vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +220 -0
- vllm/_bc_linter.py +59 -0
- vllm/_custom_ops.py +2022 -0
- vllm/_ipex_ops.py +404 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +50 -0
- vllm/assets/video.py +138 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +348 -0
- vllm/attention/backends/differential_flash_attn.py +935 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
- vllm/attention/backends/flash_attn.py +933 -0
- vllm/attention/backends/flashmla.py +238 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1310 -0
- vllm/attention/backends/placeholder_attn.py +340 -0
- vllm/attention/backends/rocm_aiter_mla.py +410 -0
- vllm/attention/backends/rocm_flash_attn.py +953 -0
- vllm/attention/backends/triton_mla.py +111 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +805 -0
- vllm/attention/layer.py +552 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +91 -0
- vllm/attention/layers/cross_attention.py +159 -0
- vllm/attention/layers/encoder_only_attention.py +86 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
- vllm/attention/ops/common.py +139 -0
- vllm/attention/ops/flashmla.py +123 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/paged_attn.py +261 -0
- vllm/attention/ops/pallas_kv_cache_update.py +124 -0
- vllm/attention/ops/prefix_prefill.py +928 -0
- vllm/attention/ops/rocm_aiter_mla.py +104 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +676 -0
- vllm/attention/ops/triton_flash_attention.py +984 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +854 -0
- vllm/attention/selector.py +243 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +85 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +2651 -0
- vllm/benchmarks/latency.py +170 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +510 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +80 -0
- vllm/benchmarks/serve.py +1247 -0
- vllm/benchmarks/throughput.py +696 -0
- vllm/collect_env.py +823 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +193 -0
- vllm/compilation/backends.py +641 -0
- vllm/compilation/base_static_graph.py +51 -0
- vllm/compilation/collective_fusion.py +1190 -0
- vllm/compilation/compiler_interface.py +572 -0
- vllm/compilation/counter.py +47 -0
- vllm/compilation/cuda_graph.py +193 -0
- vllm/compilation/cuda_piecewise_backend.py +117 -0
- vllm/compilation/decorators.py +316 -0
- vllm/compilation/fix_functionalization.py +208 -0
- vllm/compilation/fusion.py +600 -0
- vllm/compilation/fusion_attn.py +303 -0
- vllm/compilation/fx_utils.py +84 -0
- vllm/compilation/inductor_pass.py +136 -0
- vllm/compilation/monitor.py +57 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +165 -0
- vllm/compilation/pass_manager.py +88 -0
- vllm/compilation/sequence_parallelism.py +484 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +50 -0
- vllm/compilation/wrapper.py +138 -0
- vllm/config/__init__.py +3921 -0
- vllm/config/cache.py +214 -0
- vllm/config/compilation.py +580 -0
- vllm/config/kv_events.py +50 -0
- vllm/config/kv_transfer.py +111 -0
- vllm/config/load.py +113 -0
- vllm/config/lora.py +132 -0
- vllm/config/parallel.py +446 -0
- vllm/config/scheduler.py +304 -0
- vllm/config/utils.py +29 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +439 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +523 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +139 -0
- vllm/core/placeholder_block_space_manager.py +103 -0
- vllm/core/scheduler.py +2028 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +286 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +259 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
- vllm/distributed/device_communicators/base_device_communicator.py +277 -0
- vllm/distributed/device_communicators/cpu_communicator.py +201 -0
- vllm/distributed/device_communicators/cuda_communicator.py +294 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
- vllm/distributed/device_communicators/pynccl.py +290 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
- vllm/distributed/device_communicators/ray_communicator.py +258 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/symm_mem.py +136 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +69 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +619 -0
- vllm/distributed/eplb/rebalance_algo.py +234 -0
- vllm/distributed/eplb/rebalance_execute.py +424 -0
- vllm/distributed/kv_events.py +362 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +13 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
- vllm/distributed/parallel_state.py +1489 -0
- vllm/distributed/tpu_distributed_utils.py +178 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1857 -0
- vllm/engine/async_llm_engine.py +1044 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +1849 -0
- vllm/engine/metrics.py +577 -0
- vllm/engine/metrics_types.py +84 -0
- vllm/engine/multiprocessing/__init__.py +145 -0
- vllm/engine/multiprocessing/client.py +643 -0
- vllm/engine/multiprocessing/engine.py +470 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +61 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +343 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1535 -0
- vllm/entrypoints/cli/__init__.py +12 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +58 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +36 -0
- vllm/entrypoints/cli/main.py +60 -0
- vllm/entrypoints/cli/openai.py +214 -0
- vllm/entrypoints/cli/run_batch.py +69 -0
- vllm/entrypoints/cli/serve.py +232 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +444 -0
- vllm/entrypoints/harmony_utils.py +431 -0
- vllm/entrypoints/launcher.py +168 -0
- vllm/entrypoints/llm.py +1579 -0
- vllm/entrypoints/logger.py +79 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2011 -0
- vllm/entrypoints/openai/cli_args.py +281 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +2590 -0
- vllm/entrypoints/openai/run_batch.py +497 -0
- vllm/entrypoints/openai/serving_chat.py +1591 -0
- vllm/entrypoints/openai/serving_classification.py +176 -0
- vllm/entrypoints/openai/serving_completion.py +688 -0
- vllm/entrypoints/openai/serving_embedding.py +632 -0
- vllm/entrypoints/openai/serving_engine.py +996 -0
- vllm/entrypoints/openai/serving_models.py +288 -0
- vllm/entrypoints/openai/serving_pooling.py +277 -0
- vllm/entrypoints/openai/serving_responses.py +1690 -0
- vllm/entrypoints/openai/serving_score.py +479 -0
- vllm/entrypoints/openai/serving_tokenization.py +196 -0
- vllm/entrypoints/openai/serving_transcription.py +136 -0
- vllm/entrypoints/openai/speech_to_text.py +388 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
- vllm/entrypoints/renderer.py +395 -0
- vllm/entrypoints/score_utils.py +232 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/tool.py +139 -0
- vllm/entrypoints/tool_server.py +195 -0
- vllm/entrypoints/utils.py +328 -0
- vllm/env_override.py +23 -0
- vllm/envs.py +1354 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +378 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +35 -0
- vllm/executor/multiproc_worker_utils.py +279 -0
- vllm/executor/ray_distributed_executor.py +699 -0
- vllm/executor/ray_utils.py +410 -0
- vllm/executor/uniproc_executor.py +152 -0
- vllm/forward_context.py +273 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +356 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +973 -0
- vllm/inputs/registry.py +251 -0
- vllm/logger.py +229 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +81 -0
- vllm/logging_utils/formatter.py +79 -0
- vllm/logits_process.py +119 -0
- vllm/logprobs.py +28 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +34 -0
- vllm/lora/layers/base.py +69 -0
- vllm/lora/layers/base_linear.py +184 -0
- vllm/lora/layers/column_parallel_linear.py +622 -0
- vllm/lora/layers/logits_processor.py +247 -0
- vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
- vllm/lora/layers/replicated_linear.py +61 -0
- vllm/lora/layers/row_parallel_linear.py +201 -0
- vllm/lora/layers/utils.py +60 -0
- vllm/lora/layers/vocal_parallel_embedding.py +172 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +792 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +7 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
- vllm/lora/ops/triton_ops/utils.py +126 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +127 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +458 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +279 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +391 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +136 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +246 -0
- vllm/lora/worker_manager.py +256 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +575 -0
- vllm/model_executor/layers/attention_layer_base.py +23 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +225 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
- vllm/model_executor/layers/fla/ops/index.py +39 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
- vllm/model_executor/layers/fla/ops/op.py +39 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
- vllm/model_executor/layers/fla/ops/utils.py +180 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
- vllm/model_executor/layers/fused_moe/__init__.py +80 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
- vllm/model_executor/layers/fused_moe/config.py +497 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
- vllm/model_executor/layers/fused_moe/layer.py +1951 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
- vllm/model_executor/layers/fused_moe/utils.py +270 -0
- vllm/model_executor/layers/layernorm.py +381 -0
- vllm/model_executor/layers/lightning_attn.py +661 -0
- vllm/model_executor/layers/linear.py +1567 -0
- vllm/model_executor/layers/logits_processor.py +199 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +45 -0
- vllm/model_executor/layers/mamba/linear_attn.py +432 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
- vllm/model_executor/layers/mamba/short_conv.py +270 -0
- vllm/model_executor/layers/mla.py +158 -0
- vllm/model_executor/layers/pooler.py +732 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/auto_round.py +388 -0
- vllm/model_executor/layers/quantization/awq.py +228 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +164 -0
- vllm/model_executor/layers/quantization/bitblas.py +464 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepgemm.py +81 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
- vllm/model_executor/layers/quantization/experts_int8.py +215 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +1179 -0
- vllm/model_executor/layers/quantization/gguf.py +597 -0
- vllm/model_executor/layers/quantization/gptq.py +300 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
- vllm/model_executor/layers/quantization/inc.py +61 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/modelopt.py +1548 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
- vllm/model_executor/layers/quantization/mxfp4.py +951 -0
- vllm/model_executor/layers/quantization/petit.py +306 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +431 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/rtn.py +456 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +214 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
- vllm/model_executor/layers/rotary_embedding/base.py +156 -0
- vllm/model_executor/layers/rotary_embedding/common.py +105 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
- vllm/model_executor/layers/sampler.py +1198 -0
- vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
- vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
- vllm/model_executor/layers/utils.py +196 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +138 -0
- vllm/model_executor/model_loader/base_loader.py +52 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
- vllm/model_executor/model_loader/default_loader.py +278 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +155 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
- vllm/model_executor/model_loader/tensorizer.py +743 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
- vllm/model_executor/model_loader/tpu.py +114 -0
- vllm/model_executor/model_loader/utils.py +271 -0
- vllm/model_executor/model_loader/weight_utils.py +946 -0
- vllm/model_executor/models/__init__.py +30 -0
- vllm/model_executor/models/adapters.py +542 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/apertus.py +582 -0
- vllm/model_executor/models/arcee.py +423 -0
- vllm/model_executor/models/arctic.py +560 -0
- vllm/model_executor/models/aria.py +662 -0
- vllm/model_executor/models/aya_vision.py +470 -0
- vllm/model_executor/models/baichuan.py +475 -0
- vllm/model_executor/models/bailing_moe.py +529 -0
- vllm/model_executor/models/bamba.py +582 -0
- vllm/model_executor/models/bart.py +1343 -0
- vllm/model_executor/models/bert.py +613 -0
- vllm/model_executor/models/bert_with_rope.py +687 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +716 -0
- vllm/model_executor/models/bloom.py +374 -0
- vllm/model_executor/models/chameleon.py +1141 -0
- vllm/model_executor/models/chatglm.py +479 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/cohere2_vision.py +484 -0
- vllm/model_executor/models/commandr.py +467 -0
- vllm/model_executor/models/config.py +434 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +473 -0
- vllm/model_executor/models/deepseek.py +491 -0
- vllm/model_executor/models/deepseek_eagle.py +241 -0
- vllm/model_executor/models/deepseek_mtp.py +282 -0
- vllm/model_executor/models/deepseek_v2.py +1058 -0
- vllm/model_executor/models/deepseek_vl2.py +661 -0
- vllm/model_executor/models/donut.py +387 -0
- vllm/model_executor/models/dots1.py +547 -0
- vllm/model_executor/models/ernie45.py +43 -0
- vllm/model_executor/models/ernie45_moe.py +608 -0
- vllm/model_executor/models/ernie45_vl.py +1510 -0
- vllm/model_executor/models/ernie45_vl_moe.py +728 -0
- vllm/model_executor/models/ernie_mtp.py +287 -0
- vllm/model_executor/models/exaone.py +552 -0
- vllm/model_executor/models/exaone4.py +535 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +511 -0
- vllm/model_executor/models/falcon_h1.py +739 -0
- vllm/model_executor/models/florence2.py +1107 -0
- vllm/model_executor/models/fuyu.py +401 -0
- vllm/model_executor/models/gemma.py +428 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +542 -0
- vllm/model_executor/models/gemma3_mm.py +723 -0
- vllm/model_executor/models/gemma3n.py +830 -0
- vllm/model_executor/models/gemma3n_mm.py +767 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1669 -0
- vllm/model_executor/models/glm4_moe.py +703 -0
- vllm/model_executor/models/glm4_moe_mtp.py +306 -0
- vllm/model_executor/models/glm4v.py +654 -0
- vllm/model_executor/models/gpt2.py +383 -0
- vllm/model_executor/models/gpt_bigcode.py +346 -0
- vllm/model_executor/models/gpt_j.py +340 -0
- vllm/model_executor/models/gpt_neox.py +333 -0
- vllm/model_executor/models/gpt_oss.py +687 -0
- vllm/model_executor/models/granite.py +498 -0
- vllm/model_executor/models/granite_speech.py +799 -0
- vllm/model_executor/models/granitemoe.py +541 -0
- vllm/model_executor/models/granitemoehybrid.py +684 -0
- vllm/model_executor/models/granitemoeshared.py +342 -0
- vllm/model_executor/models/gritlm.py +262 -0
- vllm/model_executor/models/grok1.py +550 -0
- vllm/model_executor/models/h2ovl.py +536 -0
- vllm/model_executor/models/hunyuan_v1.py +937 -0
- vllm/model_executor/models/hyperclovax_vision.py +1206 -0
- vllm/model_executor/models/idefics2_vision_model.py +416 -0
- vllm/model_executor/models/idefics3.py +758 -0
- vllm/model_executor/models/interfaces.py +854 -0
- vllm/model_executor/models/interfaces_base.py +195 -0
- vllm/model_executor/models/intern_vit.py +481 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +148 -0
- vllm/model_executor/models/interns1.py +832 -0
- vllm/model_executor/models/interns1_vit.py +418 -0
- vllm/model_executor/models/internvl.py +1423 -0
- vllm/model_executor/models/jais.py +374 -0
- vllm/model_executor/models/jamba.py +630 -0
- vllm/model_executor/models/jina_vl.py +144 -0
- vllm/model_executor/models/keye.py +1684 -0
- vllm/model_executor/models/keye_vl1_5.py +601 -0
- vllm/model_executor/models/kimi_vl.py +620 -0
- vllm/model_executor/models/lfm2.py +558 -0
- vllm/model_executor/models/llama.py +671 -0
- vllm/model_executor/models/llama4.py +732 -0
- vllm/model_executor/models/llama4_eagle.py +241 -0
- vllm/model_executor/models/llama_eagle.py +171 -0
- vllm/model_executor/models/llama_eagle3.py +292 -0
- vllm/model_executor/models/llava.py +872 -0
- vllm/model_executor/models/llava_next.py +572 -0
- vllm/model_executor/models/llava_next_video.py +479 -0
- vllm/model_executor/models/llava_onevision.py +945 -0
- vllm/model_executor/models/mamba.py +310 -0
- vllm/model_executor/models/mamba2.py +346 -0
- vllm/model_executor/models/mamba_cache.py +83 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/midashenglm.py +788 -0
- vllm/model_executor/models/mimo.py +191 -0
- vllm/model_executor/models/mimo_mtp.py +273 -0
- vllm/model_executor/models/minicpm.py +593 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +804 -0
- vllm/model_executor/models/minicpmv.py +1786 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1027 -0
- vllm/model_executor/models/minimax_vl_01.py +431 -0
- vllm/model_executor/models/mistral3.py +628 -0
- vllm/model_executor/models/mixtral.py +494 -0
- vllm/model_executor/models/mllama.py +1697 -0
- vllm/model_executor/models/mllama4.py +1079 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +374 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1569 -0
- vllm/model_executor/models/moonvit.py +663 -0
- vllm/model_executor/models/motif.py +345 -0
- vllm/model_executor/models/mpt.py +332 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
- vllm/model_executor/models/nemotron.py +509 -0
- vllm/model_executor/models/nemotron_h.py +633 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nemotron_vl.py +655 -0
- vllm/model_executor/models/nvlm_d.py +203 -0
- vllm/model_executor/models/olmo.py +406 -0
- vllm/model_executor/models/olmo2.py +428 -0
- vllm/model_executor/models/olmoe.py +485 -0
- vllm/model_executor/models/opt.py +413 -0
- vllm/model_executor/models/orion.py +350 -0
- vllm/model_executor/models/ovis.py +572 -0
- vllm/model_executor/models/ovis2_5.py +644 -0
- vllm/model_executor/models/paligemma.py +414 -0
- vllm/model_executor/models/persimmon.py +345 -0
- vllm/model_executor/models/phi.py +357 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3v.py +701 -0
- vllm/model_executor/models/phi4_multimodal.py +1478 -0
- vllm/model_executor/models/phi4flash.py +737 -0
- vllm/model_executor/models/phi4mm.py +1281 -0
- vllm/model_executor/models/phi4mm_audio.py +1254 -0
- vllm/model_executor/models/phi4mm_utils.py +1875 -0
- vllm/model_executor/models/phimoe.py +681 -0
- vllm/model_executor/models/pixtral.py +1348 -0
- vllm/model_executor/models/plamo2.py +1126 -0
- vllm/model_executor/models/qwen.py +363 -0
- vllm/model_executor/models/qwen2.py +526 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
- vllm/model_executor/models/qwen2_5_vl.py +1256 -0
- vllm/model_executor/models/qwen2_audio.py +492 -0
- vllm/model_executor/models/qwen2_moe.py +558 -0
- vllm/model_executor/models/qwen2_rm.py +122 -0
- vllm/model_executor/models/qwen2_vl.py +1512 -0
- vllm/model_executor/models/qwen3.py +344 -0
- vllm/model_executor/models/qwen3_moe.py +704 -0
- vllm/model_executor/models/qwen3_next.py +1298 -0
- vllm/model_executor/models/qwen3_next_mtp.py +285 -0
- vllm/model_executor/models/qwen_vl.py +795 -0
- vllm/model_executor/models/registry.py +891 -0
- vllm/model_executor/models/roberta.py +252 -0
- vllm/model_executor/models/rvl.py +103 -0
- vllm/model_executor/models/seed_oss.py +488 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/siglip2navit.py +688 -0
- vllm/model_executor/models/skyworkr1v.py +914 -0
- vllm/model_executor/models/smolvlm.py +44 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +344 -0
- vllm/model_executor/models/starcoder2.py +357 -0
- vllm/model_executor/models/step3_text.py +521 -0
- vllm/model_executor/models/step3_vl.py +1091 -0
- vllm/model_executor/models/swin.py +475 -0
- vllm/model_executor/models/tarsier.py +649 -0
- vllm/model_executor/models/telechat2.py +151 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/terratorch.py +294 -0
- vllm/model_executor/models/transformers.py +883 -0
- vllm/model_executor/models/ultravox.py +667 -0
- vllm/model_executor/models/utils.py +770 -0
- vllm/model_executor/models/vision.py +125 -0
- vllm/model_executor/models/voxtral.py +789 -0
- vllm/model_executor/models/whisper.py +966 -0
- vllm/model_executor/models/zamba2.py +1056 -0
- vllm/model_executor/parameter.py +599 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +97 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
- vllm/model_executor/warmup/kernel_warmup.py +83 -0
- vllm/multimodal/__init__.py +35 -0
- vllm/multimodal/audio.py +116 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/cache.py +507 -0
- vllm/multimodal/hasher.py +110 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +979 -0
- vllm/multimodal/parse.py +496 -0
- vllm/multimodal/processing.py +1921 -0
- vllm/multimodal/profiling.py +313 -0
- vllm/multimodal/registry.py +375 -0
- vllm/multimodal/utils.py +754 -0
- vllm/multimodal/video.py +312 -0
- vllm/outputs.py +517 -0
- vllm/platforms/__init__.py +263 -0
- vllm/platforms/cpu.py +353 -0
- vllm/platforms/cuda.py +731 -0
- vllm/platforms/interface.py +599 -0
- vllm/platforms/rocm.py +504 -0
- vllm/platforms/tpu.py +236 -0
- vllm/platforms/xpu.py +243 -0
- vllm/plugins/__init__.py +72 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +67 -0
- vllm/plugins/lora_resolvers/README.md +16 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +183 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +22 -0
- vllm/ray/ray_env.py +72 -0
- vllm/reasoning/__init__.py +25 -0
- vllm/reasoning/abs_reasoning_parsers.py +202 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
- vllm/reasoning/gptoss_reasoning_parser.py +87 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
- vllm/reasoning/mistral_reasoning_parser.py +47 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/reasoning/step3_reasoning_parser.py +109 -0
- vllm/sampling_params.py +577 -0
- vllm/scalar_type.py +349 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1465 -0
- vllm/tasks.py +11 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +136 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +71 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1043 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +55 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/midashenglm.py +101 -0
- vllm/transformers_utils/configs/mistral.py +165 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +259 -0
- vllm/transformers_utils/configs/nemotron_vl.py +56 -0
- vllm/transformers_utils/configs/ovis.py +176 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +32 -0
- vllm/transformers_utils/configs/speculators/base.py +91 -0
- vllm/transformers_utils/configs/step3_vl.py +123 -0
- vllm/transformers_utils/configs/ultravox.py +120 -0
- vllm/transformers_utils/detokenizer.py +169 -0
- vllm/transformers_utils/detokenizer_utils.py +199 -0
- vllm/transformers_utils/dynamic_module.py +60 -0
- vllm/transformers_utils/processor.py +245 -0
- vllm/transformers_utils/processors/__init__.py +16 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/processors/ovis2_5.py +458 -0
- vllm/transformers_utils/runai_utils.py +99 -0
- vllm/transformers_utils/s3_utils.py +90 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +132 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +520 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +16 -0
- vllm/triton_utils/importing.py +95 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +259 -0
- vllm/utils/__init__.py +3438 -0
- vllm/utils/deep_gemm.py +212 -0
- vllm/utils/flashinfer.py +372 -0
- vllm/utils/jsontree.py +90 -0
- vllm/utils/tensor_schema.py +236 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +922 -0
- vllm/v1/attention/backends/flash_attn.py +800 -0
- vllm/v1/attention/backends/flashinfer.py +1128 -0
- vllm/v1/attention/backends/flex_attention.py +796 -0
- vllm/v1/attention/backends/gdn_attn.py +320 -0
- vllm/v1/attention/backends/linear_attn.py +68 -0
- vllm/v1/attention/backends/mamba1_attn.py +81 -0
- vllm/v1/attention/backends/mamba2_attn.py +224 -0
- vllm/v1/attention/backends/mamba_attn.py +52 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +1608 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
- vllm/v1/attention/backends/mla/flashmla.py +213 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
- vllm/v1/attention/backends/mla/triton_mla.py +175 -0
- vllm/v1/attention/backends/pallas.py +413 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
- vllm/v1/attention/backends/short_conv_attn.py +82 -0
- vllm/v1/attention/backends/tree_attn.py +450 -0
- vllm/v1/attention/backends/triton_attn.py +430 -0
- vllm/v1/attention/backends/utils.py +834 -0
- vllm/v1/attention/backends/xformers.py +437 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +330 -0
- vllm/v1/core/encoder_cache_manager.py +333 -0
- vllm/v1/core/kv_cache_coordinator.py +440 -0
- vllm/v1/core/kv_cache_manager.py +398 -0
- vllm/v1/core/kv_cache_utils.py +1169 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +47 -0
- vllm/v1/core/sched/interface.py +158 -0
- vllm/v1/core/sched/output.py +162 -0
- vllm/v1/core/sched/request_queue.py +224 -0
- vllm/v1/core/sched/scheduler.py +1287 -0
- vllm/v1/core/sched/utils.py +69 -0
- vllm/v1/core/single_type_kv_cache_manager.py +670 -0
- vllm/v1/cudagraph_dispatcher.py +121 -0
- vllm/v1/engine/__init__.py +202 -0
- vllm/v1/engine/async_llm.py +757 -0
- vllm/v1/engine/coordinator.py +357 -0
- vllm/v1/engine/core.py +1245 -0
- vllm/v1/engine/core_client.py +1333 -0
- vllm/v1/engine/detokenizer.py +300 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +332 -0
- vllm/v1/engine/logprobs.py +201 -0
- vllm/v1/engine/output_processor.py +558 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +524 -0
- vllm/v1/engine/utils.py +857 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +126 -0
- vllm/v1/executor/multiproc_executor.py +683 -0
- vllm/v1/executor/ray_distributed_executor.py +109 -0
- vllm/v1/kv_cache_interface.py +275 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +717 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +133 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +248 -0
- vllm/v1/outputs.py +147 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +77 -0
- vllm/v1/request.py +237 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +294 -0
- vllm/v1/sample/logits_processor/builtin.py +273 -0
- vllm/v1/sample/logits_processor/interface.py +97 -0
- vllm/v1/sample/logits_processor/state.py +161 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/logprobs.py +26 -0
- vllm/v1/sample/ops/penalties.py +43 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
- vllm/v1/sample/rejection_sampler.py +623 -0
- vllm/v1/sample/sampler.py +281 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +213 -0
- vllm/v1/serial_utils.py +395 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +740 -0
- vllm/v1/spec_decode/medusa.py +66 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +191 -0
- vllm/v1/spec_decode/ngram_proposer.py +157 -0
- vllm/v1/spec_decode/utils.py +14 -0
- vllm/v1/structured_output/__init__.py +297 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
- vllm/v1/structured_output/backend_outlines.py +320 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +323 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +373 -0
- vllm/v1/utils.py +382 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +221 -0
- vllm/v1/worker/cpu_model_runner.py +163 -0
- vllm/v1/worker/cpu_worker.py +183 -0
- vllm/v1/worker/gpu_input_batch.py +821 -0
- vllm/v1/worker/gpu_model_runner.py +3743 -0
- vllm/v1/worker/gpu_worker.py +697 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
- vllm/v1/worker/lora_model_runner_mixin.py +192 -0
- vllm/v1/worker/tpu_input_batch.py +585 -0
- vllm/v1/worker/tpu_model_runner.py +1947 -0
- vllm/v1/worker/tpu_worker.py +340 -0
- vllm/v1/worker/utils.py +290 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/v1/worker/xpu_model_runner.py +53 -0
- vllm/v1/worker/xpu_worker.py +179 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/enc_dec_model_runner.py +553 -0
- vllm/worker/model_runner.py +2016 -0
- vllm/worker/model_runner_base.py +307 -0
- vllm/worker/utils.py +49 -0
- vllm/worker/worker.py +670 -0
- vllm/worker/worker_base.py +651 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,340 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
"""A TPU worker class."""
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
from typing import Any, Optional
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.distributed
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
|
|
12
|
+
import vllm.envs as envs
|
|
13
|
+
from vllm.config import VllmConfig
|
|
14
|
+
from vllm.distributed import (ensure_model_parallel_initialized,
|
|
15
|
+
init_distributed_environment)
|
|
16
|
+
from vllm.distributed.kv_transfer import (ensure_kv_transfer_initialized,
|
|
17
|
+
has_kv_transfer_group)
|
|
18
|
+
from vllm.logger import init_logger
|
|
19
|
+
from vllm.lora.request import LoRARequest
|
|
20
|
+
from vllm.model_executor import set_random_seed
|
|
21
|
+
from vllm.platforms import current_platform
|
|
22
|
+
from vllm.platforms.tpu import USE_TPU_COMMONS
|
|
23
|
+
from vllm.tasks import SupportedTask
|
|
24
|
+
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, cdiv
|
|
25
|
+
from vllm.v1.core.sched.output import SchedulerOutput
|
|
26
|
+
from vllm.v1.kv_cache_interface import (AttentionSpec, KVCacheConfig,
|
|
27
|
+
KVCacheSpec)
|
|
28
|
+
from vllm.v1.outputs import ModelRunnerOutput
|
|
29
|
+
from vllm.v1.utils import report_usage_stats
|
|
30
|
+
from vllm.v1.worker.utils import bind_kv_cache
|
|
31
|
+
|
|
32
|
+
logger = init_logger(__name__)
|
|
33
|
+
|
|
34
|
+
if not USE_TPU_COMMONS:
|
|
35
|
+
logger.info("tpu_commons not found, using vLLM's TPUWorker.")
|
|
36
|
+
import torch_xla.core.xla_model as xm
|
|
37
|
+
import torch_xla.debug.profiler as xp
|
|
38
|
+
import torch_xla.runtime as xr
|
|
39
|
+
|
|
40
|
+
from vllm.v1.attention.backends.pallas import TPU_HEAD_SIZE_ALIGNMENT
|
|
41
|
+
from vllm.v1.worker.tpu_model_runner import TPUModelRunner
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class TPUWorker:
|
|
45
|
+
|
|
46
|
+
def __init__(
|
|
47
|
+
self,
|
|
48
|
+
vllm_config: VllmConfig,
|
|
49
|
+
local_rank: int,
|
|
50
|
+
rank: int,
|
|
51
|
+
distributed_init_method: str,
|
|
52
|
+
is_driver_worker: bool = False,
|
|
53
|
+
):
|
|
54
|
+
self.is_driver_worker = is_driver_worker
|
|
55
|
+
self.vllm_config = vllm_config
|
|
56
|
+
self.model_config = vllm_config.model_config
|
|
57
|
+
self.cache_config = vllm_config.cache_config
|
|
58
|
+
self.lora_config = vllm_config.lora_config
|
|
59
|
+
self.load_config = vllm_config.load_config
|
|
60
|
+
self.parallel_config = vllm_config.parallel_config
|
|
61
|
+
self.use_spmd = envs.VLLM_XLA_USE_SPMD
|
|
62
|
+
self.original_parallel_config = None
|
|
63
|
+
if self.use_spmd:
|
|
64
|
+
# Under SPMD mode, distributed env is initialized as if there is
|
|
65
|
+
# only one worker/device.
|
|
66
|
+
self.original_parallel_config = self.parallel_config
|
|
67
|
+
self.parallel_config.tensor_parallel_size = 1
|
|
68
|
+
self.parallel_config.pipeline_parallel_size = 1
|
|
69
|
+
self.parallel_config.world_size = 1
|
|
70
|
+
self.scheduler_config = vllm_config.scheduler_config
|
|
71
|
+
self.device_config = vllm_config.device_config
|
|
72
|
+
self.speculative_config = vllm_config.speculative_config
|
|
73
|
+
self.observability_config = vllm_config.observability_config
|
|
74
|
+
|
|
75
|
+
self.parallel_config.rank = rank
|
|
76
|
+
self.local_rank = local_rank
|
|
77
|
+
self.rank = rank
|
|
78
|
+
self.distributed_init_method = distributed_init_method
|
|
79
|
+
|
|
80
|
+
if self.cache_config.cache_dtype == "auto":
|
|
81
|
+
self.cache_dtype = self.model_config.dtype
|
|
82
|
+
else:
|
|
83
|
+
self.cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
|
|
84
|
+
self.cache_config.cache_dtype]
|
|
85
|
+
|
|
86
|
+
if self.model_config.trust_remote_code:
|
|
87
|
+
# note: lazy import to avoid importing torch before initializing
|
|
88
|
+
from vllm.utils import init_cached_hf_modules
|
|
89
|
+
init_cached_hf_modules()
|
|
90
|
+
|
|
91
|
+
# Delay profiler initialization to the start of the profiling.
|
|
92
|
+
# This is because in vLLM V1, MP runtime is initialized before the
|
|
93
|
+
# TPU Worker is initialized. The profiler server needs to start after
|
|
94
|
+
# MP runtime is initialized.
|
|
95
|
+
self.profiler = None
|
|
96
|
+
self.profile_dir = None
|
|
97
|
+
if envs.VLLM_TORCH_PROFILER_DIR and self.rank < 1:
|
|
98
|
+
# For TPU, we can only have 1 active profiler session for 1 profiler
|
|
99
|
+
# server. So we only profile on rank0.
|
|
100
|
+
self.profile_dir = envs.VLLM_TORCH_PROFILER_DIR
|
|
101
|
+
logger.info("Profiling enabled. Traces will be saved to: %s",
|
|
102
|
+
self.profile_dir)
|
|
103
|
+
|
|
104
|
+
if self.model_config.seed is None:
|
|
105
|
+
self.model_config.seed = 0
|
|
106
|
+
|
|
107
|
+
def initialize_cache(self, num_gpu_blocks: int,
|
|
108
|
+
num_cpu_blocks: int) -> None:
|
|
109
|
+
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
|
110
|
+
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
|
111
|
+
|
|
112
|
+
def init_device(self):
|
|
113
|
+
os.environ["PJRT_DEVICE"] = "TPU"
|
|
114
|
+
# Note: Currently the XLA compiler wrongly uses 2D ring strategy on 1D
|
|
115
|
+
# ring, the xla tpu compiler flag
|
|
116
|
+
# `xla_tpu_force_1d_allreduce_at_chunk_count` is a temporary solution to
|
|
117
|
+
# fix this. It will be removed after the bug in XLA compiler is fixed.
|
|
118
|
+
os.environ["LIBTPU_INIT_ARGS"] = (
|
|
119
|
+
os.environ.get("LIBTPU_INIT_ARGS", "") +
|
|
120
|
+
" --xla_tpu_force_1d_allreduce_at_chunk_count=1"
|
|
121
|
+
" --xla_jf_conv_input_fusion=False")
|
|
122
|
+
# --xla_jf_conv_input_fusion=False is used to improve the perf of
|
|
123
|
+
# quantized matmul.
|
|
124
|
+
torch.set_grad_enabled(False)
|
|
125
|
+
torch.set_default_dtype(self.model_config.dtype)
|
|
126
|
+
|
|
127
|
+
# Initialize the distributed environment.
|
|
128
|
+
self._init_tpu_worker_distributed_environment(
|
|
129
|
+
self.vllm_config, self.rank, self.distributed_init_method,
|
|
130
|
+
self.local_rank)
|
|
131
|
+
|
|
132
|
+
# Device initialization should happen after initializing
|
|
133
|
+
# the distributed runtime.
|
|
134
|
+
self.device = xm.xla_device()
|
|
135
|
+
self.device_config.device = self.device
|
|
136
|
+
|
|
137
|
+
# Set random seed.
|
|
138
|
+
set_random_seed(self.model_config.seed)
|
|
139
|
+
if self.model_config.seed is not None:
|
|
140
|
+
xm.set_rng_state(self.model_config.seed, self.device)
|
|
141
|
+
|
|
142
|
+
# Increase the cache size limit, which is the maximum number of
|
|
143
|
+
# dynamo graphs that can be compiled.
|
|
144
|
+
# TODO (NickLucche) On gsm we compile 80+ graphs.
|
|
145
|
+
# Re-evaluate limit, with MM we may get close to this limit.
|
|
146
|
+
torch._dynamo.config.cache_size_limit = 128
|
|
147
|
+
# Use persistent cache to avoid XLA recompilation.
|
|
148
|
+
# NOTE(woosuk): Set per-rank cache path since different ranks
|
|
149
|
+
# can have slightly different XLA graphs.
|
|
150
|
+
world_size = self.parallel_config.world_size
|
|
151
|
+
rank = xr.global_ordinal()
|
|
152
|
+
# The PyTorch/XLA compilation cache uses the Torch IR to generate keys.
|
|
153
|
+
# Consequently, changes in optimization flags, which affect compilation
|
|
154
|
+
# results, don't change the cache key. This can result in the wrong
|
|
155
|
+
# compilation being used. To prevent this, disabling the XLA compilation
|
|
156
|
+
# cache during development is recommended.We can disable it by
|
|
157
|
+
# `export VLLM_XLA_CACHE_PATH=`
|
|
158
|
+
if envs.VLLM_XLA_CACHE_PATH:
|
|
159
|
+
per_rank_path = os.path.join(envs.VLLM_XLA_CACHE_PATH,
|
|
160
|
+
f"tp{world_size}_rank{rank}")
|
|
161
|
+
xr.initialize_cache(per_rank_path, readonly=False)
|
|
162
|
+
|
|
163
|
+
# Init ModelRunner here, so that we have access to self.device.
|
|
164
|
+
self.model_runner = \
|
|
165
|
+
TPUModelRunner(self.vllm_config, self.device,
|
|
166
|
+
self.original_parallel_config)
|
|
167
|
+
|
|
168
|
+
if rank == 0:
|
|
169
|
+
# If usage stat is enabled, collect relevant info.
|
|
170
|
+
report_usage_stats(self.vllm_config)
|
|
171
|
+
|
|
172
|
+
def determine_available_memory(self) -> int:
|
|
173
|
+
kv_caches: dict[str, torch.Tensor] = {}
|
|
174
|
+
kv_cache_spec = self.model_runner.get_kv_cache_spec()
|
|
175
|
+
for layer_name, layer_spec in kv_cache_spec.items():
|
|
176
|
+
if isinstance(layer_spec, AttentionSpec):
|
|
177
|
+
dtype = layer_spec.dtype
|
|
178
|
+
|
|
179
|
+
# Use an empty tensor instead of `None`` to force Dynamo to pass
|
|
180
|
+
# it by reference, rather by specializing on the value ``None``.
|
|
181
|
+
tpu_kv_cache = torch.tensor([], dtype=dtype).to(self.device)
|
|
182
|
+
kv_caches[layer_name] = tpu_kv_cache
|
|
183
|
+
else:
|
|
184
|
+
raise NotImplementedError(
|
|
185
|
+
f"Unsupported KV cache spec '{type(layer_spec)}'")
|
|
186
|
+
|
|
187
|
+
runner_kv_caches: list[torch.Tensor] = []
|
|
188
|
+
bind_kv_cache(
|
|
189
|
+
kv_caches,
|
|
190
|
+
self.vllm_config.compilation_config.static_forward_context,
|
|
191
|
+
runner_kv_caches)
|
|
192
|
+
|
|
193
|
+
# `max_num_tokens >= max_num_batched_tokens` due to padding.
|
|
194
|
+
with self.model_runner.maybe_setup_dummy_loras(self.lora_config):
|
|
195
|
+
self.model_runner.profile_run(self.model_runner.max_num_tokens)
|
|
196
|
+
|
|
197
|
+
# Synchronize before measuring the memory usage.
|
|
198
|
+
xm.wait_device_ops()
|
|
199
|
+
|
|
200
|
+
# During the profiling run, the model runs without KV cache. After
|
|
201
|
+
# the profiling run, the model always runs with KV cache. Here we clear
|
|
202
|
+
# the dynamo cache and cached bytecode to ensure the model always has
|
|
203
|
+
# one compiled bytecode. Having one FX graph/cached bytecode per
|
|
204
|
+
# compiled model is required for `support_torch_compile` decorator to
|
|
205
|
+
# skip dynamo guard.
|
|
206
|
+
self.model_runner.reset_dynamo_cache()
|
|
207
|
+
|
|
208
|
+
# Get the maximum amount of memory used by the model weights and
|
|
209
|
+
# intermediate activations.
|
|
210
|
+
if self.use_spmd:
|
|
211
|
+
# This is a workaround for the TPU SPMD mode. The get_memory_info
|
|
212
|
+
# API doesn't work with SPMD mode in PyTorch/XLA.
|
|
213
|
+
# TODO: use xm.get_memory_info for SPMD once it's supported in
|
|
214
|
+
# PyTorch/XLA.
|
|
215
|
+
import tpu_info
|
|
216
|
+
chip_type, _ = tpu_info.device.get_local_chips()
|
|
217
|
+
device_usage = tpu_info.metrics.get_chip_usage(chip_type)
|
|
218
|
+
total_memory_size = device_usage[0].total_memory
|
|
219
|
+
current_mem = device_usage[0].memory_usage
|
|
220
|
+
else:
|
|
221
|
+
m = xm.get_memory_info(self.device)
|
|
222
|
+
total_memory_size = m["bytes_limit"]
|
|
223
|
+
current_mem = m["bytes_used"]
|
|
224
|
+
# Ideally we would use profiled = m["peak_bytes_used"] to
|
|
225
|
+
# get weights + activations. But there is memory used during
|
|
226
|
+
# compilation / weight loading that impacts the peak and
|
|
227
|
+
# there is no way to reset peak memory in XLA, So we
|
|
228
|
+
# use the heuristic of 2% of weights.
|
|
229
|
+
profiled = current_mem * 1.02
|
|
230
|
+
|
|
231
|
+
# Calculate the TPU KV cache size based on profiling.
|
|
232
|
+
usable_memory_size = int(total_memory_size *
|
|
233
|
+
self.cache_config.gpu_memory_utilization)
|
|
234
|
+
tpu_kv_cache_bytes = max(usable_memory_size - profiled, 0)
|
|
235
|
+
head_size = self.model_config.get_head_size()
|
|
236
|
+
if head_size > 0:
|
|
237
|
+
padded_head_size = cdiv(
|
|
238
|
+
head_size, TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
239
|
+
if padded_head_size != head_size:
|
|
240
|
+
logger.warning_once("head size is padded to %d",
|
|
241
|
+
padded_head_size)
|
|
242
|
+
# We adjust the usable memory size for the KV cache to prevent OOM
|
|
243
|
+
# errors, even after padding the head_size.
|
|
244
|
+
tpu_kv_cache_bytes = (tpu_kv_cache_bytes * head_size //
|
|
245
|
+
padded_head_size)
|
|
246
|
+
return int(tpu_kv_cache_bytes)
|
|
247
|
+
|
|
248
|
+
def execute_model(
|
|
249
|
+
self,
|
|
250
|
+
scheduler_output: "SchedulerOutput",
|
|
251
|
+
) -> Optional[ModelRunnerOutput]:
|
|
252
|
+
output = self.model_runner.execute_model(scheduler_output)
|
|
253
|
+
# every worker's output is needed when kv_transfer_group is set up
|
|
254
|
+
return output if self.is_driver_worker or has_kv_transfer_group(
|
|
255
|
+
) else None
|
|
256
|
+
|
|
257
|
+
def profile(self, is_start: bool = True):
|
|
258
|
+
if self.rank < 1:
|
|
259
|
+
if self.profile_dir is None:
|
|
260
|
+
raise RuntimeError("Profiler is not enabled.")
|
|
261
|
+
if is_start:
|
|
262
|
+
if self.profiler is None:
|
|
263
|
+
self.profiler = xp.start_server(9012)
|
|
264
|
+
xp.start_trace(self.profile_dir)
|
|
265
|
+
else:
|
|
266
|
+
xp.stop_trace()
|
|
267
|
+
|
|
268
|
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
269
|
+
return self.model_runner.add_lora(lora_request)
|
|
270
|
+
|
|
271
|
+
def load_model(self) -> None:
|
|
272
|
+
self.model_runner.load_model()
|
|
273
|
+
|
|
274
|
+
def update_config(self, overrides: dict[str, Any]) -> None:
|
|
275
|
+
self.model_runner.update_config(overrides)
|
|
276
|
+
|
|
277
|
+
def reload_weights(self) -> None:
|
|
278
|
+
self.model_runner.reload_weights()
|
|
279
|
+
|
|
280
|
+
def compile_or_warm_up_model(self) -> None:
|
|
281
|
+
if not self.model_config.enforce_eager:
|
|
282
|
+
self.model_runner.capture_model()
|
|
283
|
+
|
|
284
|
+
# Reset the seed to ensure that the random state is not affected by
|
|
285
|
+
# the model initialization and profiling.
|
|
286
|
+
set_random_seed(self.model_config.seed)
|
|
287
|
+
|
|
288
|
+
def get_model(self) -> nn.Module:
|
|
289
|
+
return self.model_runner.get_model()
|
|
290
|
+
|
|
291
|
+
def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
|
|
292
|
+
return self.model_runner.get_supported_tasks()
|
|
293
|
+
|
|
294
|
+
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
|
|
295
|
+
return self.model_runner.get_kv_cache_spec()
|
|
296
|
+
|
|
297
|
+
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
|
|
298
|
+
"""Allocate GPU KV cache with the specified kv_cache_config."""
|
|
299
|
+
self.model_runner.initialize_kv_cache(kv_cache_config)
|
|
300
|
+
|
|
301
|
+
def check_health(self) -> None:
|
|
302
|
+
# worker will always be healthy as long as it's running.
|
|
303
|
+
return
|
|
304
|
+
|
|
305
|
+
def _init_tpu_worker_distributed_environment(
|
|
306
|
+
self,
|
|
307
|
+
vllm_config: VllmConfig,
|
|
308
|
+
rank: int,
|
|
309
|
+
distributed_init_method: Optional[str] = None,
|
|
310
|
+
local_rank: int = -1,
|
|
311
|
+
) -> None:
|
|
312
|
+
"""Initialize the distributed environment."""
|
|
313
|
+
if self.use_spmd:
|
|
314
|
+
xr.use_spmd()
|
|
315
|
+
# NOTE(woosuk): This is just to initialize the TP group and broadcast
|
|
316
|
+
# the input objects on CPU. The all-reduce and all-gather ops on TPU
|
|
317
|
+
# are invoked by `xm.all_reduce` and `xm.all_gather` which use their
|
|
318
|
+
# own context.
|
|
319
|
+
parallel_config = vllm_config.parallel_config
|
|
320
|
+
init_distributed_environment(
|
|
321
|
+
world_size=parallel_config.world_size,
|
|
322
|
+
rank=rank,
|
|
323
|
+
local_rank=local_rank,
|
|
324
|
+
distributed_init_method=distributed_init_method,
|
|
325
|
+
backend=current_platform.dist_backend,
|
|
326
|
+
)
|
|
327
|
+
ensure_model_parallel_initialized(
|
|
328
|
+
parallel_config.tensor_parallel_size,
|
|
329
|
+
parallel_config.pipeline_parallel_size)
|
|
330
|
+
|
|
331
|
+
ensure_kv_transfer_initialized(vllm_config)
|
|
332
|
+
|
|
333
|
+
def shutdown(self) -> None:
|
|
334
|
+
self.model_runner.ensure_kv_transfer_shutdown()
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
if USE_TPU_COMMONS:
|
|
338
|
+
from tpu_commons.worker import TPUWorker as TPUCommonsWorker
|
|
339
|
+
|
|
340
|
+
TPUWorker = TPUCommonsWorker # type: ignore
|
vllm/v1/worker/utils.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
from collections import defaultdict
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from typing import TYPE_CHECKING, Optional
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from vllm.attention.backends.abstract import AttentionBackend
|
|
10
|
+
from vllm.config import ModelConfig, SchedulerConfig
|
|
11
|
+
from vllm.model_executor.models.interfaces import MultiModalEmbeddings
|
|
12
|
+
from vllm.model_executor.models.utils import extract_layer_index
|
|
13
|
+
from vllm.multimodal.cache import processor_only_cache_from_config
|
|
14
|
+
from vllm.multimodal.registry import MultiModalRegistry
|
|
15
|
+
from vllm.platforms import current_platform
|
|
16
|
+
from vllm.v1.attention.backends.utils import AttentionMetadataBuilder
|
|
17
|
+
from vllm.v1.core.encoder_cache_manager import compute_mm_encoder_budget
|
|
18
|
+
from vllm.v1.kv_cache_interface import KVCacheGroupSpec
|
|
19
|
+
|
|
20
|
+
if TYPE_CHECKING:
|
|
21
|
+
from vllm.attention.layer import Attention
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class MultiModalBudget:
|
|
25
|
+
"""Helper class to calculate budget information for multi-modal models."""
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
model_config: ModelConfig,
|
|
30
|
+
scheduler_config: SchedulerConfig,
|
|
31
|
+
mm_registry: MultiModalRegistry,
|
|
32
|
+
) -> None:
|
|
33
|
+
super().__init__()
|
|
34
|
+
|
|
35
|
+
self.model_config = model_config
|
|
36
|
+
self.scheduler_config = scheduler_config
|
|
37
|
+
self.mm_registry = mm_registry
|
|
38
|
+
self.cache = cache = processor_only_cache_from_config(
|
|
39
|
+
model_config, mm_registry)
|
|
40
|
+
|
|
41
|
+
self.max_model_len = model_config.max_model_len
|
|
42
|
+
self.max_num_reqs = scheduler_config.max_num_seqs
|
|
43
|
+
|
|
44
|
+
self.mm_limits = mm_registry.get_mm_limits_per_prompt(model_config,
|
|
45
|
+
cache=cache)
|
|
46
|
+
|
|
47
|
+
max_tokens_by_modality = mm_registry \
|
|
48
|
+
.get_max_tokens_per_item_by_nonzero_modality(model_config,
|
|
49
|
+
cache=cache)
|
|
50
|
+
|
|
51
|
+
encoder_compute_budget, encoder_cache_size = compute_mm_encoder_budget(
|
|
52
|
+
scheduler_config,
|
|
53
|
+
max_tokens_by_modality,
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
self.encoder_compute_budget = encoder_compute_budget
|
|
57
|
+
self.encoder_cache_size = encoder_cache_size
|
|
58
|
+
|
|
59
|
+
max_items_per_prompt_by_modality = dict[str, int]()
|
|
60
|
+
max_items_per_batch_by_modality = dict[str, int]()
|
|
61
|
+
|
|
62
|
+
for modality, max_tokens in max_tokens_by_modality.items():
|
|
63
|
+
(
|
|
64
|
+
max_items_per_prompt,
|
|
65
|
+
max_items_per_batch,
|
|
66
|
+
) = self.get_max_items(modality, max_tokens)
|
|
67
|
+
|
|
68
|
+
max_items_per_prompt_by_modality[modality] = max_items_per_prompt
|
|
69
|
+
max_items_per_batch_by_modality[modality] = max_items_per_batch
|
|
70
|
+
|
|
71
|
+
self.max_tokens_by_modality = max_tokens_by_modality
|
|
72
|
+
self.max_items_per_prompt_by_modality = max_items_per_prompt_by_modality
|
|
73
|
+
self.max_items_per_batch_by_modality = max_items_per_batch_by_modality
|
|
74
|
+
|
|
75
|
+
def get_modality_with_max_tokens(self) -> str:
|
|
76
|
+
max_tokens_by_modality = self.max_tokens_by_modality
|
|
77
|
+
modality, _ = max(max_tokens_by_modality.items(), key=lambda x: x[1])
|
|
78
|
+
|
|
79
|
+
return modality
|
|
80
|
+
|
|
81
|
+
def get_encoder_budget(self) -> int:
|
|
82
|
+
return min(self.encoder_compute_budget, self.encoder_cache_size)
|
|
83
|
+
|
|
84
|
+
def get_max_items(
|
|
85
|
+
self,
|
|
86
|
+
modality: str,
|
|
87
|
+
max_tokens_per_item: int,
|
|
88
|
+
) -> tuple[int, int]:
|
|
89
|
+
if max_tokens_per_item == 0:
|
|
90
|
+
return 0, 0
|
|
91
|
+
|
|
92
|
+
# Check how many items of this modality can be supported by
|
|
93
|
+
# the encoder budget.
|
|
94
|
+
encoder_budget = self.get_encoder_budget()
|
|
95
|
+
|
|
96
|
+
# TODO: handle encoder-decoder models once we support them.
|
|
97
|
+
if encoder_budget == 0:
|
|
98
|
+
return 0, 0
|
|
99
|
+
|
|
100
|
+
max_encoder_items_per_batch = encoder_budget // max_tokens_per_item
|
|
101
|
+
|
|
102
|
+
# Check how many items of this modality can be supported by
|
|
103
|
+
# the decoder budget.
|
|
104
|
+
mm_limit = self.mm_limits[modality]
|
|
105
|
+
|
|
106
|
+
max_items_per_prompt = max(
|
|
107
|
+
1,
|
|
108
|
+
min(mm_limit, self.max_model_len // max_tokens_per_item),
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
scheduler_config = self.scheduler_config
|
|
112
|
+
max_num_reqs = self.max_num_reqs
|
|
113
|
+
|
|
114
|
+
if not scheduler_config.enable_chunked_prefill:
|
|
115
|
+
max_num_reqs = min(
|
|
116
|
+
max_num_reqs,
|
|
117
|
+
scheduler_config.max_num_batched_tokens // max_tokens_per_item,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
max_decoder_items_per_batch = max_num_reqs * max_items_per_prompt
|
|
121
|
+
|
|
122
|
+
max_items_per_batch = max(
|
|
123
|
+
1,
|
|
124
|
+
min(max_encoder_items_per_batch, max_decoder_items_per_batch),
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
return max_items_per_prompt, max_items_per_batch
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
@dataclass
|
|
131
|
+
class AttentionGroup:
|
|
132
|
+
backend: type[AttentionBackend]
|
|
133
|
+
metadata_builder: AttentionMetadataBuilder
|
|
134
|
+
layer_names: list[str]
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
def sanity_check_mm_encoder_outputs(
|
|
138
|
+
mm_embeddings: MultiModalEmbeddings,
|
|
139
|
+
expected_num_items: int,
|
|
140
|
+
) -> None:
|
|
141
|
+
"""
|
|
142
|
+
Perform sanity checks for the result of
|
|
143
|
+
[`vllm.model_executor.models.SupportsMultiModal.get_multimodal_embeddings`][].
|
|
144
|
+
"""
|
|
145
|
+
assert isinstance(mm_embeddings, (list, tuple, torch.Tensor)), (
|
|
146
|
+
"Expected multimodal embeddings to be a list/tuple of 2D tensors, "
|
|
147
|
+
f"or a single 3D tensor, but got {type(mm_embeddings)} "
|
|
148
|
+
"instead. This is most likely due to incorrect implementation "
|
|
149
|
+
"of the model's `get_multimodal_embeddings` method.")
|
|
150
|
+
|
|
151
|
+
assert len(mm_embeddings) == expected_num_items, (
|
|
152
|
+
"Expected number of multimodal embeddings to match number of "
|
|
153
|
+
f"input items: {expected_num_items}, but got {len(mm_embeddings)=} "
|
|
154
|
+
"instead. This is most likely due to incorrect implementation "
|
|
155
|
+
"of the model's `get_multimodal_embeddings` method.")
|
|
156
|
+
|
|
157
|
+
assert all(e.ndim == 2 for e in mm_embeddings), (
|
|
158
|
+
"Expected multimodal embeddings to be a sequence of 2D tensors, "
|
|
159
|
+
f"but got tensors with shapes {[e.shape for e in mm_embeddings]} "
|
|
160
|
+
"instead. This is most likely due to incorrect implementation "
|
|
161
|
+
"of the model's `get_multimodal_embeddings` method.")
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def scatter_mm_placeholders(
|
|
165
|
+
embeds: torch.Tensor,
|
|
166
|
+
is_embed: Optional[torch.Tensor],
|
|
167
|
+
) -> torch.Tensor:
|
|
168
|
+
"""
|
|
169
|
+
Scatter the multimodal embeddings into a contiguous tensor that represents
|
|
170
|
+
the placeholder tokens.
|
|
171
|
+
|
|
172
|
+
[`vllm.multimodal.processing.PromptUpdateDetails.is_embed`][].
|
|
173
|
+
|
|
174
|
+
Args:
|
|
175
|
+
embeds: The multimodal embeddings.
|
|
176
|
+
Shape: `(num_embeds, embed_dim)`
|
|
177
|
+
is_embed: A boolean mask indicating which positions in the placeholder
|
|
178
|
+
tokens need to be filled with multimodal embeddings.
|
|
179
|
+
Shape: `(num_placeholders, num_embeds)`
|
|
180
|
+
"""
|
|
181
|
+
if is_embed is None:
|
|
182
|
+
return embeds
|
|
183
|
+
|
|
184
|
+
placeholders = embeds.new_full(
|
|
185
|
+
(is_embed.shape[0], embeds.shape[-1]),
|
|
186
|
+
fill_value=torch.nan,
|
|
187
|
+
)
|
|
188
|
+
placeholders[is_embed] = embeds
|
|
189
|
+
return placeholders
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
def gather_mm_placeholders(
|
|
193
|
+
placeholders: torch.Tensor,
|
|
194
|
+
is_embed: Optional[torch.Tensor],
|
|
195
|
+
) -> torch.Tensor:
|
|
196
|
+
"""
|
|
197
|
+
Reconstructs the embeddings from the placeholder tokens.
|
|
198
|
+
|
|
199
|
+
This is the operation of [scatter_mm_placeholders][].
|
|
200
|
+
"""
|
|
201
|
+
if is_embed is None:
|
|
202
|
+
return placeholders
|
|
203
|
+
|
|
204
|
+
return placeholders[is_embed]
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
def add_kv_sharing_layers_to_kv_cache_groups(
|
|
208
|
+
shared_kv_cache_layers: dict[str, str],
|
|
209
|
+
kv_cache_groups: list[KVCacheGroupSpec],
|
|
210
|
+
runner_only_attn_layers: Optional[set[str]] = None,
|
|
211
|
+
) -> None:
|
|
212
|
+
"""
|
|
213
|
+
Sets up KV cache sharing by reusing the allocated KV caches in `kv_caches`
|
|
214
|
+
for layers that do not allocate its own KV cache, based on the mapping in
|
|
215
|
+
`shared_kv_cache_layers`. Adds these layers to the corresponding KV cache
|
|
216
|
+
group, which is needed to ensure that attention metadata is assigned later.
|
|
217
|
+
|
|
218
|
+
Args:
|
|
219
|
+
shared_kv_cache_layers: Layer pairings for cross-layer KV sharing.
|
|
220
|
+
If an Attention layer `layer_name` is in the keys of this dict, it
|
|
221
|
+
means this layer will perform attention using the keys and values
|
|
222
|
+
from the KV cache of `shared_kv_cache_layers[layer_name]`.
|
|
223
|
+
kv_cache_groups: The KV cache groups of the model.
|
|
224
|
+
"""
|
|
225
|
+
layer_to_kv_cache_group: dict[str, KVCacheGroupSpec] = {}
|
|
226
|
+
for kv_cache_group in kv_cache_groups:
|
|
227
|
+
for layer_name in kv_cache_group.layer_names:
|
|
228
|
+
layer_to_kv_cache_group[layer_name] = kv_cache_group
|
|
229
|
+
|
|
230
|
+
for layer_name, target_layer_name in shared_kv_cache_layers.items():
|
|
231
|
+
tgt_kv_cache_group = layer_to_kv_cache_group[target_layer_name]
|
|
232
|
+
tgt_kv_cache_group.layer_names.append(layer_name)
|
|
233
|
+
|
|
234
|
+
if runner_only_attn_layers is not None:
|
|
235
|
+
runner_only_attn_layers.add(layer_name)
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def bind_kv_cache(
|
|
239
|
+
kv_caches: dict[str, torch.Tensor],
|
|
240
|
+
forward_context: dict[str, "Attention"],
|
|
241
|
+
runner_kv_caches: list[torch.Tensor],
|
|
242
|
+
) -> None:
|
|
243
|
+
"""
|
|
244
|
+
Bind the allocated KV cache to both ModelRunner and forward context so
|
|
245
|
+
that the KV cache can be used in the forward pass.
|
|
246
|
+
|
|
247
|
+
This function:
|
|
248
|
+
1) Fills the ModelRunner's kv cache list (`runner_kv_caches`) with
|
|
249
|
+
kv_caches.
|
|
250
|
+
2) Associates each attention layer in the `forward_context` with its
|
|
251
|
+
corresponding KV cache in kv_caches.
|
|
252
|
+
|
|
253
|
+
Args:
|
|
254
|
+
kv_caches: The allocated kv_caches with layer names as keys.
|
|
255
|
+
forward_context: The global forward context containing all Attention
|
|
256
|
+
layers with layer names as keys.
|
|
257
|
+
runner_kv_caches: The kv_cache declared by ModelRunner.
|
|
258
|
+
"""
|
|
259
|
+
# Bind kv_caches to ModelRunner
|
|
260
|
+
assert len(runner_kv_caches) == 0
|
|
261
|
+
|
|
262
|
+
# Convert kv_caches dict to a list of tensors in the order of layer_index.
|
|
263
|
+
index2name = defaultdict(list)
|
|
264
|
+
for layer_name in kv_caches:
|
|
265
|
+
index2name[extract_layer_index(layer_name)].append(layer_name)
|
|
266
|
+
|
|
267
|
+
for layer_index in sorted(index2name.keys()):
|
|
268
|
+
layer_names = index2name[layer_index]
|
|
269
|
+
if len(layer_names) > 1:
|
|
270
|
+
# One typical case is encoder-decoder model, e.g., bart.
|
|
271
|
+
# The cross attention and self attention in the same decoder layer
|
|
272
|
+
# has different layer_name but the same layer_index.
|
|
273
|
+
|
|
274
|
+
# TODO - analyze where runner_kv_caches is used and the right
|
|
275
|
+
# way to ensure it properly reflects multiple attention layers
|
|
276
|
+
# in the same decoder block.
|
|
277
|
+
if current_platform.is_cuda():
|
|
278
|
+
# We know that the GPU runner is not impacted by this
|
|
279
|
+
# case. Some test code depends on runner_kv_caches, but
|
|
280
|
+
# not in a way that's impacted by ignoring this.
|
|
281
|
+
pass
|
|
282
|
+
else:
|
|
283
|
+
raise NotImplementedError
|
|
284
|
+
layer_name = layer_names[0]
|
|
285
|
+
runner_kv_caches.append(kv_caches[layer_name])
|
|
286
|
+
|
|
287
|
+
# Bind kv_caches to forward context
|
|
288
|
+
for layer_name, kv_cache in kv_caches.items():
|
|
289
|
+
# NOTE: Use list because of v0 PP virtual engine.
|
|
290
|
+
forward_context[layer_name].kv_cache = [kv_cache]
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from typing import Optional
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
import torch.nn as nn
|
|
8
|
+
|
|
9
|
+
from vllm.config import VllmConfig
|
|
10
|
+
from vllm.logger import init_logger
|
|
11
|
+
from vllm.v1.kv_cache_interface import KVCacheSpec
|
|
12
|
+
from vllm.worker.worker_base import WorkerBase as WorkerBaseV0
|
|
13
|
+
|
|
14
|
+
logger = init_logger(__name__)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class WorkerBase(WorkerBaseV0):
|
|
18
|
+
"""
|
|
19
|
+
Abstract class for v1 worker, mainly define some methods for v1.
|
|
20
|
+
For methods shared by v0 and v1, define them in v0 WorkerBase
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
def __init__(
|
|
24
|
+
self,
|
|
25
|
+
vllm_config: VllmConfig,
|
|
26
|
+
local_rank: int,
|
|
27
|
+
rank: int,
|
|
28
|
+
distributed_init_method: str,
|
|
29
|
+
is_driver_worker: bool = False,
|
|
30
|
+
):
|
|
31
|
+
"""
|
|
32
|
+
Initialize common worker components.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
vllm_config: Complete vLLM configuration
|
|
36
|
+
local_rank: Local device index
|
|
37
|
+
rank: Global rank in distributed setup
|
|
38
|
+
distributed_init_method: Distributed initialization method
|
|
39
|
+
is_driver_worker: Whether this worker handles driver
|
|
40
|
+
responsibilities
|
|
41
|
+
"""
|
|
42
|
+
# Configuration storage
|
|
43
|
+
super().__init__(vllm_config=vllm_config)
|
|
44
|
+
|
|
45
|
+
self.parallel_config.rank = rank
|
|
46
|
+
self.local_rank = local_rank
|
|
47
|
+
self.rank = rank
|
|
48
|
+
self.distributed_init_method = distributed_init_method
|
|
49
|
+
self.is_driver_worker = is_driver_worker
|
|
50
|
+
|
|
51
|
+
# Device and model state
|
|
52
|
+
self.device: Optional[torch.device] = None
|
|
53
|
+
self.model_runner: Optional[nn.Module] = None
|
|
54
|
+
|
|
55
|
+
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
|
|
56
|
+
"""Get specifications for KV cache implementation."""
|
|
57
|
+
raise NotImplementedError
|
|
58
|
+
|
|
59
|
+
def compile_or_warm_up_model(self) -> None:
|
|
60
|
+
"""Prepare model for execution through compilation/warmup."""
|
|
61
|
+
raise NotImplementedError
|
|
62
|
+
|
|
63
|
+
def check_health(self) -> None:
|
|
64
|
+
"""Basic health check (override for device-specific checks)."""
|
|
65
|
+
return
|