
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
if len(new_text) <= len(prefix_text) or new_text.endswith("�"):
|
|
192
|
+
# utf-8 char at the end means it's a potential unfinished byte sequence
|
|
193
|
+
# from byte fallback tokenization.
|
|
194
|
+
# If it's in the middle, it's probably a real invalid id generated
|
|
195
|
+
# by the model
|
|
196
|
+
return new_tokens, "", prefix_offset, read_offset
|
|
197
|
+
|
|
198
|
+
new_text = new_text[len(prefix_text):]
|
|
199
|
+
return new_tokens, new_text, read_offset, len(output_tokens)
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
import os
|
|
4
|
+
from typing import Optional, Union
|
|
5
|
+
|
|
6
|
+
from transformers.dynamic_module_utils import get_class_from_dynamic_module
|
|
7
|
+
|
|
8
|
+
import vllm.envs as envs
|
|
9
|
+
from vllm.logger import init_logger
|
|
10
|
+
|
|
11
|
+
logger = init_logger(__name__)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def try_get_class_from_dynamic_module(
|
|
15
|
+
class_reference: str,
|
|
16
|
+
pretrained_model_name_or_path: str,
|
|
17
|
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
|
18
|
+
force_download: bool = False,
|
|
19
|
+
resume_download: Optional[bool] = None,
|
|
20
|
+
proxies: Optional[dict[str, str]] = None,
|
|
21
|
+
token: Optional[Union[bool, str]] = None,
|
|
22
|
+
revision: Optional[str] = None,
|
|
23
|
+
local_files_only: bool = False,
|
|
24
|
+
repo_type: Optional[str] = None,
|
|
25
|
+
code_revision: Optional[str] = None,
|
|
26
|
+
warn_on_fail: bool = True,
|
|
27
|
+
**kwargs,
|
|
28
|
+
) -> Optional[type]:
|
|
29
|
+
"""
|
|
30
|
+
As [transformers.dynamic_module_utils.get_class_from_dynamic_module][],
|
|
31
|
+
but ignoring any errors.
|
|
32
|
+
"""
|
|
33
|
+
try:
|
|
34
|
+
return get_class_from_dynamic_module(
|
|
35
|
+
class_reference,
|
|
36
|
+
pretrained_model_name_or_path,
|
|
37
|
+
cache_dir=cache_dir,
|
|
38
|
+
force_download=force_download,
|
|
39
|
+
resume_download=resume_download,
|
|
40
|
+
proxies=proxies,
|
|
41
|
+
token=token,
|
|
42
|
+
revision=revision,
|
|
43
|
+
local_files_only=local_files_only,
|
|
44
|
+
repo_type=repo_type,
|
|
45
|
+
code_revision=code_revision,
|
|
46
|
+
**kwargs,
|
|
47
|
+
)
|
|
48
|
+
except Exception:
|
|
49
|
+
location = "ModelScope" if envs.VLLM_USE_MODELSCOPE else "HF Hub"
|
|
50
|
+
|
|
51
|
+
if warn_on_fail:
|
|
52
|
+
logger.warning(
|
|
53
|
+
"Unable to load %s from %s on %s.",
|
|
54
|
+
class_reference,
|
|
55
|
+
pretrained_model_name_or_path,
|
|
56
|
+
location,
|
|
57
|
+
exc_info=True,
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
return None
|