vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py ADDED
@@ -0,0 +1,2022 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import contextlib
5
+ from typing import TYPE_CHECKING, Optional, Union
6
+
7
+ import torch
8
+
9
+ import vllm.envs as envs
10
+ from vllm.logger import init_logger
11
+ from vllm.platforms import current_platform
12
+ from vllm.scalar_type import ScalarType
13
+
14
+ logger = init_logger(__name__)
15
+
16
+ if not current_platform.is_tpu() and not current_platform.is_xpu():
17
+ try:
18
+ import vllm._C
19
+ except ImportError as e:
20
+ logger.warning("Failed to import from vllm._C with %r", e)
21
+
22
+ supports_moe_ops = False
23
+ with contextlib.suppress(ImportError):
24
+ import vllm._moe_C # noqa: F401
25
+ supports_moe_ops = True
26
+
27
+ if TYPE_CHECKING:
28
+
29
+ def register_fake(fn):
30
+ return lambda name: fn
31
+ else:
32
+ try:
33
+ from torch.library import register_fake
34
+ except ImportError:
35
+ from torch.library import impl_abstract as register_fake
36
+
37
+
38
+ # page attention ops
39
+ def paged_attention_v1(
40
+ out: torch.Tensor,
41
+ query: torch.Tensor,
42
+ key_cache: torch.Tensor,
43
+ value_cache: torch.Tensor,
44
+ num_kv_heads: int,
45
+ scale: float,
46
+ block_tables: torch.Tensor,
47
+ seq_lens: torch.Tensor,
48
+ block_size: int,
49
+ max_seq_len: int,
50
+ alibi_slopes: Optional[torch.Tensor],
51
+ kv_cache_dtype: str,
52
+ k_scale: torch.Tensor,
53
+ v_scale: torch.Tensor,
54
+ tp_rank: int = 0,
55
+ blocksparse_local_blocks: int = 0,
56
+ blocksparse_vert_stride: int = 0,
57
+ blocksparse_block_size: int = 64,
58
+ blocksparse_head_sliding_step: int = 0,
59
+ ) -> None:
60
+ torch.ops._C.paged_attention_v1(
61
+ out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
62
+ seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
63
+ k_scale, v_scale, tp_rank, blocksparse_local_blocks,
64
+ blocksparse_vert_stride, blocksparse_block_size,
65
+ blocksparse_head_sliding_step)
66
+
67
+
68
+ def paged_attention_v2(
69
+ out: torch.Tensor,
70
+ exp_sum: torch.Tensor,
71
+ max_logits: torch.Tensor,
72
+ tmp_out: torch.Tensor,
73
+ query: torch.Tensor,
74
+ key_cache: torch.Tensor,
75
+ value_cache: torch.Tensor,
76
+ num_kv_heads: int,
77
+ scale: float,
78
+ block_tables: torch.Tensor,
79
+ seq_lens: torch.Tensor,
80
+ block_size: int,
81
+ max_seq_len: int,
82
+ alibi_slopes: Optional[torch.Tensor],
83
+ kv_cache_dtype: str,
84
+ k_scale: torch.Tensor,
85
+ v_scale: torch.Tensor,
86
+ tp_rank: int = 0,
87
+ blocksparse_local_blocks: int = 0,
88
+ blocksparse_vert_stride: int = 0,
89
+ blocksparse_block_size: int = 64,
90
+ blocksparse_head_sliding_step: int = 0,
91
+ ) -> None:
92
+ torch.ops._C.paged_attention_v2(
93
+ out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
94
+ num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
95
+ alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
96
+ blocksparse_local_blocks, blocksparse_vert_stride,
97
+ blocksparse_block_size, blocksparse_head_sliding_step)
98
+
99
+
100
+ def paged_attention_rocm(
101
+ out: torch.Tensor,
102
+ exp_sum: torch.Tensor,
103
+ max_logits: torch.Tensor,
104
+ tmp_out: torch.Tensor,
105
+ query: torch.Tensor,
106
+ key_cache: torch.Tensor,
107
+ value_cache: torch.Tensor,
108
+ num_kv_heads: int,
109
+ scale: float,
110
+ block_tables: torch.Tensor,
111
+ seq_lens: torch.Tensor,
112
+ query_start_loc: Optional[torch.Tensor],
113
+ block_size: int,
114
+ max_seq_len: int,
115
+ alibi_slopes: Optional[torch.Tensor],
116
+ kv_cache_dtype: str,
117
+ k_scale: torch.Tensor,
118
+ v_scale: torch.Tensor,
119
+ fp8_out_scale: Optional[torch.Tensor] = None,
120
+ ) -> None:
121
+ torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
122
+ key_cache, value_cache, num_kv_heads,
123
+ scale, block_tables, seq_lens,
124
+ query_start_loc, block_size, max_seq_len,
125
+ alibi_slopes, kv_cache_dtype, k_scale,
126
+ v_scale, fp8_out_scale)
127
+
128
+
129
+ def mla_decode_kvcache_cpu(
130
+ out: torch.Tensor,
131
+ query: torch.Tensor,
132
+ kv_cache: torch.Tensor,
133
+ scale: float,
134
+ block_tables: torch.Tensor,
135
+ seq_lens: torch.Tensor,
136
+ ) -> None:
137
+ torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
138
+ block_tables, seq_lens)
139
+
140
+
141
+ # merge attn states ops
142
+ def merge_attn_states(output: torch.Tensor,
143
+ prefix_output: torch.Tensor,
144
+ prefix_lse: torch.Tensor,
145
+ suffix_output: torch.Tensor,
146
+ suffix_lse: torch.Tensor,
147
+ output_lse: Optional[torch.Tensor] = None) -> None:
148
+ torch.ops._C.merge_attn_states(output, output_lse, prefix_output,
149
+ prefix_lse, suffix_output, suffix_lse)
150
+
151
+
152
+ def convert_vertical_slash_indexes(
153
+ q_seqlens: torch.Tensor, # [BATCH, ]
154
+ kv_seqlens: torch.Tensor, # [BATCH, ]
155
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
156
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
157
+ context_size: int,
158
+ block_size_M: int,
159
+ block_size_N: int,
160
+ causal: bool = True,
161
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
162
+ batch_size = slash_indexes.size(0)
163
+ num_heads = slash_indexes.size(1)
164
+ nnz_slash = slash_indexes.size(2)
165
+ nnz_vertical = vertical_indexes.size(2)
166
+ num_rows = (context_size + block_size_M - 1) // block_size_M
167
+
168
+ block_count = torch.zeros(batch_size,
169
+ num_heads,
170
+ num_rows,
171
+ dtype=q_seqlens.dtype,
172
+ device=q_seqlens.device)
173
+ block_offset = torch.zeros(batch_size,
174
+ num_heads,
175
+ num_rows,
176
+ nnz_slash,
177
+ dtype=q_seqlens.dtype,
178
+ device=q_seqlens.device)
179
+ column_count = torch.zeros(batch_size,
180
+ num_heads,
181
+ num_rows,
182
+ dtype=q_seqlens.dtype,
183
+ device=q_seqlens.device)
184
+ column_index = torch.zeros(batch_size,
185
+ num_heads,
186
+ num_rows,
187
+ nnz_vertical,
188
+ dtype=q_seqlens.dtype,
189
+ device=q_seqlens.device)
190
+
191
+ torch.ops._C.convert_vertical_slash_indexes(
192
+ block_count, block_offset, column_count, column_index, q_seqlens,
193
+ kv_seqlens, vertical_indexes, slash_indexes, context_size,
194
+ block_size_M, block_size_N, causal)
195
+ return block_count, block_offset, column_count, column_index
196
+
197
+
198
+ def convert_vertical_slash_indexes_mergehead(
199
+ q_seqlens: torch.Tensor, # [BATCH, ]
200
+ kv_seqlens: torch.Tensor, # [BATCH, ]
201
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
202
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
203
+ # [N_HEADS] : different head use different number of indices
204
+ vertical_indices_count: torch.Tensor,
205
+ slash_indices_count: torch.Tensor,
206
+ context_size: int,
207
+ block_size_M: int,
208
+ block_size_N: int,
209
+ causal: bool = True,
210
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
211
+ batch_size = slash_indexes.size(0)
212
+ num_heads = slash_indexes.size(1)
213
+ nnz_slash = slash_indexes.size(2)
214
+ nnz_vertical = vertical_indexes.size(2)
215
+ num_rows = (context_size + block_size_M - 1) // block_size_M
216
+
217
+ block_count = torch.empty(batch_size,
218
+ num_heads,
219
+ num_rows,
220
+ dtype=q_seqlens.dtype,
221
+ device=q_seqlens.device)
222
+ block_offset = torch.empty(batch_size,
223
+ num_heads,
224
+ num_rows,
225
+ nnz_slash,
226
+ dtype=q_seqlens.dtype,
227
+ device=q_seqlens.device)
228
+ column_count = torch.empty(batch_size,
229
+ num_heads,
230
+ num_rows,
231
+ dtype=q_seqlens.dtype,
232
+ device=q_seqlens.device)
233
+ column_index = torch.empty(batch_size,
234
+ num_heads,
235
+ num_rows,
236
+ nnz_vertical,
237
+ dtype=q_seqlens.dtype,
238
+ device=q_seqlens.device)
239
+
240
+ torch.ops._C.convert_vertical_slash_indexes_mergehead(
241
+ block_count, block_offset, column_count, column_index, q_seqlens,
242
+ kv_seqlens, vertical_indexes, slash_indexes, vertical_indices_count,
243
+ slash_indices_count, context_size, block_size_M, block_size_N, causal)
244
+ return block_count, block_offset, column_count, column_index
245
+
246
+
247
+ # pos encoding ops
248
+ def rotary_embedding(
249
+ positions: torch.Tensor,
250
+ query: torch.Tensor,
251
+ key: Optional[torch.Tensor],
252
+ head_size: int,
253
+ cos_sin_cache: torch.Tensor,
254
+ is_neox: bool,
255
+ ) -> None:
256
+ torch.ops._C.rotary_embedding(positions, query, key, head_size,
257
+ cos_sin_cache, is_neox)
258
+
259
+
260
+ def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
261
+ key: Optional[torch.Tensor], head_size: int,
262
+ cos_sin_cache: torch.Tensor, is_neox: bool,
263
+ rot_dim: int,
264
+ cos_sin_cache_offsets: torch.Tensor) -> None:
265
+ torch.ops._C.batched_rotary_embedding(positions, query, key, head_size,
266
+ cos_sin_cache, is_neox, rot_dim,
267
+ cos_sin_cache_offsets)
268
+
269
+
270
+ # layer norm ops
271
+ def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
272
+ epsilon: float) -> None:
273
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
274
+ input_contiguous = input.contiguous()
275
+ torch.ops._C.rms_norm(out, input_contiguous, weight, epsilon)
276
+
277
+
278
+ def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
279
+ weight: torch.Tensor, epsilon: float) -> None:
280
+ torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
281
+
282
+
283
+ def poly_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
284
+ bias: torch.Tensor, epsilon: float) -> None:
285
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
286
+ input_contiguous = input.contiguous()
287
+ torch.ops._C.poly_norm(out, input_contiguous, weight, bias, epsilon)
288
+
289
+
290
+ def apply_repetition_penalties_torch(
291
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
292
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
293
+ repetition_penalties = repetition_penalties.unsqueeze(dim=1).repeat(
294
+ 1, logits.size(1))
295
+ # If token appears in prompt or output, apply, otherwise use 1.0 for no-op.
296
+ penalties = torch.where(prompt_mask | output_mask, repetition_penalties,
297
+ 1.0)
298
+ # If logits are positive, divide by penalty, otherwise multiply by penalty.
299
+ scaling = torch.where(logits > 0, 1.0 / penalties, penalties)
300
+ logits *= scaling
301
+
302
+
303
+ def apply_repetition_penalties_cuda(
304
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
305
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
306
+ torch.ops._C.apply_repetition_penalties_(logits, prompt_mask, output_mask,
307
+ repetition_penalties)
308
+
309
+
310
+ def apply_repetition_penalties(logits: torch.Tensor, prompt_mask: torch.Tensor,
311
+ output_mask: torch.Tensor,
312
+ repetition_penalties: torch.Tensor) -> None:
313
+ """Apply repetition penalties to logits in-place.
314
+
315
+ Args:
316
+ logits: The logits tensor of shape [num_seqs, vocab_size].
317
+ prompt_mask: A boolean tensor indicating which tokens appear in the prompt.
318
+ output_mask: A boolean tensor indicating which tokens appear in the output.
319
+ repetition_penalties: The repetition penalties of shape (num_seqs, ).
320
+ """
321
+ if logits.is_cuda and logits.is_contiguous():
322
+ apply_repetition_penalties_cuda(logits, prompt_mask, output_mask,
323
+ repetition_penalties)
324
+ else:
325
+ apply_repetition_penalties_torch(logits, prompt_mask, output_mask,
326
+ repetition_penalties)
327
+
328
+
329
+ # fused quant layer norm ops
330
+ def rms_norm_dynamic_per_token_quant(
331
+ input: torch.Tensor,
332
+ weight: torch.Tensor,
333
+ epsilon: float,
334
+ quant_dtype: torch.dtype,
335
+ scale_ub: Optional[torch.Tensor] = None,
336
+ residual: Optional[torch.Tensor] = None
337
+ ) -> tuple[torch.Tensor, torch.Tensor]:
338
+ output = torch.empty_like(input, dtype=quant_dtype)
339
+ scales = torch.empty((input.numel() // input.shape[-1], 1),
340
+ device=input.device,
341
+ dtype=torch.float32)
342
+
343
+ torch.ops._C.rms_norm_dynamic_per_token_quant(output, input, weight,
344
+ scales, epsilon, scale_ub,
345
+ residual)
346
+ return output, scales
347
+
348
+
349
+ # quantization ops
350
+ # awq
351
+ def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
352
+ zeros: torch.Tensor, split_k_iters: int, thx: int,
353
+ thy: int) -> torch.Tensor:
354
+ if envs.VLLM_USE_TRITON_AWQ:
355
+ from vllm.model_executor.layers.quantization.awq_triton import (
356
+ awq_dequantize_triton)
357
+ return awq_dequantize_triton(qweight, scales, zeros)
358
+ return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
359
+ thx, thy)
360
+
361
+
362
+ def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
363
+ scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
364
+ if envs.VLLM_USE_TRITON_AWQ:
365
+ from vllm.model_executor.layers.quantization.awq_triton import (
366
+ awq_gemm_triton)
367
+ return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
368
+ return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
369
+
370
+
371
+ # gptq
372
+ def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
373
+ b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
374
+ b_g_idx: torch.Tensor, use_exllama: bool,
375
+ bit: int) -> torch.Tensor:
376
+ return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
377
+ b_g_idx, use_exllama, bit)
378
+
379
+
380
+ if hasattr(torch.ops._C, "gptq_gemm"):
381
+
382
+ @register_fake("_C::gptq_gemm")
383
+ def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
384
+ b_gptq_qzeros: torch.Tensor,
385
+ b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor,
386
+ use_exllama: bool, bit: int) -> torch.Tensor:
387
+ return torch.empty((a.size(0), b_q_weight.size(1)),
388
+ dtype=a.dtype,
389
+ device=a.device)
390
+
391
+
392
+ def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
393
+ bit: int) -> None:
394
+ torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
395
+
396
+
397
+ # marlin_24
398
+ def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
399
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
400
+ workspace: torch.Tensor, b_q_type: ScalarType,
401
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
402
+ return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
403
+ workspace, b_q_type.id, size_m,
404
+ size_n, size_k)
405
+
406
+
407
+ if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
408
+
409
+ @register_fake("_C::gptq_marlin_24_gemm")
410
+ def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
411
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
412
+ workspace: torch.Tensor,
413
+ b_q_type: ScalarType, size_m: torch.SymInt,
414
+ size_n: torch.SymInt,
415
+ size_k: torch.SymInt) -> torch.Tensor:
416
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
417
+
418
+ @register_fake("_C::gptq_marlin_gemm")
419
+ def _gptq_marlin_gemm_fake(a: torch.Tensor,
420
+ c: Optional[torch.Tensor],
421
+ b_q_weight: torch.Tensor,
422
+ b_bias: Optional[torch.Tensor],
423
+ b_scales: torch.Tensor,
424
+ global_scale: Optional[torch.Tensor],
425
+ b_zeros: Optional[torch.Tensor],
426
+ g_idx: Optional[torch.Tensor],
427
+ perm: Optional[torch.Tensor],
428
+ workspace: torch.Tensor,
429
+ b_q_type_id: int,
430
+ size_m: torch.SymInt,
431
+ size_n: torch.SymInt,
432
+ size_k: torch.SymInt,
433
+ is_k_full: bool = True,
434
+ use_atomic_add: bool = False,
435
+ use_fp32_reduce: bool = False,
436
+ is_zp_float: bool = False) -> torch.Tensor:
437
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
438
+
439
+ @register_fake("_C::awq_dequantize")
440
+ def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor,
441
+ zeros: torch.Tensor, split_k_iters: torch.SymInt,
442
+ thx: int, thy: int) -> torch.Tensor:
443
+ in_c = qweight.size(0)
444
+ qout_c = qweight.size(1)
445
+ out_c = qout_c * 8
446
+ return torch.empty((in_c, out_c),
447
+ dtype=scales.dtype,
448
+ device=scales.device)
449
+
450
+ @register_fake("_C::awq_gemm")
451
+ def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor,
452
+ qzeros: torch.Tensor, scales: torch.Tensor,
453
+ split_k_iters: torch.SymInt) -> torch.Tensor:
454
+ num_in_feats = input.size(0)
455
+ return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8),
456
+ dtype=input.dtype,
457
+ device=input.device).sum(0)
458
+
459
+ @register_fake("_C::machete_mm")
460
+ def machete_mm_fake(
461
+ a: torch.Tensor,
462
+ # b_q Should be the tensor returned by machete_prepack_B
463
+ b_q: torch.Tensor,
464
+ b_type: ScalarType,
465
+ out_type: Optional[torch.dtype] = None,
466
+ b_group_scales: Optional[torch.Tensor] = None,
467
+ b_group_zeros: Optional[torch.Tensor] = None,
468
+ b_group_size: Optional[int] = None,
469
+ b_channel_scales: Optional[torch.Tensor] = None,
470
+ a_token_scales: Optional[torch.Tensor] = None,
471
+ schedule: Optional[str] = None,
472
+ ) -> torch.Tensor:
473
+ m = a.size(0)
474
+ n = b_q.size(1)
475
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
476
+
477
+ @register_fake("_C::machete_prepack_B")
478
+ def machete_prepack_B_fake(
479
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
480
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
481
+ return torch.empty_like(b_q_weight,
482
+ memory_format=torch.contiguous_format)
483
+
484
+ @register_fake("_C::cutlass_w4a8_mm")
485
+ def cutlass_w4a8_mm_fake(
486
+ a: torch.Tensor,
487
+ # b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
488
+ b_q: torch.Tensor,
489
+ b_group_scales: torch.Tensor,
490
+ b_group_size: int,
491
+ b_channel_scales: torch.Tensor,
492
+ a_token_scales: torch.Tensor,
493
+ out_type: Optional[torch.dtype] = None,
494
+ maybe_schedule: Optional[str] = None) -> torch.Tensor:
495
+ m = a.size(0)
496
+ n = b_q.size(1)
497
+ out_dtype = out_type if out_type is not None else torch.bfloat16
498
+ return torch.empty((m, n), device=a.device, dtype=out_dtype)
499
+
500
+ @register_fake("_C::cutlass_pack_scale_fp8")
501
+ def cutlass_pack_scale_fp8_fake(scales: torch.Tensor) -> torch.Tensor:
502
+ return torch.empty_like(scales, memory_format=torch.contiguous_format)
503
+
504
+ @register_fake("_C::cutlass_encode_and_reorder_int4b")
505
+ def cutlass_encode_and_reorder_int4b_fake(b: torch.Tensor) -> torch.Tensor:
506
+ return torch.empty_like(b, memory_format=torch.contiguous_format)
507
+
508
+
509
+ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
510
+
511
+ @register_fake("_C::allspark_w8a16_gemm")
512
+ def _allspark_w8a16_gemm_fake(a: torch.Tensor, b_qweight: torch.Tensor,
513
+ b_scales: torch.Tensor,
514
+ b_qzeros: Optional[torch.Tensor],
515
+ n: torch.SymInt, group_size: torch.SymInt,
516
+ sm_count: torch.SymInt,
517
+ sm_version: torch.SymInt,
518
+ CUBLAS_M_THRESHOLD: torch.SymInt,
519
+ has_zp: bool,
520
+ n32k16_reorder: bool) -> torch.Tensor:
521
+ m = a.size(0)
522
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
523
+
524
+
525
+ if hasattr(torch.ops._C, "ggml_dequantize"):
526
+
527
+ @register_fake("_C::ggml_dequantize")
528
+ def _ggml_dequantize_fake(
529
+ W: torch.Tensor,
530
+ quant_type: int,
531
+ m: torch.SymInt,
532
+ n: torch.SymInt,
533
+ dtype: Optional[torch.dtype] = None) -> torch.Tensor:
534
+ return torch.empty((m, n), dtype=torch.float16, device=W.device)
535
+
536
+ @register_fake("_C::ggml_mul_mat_vec_a8")
537
+ def _ggml_mul_mat_vec_a8_fake(
538
+ W: torch.Tensor,
539
+ X: torch.Tensor,
540
+ quant_type: int,
541
+ row: torch.SymInt,
542
+ ) -> torch.Tensor:
543
+ return torch.empty((X.shape[0], row), dtype=X.dtype, device=W.device)
544
+
545
+ @register_fake("_C::ggml_mul_mat_a8")
546
+ def _ggml_mul_mat_a8_fake(
547
+ W: torch.Tensor,
548
+ X: torch.Tensor,
549
+ quant_type: int,
550
+ row: torch.SymInt,
551
+ ) -> torch.Tensor:
552
+ batch = X.size(0)
553
+ return torch.empty((batch, row), dtype=X.dtype, device=W.device)
554
+
555
+ @register_fake("_C::ggml_moe_a8")
556
+ def _ggml_moe_a8_fake(
557
+ X: torch.Tensor,
558
+ W: torch.Tensor,
559
+ sorted_token_ids: torch.Tensor,
560
+ expert_ids: torch.Tensor,
561
+ num_tokens_post_padded: torch.Tensor,
562
+ quant_type: int,
563
+ row: torch.SymInt,
564
+ top_k: torch.SymInt,
565
+ tokens: torch.SymInt,
566
+ ) -> torch.Tensor:
567
+ tokens = X.size(0)
568
+ return torch.empty((tokens * top_k, row),
569
+ dtype=torch.float16,
570
+ device=W.device)
571
+
572
+
573
+ if hasattr(torch.ops._C, "ggml_moe_a8_vec"):
574
+
575
+ @register_fake("_C::ggml_moe_a8_vec")
576
+ def _ggml_moe_a8_vec_fake(
577
+ X: torch.Tensor,
578
+ W: torch.Tensor,
579
+ topk_ids: torch.Tensor,
580
+ top_k: int,
581
+ quant_type: int,
582
+ row: torch.SymInt,
583
+ tokens: torch.SymInt,
584
+ ) -> torch.Tensor:
585
+ tokens = X.size(0)
586
+ return torch.empty((tokens * top_k, row),
587
+ dtype=X.dtype,
588
+ device=W.device)
589
+
590
+
591
+ # cutlass
592
+ def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
593
+ return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
594
+
595
+
596
+ def cutlass_blockwise_scaled_grouped_mm(
597
+ output: torch.Tensor,
598
+ a: torch.Tensor,
599
+ b: torch.Tensor,
600
+ scales_a: torch.Tensor,
601
+ scales_b: torch.Tensor,
602
+ problem_sizes: torch.Tensor,
603
+ expert_offsets: torch.Tensor,
604
+ ):
605
+ torch.ops._C.cutlass_blockwise_scaled_grouped_mm(output, a, b, scales_a,
606
+ scales_b, problem_sizes,
607
+ expert_offsets)
608
+
609
+
610
+ def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
611
+ block_scale_a: torch.Tensor,
612
+ block_scale_b: torch.Tensor, alpha: torch.Tensor,
613
+ out_dtype: torch.dtype) -> torch.Tensor:
614
+ assert a.ndim == 2 and b.ndim == 2
615
+ m, n = a.shape[0], b.shape[0]
616
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
617
+ torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b,
618
+ alpha)
619
+ return out
620
+
621
+
622
+ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
623
+ return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
624
+
625
+
626
+ def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
627
+ return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
628
+ cuda_device_capability)
629
+
630
+
631
+ def cutlass_scaled_mm(a: torch.Tensor,
632
+ b: torch.Tensor,
633
+ scale_a: torch.Tensor,
634
+ scale_b: torch.Tensor,
635
+ out_dtype: torch.dtype,
636
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
637
+ """
638
+ `cutlass_scaled_mm` implements a fused version of
639
+ `output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
640
+ where scale_a * a and scale_b * b are implemented using numpy-style
641
+ broadcasting.
642
+
643
+ In order to support blockwise scaling like found in DeepSeek V3 we also
644
+ support extended "group" broadcast rules. We extend the numpy-style
645
+ broadcasting rules with the following rule:
646
+ "if the extent of a dimension in the source shape is between 1 and
647
+ corresponding extent in the target shape we repeat each element along
648
+ that dimension src_shape[dim] // target_shape[dim] times consecutively"
649
+ example if we have:
650
+ a = [[1, 2], and target_shape = (2, 4)
651
+ [3, 4]]
652
+ then we would expand a to:
653
+ a = [[1, 1, 2, 2],
654
+ [3, 3, 4, 4]]
655
+ currently we only support the case:
656
+ scale_a.shape * [1, 128] == a.shape
657
+ scale_b.shape * [128, 128] == b.shape
658
+ """
659
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
660
+ assert bias is None or bias.numel(
661
+ ) == b.shape[1] and bias.dtype == out_dtype
662
+
663
+ # Massage the input to be 2D
664
+ target_shape = (*a.shape[:-1], b.shape[1])
665
+ a = a.view(-1, a.shape[-1])
666
+
667
+ cutlass_compatible_b = (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
668
+ if current_platform.is_rocm() or not cutlass_compatible_b:
669
+ from vllm.model_executor.layers.quantization.compressed_tensors.triton_scaled_mm import ( # noqa
670
+ triton_scaled_mm)
671
+ out = triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
672
+ else:
673
+ out = torch.empty((a.shape[0], b.shape[1]),
674
+ dtype=out_dtype,
675
+ device=a.device)
676
+ torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
677
+
678
+ return out.view(*target_shape)
679
+
680
+
681
+ def cutlass_scaled_mm_azp(a: torch.Tensor,
682
+ b: torch.Tensor,
683
+ scale_a: torch.Tensor,
684
+ scale_b: torch.Tensor,
685
+ out_dtype: torch.dtype,
686
+ azp_adj: torch.Tensor,
687
+ azp: Optional[torch.Tensor] = None,
688
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
689
+ """
690
+ :param azp_adj: In the per-tensor case, this should include the azp.
691
+ Always per-channel.
692
+ :param azp: Only set in the per-token case. Per-token if set.
693
+ """
694
+ assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
695
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
696
+ assert bias is None or bias.numel(
697
+ ) == b.shape[1] and bias.dtype == out_dtype
698
+
699
+ # Massage the input to be 2D
700
+ target_shape = (*a.shape[:-1], b.shape[1])
701
+ a = a.view(-1, a.shape[-1])
702
+ assert azp is None or azp.numel() == a.shape[0]
703
+
704
+ out = torch.empty((a.shape[0], b.shape[1]),
705
+ dtype=out_dtype,
706
+ device=a.device)
707
+ torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
708
+ azp, bias)
709
+ return out.view(*target_shape)
710
+
711
+
712
+ def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
713
+ return torch.ops._C.cutlass_sparse_scaled_mm_supported(
714
+ cuda_device_capability)
715
+
716
+
717
+ def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
718
+ return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
719
+
720
+
721
+ def cutlass_sparse_compress(a: torch.Tensor) \
722
+ -> tuple[torch.Tensor, torch.Tensor]:
723
+ """
724
+ Compresses a sparse matrix for use with Cutlass sparse operations.
725
+
726
+ This function takes a dense tensor and compresses it into two components:
727
+ non-zero elements and metadata. The compressed representation is compatible
728
+ with Cutlass sparse kernels.
729
+
730
+ Args:
731
+ a (torch.Tensor):
732
+ The input tensor to be compressed. Must have one of the following data types:
733
+ - `torch.int8`
734
+ - `torch.float8_e4m3fn`
735
+ - `torch.bfloat16`
736
+ - `torch.float16`
737
+
738
+ Returns:
739
+ tuple[torch.Tensor, torch.Tensor]:
740
+ A tuple containing:
741
+ - `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
742
+ - `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
743
+
744
+ Raises:
745
+ ValueError: If the compression operation fails.
746
+
747
+ Notes:
748
+ - The `a_meta` tensor has a data type of `torch.uint8`.
749
+ - Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
750
+ - The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
751
+ - The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
752
+ """
753
+ assert (a.dtype in [
754
+ torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16
755
+ ])
756
+ assert (a.is_contiguous())
757
+
758
+ # a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
759
+ elemsPerMetaElem = 4
760
+ assert (a.shape[1] % (2 * elemsPerMetaElem) == 0)
761
+
762
+ return torch.ops._C.cutlass_sparse_compress(a)
763
+
764
+
765
+ def cutlass_scaled_sparse_mm(
766
+ a: torch.Tensor,
767
+ bt_nzs: torch.Tensor,
768
+ bt_meta: torch.Tensor,
769
+ scale_a: torch.Tensor,
770
+ scale_b: torch.Tensor,
771
+ out_dtype: torch.dtype,
772
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
773
+ """
774
+ Performs a scaled sparse matrix multiplication using Cutlass.
775
+
776
+ Steps:
777
+ 1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
778
+ `a = torch.randn((m, k), device='cuda')`.
779
+
780
+ 2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
781
+ `b = torch.randn((k, n), device='cuda')`.
782
+
783
+ 3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
784
+ `b = prune_to_2_4(b, dim=0)`.
785
+
786
+ 4. Compress the transposed sparse matrix `b.t()`:
787
+ `bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
788
+
789
+ 5. Perform sparse matrix multiplication using the compressed matrix,
790
+ applying scaling factors for `a` and `b`, and the output data type:
791
+ `out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
792
+
793
+ Returns:
794
+ - The result of the scaled sparse matrix multiplication.
795
+ """
796
+ assert (bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0)
797
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
798
+ assert bias is None or bias.shape[0] == bt_nzs.shape[0] \
799
+ and bias.dtype == out_dtype
800
+
801
+ m = a.shape[0]
802
+ n = bt_nzs.shape[0]
803
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
804
+
805
+ torch.ops._C.cutlass_scaled_sparse_mm(out, a, bt_nzs, bt_meta, scale_a,
806
+ scale_b, bias)
807
+
808
+ return out
809
+
810
+
811
+ def get_cutlass_moe_mm_data(topk_ids: torch.Tensor,
812
+ expert_offsets: torch.Tensor,
813
+ problem_sizes1: torch.Tensor,
814
+ problem_sizes2: torch.Tensor,
815
+ input_permutation: torch.Tensor,
816
+ output_permutation: torch.Tensor,
817
+ num_experts: int,
818
+ n: int,
819
+ k: int,
820
+ blockscale_offsets: Optional[torch.Tensor] = None):
821
+ """
822
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
823
+ used in CUTLASS-based fused MoE.
824
+
825
+ The function takes in topk_ids (token-expert mapping) and uses it to
826
+ compute:
827
+ - expert_offsets: Indices that mark at which token index each expert begins
828
+ its computation after the input is sorted with
829
+ input_permutation. The number of tokens computed with
830
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
831
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
832
+ multiplication in two grouped MMs used in
833
+ the fused MoE operation.
834
+ - input_permutation: Permutation that must be used to shuffle the input
835
+ before executing the MMs.
836
+ - output_permutation: Permutation that must be used to shuffle the output
837
+ after executing the MMs.
838
+ - blockscale_offsets: Optional argument passed for fp4 moe. Indices that
839
+ mark at which block scale index each expert begins
840
+ its computation. The number of block scale rows
841
+ computed with expert E is blockscale_offsets[E + 1] -
842
+ blockscale_offsets[E]
843
+ """
844
+ return torch.ops._C.get_cutlass_moe_mm_data(topk_ids, expert_offsets,
845
+ problem_sizes1, problem_sizes2,
846
+ input_permutation,
847
+ output_permutation,
848
+ num_experts, n, k,
849
+ blockscale_offsets)
850
+
851
+
852
+ def get_cutlass_moe_mm_problem_sizes(
853
+ topk_ids: torch.Tensor,
854
+ problem_sizes1: torch.Tensor,
855
+ problem_sizes2: torch.Tensor,
856
+ num_experts: int,
857
+ n: int,
858
+ k: int,
859
+ blockscale_offsets: Optional[torch.Tensor] = None):
860
+ """
861
+ Compute only the per-expert problem sizes needed by the two grouped matrix
862
+ multiplications used in CUTLASS-based fused MoE.
863
+
864
+ The function takes in topk_ids (token→expert mapping) and computes:
865
+ - problem_sizes1, problem_sizes2: M×N×K sizes of each expert's
866
+ multiplication for the two grouped MMs
867
+ used in the fused MoE operation.
868
+ """
869
+ return torch.ops._C.get_cutlass_moe_mm_problem_sizes(
870
+ topk_ids, problem_sizes1, problem_sizes2, num_experts, n, k,
871
+ blockscale_offsets)
872
+
873
+
874
+ def shuffle_rows(input_tensor: torch.Tensor, dst2src_map: torch.Tensor):
875
+ """
876
+ Shuffle and expand the input tensor according to the dst2src_map and store the result in output_tensor.
877
+ This is used in MoE to permute the input tensor before performing grouped matrix multiplications.
878
+ """
879
+ num_tokens_permuted = dst2src_map.shape[0]
880
+ output_tensor = torch.empty((num_tokens_permuted, input_tensor.shape[1]),
881
+ device=input_tensor.device,
882
+ dtype=input_tensor.dtype)
883
+ torch.ops._moe_C.shuffle_rows(input_tensor, dst2src_map, output_tensor)
884
+ return output_tensor
885
+
886
+
887
+ def get_cutlass_pplx_moe_mm_data(expert_offsets: torch.Tensor,
888
+ problem_sizes1: torch.Tensor,
889
+ problem_sizes2: torch.Tensor,
890
+ expert_num_tokens: torch.Tensor,
891
+ num_local_experts: int, padded_m: int, n: int,
892
+ k: int):
893
+ """
894
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
895
+ used in CUTLASS-based fused MoE.
896
+
897
+ The function takes in expert_num_tokens (token count per expert) and
898
+ non_zero_expert_idxs (consecutive indices of experts with non-zero token
899
+ counts) and uses them to compute:
900
+ - expert_offsets: Indices that mark at which token index each expert begins
901
+ its computation.
902
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
903
+ multiplication in two grouped MMs used in
904
+ the fused MoE operation.
905
+ """
906
+ return torch.ops._C.get_cutlass_pplx_moe_mm_data(
907
+ expert_offsets, problem_sizes1, problem_sizes2, expert_num_tokens,
908
+ num_local_experts, padded_m, n, k)
909
+
910
+
911
+ def cutlass_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
912
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
913
+ b_scales: torch.Tensor, expert_offsets: torch.Tensor,
914
+ problem_sizes: torch.Tensor, a_strides: torch.Tensor,
915
+ b_strides: torch.Tensor, c_strides: torch.Tensor,
916
+ per_act_token: bool, per_out_ch: bool):
917
+ """
918
+ A single grouped matrix multiplication used in CUTLASS-based fused MoE.
919
+ The function executes fp8-quantized OUT = AB matrix multiplication.
920
+
921
+ - expert_offsets: Indices that mark at which token index each expert begins
922
+ its computation. The number of tokens computed with
923
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
924
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
925
+ MMs used in the fused MoE operation.
926
+ - a/b/c_strides: The data strides passed to grouped matrix multiplication.
927
+ """
928
+ return torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors,
929
+ a_scales, b_scales, expert_offsets,
930
+ problem_sizes, a_strides, b_strides,
931
+ c_strides, per_act_token, per_out_ch)
932
+
933
+
934
+ def cutlass_fp4_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
935
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
936
+ b_scales: torch.Tensor, alphas: torch.Tensor,
937
+ problem_sizes: torch.Tensor,
938
+ expert_offsets: torch.Tensor, sf_offsets: torch.Tensor):
939
+ """
940
+ An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs
941
+ the gemms for each combination based on the specified problem sizes.
942
+
943
+ This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
944
+ - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
945
+ input and expert weights.
946
+ - a_/b_scales: The blockscales in FP8-E4M3 precision
947
+ - expert_offsets/sf_offsets: Indices that mark at which token index
948
+ each expert begins its computation. The number of tokens
949
+ computed with expert E is expert_offsets[E + 1] -
950
+ expert_offsets[E] And the sf_size per expert is
951
+ sf_offset[E+1] - sf_offset[E]
952
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
953
+ MMs used in the fused MoE operation.
954
+ """
955
+ return torch.ops._C.cutlass_fp4_group_mm(out_tensors, a_tensors, b_tensors,
956
+ a_scales, b_scales, alphas,
957
+ problem_sizes, expert_offsets,
958
+ sf_offsets)
959
+
960
+
961
+ # gptq_marlin
962
+ def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
963
+ size_k: int, size_n: int,
964
+ num_bits: int) -> torch.Tensor:
965
+ return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
966
+ num_bits)
967
+
968
+
969
+ # gptq_marlin
970
+ def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
971
+ num_bits: int) -> torch.Tensor:
972
+ return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
973
+
974
+
975
+ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
976
+ size_k: int, size_n: int,
977
+ num_bits: int) -> torch.Tensor:
978
+ num_experts = b_q_weight.shape[0]
979
+ assert size_k % 16 == 0
980
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
981
+ device=b_q_weight.device,
982
+ dtype=b_q_weight.dtype)
983
+ for e in range(num_experts):
984
+ output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e],
985
+ size_k, size_n, num_bits)
986
+ return output
987
+
988
+
989
+ def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
990
+ size_k: int, size_n: int,
991
+ num_bits: int) -> torch.Tensor:
992
+ num_experts = b_q_weight.shape[0]
993
+ assert size_k % 16 == 0
994
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
995
+ device=b_q_weight.device,
996
+ dtype=b_q_weight.dtype)
997
+ for e in range(num_experts):
998
+ output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
999
+ size_n, num_bits)
1000
+ return output
1001
+
1002
+
1003
+ def gptq_marlin_gemm(a: torch.Tensor,
1004
+ c: Optional[torch.Tensor],
1005
+ b_q_weight: torch.Tensor,
1006
+ b_bias: Optional[torch.Tensor],
1007
+ b_scales: torch.Tensor,
1008
+ global_scale: Optional[torch.Tensor],
1009
+ b_zeros: Optional[torch.Tensor],
1010
+ g_idx: Optional[torch.Tensor],
1011
+ perm: Optional[torch.Tensor],
1012
+ workspace: torch.Tensor,
1013
+ b_q_type: ScalarType,
1014
+ size_m: int,
1015
+ size_n: int,
1016
+ size_k: int,
1017
+ is_k_full: bool = True,
1018
+ use_atomic_add: bool = False,
1019
+ use_fp32_reduce: bool = False,
1020
+ is_zp_float: bool = False) -> torch.Tensor:
1021
+ return torch.ops._C.gptq_marlin_gemm(a, c, b_q_weight, b_bias, b_scales,
1022
+ global_scale, b_zeros, g_idx, perm,
1023
+ workspace, b_q_type.id, size_m,
1024
+ size_n, size_k, is_k_full,
1025
+ use_atomic_add, use_fp32_reduce,
1026
+ is_zp_float)
1027
+
1028
+
1029
+ # machete
1030
+ def machete_supported_schedules(
1031
+ a_type: torch.dtype,
1032
+ b_type: ScalarType,
1033
+ group_scales_type: Optional[torch.dtype],
1034
+ group_zeros_type: Optional[torch.dtype] = None,
1035
+ channel_scales_type: Optional[torch.dtype] = None,
1036
+ token_scales_type: Optional[torch.dtype] = None,
1037
+ out_type: Optional[torch.dtype] = None) -> list[str]:
1038
+ return torch.ops._C.machete_supported_schedules(
1039
+ a_type, b_type.id, group_scales_type, group_zeros_type,
1040
+ channel_scales_type, token_scales_type, out_type)
1041
+
1042
+
1043
+ def machete_mm(
1044
+ a: torch.Tensor,
1045
+ # b_q Should be the tensor returned by machete_prepack_B
1046
+ b_q: torch.Tensor,
1047
+ b_type: ScalarType,
1048
+ out_type: Optional[torch.dtype] = None,
1049
+ b_group_scales: Optional[torch.Tensor] = None,
1050
+ b_group_zeros: Optional[torch.Tensor] = None,
1051
+ b_group_size: Optional[int] = None,
1052
+ b_channel_scales: Optional[torch.Tensor] = None,
1053
+ a_token_scales: Optional[torch.Tensor] = None,
1054
+ schedule: Optional[str] = None) -> torch.Tensor:
1055
+ return torch.ops._C.machete_mm(a, b_q, b_type.id, out_type, b_group_scales,
1056
+ b_group_zeros, b_group_size,
1057
+ b_channel_scales, a_token_scales, schedule)
1058
+
1059
+
1060
+ def machete_prepack_B(
1061
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
1062
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
1063
+ return torch.ops._C.machete_prepack_B(b_q_weight, a_type, b_type.id,
1064
+ group_scales_type)
1065
+
1066
+
1067
+ # CUTLASS W4A8
1068
+ def cutlass_w4a8_mm(
1069
+ a: torch.Tensor,
1070
+ # b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
1071
+ b_q: torch.Tensor,
1072
+ b_group_scales: torch.Tensor,
1073
+ b_group_size: int,
1074
+ b_channel_scales: torch.Tensor,
1075
+ a_token_scales: torch.Tensor,
1076
+ out_type: Optional[torch.dtype] = None,
1077
+ maybe_schedule: Optional[str] = None) -> torch.Tensor:
1078
+ return torch.ops._C.cutlass_w4a8_mm(a, b_q, b_group_scales, b_group_size,
1079
+ b_channel_scales, a_token_scales,
1080
+ out_type, maybe_schedule)
1081
+
1082
+
1083
+ def cutlass_pack_scale_fp8(scales: torch.Tensor) -> torch.Tensor:
1084
+ return torch.ops._C.cutlass_pack_scale_fp8(scales)
1085
+
1086
+
1087
+ def cutlass_encode_and_reorder_int4b(b: torch.Tensor) -> torch.Tensor:
1088
+ return torch.ops._C.cutlass_encode_and_reorder_int4b(b)
1089
+
1090
+
1091
+ if hasattr(torch.ops._C, "permute_cols"):
1092
+
1093
+ @register_fake("_C::permute_cols")
1094
+ def _permute_cols_fake(a: torch.Tensor,
1095
+ perm: torch.Tensor) -> torch.Tensor:
1096
+ return torch.empty_like(a)
1097
+
1098
+
1099
+ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
1100
+ return torch.ops._C.permute_cols(a, perm)
1101
+
1102
+
1103
+ # fp4
1104
+ def scaled_fp4_quant(
1105
+ input: torch.Tensor,
1106
+ input_global_scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
1107
+ """
1108
+ Quantize input tensor to FP4 and return quantized tensor and scale.
1109
+
1110
+ This function quantizes the last dimension of the given tensor `input`. For
1111
+ every 16 consecutive elements, a single dynamically computed scaling factor
1112
+ is shared. This scaling factor is quantized using the `input_global_scale`
1113
+ and is stored in a swizzled layout (see
1114
+ https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
1115
+
1116
+ Args:
1117
+ input: The input tensor to be quantized to FP4
1118
+ input_global_scale: A scalar scaling factor for the entire tensor.
1119
+
1120
+ Returns:
1121
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
1122
+ two values are packed into a uint8 and float8_e4m3 scaling factors
1123
+ in the sizzled layout.
1124
+ """
1125
+ assert not current_platform.is_rocm()
1126
+ assert input.ndim >= 1, (
1127
+ f'input.ndim needs to be >= 1, but got {input.ndim}.')
1128
+ other_dims = 1 if input.ndim == 1 else -1
1129
+ input = input.reshape(other_dims, input.shape[-1])
1130
+ m, n = input.shape
1131
+ block_size = 16
1132
+ device = input.device
1133
+
1134
+ assert n % block_size == 0, (
1135
+ f'last dim has to be multiple of 16, but got {n}.')
1136
+ assert input.dtype in (torch.float16, torch.bfloat16), (
1137
+ f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
1138
+
1139
+ # Two fp4 values will be packed into an uint8.
1140
+ output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
1141
+
1142
+ # We use the rounded values to store the swizzled values. Due to the
1143
+ # requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
1144
+ # So, we first pad the scales to multiples of 128 and 4. Then, the scales
1145
+ # (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
1146
+ # https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
1147
+ round_up = lambda x, y: (x + y - 1) // y * y
1148
+ rounded_m = round_up(m, 128)
1149
+ scale_n = n // block_size
1150
+ rounded_n = round_up(scale_n, 4)
1151
+ output_scale = torch.empty((rounded_m, rounded_n // 4),
1152
+ device=device,
1153
+ dtype=torch.int32)
1154
+
1155
+ torch.ops._C.scaled_fp4_quant(output, input, output_scale,
1156
+ input_global_scale)
1157
+ output_scale = output_scale.view(torch.float8_e4m3fn)
1158
+ return output, output_scale
1159
+
1160
+
1161
+ def scaled_fp4_experts_quant(
1162
+ input_tensor: torch.Tensor,
1163
+ input_global_scale: torch.Tensor,
1164
+ expert_offsets: torch.Tensor,
1165
+ blockscale_offsets: torch.Tensor,
1166
+ topk: int,
1167
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1168
+ """
1169
+ Quantize input tensor to FP4 and return quantized tensor and scale, for
1170
+ packed MoE Inputs.
1171
+ Args:
1172
+ input_tensor: The input tensor to be quantized to FP4
1173
+ input_global_scale: A scalar scaling factor for the entire tensor.
1174
+ expert_offsets: The expert offsets tensor
1175
+ blockscale_offsets: The blockscale offsets tensor
1176
+ Outputs:
1177
+ output: The quantized tensor in FP4
1178
+ output_scales: The blockscale tensor in FP8-E4M3
1179
+ """
1180
+ assert not current_platform.is_rocm()
1181
+ assert input_tensor.ndim == 2, (
1182
+ f'input.ndim needs to be == 2, but got {input_tensor.ndim}.')
1183
+
1184
+ # Control the maximum number of tokens per expert supported by the
1185
+ # NVFP4 MoE Expert Quantization. This is used to prevent the kernel
1186
+ # from running out of memory. This value can also be increased to support
1187
+ # larger models.
1188
+ MAX_TOKENS_PER_EXPERT = envs.VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE
1189
+ m_numtopk, k = input_tensor.shape
1190
+
1191
+ assert (m_numtopk <= MAX_TOKENS_PER_EXPERT * topk), (
1192
+ f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
1193
+ f"{MAX_TOKENS_PER_EXPERT})"
1194
+ f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
1195
+ f" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE to set this value.")
1196
+ scales_k = k // 16
1197
+ padded_k = (scales_k + (4 - 1)) // 4
1198
+
1199
+ # output is uint8 and packed fp4 values
1200
+ output = torch.empty(m_numtopk,
1201
+ k // 2,
1202
+ device=input_tensor.device,
1203
+ dtype=torch.uint8)
1204
+ output_scales = torch.empty(MAX_TOKENS_PER_EXPERT * topk,
1205
+ padded_k,
1206
+ dtype=torch.int32,
1207
+ device=input_tensor.device)
1208
+ torch.ops._C.scaled_fp4_experts_quant(output, output_scales, input_tensor,
1209
+ input_global_scale, expert_offsets,
1210
+ blockscale_offsets)
1211
+ output_scales = output_scales.view(torch.float8_e4m3fn)
1212
+ return output, output_scales
1213
+
1214
+
1215
+ # fp8
1216
+ def scaled_fp8_quant(
1217
+ input: torch.Tensor,
1218
+ scale: Optional[torch.Tensor] = None,
1219
+ num_token_padding: Optional[int] = None,
1220
+ scale_ub: Optional[torch.Tensor] = None,
1221
+ use_per_token_if_dynamic: bool = False,
1222
+ output: Optional[torch.Tensor] = None,
1223
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1224
+ """
1225
+ Quantize input tensor to FP8 and return quantized tensor and scale.
1226
+
1227
+ This function supports both static and dynamic quantization: If you
1228
+ provide the scale, it will use static scaling and if you omit it,
1229
+ the scale will be determined dynamically. The function also allows
1230
+ optional padding of the output tensors for downstream kernels that
1231
+ will benefit from padding.
1232
+
1233
+ Args:
1234
+ input: The input tensor to be quantized to FP8
1235
+ scale: Optional scaling factor for the FP8 quantization
1236
+ scale_ub: Optional upper bound for scaling factor in dynamic
1237
+ per token case
1238
+ num_token_padding: If specified, pad the first dimension
1239
+ of the output to at least this value.
1240
+ use_per_token_if_dynamic: Whether to do per_tensor or per_token
1241
+ in the dynamic quantization case.
1242
+
1243
+ Returns:
1244
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
1245
+ scaling factor.
1246
+ """
1247
+ # This code assumes batch_dim and num_tokens are flattened
1248
+ assert (input.ndim == 2)
1249
+ shape: Union[tuple[int, int], torch.Size] = input.shape
1250
+ # For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
1251
+ out_dtype: torch.dtype = current_platform.fp8_dtype()
1252
+ if num_token_padding:
1253
+ shape = (max(num_token_padding, input.shape[0]), shape[1])
1254
+ if output is None:
1255
+ output = torch.empty(shape, device=input.device, dtype=out_dtype)
1256
+ else:
1257
+ assert num_token_padding is None, \
1258
+ "padding not supported if output passed in"
1259
+ assert output.dtype == out_dtype
1260
+
1261
+ if scale is None:
1262
+ if use_per_token_if_dynamic:
1263
+ scale = torch.empty((shape[0], 1),
1264
+ device=input.device,
1265
+ dtype=torch.float32)
1266
+ torch.ops._C.dynamic_per_token_scaled_fp8_quant(
1267
+ output, input, scale, scale_ub)
1268
+ else:
1269
+ scale = torch.empty(1, device=input.device, dtype=torch.float32)
1270
+ torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
1271
+ else:
1272
+ assert scale.numel() == 1, f"{scale.shape}"
1273
+ torch.ops._C.static_scaled_fp8_quant(output, input, scale)
1274
+
1275
+ return output, scale
1276
+
1277
+
1278
+ # gptq allspark
1279
+ def allspark_repack_weight(
1280
+ qweight: torch.Tensor,
1281
+ scale: torch.Tensor,
1282
+ zero_point: Optional[torch.Tensor] = None,
1283
+ has_zp: bool = False
1284
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1285
+ """
1286
+ Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
1287
+ for Ampere W8A16 Fused Gemm kernel
1288
+
1289
+ Args:
1290
+ qweight: uint8 weight tensor, original k x n format.
1291
+ scale: fp16/bf16 weight scale tensor, 1 x n format.
1292
+ zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
1293
+ Must be provided for asymmetric quantization.
1294
+ has_zp: if use symmetric quantization, has_zp = False.
1295
+ if use asymmetric quantization, has_zp = True.
1296
+
1297
+ Returns:
1298
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
1299
+ rearranged weight, scale, and optionally zero_point.
1300
+ """
1301
+ K = qweight.shape[0]
1302
+ N = qweight.shape[1]
1303
+ N_32align = (N + 32 - 1) // 32 * 32
1304
+
1305
+ qweight_reorder = torch.empty((N_32align, K),
1306
+ device=qweight.device,
1307
+ dtype=qweight.dtype)
1308
+ scale_reorder = torch.empty((1, N_32align),
1309
+ device=scale.device,
1310
+ dtype=scale.dtype)
1311
+ zero_point_reorder = None
1312
+ if has_zp:
1313
+ assert zero_point is not None, (
1314
+ "zero_point must be provided for asymmetric quantization.")
1315
+ zero_point_reorder = torch.empty((1, N_32align),
1316
+ device=zero_point.device,
1317
+ dtype=zero_point.dtype)
1318
+
1319
+ torch.ops._C.rearrange_kn_weight_as_n32k16_order(
1320
+ qweight, scale, zero_point, has_zp, qweight_reorder, scale_reorder,
1321
+ zero_point_reorder, K, N, N_32align)
1322
+
1323
+ return qweight_reorder, scale_reorder, zero_point_reorder
1324
+
1325
+
1326
+ def allspark_w8a16_gemm(a: torch.Tensor, b_qweight: torch.Tensor,
1327
+ b_scales: torch.Tensor,
1328
+ b_qzeros: Optional[torch.Tensor], n: int,
1329
+ group_size: int, sm_count: int, sm_version: int,
1330
+ CUBLAS_M_THRESHOLD: int, has_zp: bool,
1331
+ n32k16_reorder: bool) -> torch.Tensor:
1332
+
1333
+ return torch.ops._C.allspark_w8a16_gemm(a, b_qweight, b_scales, b_qzeros,
1334
+ n, group_size, sm_count,
1335
+ sm_version, CUBLAS_M_THRESHOLD,
1336
+ has_zp, n32k16_reorder)
1337
+
1338
+
1339
+ # int8
1340
+ def scaled_int8_quant(
1341
+ input: torch.Tensor,
1342
+ scale: Optional[torch.Tensor] = None,
1343
+ azp: Optional[torch.Tensor] = None,
1344
+ symmetric: bool = True
1345
+ ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
1346
+ """
1347
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1348
+
1349
+ Args:
1350
+ input: The input tensor to be quantized to int8.
1351
+ scale: Optional scaling factor for the int8 quantization.
1352
+ When not provided, we invoke dynamic-per-token quantization.
1353
+ azp: Optional zero-point for the int8 quantization.
1354
+ Must be provided for asymmetric quantization if `scale` is provided.
1355
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1356
+
1357
+ Returns:
1358
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1359
+ """
1360
+ output = torch.empty_like(input, dtype=torch.int8)
1361
+ if scale is not None:
1362
+ # static-per-tensor quantization.
1363
+ assert symmetric == (
1364
+ azp
1365
+ is None), "azp must only be provided for asymmetric quantization."
1366
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1367
+ return output, scale, azp
1368
+
1369
+ # dynamic-per-token quantization.
1370
+ input_scales = torch.empty((input.numel() // input.shape[-1], 1),
1371
+ device=input.device,
1372
+ dtype=torch.float32)
1373
+ input_azp = None if symmetric else torch.empty_like(input_scales,
1374
+ dtype=torch.int32)
1375
+ torch.ops._C.dynamic_scaled_int8_quant(output, input.contiguous(),
1376
+ input_scales, input_azp)
1377
+ return output, input_scales, input_azp
1378
+
1379
+
1380
+ # gguf
1381
+ def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
1382
+ dtype: Optional[torch.dtype]) -> torch.Tensor:
1383
+ return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
1384
+
1385
+
1386
+ def ggml_mul_mat_vec_a8(
1387
+ W: torch.Tensor,
1388
+ X: torch.Tensor,
1389
+ quant_type: int,
1390
+ row: int,
1391
+ ) -> torch.Tensor:
1392
+ return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
1393
+
1394
+
1395
+ def ggml_mul_mat_a8(
1396
+ W: torch.Tensor,
1397
+ X: torch.Tensor,
1398
+ quant_type: int,
1399
+ row: int,
1400
+ ) -> torch.Tensor:
1401
+ return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
1402
+
1403
+
1404
+ def ggml_moe_a8(
1405
+ X: torch.Tensor,
1406
+ W: torch.Tensor,
1407
+ sorted_token_ids: torch.Tensor,
1408
+ expert_ids: torch.Tensor,
1409
+ num_tokens_post_padded: torch.Tensor,
1410
+ quant_type: int,
1411
+ row: int,
1412
+ top_k: int,
1413
+ tokens: int,
1414
+ ) -> torch.Tensor:
1415
+ return torch.ops._C.ggml_moe_a8(X, W, sorted_token_ids, expert_ids,
1416
+ num_tokens_post_padded, quant_type, row,
1417
+ top_k, tokens)
1418
+
1419
+
1420
+ def ggml_moe_a8_vec(
1421
+ X: torch.Tensor,
1422
+ W: torch.Tensor,
1423
+ topk_ids: torch.Tensor,
1424
+ top_k: int,
1425
+ quant_type: int,
1426
+ row: torch.SymInt,
1427
+ tokens: torch.SymInt,
1428
+ ) -> torch.Tensor:
1429
+ return torch.ops._C.ggml_moe_a8_vec(X, W, topk_ids, top_k, quant_type, row,
1430
+ tokens)
1431
+
1432
+
1433
+ def ggml_moe_get_block_size(quant_type: int) -> int:
1434
+ return torch.ops._C.ggml_moe_get_block_size(quant_type)
1435
+
1436
+
1437
+ # mamba
1438
+ def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
1439
+ B: torch.Tensor, C: torch.Tensor,
1440
+ D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
1441
+ delta_bias_: Optional[torch.Tensor],
1442
+ delta_softplus: bool,
1443
+ query_start_loc: Optional[torch.Tensor],
1444
+ cache_indices: Optional[torch.Tensor],
1445
+ has_initial_state: Optional[torch.Tensor],
1446
+ ssm_states: torch.Tensor, pad_slot_id: int):
1447
+ torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_, delta_bias_,
1448
+ delta_softplus, query_start_loc,
1449
+ cache_indices, has_initial_state,
1450
+ ssm_states, pad_slot_id)
1451
+
1452
+
1453
+ # ROCm skinny gemms
1454
+ def LLMM1(a: torch.Tensor, b: torch.Tensor,
1455
+ rows_per_block: int) -> torch.Tensor:
1456
+ return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
1457
+
1458
+
1459
+ def wvSplitK(a: torch.Tensor, b: torch.Tensor, cu_count: int) -> torch.Tensor:
1460
+ return torch.ops._rocm_C.wvSplitK(a, b, cu_count)
1461
+
1462
+
1463
+ def wvSplitKQ(a: torch.Tensor, b: torch.Tensor, out_dtype: torch.dtype,
1464
+ scale_a: torch.Tensor, scale_b: torch.Tensor,
1465
+ cu_count: int) -> torch.Tensor:
1466
+ out = torch.empty((b.shape[0], a.shape[0]),
1467
+ dtype=out_dtype,
1468
+ device=b.device)
1469
+ torch.ops._rocm_C.wvSplitKQ(a, b, out, scale_a, scale_b, cu_count)
1470
+ return out
1471
+
1472
+
1473
+ # moe
1474
+ def moe_sum(input: torch.Tensor, output: torch.Tensor):
1475
+ torch.ops._moe_C.moe_sum(input, output)
1476
+
1477
+
1478
+ def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1479
+ block_size: int, sorted_token_ids: torch.Tensor,
1480
+ experts_ids: torch.Tensor,
1481
+ num_tokens_post_pad: torch.Tensor) -> None:
1482
+ torch.ops._moe_C.moe_align_block_size(topk_ids, num_experts, block_size,
1483
+ sorted_token_ids, experts_ids,
1484
+ num_tokens_post_pad)
1485
+
1486
+
1487
+ def moe_wna16_gemm(input: torch.Tensor, output: torch.Tensor,
1488
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1489
+ b_qzeros: Optional[torch.Tensor],
1490
+ topk_weights: Optional[torch.Tensor],
1491
+ sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor,
1492
+ num_tokens_post_pad: torch.Tensor, top_k: int,
1493
+ BLOCK_SIZE_M: int, BLOCK_SIZE_N: int, BLOCK_SIZE_K: int,
1494
+ bit: int) -> torch.Tensor:
1495
+ if not current_platform.is_cuda():
1496
+ raise NotImplementedError(
1497
+ "The optimized moe_wna16_gemm kernel is only "
1498
+ "available on CUDA platforms")
1499
+ torch.ops._moe_C.moe_wna16_gemm(input, output, b_qweight, b_scales,
1500
+ b_qzeros, topk_weights, sorted_token_ids,
1501
+ experts_ids, num_tokens_post_pad, top_k,
1502
+ BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
1503
+ bit)
1504
+
1505
+
1506
+ def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
1507
+ token_expert_indices: torch.Tensor,
1508
+ gating_output: torch.Tensor) -> None:
1509
+ torch.ops._moe_C.topk_softmax(topk_weights, topk_ids, token_expert_indices,
1510
+ gating_output)
1511
+
1512
+
1513
+ def grouped_topk(scores: torch.Tensor, scores_with_bias: torch.Tensor,
1514
+ num_expert_group: int, topk_group: int, topk: int,
1515
+ renormalize: bool, routed_scaling_factor: float):
1516
+ if not current_platform.is_cuda():
1517
+ raise NotImplementedError("The fused grouped_topk kernel is only "
1518
+ "available on CUDA platforms")
1519
+ return torch.ops._moe_C.grouped_topk(scores, scores_with_bias,
1520
+ num_expert_group, topk_group, topk,
1521
+ renormalize, routed_scaling_factor)
1522
+
1523
+
1524
+ def moe_wna16_marlin_gemm(input: torch.Tensor, output: Optional[torch.Tensor],
1525
+ b_qweight: torch.Tensor,
1526
+ b_bias: Optional[torch.Tensor],
1527
+ b_scales: torch.Tensor,
1528
+ global_scale: Optional[torch.Tensor],
1529
+ b_qzeros: Optional[torch.Tensor],
1530
+ g_idx: Optional[torch.Tensor],
1531
+ perm: Optional[torch.Tensor],
1532
+ workspace: torch.Tensor,
1533
+ sorted_token_ids: torch.Tensor,
1534
+ expert_ids: torch.Tensor,
1535
+ num_tokens_past_padded: torch.Tensor,
1536
+ topk_weights: torch.Tensor, moe_block_size: int,
1537
+ top_k: int, mul_topk_weights: bool, is_ep: bool,
1538
+ b_q_type: ScalarType, size_m: int, size_n: int,
1539
+ size_k: int, is_k_full: bool, use_atomic_add: bool,
1540
+ use_fp32_reduce: bool,
1541
+ is_zp_float: bool) -> torch.Tensor:
1542
+ return torch.ops._moe_C.moe_wna16_marlin_gemm(
1543
+ input, output, b_qweight, b_bias, b_scales, global_scale, b_qzeros,
1544
+ g_idx, perm, workspace, sorted_token_ids, expert_ids,
1545
+ num_tokens_past_padded, topk_weights, moe_block_size, top_k,
1546
+ mul_topk_weights, is_ep, b_q_type.id, size_m, size_n, size_k,
1547
+ is_k_full, use_atomic_add, use_fp32_reduce, is_zp_float)
1548
+
1549
+
1550
+ if supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
1551
+
1552
+ @register_fake("_moe_C::marlin_gemm_moe")
1553
+ def marlin_gemm_moe_fake(a: torch.Tensor, b_q_weights: torch.Tensor,
1554
+ sorted_ids: torch.Tensor,
1555
+ topk_weights: torch.Tensor,
1556
+ topk_ids: torch.Tensor, b_scales: torch.Tensor,
1557
+ b_zero_points: torch.Tensor, g_idx: torch.Tensor,
1558
+ perm: torch.Tensor, workspace: torch.Tensor,
1559
+ b_q_type: ScalarType, size_m: torch.SymInt,
1560
+ size_n: torch.SymInt, size_k: torch.SymInt,
1561
+ is_k_full: bool, num_experts: int, topk: int,
1562
+ moe_block_size: int, replicate_input: bool,
1563
+ apply_weights: bool) -> torch.Tensor:
1564
+ return torch.empty((size_m, topk, size_n),
1565
+ dtype=a.dtype,
1566
+ device=a.device)
1567
+
1568
+ @register_fake("_moe_C::moe_wna16_marlin_gemm")
1569
+ def moe_wna16_marlin_gemm_fake(input: torch.Tensor,
1570
+ output: Optional[torch.Tensor],
1571
+ b_qweight: torch.Tensor,
1572
+ b_scales: torch.Tensor,
1573
+ b_qzeros: Optional[torch.Tensor],
1574
+ g_idx: Optional[torch.Tensor],
1575
+ perm: Optional[torch.Tensor],
1576
+ workspace: torch.Tensor,
1577
+ sorted_token_ids: torch.Tensor,
1578
+ expert_ids: torch.Tensor,
1579
+ num_tokens_past_padded: torch.Tensor,
1580
+ topk_weights: torch.Tensor,
1581
+ moe_block_size: int, top_k: int,
1582
+ mul_topk_weights: bool, is_ep: bool,
1583
+ b_q_type: ScalarType, size_m: int,
1584
+ size_n: int, size_k: int, is_k_full: bool,
1585
+ use_atomic_add: bool, use_fp32_reduce: bool,
1586
+ is_zp_float: bool) -> torch.Tensor:
1587
+ return torch.empty((size_m * top_k, size_n),
1588
+ dtype=input.dtype,
1589
+ device=input.device)
1590
+
1591
+
1592
+ def reshape_and_cache(
1593
+ key: torch.Tensor,
1594
+ value: torch.Tensor,
1595
+ key_cache: torch.Tensor,
1596
+ value_cache: torch.Tensor,
1597
+ slot_mapping: torch.Tensor,
1598
+ kv_cache_dtype: str,
1599
+ k_scale: torch.Tensor,
1600
+ v_scale: torch.Tensor,
1601
+ ) -> None:
1602
+ torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
1603
+ value_cache, slot_mapping,
1604
+ kv_cache_dtype, k_scale, v_scale)
1605
+
1606
+
1607
+ def reshape_and_cache_flash(
1608
+ key: torch.Tensor,
1609
+ value: torch.Tensor,
1610
+ key_cache: torch.Tensor,
1611
+ value_cache: torch.Tensor,
1612
+ slot_mapping: torch.Tensor,
1613
+ kv_cache_dtype: str,
1614
+ k_scale: torch.Tensor,
1615
+ v_scale: torch.Tensor,
1616
+ ) -> None:
1617
+ torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
1618
+ value_cache, slot_mapping,
1619
+ kv_cache_dtype, k_scale,
1620
+ v_scale)
1621
+
1622
+
1623
+ def concat_and_cache_mla(
1624
+ kv_c: torch.Tensor,
1625
+ k_pe: torch.Tensor,
1626
+ kv_cache: torch.Tensor,
1627
+ slot_mapping: torch.Tensor,
1628
+ kv_cache_dtype: str,
1629
+ scale: torch.Tensor,
1630
+ ) -> None:
1631
+ torch.ops._C_cache_ops.concat_and_cache_mla(kv_c, k_pe, kv_cache,
1632
+ slot_mapping, kv_cache_dtype,
1633
+ scale)
1634
+
1635
+
1636
+ def copy_blocks(key_caches: list[torch.Tensor],
1637
+ value_caches: list[torch.Tensor],
1638
+ block_mapping: torch.Tensor) -> None:
1639
+ torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
1640
+
1641
+
1642
+ def copy_blocks_mla(kv_caches: list[torch.Tensor],
1643
+ block_mapping: torch.Tensor) -> None:
1644
+ torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
1645
+
1646
+
1647
+ def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
1648
+ block_mapping: torch.Tensor) -> None:
1649
+ torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
1650
+
1651
+
1652
+ def convert_fp8(output: torch.Tensor,
1653
+ input: torch.Tensor,
1654
+ scale: float = 1.0,
1655
+ kv_dtype: str = "fp8") -> None:
1656
+ torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
1657
+
1658
+
1659
+ def gather_and_maybe_dequant_cache(
1660
+ src_cache: torch.Tensor,
1661
+ dst: torch.Tensor,
1662
+ block_table: torch.Tensor,
1663
+ cu_seq_lens: torch.Tensor,
1664
+ batch_size: int,
1665
+ kv_cache_dtype: str,
1666
+ scale: torch.Tensor,
1667
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1668
+ torch.ops._C_cache_ops.gather_and_maybe_dequant_cache(
1669
+ src_cache, dst, block_table, cu_seq_lens, batch_size, kv_cache_dtype,
1670
+ scale, seq_starts)
1671
+
1672
+
1673
+ def cp_gather_cache(src_cache: torch.Tensor,
1674
+ dst: torch.Tensor,
1675
+ block_table: torch.Tensor,
1676
+ cu_seq_lens: torch.Tensor,
1677
+ batch_size: int,
1678
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1679
+ torch.ops._C_cache_ops.cp_gather_cache(src_cache, dst, block_table,
1680
+ cu_seq_lens, batch_size, seq_starts)
1681
+
1682
+
1683
+ def get_device_attribute(attribute: int, device: int) -> int:
1684
+ return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
1685
+
1686
+
1687
+ def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
1688
+ # ruff: noqa: E501
1689
+ return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
1690
+ device)
1691
+
1692
+
1693
+ # custom ar
1694
+ def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
1695
+ rank: int, fully_connected: bool) -> int:
1696
+ return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
1697
+ fully_connected)
1698
+
1699
+
1700
+ def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
1701
+ reg_buffer_sz_bytes: int) -> None:
1702
+ torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
1703
+ reg_buffer_sz_bytes)
1704
+
1705
+
1706
+ def dispose(fa: int) -> None:
1707
+ torch.ops._C_custom_ar.dispose(fa)
1708
+
1709
+
1710
+ def meta_size() -> int:
1711
+ return torch.ops._C_custom_ar.meta_size()
1712
+
1713
+
1714
+ def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
1715
+ return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
1716
+
1717
+
1718
+ def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
1719
+ return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
1720
+
1721
+
1722
+ def register_graph_buffers(fa: int, handles: list[list[int]],
1723
+ offsets: list[list[int]]) -> None:
1724
+ torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
1725
+
1726
+
1727
+ def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
1728
+ return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
1729
+
1730
+
1731
+ def open_mem_handle(mem_handle: torch.Tensor):
1732
+ return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
1733
+
1734
+
1735
+ def free_shared_buffer(ptr: int) -> None:
1736
+ torch.ops._C_custom_ar.free_shared_buffer(ptr)
1737
+
1738
+
1739
+ # quick all reduce
1740
+ def init_custom_qr(rank: int,
1741
+ world_size: int,
1742
+ qr_max_size: Optional[int] = None) -> int:
1743
+ return torch.ops._C_custom_ar.init_custom_qr(rank, world_size, qr_max_size)
1744
+
1745
+
1746
+ def qr_destroy(fa: int) -> None:
1747
+ torch.ops._C_custom_ar.qr_destroy(fa)
1748
+
1749
+
1750
+ def qr_all_reduce(fa: int,
1751
+ inp: torch.Tensor,
1752
+ out: torch.Tensor,
1753
+ quant_level: int,
1754
+ cast_bf2half: bool = False) -> None:
1755
+ torch.ops._C_custom_ar.qr_all_reduce(fa, inp, out, quant_level,
1756
+ cast_bf2half)
1757
+
1758
+
1759
+ def qr_get_handle(fa: int) -> torch.Tensor:
1760
+ return torch.ops._C_custom_ar.qr_get_handle(fa)
1761
+
1762
+
1763
+ def qr_open_handles(fa: int, handles: list[torch.Tensor]) -> None:
1764
+ return torch.ops._C_custom_ar.qr_open_handles(fa, handles)
1765
+
1766
+
1767
+ def qr_max_size() -> int:
1768
+ return torch.ops._C_custom_ar.qr_max_size()
1769
+
1770
+
1771
+ def get_flash_mla_metadata(
1772
+ cache_seqlens: torch.Tensor,
1773
+ num_heads_per_head_k: int,
1774
+ num_heads_k: int,
1775
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1776
+ """
1777
+ Arguments:
1778
+ cache_seqlens: (batch_size), dtype torch.int32.
1779
+ num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
1780
+ num_heads_k: num_heads_k.
1781
+
1782
+ Return:
1783
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
1784
+ num_splits: (batch_size + 1), dtype torch.int32.
1785
+ """
1786
+ return torch.ops._C.get_flash_mla_metadata(cache_seqlens,
1787
+ num_heads_per_head_k,
1788
+ num_heads_k)
1789
+
1790
+
1791
+ def flash_mla_with_kvcache(
1792
+ q: torch.Tensor,
1793
+ k_cache: torch.Tensor,
1794
+ block_table: torch.Tensor,
1795
+ cache_seqlens: torch.Tensor,
1796
+ head_dim_v: int,
1797
+ tile_scheduler_metadata: torch.Tensor,
1798
+ num_splits: torch.Tensor,
1799
+ softmax_scale: Optional[float] = None,
1800
+ causal: bool = False,
1801
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1802
+ """
1803
+ Arguments:
1804
+ q: (batch_size, seq_len_q, num_heads_q, head_dim).
1805
+ k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
1806
+ block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
1807
+ cache_seqlens: (batch_size), torch.int32.
1808
+ head_dim_v: Head_dim of v.
1809
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
1810
+ num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
1811
+ softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
1812
+ causal: bool. Whether to apply causal attention mask.
1813
+
1814
+ Return:
1815
+ out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
1816
+ softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
1817
+ """
1818
+ if softmax_scale is None:
1819
+ softmax_scale = q.shape[-1]**(-0.5)
1820
+ out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
1821
+ q,
1822
+ k_cache,
1823
+ None,
1824
+ head_dim_v,
1825
+ cache_seqlens,
1826
+ block_table,
1827
+ softmax_scale,
1828
+ causal,
1829
+ tile_scheduler_metadata,
1830
+ num_splits,
1831
+ )
1832
+ return out, softmax_lse
1833
+
1834
+
1835
+ def cutlass_mla_decode(out: torch.Tensor, q_nope: torch.Tensor,
1836
+ q_pe: torch.Tensor, kv_c_and_k_pe_cache: torch.Tensor,
1837
+ seq_lens: torch.Tensor, page_table: torch.Tensor,
1838
+ scale: float) -> torch.Tensor:
1839
+ torch.ops._C.cutlass_mla_decode(out, q_nope, q_pe, kv_c_and_k_pe_cache,
1840
+ seq_lens, page_table, scale)
1841
+ return out
1842
+
1843
+
1844
+ def sm100_cutlass_mla_decode(out: torch.Tensor, lse: torch.Tensor,
1845
+ q_nope: torch.Tensor, q_pe: torch.Tensor,
1846
+ kv_c_and_k_pe_cache: torch.Tensor,
1847
+ seq_lens: torch.Tensor, page_table: torch.Tensor,
1848
+ workspace: torch.Tensor, scale: float,
1849
+ num_kv_splits: int) -> torch.Tensor:
1850
+ torch.ops._C.sm100_cutlass_mla_decode(out, lse, q_nope, q_pe,
1851
+ kv_c_and_k_pe_cache, seq_lens,
1852
+ page_table, workspace, scale,
1853
+ num_kv_splits)
1854
+ return out
1855
+
1856
+
1857
+ def sm100_cutlass_mla_get_workspace_size(max_seq_len: int, num_batches: int,
1858
+ sm_count: int,
1859
+ num_kv_splits: int) -> int:
1860
+ return torch.ops._C.sm100_cutlass_mla_get_workspace_size(
1861
+ max_seq_len, num_batches, sm_count, num_kv_splits)
1862
+
1863
+
1864
+ if hasattr(torch.ops._C, "weight_packed_linear"):
1865
+
1866
+ @register_fake("_C::weight_packed_linear")
1867
+ def weight_packed_linear_fake(mat1: torch.Tensor, mat2: torch.Tensor,
1868
+ bias: Optional[torch.Tensor],
1869
+ is_vnni: bool) -> torch.Tensor:
1870
+ return torch.empty((mat1.size(0), mat2.size(0)),
1871
+ dtype=mat1.dtype,
1872
+ device=mat2.device)
1873
+
1874
+
1875
+ if hasattr(torch.ops._C, "fused_experts_cpu"):
1876
+
1877
+ @register_fake("_C::fused_experts_cpu")
1878
+ def fused_experts_cpu_fake(
1879
+ hidden_states: torch.Tensor,
1880
+ w1: torch.Tensor,
1881
+ w2: torch.Tensor,
1882
+ topk_weights: torch.Tensor,
1883
+ topk_ids: torch.Tensor,
1884
+ inplace: bool,
1885
+ use_int8_w8a8: bool,
1886
+ use_fp8_w8a16: bool,
1887
+ w1_scale: Optional[torch.Tensor],
1888
+ w2_scale: Optional[torch.Tensor],
1889
+ block_size: Optional[list[int]],
1890
+ a1_scale: Optional[torch.Tensor],
1891
+ a2_scale: Optional[torch.Tensor],
1892
+ is_vnni: bool,
1893
+ ) -> torch.Tensor:
1894
+ return torch.empty_like(hidden_states)
1895
+
1896
+
1897
+ if hasattr(torch.ops._C, "int8_scaled_mm_with_quant"):
1898
+
1899
+ @register_fake("_C::int8_scaled_mm_with_quant")
1900
+ def int8_scaled_mm_with_quant_fake(
1901
+ mat1: torch.Tensor,
1902
+ mat2: torch.Tensor,
1903
+ scales2: torch.Tensor,
1904
+ bias: Optional[torch.Tensor],
1905
+ out_dtype: torch.dtype,
1906
+ is_vnni: bool,
1907
+ ) -> torch.Tensor:
1908
+ M = mat1.size(0)
1909
+ N = mat2.size(0)
1910
+ return torch.empty((M, N), dtype=out_dtype)
1911
+
1912
+
1913
+ class CPUDNNLGEMMHandler:
1914
+
1915
+ def __init__(self) -> None:
1916
+ self.handler: Optional[int] = None
1917
+ self.n = -1
1918
+ self.k = -1
1919
+
1920
+ def __del__(self):
1921
+ if self.handler is not None:
1922
+ torch.ops._C.release_dnnl_matmul_handler(self.handler)
1923
+
1924
+
1925
+ if hasattr(torch.ops._C, "create_onednn_mm_handler"):
1926
+ _supports_onednn = True
1927
+ else:
1928
+ _supports_onednn = False
1929
+
1930
+
1931
+ def create_onednn_mm(
1932
+ weight: torch.Tensor, # [K, N]
1933
+ primitive_cache_size: int = 128,
1934
+ ) -> CPUDNNLGEMMHandler:
1935
+ handler = CPUDNNLGEMMHandler()
1936
+ handler.k, handler.n = weight.size()
1937
+ handler.handler = torch.ops._C.create_onednn_mm_handler(
1938
+ weight, primitive_cache_size)
1939
+ return handler
1940
+
1941
+
1942
+ def onednn_mm(
1943
+ dnnl_handler: CPUDNNLGEMMHandler,
1944
+ x: torch.Tensor,
1945
+ bias: Optional[torch.Tensor],
1946
+ ) -> torch.Tensor:
1947
+ output = torch.empty((*x.shape[0:-1], dnnl_handler.n), dtype=x.dtype)
1948
+ torch.ops._C.onednn_mm(output, x.reshape(-1, dnnl_handler.k), bias,
1949
+ dnnl_handler.handler)
1950
+
1951
+ return output
1952
+
1953
+
1954
+ def create_onednn_scaled_mm(
1955
+ weight: torch.Tensor, # [K, N]
1956
+ weight_scales: torch.Tensor,
1957
+ output_type: torch.dtype,
1958
+ dynamic_quant: bool,
1959
+ use_azp: bool,
1960
+ primitive_cache_size: int = 128,
1961
+ ) -> CPUDNNLGEMMHandler:
1962
+ handler = CPUDNNLGEMMHandler()
1963
+ handler.k, handler.n = weight.size()
1964
+ handler.handler = torch.ops._C.create_onednn_scaled_mm_handler(
1965
+ weight, weight_scales, output_type, dynamic_quant, use_azp,
1966
+ primitive_cache_size)
1967
+ return handler
1968
+
1969
+
1970
+ def onednn_scaled_int8_quant(input: torch.Tensor,
1971
+ scale: Optional[torch.Tensor] = None,
1972
+ azp: Optional[torch.Tensor] = None,
1973
+ symmetric: bool = True):
1974
+ """
1975
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1976
+
1977
+ Args:
1978
+ input: The input tensor to be quantized to int8.
1979
+ scale: Optional scaling factor for the int8 quantization.
1980
+ When not provided, we invoke dynamic-per-token quantization.
1981
+ azp: Optional zero-point for the int8 quantization.
1982
+ Must be provided for asymmetric quantization if `scale` is provided.
1983
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1984
+
1985
+ Returns:
1986
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1987
+ """
1988
+ output = torch.empty_like(input, dtype=torch.int8)
1989
+ token_num = input.numel() // input.shape[-1]
1990
+ input = input.view((token_num, input.shape[-1]))
1991
+ if scale is not None:
1992
+ # static-per-tensor quantization.
1993
+ assert symmetric == (
1994
+ azp
1995
+ is None), "azp must only be provided for asymmetric quantization."
1996
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1997
+ return output, scale, azp
1998
+
1999
+ # dynamic-per-token quantization.
2000
+ input_scales = torch.empty((token_num, 1),
2001
+ device=input.device,
2002
+ dtype=torch.float32)
2003
+ input_azp = None if symmetric else torch.empty_like(input_scales,
2004
+ dtype=torch.int32)
2005
+ torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales,
2006
+ input_azp)
2007
+ return output, input_scales, input_azp
2008
+
2009
+
2010
+ def onednn_scaled_mm(
2011
+ dnnl_handler: CPUDNNLGEMMHandler,
2012
+ x: torch.Tensor,
2013
+ output: torch.Tensor,
2014
+ input_scale: Optional[torch.Tensor],
2015
+ input_zp: Optional[torch.Tensor],
2016
+ input_zp_adj: Optional[torch.Tensor],
2017
+ bias: Optional[torch.Tensor],
2018
+ ) -> torch.Tensor:
2019
+ torch.ops._C.onednn_scaled_mm(output, x, input_scale, input_zp,
2020
+ input_zp_adj, bias, dnnl_handler.handler)
2021
+
2022
+ return output