vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
vllm/envs.py ADDED
@@ -0,0 +1,1354 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import hashlib
5
+ import json
6
+ import os
7
+ import sys
8
+ import tempfile
9
+ from typing import TYPE_CHECKING, Any, Callable, Optional
10
+
11
+ if TYPE_CHECKING:
12
+ VLLM_HOST_IP: str = ""
13
+ VLLM_PORT: Optional[int] = None
14
+ VLLM_RPC_BASE_PATH: str = tempfile.gettempdir()
15
+ VLLM_USE_MODELSCOPE: bool = False
16
+ VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60
17
+ VLLM_NCCL_SO_PATH: Optional[str] = None
18
+ LD_LIBRARY_PATH: Optional[str] = None
19
+ VLLM_USE_TRITON_FLASH_ATTN: bool = True
20
+ VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False
21
+ VLLM_USE_AITER_UNIFIED_ATTENTION: bool = False
22
+ VLLM_FLASH_ATTN_VERSION: Optional[int] = None
23
+ LOCAL_RANK: int = 0
24
+ CUDA_VISIBLE_DEVICES: Optional[str] = None
25
+ VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
26
+ VLLM_API_KEY: Optional[str] = None
27
+ S3_ACCESS_KEY_ID: Optional[str] = None
28
+ S3_SECRET_ACCESS_KEY: Optional[str] = None
29
+ S3_ENDPOINT_URL: Optional[str] = None
30
+ VLLM_MODEL_REDIRECT_PATH: Optional[str] = None
31
+ VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm")
32
+ VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm")
33
+ VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
34
+ VLLM_NO_USAGE_STATS: bool = False
35
+ VLLM_DO_NOT_TRACK: bool = False
36
+ VLLM_USAGE_SOURCE: str = ""
37
+ VLLM_CONFIGURE_LOGGING: int = 1
38
+ VLLM_LOGGING_LEVEL: str = "INFO"
39
+ VLLM_LOGGING_PREFIX: str = ""
40
+ VLLM_LOGGING_STREAM: str = "ext://sys.stdout"
41
+ VLLM_LOGGING_CONFIG_PATH: Optional[str] = None
42
+ VLLM_LOGITS_PROCESSOR_THREADS: Optional[int] = None
43
+ VLLM_LOG_STATS_INTERVAL: float = 10.
44
+ VLLM_TRACE_FUNCTION: int = 0
45
+ VLLM_ATTENTION_BACKEND: Optional[str] = None
46
+ VLLM_USE_FLASHINFER_SAMPLER: Optional[bool] = None
47
+ VLLM_PP_LAYER_PARTITION: Optional[str] = None
48
+ VLLM_CPU_KVCACHE_SPACE: Optional[int] = 0
49
+ VLLM_CPU_OMP_THREADS_BIND: str = ""
50
+ VLLM_CPU_NUM_OF_RESERVED_CPU: Optional[int] = None
51
+ VLLM_CPU_MOE_PREPACK: bool = True
52
+ VLLM_CPU_SGL_KERNEL: bool = False
53
+ VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
54
+ VLLM_XLA_CHECK_RECOMPILATION: bool = False
55
+ VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024
56
+ VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING: bool = True
57
+ VLLM_USE_RAY_SPMD_WORKER: bool = False
58
+ VLLM_USE_RAY_COMPILED_DAG: bool = False
59
+ VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: str = "auto"
60
+ VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False
61
+ VLLM_USE_RAY_WRAPPED_PP_COMM: bool = True
62
+ VLLM_XLA_USE_SPMD: bool = False
63
+ VLLM_WORKER_MULTIPROC_METHOD: str = "fork"
64
+ VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
65
+ VLLM_IMAGE_FETCH_TIMEOUT: int = 5
66
+ VLLM_VIDEO_FETCH_TIMEOUT: int = 30
67
+ VLLM_AUDIO_FETCH_TIMEOUT: int = 10
68
+ VLLM_MEDIA_LOADING_THREAD_COUNT: int = 8
69
+ VLLM_MAX_AUDIO_CLIP_FILESIZE_MB: int = 25
70
+ VLLM_VIDEO_LOADER_BACKEND: str = "opencv"
71
+ VLLM_MM_INPUT_CACHE_GIB: int = 4
72
+ VLLM_TARGET_DEVICE: str = "cuda"
73
+ VLLM_MAIN_CUDA_VERSION: str = "12.8"
74
+ MAX_JOBS: Optional[str] = None
75
+ NVCC_THREADS: Optional[str] = None
76
+ VLLM_USE_PRECOMPILED: bool = False
77
+ VLLM_DOCKER_BUILD_CONTEXT: bool = False
78
+ VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL: bool = False
79
+ VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False
80
+ CMAKE_BUILD_TYPE: Optional[str] = None
81
+ VERBOSE: bool = False
82
+ VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False
83
+ VLLM_RPC_TIMEOUT: int = 10000 # ms
84
+ VLLM_HTTP_TIMEOUT_KEEP_ALIVE: int = 5 # seconds
85
+ VLLM_PLUGINS: Optional[list[str]] = None
86
+ VLLM_LORA_RESOLVER_CACHE_DIR: Optional[str] = None
87
+ VLLM_TORCH_PROFILER_DIR: Optional[str] = None
88
+ VLLM_TORCH_PROFILER_RECORD_SHAPES: bool = False
89
+ VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY: bool = False
90
+ VLLM_TORCH_PROFILER_WITH_STACK: bool = True
91
+ VLLM_TORCH_PROFILER_WITH_FLOPS: bool = False
92
+ VLLM_USE_TRITON_AWQ: bool = False
93
+ VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
94
+ VLLM_SKIP_P2P_CHECK: bool = False
95
+ VLLM_DISABLED_KERNELS: list[str] = []
96
+ VLLM_USE_V1: bool = True
97
+ VLLM_ROCM_USE_AITER: bool = False
98
+ VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False
99
+ VLLM_ROCM_USE_AITER_LINEAR: bool = True
100
+ VLLM_ROCM_USE_AITER_MOE: bool = True
101
+ VLLM_ROCM_USE_AITER_RMSNORM: bool = True
102
+ VLLM_ROCM_USE_AITER_MLA: bool = True
103
+ VLLM_ROCM_USE_AITER_MHA: bool = True
104
+ VLLM_ROCM_USE_AITER_FP8BMM: bool = True
105
+ VLLM_ROCM_USE_SKINNY_GEMM: bool = True
106
+ VLLM_ROCM_FP8_PADDING: bool = True
107
+ VLLM_ROCM_MOE_PADDING: bool = True
108
+ VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True
109
+ VLLM_ENABLE_V1_MULTIPROCESSING: bool = True
110
+ VLLM_LOG_BATCHSIZE_INTERVAL: float = -1
111
+ VLLM_DISABLE_COMPILE_CACHE: bool = False
112
+ Q_SCALE_CONSTANT: int = 200
113
+ K_SCALE_CONSTANT: int = 200
114
+ V_SCALE_CONSTANT: int = 100
115
+ VLLM_SERVER_DEV_MODE: bool = False
116
+ VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128
117
+ VLLM_MLA_DISABLE: bool = False
118
+ VLLM_RAY_PER_WORKER_GPUS: float = 1.0
119
+ VLLM_RAY_BUNDLE_INDICES: str = ""
120
+ VLLM_CUDART_SO_PATH: Optional[str] = None
121
+ VLLM_DP_RANK: int = 0
122
+ VLLM_DP_RANK_LOCAL: int = -1
123
+ VLLM_DP_SIZE: int = 1
124
+ VLLM_DP_MASTER_IP: str = ""
125
+ VLLM_DP_MASTER_PORT: int = 0
126
+ VLLM_MOE_DP_CHUNK_SIZE: int = 256
127
+ VLLM_RANDOMIZE_DP_DUMMY_INPUTS: bool = False
128
+ VLLM_MARLIN_USE_ATOMIC_ADD: bool = False
129
+ VLLM_MXFP4_USE_MARLIN: Optional[bool] = None
130
+ VLLM_V0_USE_OUTLINES_CACHE: bool = False
131
+ VLLM_V1_USE_OUTLINES_CACHE: bool = False
132
+ VLLM_TPU_BUCKET_PADDING_GAP: int = 0
133
+ VLLM_TPU_MOST_MODEL_LEN: Optional[int] = None
134
+ VLLM_TPU_USING_PATHWAYS: bool = False
135
+ VLLM_USE_DEEP_GEMM: bool = False
136
+ VLLM_USE_DEEP_GEMM_E8M0: bool = True
137
+ VLLM_USE_DEEP_GEMM_E8M0_HOPPER: bool = False
138
+ VLLM_SKIP_DEEP_GEMM_WARMUP: bool = False
139
+ VLLM_USE_FUSED_MOE_GROUPED_TOPK: bool = True
140
+ VLLM_USE_FLASHINFER_MOE_FP8: bool = False
141
+ VLLM_USE_FLASHINFER_MOE_FP4: bool = False
142
+ VLLM_FLASHINFER_MOE_BACKEND: str = "throughput"
143
+ VLLM_XGRAMMAR_CACHE_MB: int = 0
144
+ VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256
145
+ VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False
146
+ VLLM_NIXL_SIDE_CHANNEL_HOST: str = "localhost"
147
+ VLLM_NIXL_SIDE_CHANNEL_PORT: int = 5557
148
+ VLLM_ALL2ALL_BACKEND: str = "naive"
149
+ VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE: int = 163840
150
+ VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1
151
+ VLLM_SLEEP_WHEN_IDLE: bool = False
152
+ VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16
153
+ VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS: int = 300
154
+ VLLM_KV_CACHE_LAYOUT: Optional[str] = None
155
+ VLLM_COMPUTE_NANS_IN_LOGITS: bool = False
156
+ VLLM_USE_NVFP4_CT_EMULATIONS: bool = False
157
+ VLLM_ROCM_QUICK_REDUCE_QUANTIZATION: str = "NONE"
158
+ VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16: bool = True
159
+ VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB: Optional[int] = None
160
+ VLLM_NIXL_ABORT_REQUEST_TIMEOUT: int = 120
161
+ VLLM_USE_CUDNN_PREFILL: bool = False
162
+ VLLM_ENABLE_CUDAGRAPH_GC: bool = False
163
+ VLLM_LOOPBACK_IP: str = ""
164
+ VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE: bool = False
165
+ VLLM_ENABLE_RESPONSES_API_STORE: bool = False
166
+ VLLM_USE_TRTLLM_ATTENTION: Optional[str] = None
167
+ VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION: bool = False
168
+ VLLM_HAS_FLASHINFER_CUBIN: bool = False
169
+ VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8: bool = False
170
+ VLLM_USE_FLASHINFER_MOE_MXFP4_BF16: bool = False
171
+ VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS: bool = False
172
+ VLLM_ALLREDUCE_USE_SYMM_MEM: bool = False
173
+ VLLM_TUNED_CONFIG_FOLDER: Optional[str] = None
174
+ VLLM_DISABLE_PAD_FOR_CUDAGRAPH: bool = False
175
+ VLLM_GPT_OSS_USE_CONTAINER_TOOL: bool = False
176
+ VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS: bool = False
177
+ VLLM_CUSTOM_SCOPES_FOR_PROFILING: bool = False
178
+ VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES: bool = True
179
+
180
+
181
+ def get_default_cache_root():
182
+ return os.getenv(
183
+ "XDG_CACHE_HOME",
184
+ os.path.join(os.path.expanduser("~"), ".cache"),
185
+ )
186
+
187
+
188
+ def get_default_config_root():
189
+ return os.getenv(
190
+ "XDG_CONFIG_HOME",
191
+ os.path.join(os.path.expanduser("~"), ".config"),
192
+ )
193
+
194
+
195
+ def maybe_convert_int(value: Optional[str]) -> Optional[int]:
196
+ if value is None:
197
+ return None
198
+ return int(value)
199
+
200
+
201
+ def maybe_convert_bool(value: Optional[str]) -> Optional[bool]:
202
+ if value is None:
203
+ return None
204
+ return bool(int(value))
205
+
206
+
207
+ def get_vllm_port() -> Optional[int]:
208
+ """Get the port from VLLM_PORT environment variable.
209
+
210
+ Returns:
211
+ The port number as an integer if VLLM_PORT is set, None otherwise.
212
+
213
+ Raises:
214
+ ValueError: If VLLM_PORT is a URI, suggest k8s service discovery issue.
215
+ """
216
+ if 'VLLM_PORT' not in os.environ:
217
+ return None
218
+
219
+ port = os.getenv('VLLM_PORT', '0')
220
+
221
+ try:
222
+ return int(port)
223
+ except ValueError as err:
224
+ from urllib.parse import urlparse
225
+ parsed = urlparse(port)
226
+ if parsed.scheme:
227
+ raise ValueError(
228
+ f"VLLM_PORT '{port}' appears to be a URI. "
229
+ "This may be caused by a Kubernetes service discovery issue,"
230
+ "check the warning in: https://docs.vllm.ai/en/stable/serving/env_vars.html"
231
+ ) from None
232
+ raise ValueError(
233
+ f"VLLM_PORT '{port}' must be a valid integer") from err
234
+
235
+
236
+ # The begin-* and end* here are used by the documentation generator
237
+ # to extract the used env vars.
238
+
239
+ # --8<-- [start:env-vars-definition]
240
+
241
+ environment_variables: dict[str, Callable[[], Any]] = {
242
+
243
+ # ================== Installation Time Env Vars ==================
244
+
245
+ # Target device of vLLM, supporting [cuda (by default),
246
+ # rocm, cpu]
247
+ "VLLM_TARGET_DEVICE":
248
+ lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(),
249
+
250
+ # Main CUDA version of vLLM, supporting [12.6, 12.8, 12.9],
251
+ # 12.8 is the default. This follows PyTorch but can be overridden.
252
+ "VLLM_MAIN_CUDA_VERSION":
253
+ lambda: os.getenv("VLLM_MAIN_CUDA_VERSION", "").lower() or "12.8",
254
+
255
+ # Maximum number of compilation jobs to run in parallel.
256
+ # By default this is the number of CPUs
257
+ "MAX_JOBS":
258
+ lambda: os.getenv("MAX_JOBS", None),
259
+
260
+ # Number of threads to use for nvcc
261
+ # By default this is 1.
262
+ # If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
263
+ "NVCC_THREADS":
264
+ lambda: os.getenv("NVCC_THREADS", None),
265
+
266
+ # If set, vllm will use precompiled binaries (*.so)
267
+ "VLLM_USE_PRECOMPILED":
268
+ lambda: os.environ.get("VLLM_USE_PRECOMPILED", "").strip().lower() in
269
+ ("1", "true") or bool(os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")),
270
+
271
+ # Used to mark that setup.py is running in a Docker build context,
272
+ # in order to force the use of precompiled binaries.
273
+ "VLLM_DOCKER_BUILD_CONTEXT":
274
+ lambda: os.environ.get("VLLM_DOCKER_BUILD_CONTEXT", "").strip().lower() in
275
+ ("1", "true"),
276
+
277
+ # Whether to force using nightly wheel in python build.
278
+ # This is used for testing the nightly wheel in python build.
279
+ "VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL":
280
+ lambda: bool(int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0"))
281
+ ),
282
+
283
+ # CMake build type
284
+ # If not set, defaults to "Debug" or "RelWithDebInfo"
285
+ # Available options: "Debug", "Release", "RelWithDebInfo"
286
+ "CMAKE_BUILD_TYPE":
287
+ lambda: os.getenv("CMAKE_BUILD_TYPE"),
288
+
289
+ # If set, vllm will print verbose logs during installation
290
+ "VERBOSE":
291
+ lambda: bool(int(os.getenv('VERBOSE', '0'))),
292
+
293
+ # Root directory for vLLM configuration files
294
+ # Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
295
+ # Note that this not only affects how vllm finds its configuration files
296
+ # during runtime, but also affects how vllm installs its configuration
297
+ # files during **installation**.
298
+ "VLLM_CONFIG_ROOT":
299
+ lambda: os.path.expanduser(
300
+ os.getenv(
301
+ "VLLM_CONFIG_ROOT",
302
+ os.path.join(get_default_config_root(), "vllm"),
303
+ )),
304
+
305
+ # ================== Runtime Env Vars ==================
306
+
307
+ # Root directory for vLLM cache files
308
+ # Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
309
+ "VLLM_CACHE_ROOT":
310
+ lambda: os.path.expanduser(
311
+ os.getenv(
312
+ "VLLM_CACHE_ROOT",
313
+ os.path.join(get_default_cache_root(), "vllm"),
314
+ )),
315
+
316
+ # used in distributed environment to determine the ip address
317
+ # of the current node, when the node has multiple network interfaces.
318
+ # If you are using multi-node inference, you should set this differently
319
+ # on each node.
320
+ 'VLLM_HOST_IP':
321
+ lambda: os.getenv('VLLM_HOST_IP', ""),
322
+
323
+ # used in distributed environment to manually set the communication port
324
+ # Note: if VLLM_PORT is set, and some code asks for multiple ports, the
325
+ # VLLM_PORT will be used as the first port, and the rest will be generated
326
+ # by incrementing the VLLM_PORT value.
327
+ 'VLLM_PORT':
328
+ get_vllm_port,
329
+
330
+ # path used for ipc when the frontend api server is running in
331
+ # multi-processing mode to communicate with the backend engine process.
332
+ 'VLLM_RPC_BASE_PATH':
333
+ lambda: os.getenv('VLLM_RPC_BASE_PATH', tempfile.gettempdir()),
334
+
335
+ # If true, will load models from ModelScope instead of Hugging Face Hub.
336
+ # note that the value is true or false, not numbers
337
+ "VLLM_USE_MODELSCOPE":
338
+ lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true",
339
+
340
+ # Interval in seconds to log a warning message when the ring buffer is full
341
+ "VLLM_RINGBUFFER_WARNING_INTERVAL":
342
+ lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")),
343
+
344
+ # path to cudatoolkit home directory, under which should be bin, include,
345
+ # and lib directories.
346
+ "CUDA_HOME":
347
+ lambda: os.environ.get("CUDA_HOME", None),
348
+
349
+ # Path to the NCCL library file. It is needed because nccl>=2.19 brought
350
+ # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
351
+ "VLLM_NCCL_SO_PATH":
352
+ lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),
353
+
354
+ # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
355
+ # library file in the locations specified by `LD_LIBRARY_PATH`
356
+ "LD_LIBRARY_PATH":
357
+ lambda: os.environ.get("LD_LIBRARY_PATH", None),
358
+
359
+ # flag to control if vllm should use triton flash attention
360
+ "VLLM_USE_TRITON_FLASH_ATTN":
361
+ lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
362
+ ("true", "1")),
363
+
364
+ # Use separate prefill and decode kernels for V1 attention instead of
365
+ # the unified triton kernel.
366
+ "VLLM_V1_USE_PREFILL_DECODE_ATTENTION":
367
+ lambda:
368
+ (os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower() in
369
+ ("true", "1")),
370
+
371
+ # Use AITER triton unified attention for V1 attention
372
+ "VLLM_USE_AITER_UNIFIED_ATTENTION":
373
+ lambda:
374
+ (os.getenv("VLLM_USE_AITER_UNIFIED_ATTENTION", "False").lower() in
375
+ ("true", "1")),
376
+
377
+ # Force vllm to use a specific flash-attention version (2 or 3), only valid
378
+ # when using the flash-attention backend.
379
+ "VLLM_FLASH_ATTN_VERSION":
380
+ lambda: maybe_convert_int(os.environ.get("VLLM_FLASH_ATTN_VERSION", None)),
381
+
382
+ # Internal flag to enable Dynamo fullgraph capture
383
+ "VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE":
384
+ lambda: bool(
385
+ os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"),
386
+
387
+ # Feature flag to enable/disable Inductor standalone compile.
388
+ # In torch <= 2.7 we ignore this flag; in torch >= 2.8 this is
389
+ # enabled by default.
390
+ "VLLM_USE_STANDALONE_COMPILE":
391
+ lambda: os.environ.get("VLLM_USE_STANDALONE_COMPILE", "1") == "1",
392
+
393
+ # local rank of the process in the distributed setting, used to determine
394
+ # the GPU device id
395
+ "LOCAL_RANK":
396
+ lambda: int(os.environ.get("LOCAL_RANK", "0")),
397
+
398
+ # used to control the visible devices in the distributed setting
399
+ "CUDA_VISIBLE_DEVICES":
400
+ lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),
401
+
402
+ # timeout for each iteration in the engine
403
+ "VLLM_ENGINE_ITERATION_TIMEOUT_S":
404
+ lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")),
405
+
406
+ # API key for vLLM API server
407
+ "VLLM_API_KEY":
408
+ lambda: os.environ.get("VLLM_API_KEY", None),
409
+
410
+ # Whether to log responses from API Server for debugging
411
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE":
412
+ lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False"
413
+ ).lower() == "true",
414
+
415
+ # S3 access information, used for tensorizer to load model from S3
416
+ "S3_ACCESS_KEY_ID":
417
+ lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
418
+ "S3_SECRET_ACCESS_KEY":
419
+ lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
420
+ "S3_ENDPOINT_URL":
421
+ lambda: os.environ.get("S3_ENDPOINT_URL", None),
422
+
423
+ # Usage stats collection
424
+ "VLLM_USAGE_STATS_SERVER":
425
+ lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
426
+ "VLLM_NO_USAGE_STATS":
427
+ lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
428
+ "VLLM_DO_NOT_TRACK":
429
+ lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
430
+ "DO_NOT_TRACK", None) or "0") == "1",
431
+ "VLLM_USAGE_SOURCE":
432
+ lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),
433
+
434
+ # Logging configuration
435
+ # If set to 0, vllm will not configure logging
436
+ # If set to 1, vllm will configure logging using the default configuration
437
+ # or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
438
+ "VLLM_CONFIGURE_LOGGING":
439
+ lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
440
+ "VLLM_LOGGING_CONFIG_PATH":
441
+ lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),
442
+
443
+ # this is used for configuring the default logging level
444
+ "VLLM_LOGGING_LEVEL":
445
+ lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(),
446
+
447
+ # this is used for configuring the default logging stream
448
+ "VLLM_LOGGING_STREAM":
449
+ lambda: os.getenv("VLLM_LOGGING_STREAM", "ext://sys.stdout"),
450
+
451
+ # if set, VLLM_LOGGING_PREFIX will be prepended to all log messages
452
+ "VLLM_LOGGING_PREFIX":
453
+ lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),
454
+
455
+ # if set, vllm will call logits processors in a thread pool with this many
456
+ # threads. This is useful when using custom logits processors that either
457
+ # (a) launch additional CUDA kernels or (b) do significant CPU-bound work
458
+ # while not holding the python GIL, or both.
459
+ "VLLM_LOGITS_PROCESSOR_THREADS":
460
+ lambda: int(os.getenv("VLLM_LOGITS_PROCESSOR_THREADS", "0"))
461
+ if "VLLM_LOGITS_PROCESSOR_THREADS" in os.environ else None,
462
+
463
+ # If set, vllm will log stats at this interval in seconds
464
+ # If not set, vllm will log stats every 10 seconds.
465
+ "VLLM_LOG_STATS_INTERVAL":
466
+ lambda: val if (val := float(os.getenv("VLLM_LOG_STATS_INTERVAL", "10.")))
467
+ > 0. else 10.,
468
+
469
+ # Trace function calls
470
+ # If set to 1, vllm will trace function calls
471
+ # Useful for debugging
472
+ "VLLM_TRACE_FUNCTION":
473
+ lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),
474
+
475
+ # Backend for attention computation
476
+ # Available options:
477
+ # - "TORCH_SDPA": use torch.nn.MultiheadAttention
478
+ # - "FLASH_ATTN": use FlashAttention
479
+ # - "XFORMERS": use XFormers
480
+ # - "ROCM_FLASH": use ROCmFlashAttention
481
+ # - "FLASHINFER": use flashinfer
482
+ # - "FLASHMLA": use FlashMLA
483
+ # - "FLASH_ATTN_MLA": use FlashAttention for MLA
484
+ "VLLM_ATTENTION_BACKEND":
485
+ lambda: os.getenv("VLLM_ATTENTION_BACKEND", None),
486
+
487
+ # If set, vllm will use flashinfer sampler
488
+ "VLLM_USE_FLASHINFER_SAMPLER":
489
+ lambda: bool(int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"]))
490
+ if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ else None,
491
+
492
+ # Pipeline stage partition strategy
493
+ "VLLM_PP_LAYER_PARTITION":
494
+ lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),
495
+
496
+ # (CPU backend only) CPU key-value cache space.
497
+ # default is None and will be set as 4 GB
498
+ "VLLM_CPU_KVCACHE_SPACE":
499
+ lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0"))
500
+ if "VLLM_CPU_KVCACHE_SPACE" in os.environ else None,
501
+
502
+ # (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
503
+ # "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
504
+ "VLLM_CPU_OMP_THREADS_BIND":
505
+ lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"),
506
+
507
+ # (CPU backend only) CPU cores not used by OMP threads .
508
+ # Those CPU cores will not be used by OMP threads of a rank.
509
+ "VLLM_CPU_NUM_OF_RESERVED_CPU":
510
+ lambda: int(os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0"))
511
+ if "VLLM_CPU_NUM_OF_RESERVED_CPU" in os.environ else None,
512
+
513
+ # (CPU backend only) whether to use prepack for MoE layer. This will be
514
+ # passed to ipex.llm.modules.GatedMLPMOE. On unsupported CPUs, you might
515
+ # need to set this to "0" (False).
516
+ "VLLM_CPU_MOE_PREPACK":
517
+ lambda: bool(int(os.getenv("VLLM_CPU_MOE_PREPACK", "1"))),
518
+
519
+ # (CPU backend only) whether to use SGL kernels, optimized for small batch.
520
+ "VLLM_CPU_SGL_KERNEL":
521
+ lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))),
522
+
523
+ # If the env var is set, then all workers will execute as separate
524
+ # processes from the engine, and we use the same mechanism to trigger
525
+ # execution on all workers.
526
+ # Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
527
+ "VLLM_USE_RAY_SPMD_WORKER":
528
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_SPMD_WORKER", "0"))),
529
+
530
+ # If the env var is set, it uses the Ray's Compiled Graph
531
+ # (previously known as ADAG) API which optimizes the
532
+ # control plane overhead.
533
+ # Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
534
+ # Note that this variable is set to 1 in V1 by default
535
+ # when ray distributed executor is used.
536
+ "VLLM_USE_RAY_COMPILED_DAG":
537
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG", "0"))),
538
+
539
+ # If the env var is set, Ray Compiled Graph uses the specified
540
+ # channel type to communicate between workers belonging to
541
+ # different pipeline-parallel stages.
542
+ # Available options:
543
+ # - "auto": use the default channel type
544
+ # - "nccl": use NCCL for communication
545
+ # - "shm": use shared memory and gRPC for communication
546
+ # This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
547
+ "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE":
548
+ lambda: os.getenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto"),
549
+
550
+ # If the env var is set, it enables GPU communication overlap
551
+ # (experimental feature) in Ray's Compiled Graph. This flag is ignored if
552
+ # VLLM_USE_RAY_COMPILED_DAG is not set.
553
+ "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM":
554
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0"))
555
+ ),
556
+
557
+ # If the env var is set, it uses a Ray Communicator wrapping
558
+ # vLLM's pipeline parallelism communicator to interact with Ray's
559
+ # Compiled Graph. Otherwise, it uses Ray's NCCL communicator.
560
+ # This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
561
+ "VLLM_USE_RAY_WRAPPED_PP_COMM":
562
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_WRAPPED_PP_COMM", "1"))),
563
+
564
+ # Use dedicated multiprocess context for workers.
565
+ # Both spawn and fork work
566
+ "VLLM_WORKER_MULTIPROC_METHOD":
567
+ lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"),
568
+
569
+ # Path to the cache for storing downloaded assets
570
+ "VLLM_ASSETS_CACHE":
571
+ lambda: os.path.expanduser(
572
+ os.getenv(
573
+ "VLLM_ASSETS_CACHE",
574
+ os.path.join(get_default_cache_root(), "vllm", "assets"),
575
+ )),
576
+
577
+ # Timeout for fetching images when serving multimodal models
578
+ # Default is 5 seconds
579
+ "VLLM_IMAGE_FETCH_TIMEOUT":
580
+ lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),
581
+
582
+ # Timeout for fetching videos when serving multimodal models
583
+ # Default is 30 seconds
584
+ "VLLM_VIDEO_FETCH_TIMEOUT":
585
+ lambda: int(os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")),
586
+
587
+ # Timeout for fetching audio when serving multimodal models
588
+ # Default is 10 seconds
589
+ "VLLM_AUDIO_FETCH_TIMEOUT":
590
+ lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")),
591
+
592
+ # Max number of workers for the thread pool handling
593
+ # media bytes loading. Set to 1 to disable parallel processing.
594
+ # Default is 8
595
+ "VLLM_MEDIA_LOADING_THREAD_COUNT":
596
+ lambda: int(os.getenv("VLLM_MEDIA_LOADING_THREAD_COUNT", "8")),
597
+
598
+ # Maximum filesize in MB for a single audio file when processing
599
+ # speech-to-text requests. Files larger than this will be rejected.
600
+ # Default is 25 MB
601
+ "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB":
602
+ lambda: int(os.getenv("VLLM_MAX_AUDIO_CLIP_FILESIZE_MB", "25")),
603
+
604
+ # Backend for Video IO
605
+ # - "opencv": Default backend that uses OpenCV stream buffered backend.
606
+ #
607
+ # Custom backend implementations can be registered
608
+ # via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and
609
+ # imported at runtime.
610
+ # If a non-existing backend is used, an AssertionError will be thrown.
611
+ "VLLM_VIDEO_LOADER_BACKEND":
612
+ lambda: os.getenv("VLLM_VIDEO_LOADER_BACKEND", "opencv"),
613
+
614
+ # [DEPRECATED] Cache size (in GiB per process) for multimodal input cache
615
+ # Default is 4 GiB per API process + 4 GiB per engine core process
616
+ "VLLM_MM_INPUT_CACHE_GIB":
617
+ lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")),
618
+
619
+ # Path to the XLA persistent cache directory.
620
+ # Only used for XLA devices such as TPUs.
621
+ "VLLM_XLA_CACHE_PATH":
622
+ lambda: os.path.expanduser(
623
+ os.getenv(
624
+ "VLLM_XLA_CACHE_PATH",
625
+ os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
626
+ )),
627
+
628
+ # If set, assert on XLA recompilation after each execution step.
629
+ "VLLM_XLA_CHECK_RECOMPILATION":
630
+ lambda: bool(int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))),
631
+
632
+ # Enable SPMD mode for TPU backend.
633
+ "VLLM_XLA_USE_SPMD":
634
+ lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))),
635
+ "VLLM_FUSED_MOE_CHUNK_SIZE":
636
+ lambda: int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768")),
637
+ # Control whether to use fused MoE activation chunking. Current chunking
638
+ # logic is incompatible with torch.compile and causes IMA. See issue
639
+ # https://github.com/vllm-project/vllm/issues/19631.
640
+ "VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING":
641
+ lambda: bool(
642
+ int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1"))),
643
+
644
+ # If set, the OpenAI API server will stay alive even after the underlying
645
+ # AsyncLLMEngine errors and stops serving requests
646
+ "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH":
647
+ lambda: bool(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", 0)),
648
+
649
+ # If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
650
+ # the user to specify a max sequence length greater than
651
+ # the max length derived from the model's config.json.
652
+ # To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
653
+ "VLLM_ALLOW_LONG_MAX_MODEL_LEN":
654
+ lambda:
655
+ (os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in
656
+ ("1", "true")),
657
+
658
+ # If set, forces FP8 Marlin to be used for FP8 quantization regardless
659
+ # of the hardware support for FP8 compute.
660
+ "VLLM_TEST_FORCE_FP8_MARLIN":
661
+ lambda:
662
+ (os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in
663
+ ("1", "true")),
664
+ "VLLM_TEST_FORCE_LOAD_FORMAT":
665
+ lambda: os.getenv("VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"),
666
+
667
+ # Time in ms for the zmq client to wait for a response from the backend
668
+ # server for simple data operations
669
+ "VLLM_RPC_TIMEOUT":
670
+ lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),
671
+
672
+ # Timeout in seconds for keeping HTTP connections alive in API server
673
+ "VLLM_HTTP_TIMEOUT_KEEP_ALIVE":
674
+ lambda: int(os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5")),
675
+
676
+ # a list of plugin names to load, separated by commas.
677
+ # if this is not set, it means all plugins will be loaded
678
+ # if this is set to an empty string, no plugins will be loaded
679
+ "VLLM_PLUGINS":
680
+ lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ[
681
+ "VLLM_PLUGINS"].split(","),
682
+
683
+ # a local directory to look in for unrecognized LoRA adapters.
684
+ # only works if plugins are enabled and
685
+ # VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled.
686
+ "VLLM_LORA_RESOLVER_CACHE_DIR":
687
+ lambda: os.getenv("VLLM_LORA_RESOLVER_CACHE_DIR", None),
688
+
689
+ # Enables torch profiler if set.
690
+ # Both AsyncLLM's CPU traces as well as workers'
691
+ # traces (CPU & GPU) will be saved under this directory.
692
+ # Note that it must be an absolute path.
693
+ "VLLM_TORCH_PROFILER_DIR":
694
+ lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os
695
+ .path.abspath(os.path.expanduser(os.getenv(
696
+ "VLLM_TORCH_PROFILER_DIR", ".")))),
697
+
698
+ # Enable torch profiler to record shapes if set
699
+ # VLLM_TORCH_PROFILER_RECORD_SHAPES=1. If not set, torch profiler will
700
+ # not record shapes.
701
+ "VLLM_TORCH_PROFILER_RECORD_SHAPES":
702
+ lambda: bool(os.getenv("VLLM_TORCH_PROFILER_RECORD_SHAPES", "0") != "0"),
703
+
704
+ # Enable torch profiler to profile memory if set
705
+ # VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1. If not set, torch profiler
706
+ # will not profile memory.
707
+ "VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY":
708
+ lambda: bool(
709
+ os.getenv("VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY", "0") != "0"),
710
+
711
+ # Enable torch profiler to profile stack if set
712
+ # VLLM_TORCH_PROFILER_WITH_STACK=1. If not set, torch profiler WILL
713
+ # profile stack by default.
714
+ "VLLM_TORCH_PROFILER_WITH_STACK":
715
+ lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_STACK", "1") != "0"),
716
+
717
+ # Enable torch profiler to profile flops if set
718
+ # VLLM_TORCH_PROFILER_WITH_FLOPS=1. If not set, torch profiler will
719
+ # not profile flops.
720
+ "VLLM_TORCH_PROFILER_WITH_FLOPS":
721
+ lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_FLOPS", "0") != "0"),
722
+
723
+ # If set, vLLM will use Triton implementations of AWQ.
724
+ "VLLM_USE_TRITON_AWQ":
725
+ lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),
726
+
727
+ # If set, allow loading or unloading lora adapters in runtime,
728
+ "VLLM_ALLOW_RUNTIME_LORA_UPDATING":
729
+ lambda:
730
+ (os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in
731
+ ("1", "true")),
732
+
733
+ # We assume drivers can report p2p status correctly.
734
+ # If the program hangs when using custom allreduce,
735
+ # potantially caused by a bug in the driver (535 series),
736
+ # if might be helpful to set VLLM_SKIP_P2P_CHECK=0
737
+ # so that vLLM can verify if p2p is actually working.
738
+ # See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa
739
+ "VLLM_SKIP_P2P_CHECK":
740
+ lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "1") == "1",
741
+
742
+ # List of quantization kernels that should be disabled, used for testing
743
+ # and performance comparisons. Currently only affects MPLinearKernel
744
+ # selection
745
+ # (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
746
+ "VLLM_DISABLED_KERNELS":
747
+ lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ[
748
+ "VLLM_DISABLED_KERNELS"].split(","),
749
+
750
+ # If set, use the V1 code path.
751
+ "VLLM_USE_V1":
752
+ lambda: bool(int(os.getenv("VLLM_USE_V1", "1"))),
753
+
754
+ # Disable aiter ops unless specifically enabled.
755
+ # Acts as a parent switch to enable the rest of the other operations.
756
+ "VLLM_ROCM_USE_AITER":
757
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in
758
+ ("true", "1")),
759
+
760
+ # Whether to use aiter paged attention.
761
+ # By default is disabled.
762
+ "VLLM_ROCM_USE_AITER_PAGED_ATTN":
763
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in
764
+ ("true", "1")),
765
+
766
+ # use aiter linear op if aiter ops are enabled
767
+ # The following list of related ops
768
+ # - scaled_mm (per-tensor / rowwise)
769
+ "VLLM_ROCM_USE_AITER_LINEAR":
770
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in
771
+ ("true", "1")),
772
+
773
+ # Whether to use aiter moe ops.
774
+ # By default is enabled.
775
+ "VLLM_ROCM_USE_AITER_MOE":
776
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in
777
+ ("true", "1")),
778
+
779
+ # use aiter rms norm op if aiter ops are enabled.
780
+ "VLLM_ROCM_USE_AITER_RMSNORM":
781
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in
782
+ ("true", "1")),
783
+
784
+ # Whether to use aiter mla ops.
785
+ # By default is enabled.
786
+ "VLLM_ROCM_USE_AITER_MLA":
787
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in
788
+ ("true", "1")),
789
+
790
+ # Whether to use aiter mha ops.
791
+ # By default is enabled.
792
+ "VLLM_ROCM_USE_AITER_MHA":
793
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in
794
+ ("true", "1")),
795
+
796
+ # Whether to use aiter triton fp8 bmm kernel
797
+ # By default is enabled.
798
+ "VLLM_ROCM_USE_AITER_FP8BMM":
799
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_FP8BMM", "True").lower() in
800
+ ("true", "1")),
801
+
802
+ # use rocm skinny gemms
803
+ "VLLM_ROCM_USE_SKINNY_GEMM":
804
+ lambda: (os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in
805
+ ("true", "1")),
806
+
807
+ # Pad the fp8 weights to 256 bytes for ROCm
808
+ "VLLM_ROCM_FP8_PADDING":
809
+ lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),
810
+
811
+ # Pad the weights for the moe kernel
812
+ "VLLM_ROCM_MOE_PADDING":
813
+ lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))),
814
+
815
+ # custom paged attention kernel for MI3* cards
816
+ "VLLM_ROCM_CUSTOM_PAGED_ATTN":
817
+ lambda: (os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in
818
+ ("true", "1")),
819
+
820
+ # Custom quick allreduce kernel for MI3* cards
821
+ # Choice of quantization level: FP, INT8, INT6, INT4 or NONE
822
+ # Recommended for large models to get allreduce
823
+ "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION":
824
+ lambda: os.getenv("VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", "NONE").upper(),
825
+
826
+ # Custom quick allreduce kernel for MI3* cards
827
+ # Due to the lack of the bfloat16 asm instruction, bfloat16
828
+ # kernels are slower than fp16,
829
+ # If environment variable is set to 1, the input is converted to fp16
830
+ "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16":
831
+ lambda:
832
+ (os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower() in
833
+ ("true", "1")),
834
+
835
+ # Custom quick allreduce kernel for MI3* cards.
836
+ # Controls the maximum allowed number of data bytes(MB) for custom quick
837
+ # allreduce communication.
838
+ # Default: 2048 MB.
839
+ # Data exceeding this size will use either custom allreduce or RCCL
840
+ # communication.
841
+ "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB":
842
+ lambda: maybe_convert_int(
843
+ os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None)),
844
+
845
+ # Divisor for dynamic query scale factor calculation for FP8 KV Cache
846
+ "Q_SCALE_CONSTANT":
847
+ lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
848
+ # Divisor for dynamic key scale factor calculation for FP8 KV Cache
849
+ "K_SCALE_CONSTANT":
850
+ lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
851
+ # Divisor for dynamic value scale factor calculation for FP8 KV Cache
852
+ "V_SCALE_CONSTANT":
853
+ lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),
854
+
855
+ # If set, enable multiprocessing in LLM for the V1 code path.
856
+ "VLLM_ENABLE_V1_MULTIPROCESSING":
857
+ lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))),
858
+ "VLLM_LOG_BATCHSIZE_INTERVAL":
859
+ lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")),
860
+ "VLLM_DISABLE_COMPILE_CACHE":
861
+ lambda: bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))),
862
+
863
+ # If set, vllm will run in development mode, which will enable
864
+ # some additional endpoints for developing and debugging,
865
+ # e.g. `/reset_prefix_cache`
866
+ "VLLM_SERVER_DEV_MODE":
867
+ lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))),
868
+
869
+ # Controls the maximum number of requests to handle in a
870
+ # single asyncio task when processing per-token outputs in the
871
+ # V1 AsyncLLM interface. It is applicable when handling a high
872
+ # concurrency of streaming requests.
873
+ # Setting this too high can result in a higher variance of
874
+ # inter-message latencies. Setting it too low can negatively impact
875
+ # TTFT and overall throughput.
876
+ "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE":
877
+ lambda: int(os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")),
878
+
879
+ # If set, vLLM will disable the MLA attention optimizations.
880
+ "VLLM_MLA_DISABLE":
881
+ lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))),
882
+
883
+ # Number of GPUs per worker in Ray, if it is set to be a fraction,
884
+ # it allows ray to schedule multiple actors on a single GPU,
885
+ # so that users can colocate other actors on the same GPUs as vLLM.
886
+ "VLLM_RAY_PER_WORKER_GPUS":
887
+ lambda: float(os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")),
888
+
889
+ # Bundle indices for Ray, if it is set, it can control precisely
890
+ # which indices are used for the Ray bundle, for every worker.
891
+ # Format: comma-separated list of integers, e.g. "0,1,2,3"
892
+ "VLLM_RAY_BUNDLE_INDICES":
893
+ lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""),
894
+
895
+ # In some system, find_loaded_library() may not work. So we allow users to
896
+ # specify the path through environment variable VLLM_CUDART_SO_PATH.
897
+ "VLLM_CUDART_SO_PATH":
898
+ lambda: os.getenv("VLLM_CUDART_SO_PATH", None),
899
+
900
+ # Rank of the process in the data parallel setting
901
+ "VLLM_DP_RANK":
902
+ lambda: int(os.getenv("VLLM_DP_RANK", "0")),
903
+
904
+ # Rank of the process in the data parallel setting.
905
+ # Defaults to VLLM_DP_RANK when not set.
906
+ "VLLM_DP_RANK_LOCAL":
907
+ lambda: int(
908
+ os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)),
909
+
910
+ # World size of the data parallel setting
911
+ "VLLM_DP_SIZE":
912
+ lambda: int(os.getenv("VLLM_DP_SIZE", "1")),
913
+
914
+ # IP address of the master node in the data parallel setting
915
+ "VLLM_DP_MASTER_IP":
916
+ lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"),
917
+
918
+ # Port of the master node in the data parallel setting
919
+ "VLLM_DP_MASTER_PORT":
920
+ lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")),
921
+
922
+ # In the context of executing MoE models with Data-Parallel, Expert-Parallel
923
+ # and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE
924
+ # dictates the quantum of tokens that can be dispatched from a DP
925
+ # rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE
926
+ # units.
927
+ "VLLM_MOE_DP_CHUNK_SIZE":
928
+ lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")),
929
+
930
+ # Randomize inputs during dummy runs when using Data Parallel
931
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS":
932
+ lambda: os.environ.get("VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0") == "1",
933
+
934
+ # Whether to use S3 path for model loading in CI via RunAI Streamer
935
+ "VLLM_CI_USE_S3":
936
+ lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1",
937
+
938
+ # Use model_redirect to redirect the model name to a local folder.
939
+ # `model_redirect` can be a json file mapping the model between
940
+ # repo_id and local folder:
941
+ # {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"}
942
+ # or a space separated values table file:
943
+ # meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B
944
+ "VLLM_MODEL_REDIRECT_PATH":
945
+ lambda: os.environ.get("VLLM_MODEL_REDIRECT_PATH", None),
946
+
947
+ # Whether to use atomicAdd reduce in gptq/awq marlin kernel.
948
+ "VLLM_MARLIN_USE_ATOMIC_ADD":
949
+ lambda: os.environ.get("VLLM_MARLIN_USE_ATOMIC_ADD", "0") == "1",
950
+
951
+ # Whether to use marlin kernel in mxfp4 quantization method
952
+ "VLLM_MXFP4_USE_MARLIN":
953
+ lambda: maybe_convert_bool(os.environ.get("VLLM_MXFP4_USE_MARLIN", None)),
954
+
955
+ # Whether to turn on the outlines cache for V0
956
+ # This cache is unbounded and on disk, so it's not safe to use in
957
+ # an environment with potentially malicious users.
958
+ "VLLM_V0_USE_OUTLINES_CACHE":
959
+ lambda: os.environ.get("VLLM_V0_USE_OUTLINES_CACHE", "0") == "1",
960
+
961
+ # Whether to turn on the outlines cache for V1
962
+ # This cache is unbounded and on disk, so it's not safe to use in
963
+ # an environment with potentially malicious users.
964
+ "VLLM_V1_USE_OUTLINES_CACHE":
965
+ lambda: os.environ.get("VLLM_V1_USE_OUTLINES_CACHE", "0") == "1",
966
+
967
+ # Gap between padding buckets for the forward pass. So we have
968
+ # 8, we will run forward pass with [16, 24, 32, ...].
969
+ "VLLM_TPU_BUCKET_PADDING_GAP":
970
+ lambda: int(os.environ["VLLM_TPU_BUCKET_PADDING_GAP"])
971
+ if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ else 0,
972
+ "VLLM_TPU_MOST_MODEL_LEN":
973
+ lambda: maybe_convert_int(os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None)),
974
+
975
+ # Whether using Pathways
976
+ "VLLM_TPU_USING_PATHWAYS":
977
+ lambda: bool("proxy" in os.getenv("JAX_PLATFORMS", "").lower()),
978
+
979
+ # Allow use of DeepGemm kernels for fused moe ops.
980
+ "VLLM_USE_DEEP_GEMM":
981
+ lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "0"))),
982
+
983
+ # Whether to use E8M0 scaling when DeepGEMM is used on Blackwell GPUs.
984
+ "VLLM_USE_DEEP_GEMM_E8M0":
985
+ lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0", "1"))),
986
+ # TODO(wentao): unify the two E8M0 flags after verifying the correctness.
987
+ # Whether to use E8M0 scaling when DeepGEMM is used on Hopper GPUs.
988
+ "VLLM_USE_DEEP_GEMM_E8M0_HOPPER":
989
+ lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0_HOPPER", "0"))),
990
+ # DeepGemm JITs the kernels on-demand. The warmup attempts to make DeepGemm
991
+ # JIT all the required kernels before model execution so there is no
992
+ # JIT'ing in the hot-path. However, this warmup increases the engine
993
+ # startup time by a couple of minutes.
994
+ # Set `VLLM_SKIP_DEEP_GEMM_WARMUP` to disable the warmup.
995
+ "VLLM_SKIP_DEEP_GEMM_WARMUP":
996
+ lambda: bool(int(os.getenv("VLLM_SKIP_DEEP_GEMM_WARMUP", "0"))),
997
+
998
+ # Whether to use fused grouped_topk used for MoE expert selection.
999
+ "VLLM_USE_FUSED_MOE_GROUPED_TOPK":
1000
+ lambda: bool(int(os.getenv("VLLM_USE_FUSED_MOE_GROUPED_TOPK", "1"))),
1001
+
1002
+ # Allow use of FlashInfer MoE kernels for fused moe ops.
1003
+ "VLLM_USE_FLASHINFER_MOE_FP8":
1004
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0"))),
1005
+
1006
+ # Allow use of FlashInfer CUTLASS kernels for fused moe ops.
1007
+ "VLLM_USE_FLASHINFER_MOE_FP4":
1008
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0"))),
1009
+
1010
+ # If set to 1, use the FlashInfer
1011
+ # MXFP8 (activation) x MXFP4 (weight) MoE backend.
1012
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8":
1013
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "0"))),
1014
+
1015
+ # If set to 1, use the FlashInfer CUTLASS backend for
1016
+ # MXFP8 (activation) x MXFP4 (weight) MoE.
1017
+ # This is separate from the TRTLLMGEN path controlled by
1018
+ # VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8.
1019
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS":
1020
+ lambda: bool(int(
1021
+ os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS", "0")
1022
+ )),
1023
+
1024
+ # If set to 1, use the FlashInfer
1025
+ # BF16 (activation) x MXFP4 (weight) MoE backend.
1026
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_BF16":
1027
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "0"))),
1028
+
1029
+ # Control the cache sized used by the xgrammar compiler. The default
1030
+ # of 512 MB should be enough for roughly 1000 JSON schemas.
1031
+ # It can be changed with this variable if needed for some reason.
1032
+ "VLLM_XGRAMMAR_CACHE_MB":
1033
+ lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")),
1034
+
1035
+ # Control the threshold for msgspec to use 'zero copy' for
1036
+ # serialization/deserialization of tensors. Tensors below
1037
+ # this limit will be encoded into the msgpack buffer, and
1038
+ # tensors above will instead be sent via a separate message.
1039
+ # While the sending side still actually copies the tensor
1040
+ # in all cases, on the receiving side, tensors above this
1041
+ # limit will actually be zero-copy decoded.
1042
+ "VLLM_MSGPACK_ZERO_COPY_THRESHOLD":
1043
+ lambda: int(os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")),
1044
+
1045
+ # If set, allow insecure serialization using pickle.
1046
+ # This is useful for environments where it is deemed safe to use the
1047
+ # insecure method and it is needed for some reason.
1048
+ "VLLM_ALLOW_INSECURE_SERIALIZATION":
1049
+ lambda: bool(int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0"))),
1050
+
1051
+ # IP address used for NIXL handshake between remote agents.
1052
+ "VLLM_NIXL_SIDE_CHANNEL_HOST":
1053
+ lambda: os.getenv("VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost"),
1054
+
1055
+ # Port used for NIXL handshake between remote agents.
1056
+ "VLLM_NIXL_SIDE_CHANNEL_PORT":
1057
+ lambda: int(os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5557")),
1058
+
1059
+ # all2all backend for vllm's expert parallel communication
1060
+ # Available options:
1061
+ # - "naive": naive all2all implementation using all-reduce
1062
+ # - "pplx": use pplx kernels
1063
+ # - "deepep_high_throughput", use deepep high-throughput kernels
1064
+ # - "deepep_low_latency", use deepep low-latency kernels
1065
+ "VLLM_ALL2ALL_BACKEND":
1066
+ lambda: os.getenv("VLLM_ALL2ALL_BACKEND", "naive"),
1067
+
1068
+ # Flashinfer MoE backend for vLLM's fused Mixture-of-Experts support. Both
1069
+ # require compute capability 10.0 or above.
1070
+ # Available options:
1071
+ # - "throughput": [default]
1072
+ # Uses CUTLASS kernels optimized for high-throughput batch inference.
1073
+ # - "latency":
1074
+ # Uses TensorRT-LLM kernels optimized for low-latency inference.
1075
+ # To set this backend, define the environment variable:
1076
+ # export VLLM_FLASHINFER_MOE_BACKEND=latency.
1077
+ # If not set, defaults to "throughput".
1078
+ "VLLM_FLASHINFER_MOE_BACKEND": lambda: os.getenv(
1079
+ "VLLM_FLASHINFER_MOE_BACKEND", "throughput"
1080
+ ),
1081
+
1082
+ # Control the maximum number of tokens per expert supported by the
1083
+ # NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for
1084
+ # the blockscale tensor of activations NVFP4 Quantization.
1085
+ # This is used to prevent the kernel from running out of memory.
1086
+ "VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE":
1087
+ lambda: int(os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840")),
1088
+
1089
+ # Specifies the thresholds of the communicated tensor sizes under which
1090
+ # vllm should use flashinfer fused allreduce. The variable should be a
1091
+ # JSON with the following format:
1092
+ # { <world size>: <max size in mb> }
1093
+ # Unspecified world sizes will fall back to
1094
+ # { 2: 64, 4: 1, <everything else>: 0.5 }
1095
+ "VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB":
1096
+ lambda: json.loads(os.getenv(
1097
+ "VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB", "{}")),
1098
+
1099
+ # MoE routing strategy selector.
1100
+ # See `RoutingSimulator.get_available_strategies()` # for available
1101
+ # strategies.
1102
+ # Cutstom routing strategies can be registered by
1103
+ # RoutingSimulator.register_strategy()
1104
+ # Note: custom strategies may not produce correct model outputs
1105
+ "VLLM_MOE_ROUTING_SIMULATION_STRATEGY":
1106
+ lambda: os.environ.get("VLLM_MOE_ROUTING_SIMULATION_STRATEGY", "").lower(),
1107
+
1108
+ # Regex timeout for use by the vLLM tool parsing plugins.
1109
+ "VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS":
1110
+ lambda: int(os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1")),
1111
+
1112
+ # Reduce CPU usage when vLLM is idle. Enabling this will incur small
1113
+ # latency penalty when a request eventually comes.
1114
+ "VLLM_SLEEP_WHEN_IDLE":
1115
+ lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))),
1116
+
1117
+ # Control the max chunk bytes (in MB) for the rpc message queue.
1118
+ # Object larger than this threshold will be broadcast to worker
1119
+ # processes via zmq.
1120
+ "VLLM_MQ_MAX_CHUNK_BYTES_MB":
1121
+ lambda: int(os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")),
1122
+
1123
+ # Timeout in seconds for execute_model RPC calls in multiprocessing
1124
+ # executor (only applies when TP > 1).
1125
+ "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS":
1126
+ lambda: int(os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300")),
1127
+
1128
+ # KV Cache layout used throughout vllm.
1129
+ # Some common values are:
1130
+ # - NHD
1131
+ # - HND
1132
+ # Where N=num_blocks, H=num_heads and D=head_size. The default value will
1133
+ # leave the layout choice to the backend. Mind that backends may only
1134
+ # implement and support a subset of all possible layouts.
1135
+ "VLLM_KV_CACHE_LAYOUT":
1136
+ lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None),
1137
+
1138
+ # Enable checking whether the generated logits contain NaNs,
1139
+ # indicating corrupted output. Useful for debugging low level bugs
1140
+ # or bad hardware but it may add compute overhead.
1141
+ "VLLM_COMPUTE_NANS_IN_LOGITS":
1142
+ lambda: bool(int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))),
1143
+
1144
+ # Controls whether or not emulations are used for NVFP4
1145
+ # generations on machines < 100 for compressed-tensors
1146
+ # models
1147
+ "VLLM_USE_NVFP4_CT_EMULATIONS":
1148
+ lambda: bool(int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0"))),
1149
+
1150
+ # Time (in seconds) after which the KV cache on the producer side is
1151
+ # automatically cleared if no READ notification is received from the
1152
+ # consumer. This is only applicable when using NixlConnector in a
1153
+ # disaggregated decode-prefill setup.
1154
+ "VLLM_NIXL_ABORT_REQUEST_TIMEOUT":
1155
+ lambda: int(os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "120")),
1156
+
1157
+ # Controls whether or not to use cudnn prefill
1158
+ "VLLM_USE_CUDNN_PREFILL":
1159
+ lambda: bool(int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))),
1160
+
1161
+ # If set to 1, use the TRTLLM attention backend in flashinfer.
1162
+ "VLLM_USE_TRTLLM_ATTENTION":
1163
+ lambda: os.getenv("VLLM_USE_TRTLLM_ATTENTION", None),
1164
+
1165
+ # If set to 1, when we use fp8 kv, we do not quantize Q to fp8
1166
+ "VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION":
1167
+ lambda: bool(int(os.getenv("VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION", "0"))),
1168
+
1169
+ # If set, it means we pre-downloaded cubin files and flashinfer will
1170
+ # read the cubin files directly.
1171
+ "VLLM_HAS_FLASHINFER_CUBIN":
1172
+ lambda: os.getenv("VLLM_HAS_FLASHINFER_CUBIN", False),
1173
+
1174
+ # If set to 1, force the use of TRTLLM FP4 GEMM backend in flashinfer.
1175
+ # Otherwise, uses the first available of: flashinfer cutlass GEMM,
1176
+ # vllm cutlass GEMM, marlin GEMM.
1177
+ "VLLM_USE_TRTLLM_FP4_GEMM":
1178
+ lambda: bool(int(os.getenv("VLLM_USE_TRTLLM_FP4_GEMM", "0"))),
1179
+
1180
+ # Controls garbage collection during CUDA graph capture.
1181
+ # If set to 0 (default), enables GC freezing to speed up capture time.
1182
+ # If set to 1, allows GC to run during capture.
1183
+ "VLLM_ENABLE_CUDAGRAPH_GC":
1184
+ lambda: bool(int(os.getenv("VLLM_ENABLE_CUDAGRAPH_GC", "0"))),
1185
+
1186
+ # Disable padding to CUDA graph capture batch sizes.
1187
+ # TODO(wentao): https://github.com/vllm-project/vllm/issues/23378
1188
+ # After the issue is fixed, we can remove this flag.
1189
+ "VLLM_DISABLE_PAD_FOR_CUDAGRAPH":
1190
+ lambda: bool(int(os.getenv("VLLM_DISABLE_PAD_FOR_CUDAGRAPH", "0"))),
1191
+
1192
+ # Used to force set up loopback IP
1193
+ "VLLM_LOOPBACK_IP":
1194
+ lambda: os.getenv("VLLM_LOOPBACK_IP", ""),
1195
+
1196
+ # Used to set the process name prefix for vLLM processes.
1197
+ # This is useful for debugging and monitoring purposes.
1198
+ # The default value is "VLLM".
1199
+ "VLLM_PROCESS_NAME_PREFIX":
1200
+ lambda: os.getenv("VLLM_PROCESS_NAME_PREFIX", "VLLM"),
1201
+
1202
+ # Allow chunked local attention with hybrid kv cache manager.
1203
+ # Currently using the Hybrid KV cache manager with chunked local attention
1204
+ # in the Llama4 models (the only models currently using chunked local attn)
1205
+ # causes a latency regression. For this reason, we disable it by default.
1206
+ # This flag is used to allow users to enable it if they want to (to save on
1207
+ # kv-cache memory usage and enable longer contexts)
1208
+ # TODO(lucas): Remove this flag once latency regression is resolved.
1209
+ "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE":
1210
+ lambda: bool(int(os.getenv(\
1211
+ "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE", "0"))),
1212
+
1213
+ # Enables support for the "store" option in the OpenAI Responses API.
1214
+ # When set to 1, vLLM's OpenAI server will retain the input and output
1215
+ # messages for those requests in memory. By default, this is disabled (0),
1216
+ # and the "store" option is ignored.
1217
+ # NOTE/WARNING:
1218
+ # 1. Messages are kept in memory only (not persisted to disk) and will be
1219
+ # lost when the vLLM server shuts down.
1220
+ # 2. Enabling this option will cause a memory leak, as stored messages are
1221
+ # never removed from memory until the server terminates.
1222
+ "VLLM_ENABLE_RESPONSES_API_STORE":
1223
+ lambda: bool(int(os.getenv("VLLM_ENABLE_RESPONSES_API_STORE", "0"))),
1224
+
1225
+ # Whether to use pytorch symmetric memory for allreduce
1226
+ "VLLM_ALLREDUCE_USE_SYMM_MEM":
1227
+ lambda: bool(int(os.getenv("VLLM_ALLREDUCE_USE_SYMM_MEM", "0"))),
1228
+
1229
+ # Allows vllm to find tuned config under customized folder
1230
+ "VLLM_TUNED_CONFIG_FOLDER":
1231
+ lambda: os.getenv("VLLM_TUNED_CONFIG_FOLDER", None),
1232
+
1233
+ # Allows vllm use container tool
1234
+ "VLLM_GPT_OSS_USE_CONTAINER_TOOL":
1235
+ lambda: bool(int(os.getenv("VLLM_GPT_OSS_USE_CONTAINER_TOOL", "0"))),
1236
+
1237
+ # Allows harmony instructions to be injected on system messages
1238
+ "VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS":
1239
+ lambda: bool(
1240
+ int(os.getenv("VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS", "0"))),
1241
+
1242
+ # Add optional custom scopes for profiling, disable to avoid overheads
1243
+ "VLLM_CUSTOM_SCOPES_FOR_PROFILING":
1244
+ lambda: bool(int(os.getenv("VLLM_CUSTOM_SCOPES_FOR_PROFILING", "0"))),
1245
+
1246
+ # Represent block hashes in KV cache events as 64-bit integers instead of
1247
+ # raw bytes. Defaults to True for backward compatibility.
1248
+ "VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES":
1249
+ lambda: bool(int(os.getenv("VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES", "1"))),
1250
+ }
1251
+
1252
+ # --8<-- [end:env-vars-definition]
1253
+
1254
+
1255
+ def __getattr__(name: str):
1256
+ # lazy evaluation of environment variables
1257
+ if name in environment_variables:
1258
+ return environment_variables[name]()
1259
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1260
+
1261
+
1262
+ def __dir__():
1263
+ return list(environment_variables.keys())
1264
+
1265
+
1266
+ def is_set(name: str):
1267
+ """Check if an environment variable is explicitly set."""
1268
+ if name in environment_variables:
1269
+ return name in os.environ
1270
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1271
+
1272
+
1273
+ def set_vllm_use_v1(use_v1: bool):
1274
+ if is_set("VLLM_USE_V1"):
1275
+ raise ValueError(
1276
+ "Should not call set_vllm_use_v1() if VLLM_USE_V1 is set "
1277
+ "explicitly by the user. Please raise this as a Github "
1278
+ "Issue and explicitly set VLLM_USE_V1=0 or 1.")
1279
+ os.environ["VLLM_USE_V1"] = "1" if use_v1 else "0"
1280
+
1281
+
1282
+ def compute_hash() -> str:
1283
+ """
1284
+ WARNING: Whenever a new key is added to this environment
1285
+ variables, ensure that it is included in the factors list if
1286
+ it affects the computation graph. For example, different values
1287
+ of VLLM_PP_LAYER_PARTITION will generate different computation
1288
+ graphs, so it is included in the factors list. The env vars that
1289
+ affect the choice of different kernels or attention backends should
1290
+ also be included in the factors list.
1291
+ """
1292
+
1293
+ # The values of envs may affects the computation graph.
1294
+ # TODO(DefTruth): hash all environment variables?
1295
+ # for key in environment_variables:
1296
+ # factorize(key)
1297
+ environment_variables_to_hash = [
1298
+ "VLLM_PP_LAYER_PARTITION",
1299
+ "VLLM_MLA_DISABLE",
1300
+ "VLLM_USE_TRITON_FLASH_ATTN",
1301
+ "VLLM_USE_TRITON_AWQ",
1302
+ "VLLM_DP_RANK",
1303
+ "VLLM_DP_SIZE",
1304
+ "VLLM_USE_STANDALONE_COMPILE",
1305
+ "VLLM_FUSED_MOE_CHUNK_SIZE",
1306
+ "VLLM_FLASHINFER_MOE_BACKEND",
1307
+ "VLLM_V1_USE_PREFILL_DECODE_ATTENTION",
1308
+ "VLLM_USE_AITER_UNIFIED_ATTENTION",
1309
+ "VLLM_ATTENTION_BACKEND",
1310
+ "VLLM_USE_FLASHINFER_SAMPLER",
1311
+ "VLLM_DISABLED_KERNELS",
1312
+ "VLLM_USE_DEEP_GEMM",
1313
+ "VLLM_USE_DEEP_GEMM_E8M0",
1314
+ "VLLM_USE_DEEP_GEMM_E8M0_HOPPER",
1315
+ "VLLM_USE_TRTLLM_FP4_GEMM",
1316
+ "VLLM_USE_FUSED_MOE_GROUPED_TOPK",
1317
+ "VLLM_USE_FLASHINFER_MOE_FP8",
1318
+ "VLLM_USE_FLASHINFER_MOE_FP4",
1319
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8",
1320
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS",
1321
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_BF16",
1322
+ "VLLM_USE_CUDNN_PREFILL",
1323
+ "VLLM_USE_TRTLLM_ATTENTION",
1324
+ "VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION",
1325
+ "VLLM_ROCM_USE_AITER",
1326
+ "VLLM_ROCM_USE_AITER_PAGED_ATTN",
1327
+ "VLLM_ROCM_USE_AITER_LINEAR",
1328
+ "VLLM_ROCM_USE_AITER_MOE",
1329
+ "VLLM_ROCM_USE_AITER_RMSNORM",
1330
+ "VLLM_ROCM_USE_AITER_MLA",
1331
+ "VLLM_ROCM_USE_AITER_MHA",
1332
+ "VLLM_ROCM_USE_AITER_FP8BMM",
1333
+ "VLLM_ROCM_USE_SKINNY_GEMM",
1334
+ "VLLM_ROCM_FP8_PADDING",
1335
+ "VLLM_ROCM_MOE_PADDING",
1336
+ "VLLM_ROCM_CUSTOM_PAGED_ATTN",
1337
+ "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION",
1338
+ "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16",
1339
+ "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB",
1340
+ ]
1341
+ for key in environment_variables_to_hash:
1342
+ # if this goes out of sync with environment_variables,
1343
+ # it's not a user error, it's a bug
1344
+ assert key in environment_variables, \
1345
+ "Please update environment_variables_to_hash in envs.py"
1346
+
1347
+ factors = [
1348
+ environment_variables[key]() for key in environment_variables_to_hash
1349
+ ]
1350
+
1351
+ hash_str = hashlib.md5(str(factors).encode(),
1352
+ usedforsecurity=False).hexdigest()
1353
+
1354
+ return hash_str