vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1567 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import itertools
5
+ from abc import abstractmethod
6
+ from typing import Any, Literal, Optional, Union
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.nn.parameter import Parameter, UninitializedParameter
11
+
12
+ from vllm.distributed import (divide, get_tensor_model_parallel_rank,
13
+ get_tensor_model_parallel_world_size,
14
+ split_tensor_along_last_dim,
15
+ tensor_model_parallel_all_gather,
16
+ tensor_model_parallel_all_reduce)
17
+ from vllm.logger import init_logger
18
+ from vllm.model_executor.custom_op import CustomOp
19
+ from vllm.model_executor.layers.quantization.base_config import (
20
+ QuantizationConfig, QuantizeMethodBase)
21
+ from vllm.model_executor.layers.utils import dispatch_unquantized_gemm
22
+ # yapf: disable
23
+ from vllm.model_executor.parameter import (BasevLLMParameter,
24
+ BlockQuantScaleParameter,
25
+ PackedColumnParameter,
26
+ PackedvLLMParameter,
27
+ PerTensorScaleParameter,
28
+ RowvLLMParameter)
29
+ # yapf: enable
30
+ from vllm.model_executor.utils import set_weight_attrs
31
+ from vllm.platforms import current_platform
32
+
33
+ logger = init_logger(__name__)
34
+
35
+ WEIGHT_LOADER_V2_SUPPORTED = [
36
+ "CompressedTensorsLinearMethod",
37
+ "CompressedTensorsLinearTransformMethod",
38
+ "BitBLASLinearMethod",
39
+ "GPTQBitBLASLinearMethod",
40
+ "AWQMarlinLinearMethod",
41
+ "AWQLinearMethod",
42
+ "GPTQMarlinLinearMethod",
43
+ "Fp8LinearMethod",
44
+ "MarlinLinearMethod",
45
+ "GPTQMarlin24LinearMethod",
46
+ "TPUInt8LinearMethod",
47
+ "GPTQLinearMethod",
48
+ "FBGEMMFp8LinearMethod",
49
+ "ModelOptFp8LinearMethod",
50
+ "IPEXAWQLinearMethod",
51
+ "IPEXGPTQLinearMethod",
52
+ "HQQMarlinMethod",
53
+ "QuarkLinearMethod",
54
+ "ModelOptNvFp4LinearMethod",
55
+ "PetitNvFp4LinearMethod",
56
+ ]
57
+
58
+
59
+ def adjust_bitblas_shard(param, shard_size, shard_offset):
60
+ bitblas_tile_size = getattr(param, "bitblas_tile_size", None)
61
+ if bitblas_tile_size is not None:
62
+ return (shard_size // bitblas_tile_size,
63
+ shard_offset // bitblas_tile_size)
64
+
65
+ return shard_size, shard_offset
66
+
67
+
68
+ def adjust_marlin_shard(param, shard_size, shard_offset):
69
+ marlin_tile_size = getattr(param, "marlin_tile_size", None)
70
+ if marlin_tile_size is None:
71
+ return shard_size, shard_offset
72
+
73
+ return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
74
+
75
+
76
+ def adjust_bitsandbytes_4bit_shard(param: Parameter,
77
+ shard_offsets: dict[str, tuple[int, int]],
78
+ loaded_shard_id: str) -> tuple[int, int]:
79
+ """Adjust the quantization offsets and sizes for BitsAndBytes sharding."""
80
+
81
+ total, _ = shard_offsets["total"]
82
+ orig_offset, orig_size = shard_offsets[loaded_shard_id]
83
+
84
+ quantized_total = param.data.shape[0]
85
+ quantized_offset = orig_offset * quantized_total // total
86
+ quantized_size = orig_size * quantized_total // total
87
+
88
+ return quantized_size, quantized_offset
89
+
90
+
91
+ def adjust_scalar_to_fused_array(param, loaded_weight, shard_id):
92
+ """For fused modules (QKV and MLP) we have an array of length
93
+ N that holds 1 scale for each "logical" matrix. So the param
94
+ is an array of length N. The loaded_weight corresponds to
95
+ one of the shards on disk. Here, we slice the param based on
96
+ the shard_id for loading.
97
+ """
98
+ qkv_idxs = {"q": 0, "k": 1, "v": 2}
99
+
100
+ if isinstance(shard_id, str):
101
+ shard_id = qkv_idxs[shard_id]
102
+ elif not isinstance(shard_id, int):
103
+ raise ValueError(f"Unknown Shard Id {shard_id}")
104
+
105
+ # AutoFP8 scales do not have a shape
106
+ # compressed-tensors scales do have a shape
107
+ if len(loaded_weight.shape) != 0:
108
+ assert loaded_weight.shape[0] == 1
109
+ loaded_weight = loaded_weight[0]
110
+
111
+ return param[shard_id], loaded_weight
112
+
113
+
114
+ # TODO(Isotr0py): We might need a more flexible structure to handle
115
+ # bitsandbytes shard offsets.
116
+ def left_shift_bitsandbytes_4bit_shard(bnb_weight_attrs: dict[str, Any]):
117
+ """
118
+ Separate the BitsAndBytes 4-bit shard.
119
+
120
+ For example, given bnb weight attributes as below:
121
+ {
122
+ 'bnb_shard_offsets': array([0, 4, 8, 16]),
123
+ 'bnb_quant_state': {0: ..., 1: ..., 2: ...},
124
+ }
125
+
126
+ The function will return:
127
+ {
128
+ 'bnb_shard_offsets': array([0, 4]),
129
+ 'bnb_quant_state': {0: ...},
130
+ }
131
+ and
132
+ {
133
+ 'bnb_shard_offsets': array([0, 4, 12]),
134
+ 'bnb_quant_state': {0: ..., 1: ...},
135
+ }
136
+ """
137
+ shard_offsets = bnb_weight_attrs["bnb_shard_offsets"]
138
+ offset_l = shard_offsets[:2]
139
+ offset_r = shard_offsets[1:] - shard_offsets[1]
140
+ quant_state_l = {0: bnb_weight_attrs["bnb_quant_state"][0]}
141
+ quant_state_r = {
142
+ i - 1: bnb_weight_attrs["bnb_quant_state"][i]
143
+ for i in range(1,
144
+ len(shard_offsets) - 1)
145
+ }
146
+ left = dict(bnb_shard_offsets=offset_l, bnb_quant_state=quant_state_l)
147
+ right = dict(bnb_shard_offsets=offset_r, bnb_quant_state=quant_state_r)
148
+ return left, right
149
+
150
+
151
+ class LinearMethodBase(QuantizeMethodBase):
152
+ """Base class for different (maybe quantized) linear methods."""
153
+
154
+ @abstractmethod
155
+ def create_weights(self, layer: torch.nn.Module,
156
+ input_size_per_partition: int,
157
+ output_partition_sizes: list[int], input_size: int,
158
+ output_size: int, params_dtype: torch.dtype,
159
+ **extra_weight_attrs):
160
+ """Create weights for a linear layer.
161
+ The weights will be set as attributes of the layer.
162
+
163
+ Args:
164
+ layer: The layer that is using the LinearMethodBase factory.
165
+ input_size_per_partition: Size of the weight input dim on rank X.
166
+ output_partition_sizes: Sizes of the output dim of each logical
167
+ weight on rank X. E.g., output_partition_sizes for QKVLinear
168
+ is a list contains the width of Wq, Wk, Wv on rank X.
169
+ input_size: Size of the input dim of the weight across all ranks.
170
+ output_size: Size of the output dim of the weight across all ranks.
171
+ params_dtype: Datatype of the parameters.
172
+ """
173
+ raise NotImplementedError
174
+
175
+ @abstractmethod
176
+ def apply(self,
177
+ layer: torch.nn.Module,
178
+ x: torch.Tensor,
179
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
180
+ """Apply the weights in layer to the input tensor.
181
+ Expects create_weights to have been called before on the layer."""
182
+ raise NotImplementedError
183
+
184
+
185
+ class UnquantizedLinearMethod(LinearMethodBase):
186
+ """Linear method without quantization."""
187
+
188
+ def create_weights(self, layer: torch.nn.Module,
189
+ input_size_per_partition: int,
190
+ output_partition_sizes: list[int], input_size: int,
191
+ output_size: int, params_dtype: torch.dtype,
192
+ **extra_weight_attrs):
193
+ weight = Parameter(torch.empty(sum(output_partition_sizes),
194
+ input_size_per_partition,
195
+ dtype=params_dtype),
196
+ requires_grad=False)
197
+ set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
198
+ layer.register_parameter("weight", weight)
199
+ set_weight_attrs(weight, extra_weight_attrs)
200
+
201
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
202
+ if current_platform.is_cpu():
203
+ from vllm.model_executor.layers.utils import (
204
+ dispatch_cpu_unquantized_gemm)
205
+ dispatch_cpu_unquantized_gemm(layer, remove_weight=True)
206
+
207
+ def apply(self,
208
+ layer: torch.nn.Module,
209
+ x: torch.Tensor,
210
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
211
+
212
+ return dispatch_unquantized_gemm()(layer, x, layer.weight, bias)
213
+
214
+
215
+ class LinearBase(CustomOp):
216
+ """Base linear layer.
217
+
218
+ Args:
219
+ input_size: input dimension of the linear layer.
220
+ output_size: output dimension of the linear layer.
221
+ skip_bias_add: If true, skip adding bias but instead return it.
222
+ params_dtype: Data type for the parameters.
223
+ quant_config: Quantization configure.
224
+ prefix: Prefix for parameter names.
225
+ return_bias: If true, return bias together with outputs in forward pass.
226
+ disable_tp: If true, tensor parallelism will be disabled for this layer.
227
+ """
228
+
229
+ def __init__(
230
+ self,
231
+ input_size: int,
232
+ output_size: int,
233
+ skip_bias_add: bool = False,
234
+ params_dtype: Optional[torch.dtype] = None,
235
+ quant_config: Optional[QuantizationConfig] = None,
236
+ prefix: str = "",
237
+ *,
238
+ return_bias: bool = True,
239
+ disable_tp: bool = False,
240
+ ):
241
+ super().__init__()
242
+
243
+ # Keep input parameters
244
+ self.input_size = input_size
245
+ self.output_size = output_size
246
+ self.skip_bias_add = skip_bias_add
247
+ if params_dtype is None:
248
+ params_dtype = torch.get_default_dtype()
249
+ self.params_dtype = params_dtype
250
+ self.quant_config = quant_config
251
+ self.prefix = prefix
252
+ if quant_config is None:
253
+ self.quant_method: Optional[
254
+ QuantizeMethodBase] = UnquantizedLinearMethod()
255
+ else:
256
+ self.quant_method = quant_config.get_quant_method(self,
257
+ prefix=prefix)
258
+ self.return_bias = return_bias
259
+ self.disable_tp = disable_tp
260
+ self.tp_rank = (get_tensor_model_parallel_rank()
261
+ if not disable_tp else 0)
262
+ self.tp_size = (get_tensor_model_parallel_world_size()
263
+ if not disable_tp else 1)
264
+
265
+ def update_param_tp_status(self):
266
+ for param in self.parameters():
267
+ if isinstance(param, BasevLLMParameter):
268
+ param.tp_rank = self.tp_rank
269
+ param.tp_size = self.tp_size
270
+
271
+
272
+ @CustomOp.register("replicated_linear")
273
+ class ReplicatedLinear(LinearBase):
274
+ """Replicated linear layer.
275
+
276
+ Args:
277
+ input_size: input dimension of the linear layer.
278
+ output_size: output dimension of the linear layer.
279
+ bias: If true, add bias.
280
+ skip_bias_add: If true, skip adding bias but instead return it.
281
+ params_dtype: Data type for the parameters.
282
+ quant_config: Quantization configure.
283
+ prefix: The name of the layer in the state dict, including all parents
284
+ (e.g. model.layers.0.qkv_proj)
285
+ return_bias: If true, return bias together with outputs in forward pass.
286
+ disable_tp: Take no effect for replicated linear layers.
287
+ """
288
+
289
+ def __init__(
290
+ self,
291
+ input_size: int,
292
+ output_size: int,
293
+ bias: bool = True,
294
+ skip_bias_add: bool = False,
295
+ params_dtype: Optional[torch.dtype] = None,
296
+ quant_config: Optional[QuantizationConfig] = None,
297
+ prefix: str = "",
298
+ *,
299
+ return_bias: bool = True,
300
+ disable_tp: bool = False,
301
+ ):
302
+ super().__init__(input_size,
303
+ output_size,
304
+ skip_bias_add,
305
+ params_dtype,
306
+ quant_config,
307
+ prefix=prefix,
308
+ return_bias=return_bias,
309
+ disable_tp=disable_tp)
310
+
311
+ # All the linear layer supports quant method.
312
+ assert self.quant_method is not None
313
+ self.quant_method.create_weights(self,
314
+ self.input_size, [self.output_size],
315
+ self.input_size,
316
+ self.output_size,
317
+ self.params_dtype,
318
+ weight_loader=self.weight_loader)
319
+
320
+ if bias:
321
+ self.bias = Parameter(
322
+ torch.empty(self.output_size, dtype=self.params_dtype))
323
+ set_weight_attrs(self.bias, {
324
+ "output_dim": 0,
325
+ "weight_loader": self.weight_loader,
326
+ })
327
+ else:
328
+ self.register_parameter("bias", None)
329
+
330
+ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
331
+ # If the weight on disk does not have a shape, give it one
332
+ # (such scales for AutoFp8).
333
+ # Special case for GGUF
334
+
335
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
336
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
337
+ if is_gguf_weight_type:
338
+ param.weight_type = loaded_weight.item()
339
+
340
+ # Materialize GGUF UninitializedParameter
341
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
342
+ param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)
343
+
344
+ if len(loaded_weight.shape) == 0:
345
+ loaded_weight = loaded_weight.reshape(1)
346
+
347
+ assert param.size() == loaded_weight.size(), (
348
+ f"Tried to load weights of size {loaded_weight.size()}"
349
+ f"to a parameter of size {param.size()}")
350
+ param.data.copy_(loaded_weight)
351
+
352
+ def forward(
353
+ self, x: torch.Tensor
354
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
355
+ bias = self.bias if not self.skip_bias_add else None
356
+ assert self.quant_method is not None
357
+ output = self.quant_method.apply(self, x, bias)
358
+ output_bias = self.bias if self.skip_bias_add else None
359
+ if not self.return_bias:
360
+ return output
361
+ return output, output_bias
362
+
363
+ def extra_repr(self) -> str:
364
+ s = f"in_features={self.input_size}"
365
+ s += f", output_features={self.output_size}"
366
+ s += f", bias={self.bias is not None}"
367
+ return s
368
+
369
+
370
+ @CustomOp.register("column_parallel_linear")
371
+ class ColumnParallelLinear(LinearBase):
372
+ """Linear layer with column parallelism.
373
+
374
+ The linear layer is defined as Y = XA + b. A is parallelized along
375
+ its second dimension as A = [A_1, ..., A_p].
376
+
377
+ Args:
378
+ input_size: first dimension of matrix A.
379
+ output_size: second dimension of matrix A.
380
+ bias: If true, add bias.
381
+ gather_output: If true, call all-gather on output and make Y available
382
+ to all GPUs, otherwise, every GPU will have its output
383
+ which is Y_i = XA_i
384
+ skip_bias_add: This was added to enable performance optimizations where
385
+ bias can be fused with other element-wise operations. we
386
+ skip adding bias but instead return it.
387
+ params_dtype: Data type for the parameters.
388
+ quant_config: Quantization configure.
389
+ output_sizes: list of output sizes packed into one output, like for QKV
390
+ the list would be size 3.
391
+ prefix: The name of the layer in the state dict, including all parents
392
+ (e.g. model.layers.0.qkv_proj)
393
+ return_bias: If true, return bias together with outputs in forward pass.
394
+ disable_tp: If true, weights matrix won't be sharded through tp rank.
395
+ """
396
+
397
+ def __init__(
398
+ self,
399
+ input_size: int,
400
+ output_size: int,
401
+ bias: bool = True,
402
+ gather_output: bool = False,
403
+ skip_bias_add: bool = False,
404
+ params_dtype: Optional[torch.dtype] = None,
405
+ quant_config: Optional[QuantizationConfig] = None,
406
+ output_sizes: Optional[list[int]] = None,
407
+ prefix: str = "",
408
+ *,
409
+ return_bias: bool = True,
410
+ disable_tp: bool = False,
411
+ ):
412
+ # Divide the weight matrix along the last dimension.
413
+ self.tp_rank = (get_tensor_model_parallel_rank()
414
+ if not disable_tp else 0)
415
+ self.tp_size = (get_tensor_model_parallel_world_size()
416
+ if not disable_tp else 1)
417
+ self.input_size_per_partition = input_size
418
+ self.output_size_per_partition = divide(output_size, self.tp_size)
419
+ self.output_partition_sizes = [self.output_size_per_partition]
420
+ # If QKV or MergedColumn, use output size of each partition.
421
+ if hasattr(self, "output_sizes"):
422
+ self.output_partition_sizes = [
423
+ divide(output_size, self.tp_size)
424
+ for output_size in self.output_sizes
425
+ ]
426
+
427
+ super().__init__(input_size,
428
+ output_size,
429
+ skip_bias_add,
430
+ params_dtype,
431
+ quant_config,
432
+ prefix,
433
+ return_bias=return_bias,
434
+ disable_tp=disable_tp)
435
+
436
+ self.gather_output = gather_output
437
+
438
+ if output_sizes is None:
439
+ output_sizes = [output_size]
440
+
441
+ assert self.quant_method is not None
442
+ self.quant_method.create_weights(
443
+ layer=self,
444
+ input_size_per_partition=self.input_size_per_partition,
445
+ output_partition_sizes=self.output_partition_sizes,
446
+ input_size=self.input_size,
447
+ output_size=self.output_size,
448
+ params_dtype=self.params_dtype,
449
+ weight_loader=(
450
+ self.weight_loader_v2 if self.quant_method.__class__.__name__
451
+ in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
452
+ if bias:
453
+ self.bias = Parameter(
454
+ torch.empty(self.output_size_per_partition,
455
+ dtype=params_dtype))
456
+ set_weight_attrs(self.bias, {
457
+ "output_dim": 0,
458
+ "weight_loader": self.weight_loader,
459
+ })
460
+ else:
461
+ self.register_parameter("bias", None)
462
+ self.update_param_tp_status()
463
+
464
+ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
465
+
466
+ output_dim = getattr(param, "output_dim", None)
467
+
468
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
469
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
470
+ # bitsandbytes loads the weights of the specific portion
471
+ # no need to narrow
472
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
473
+
474
+ # Special case for GGUF
475
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
476
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
477
+ if is_gguf_weight_type:
478
+ param.weight_type = loaded_weight.item()
479
+
480
+ # Materialize GGUF UninitializedParameter
481
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
482
+ final_shape = list(loaded_weight.shape)
483
+ if output_dim is not None:
484
+ assert final_shape[output_dim] % self.tp_size == 0
485
+ final_shape[output_dim] = (final_shape[output_dim] //
486
+ self.tp_size)
487
+ param.materialize(final_shape, dtype=loaded_weight.dtype)
488
+
489
+ param_data = param.data
490
+ if output_dim is not None and not is_sharded_weight:
491
+ shard_size = param_data.shape[output_dim]
492
+ start_idx = self.tp_rank * shard_size
493
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
494
+ shard_size)
495
+
496
+ # Special case for loading scales off disk, which often do not
497
+ # have a shape (such as in the case of AutoFP8).
498
+ if len(loaded_weight.shape) == 0:
499
+ loaded_weight = loaded_weight.reshape(1)
500
+
501
+ assert param_data.shape == loaded_weight.shape
502
+ param_data.copy_(loaded_weight)
503
+
504
+ def weight_loader_v2(self, param: BasevLLMParameter,
505
+ loaded_weight: torch.Tensor):
506
+ # Special case for loading scales off disk, which often do not
507
+ # have a shape (such as in the case of AutoFP8).
508
+ if len(loaded_weight.shape) == 0:
509
+ assert loaded_weight.numel() == 1
510
+ loaded_weight = loaded_weight.reshape(1)
511
+ param.load_column_parallel_weight(loaded_weight=loaded_weight)
512
+
513
+ def forward(
514
+ self, input_
515
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
516
+ bias = self.bias if not self.skip_bias_add else None
517
+
518
+ # Matrix multiply.
519
+ assert self.quant_method is not None
520
+ output_parallel = self.quant_method.apply(self, input_, bias)
521
+ if self.gather_output and self.tp_size > 1:
522
+ # All-gather across the partitions.
523
+ output = tensor_model_parallel_all_gather(output_parallel)
524
+ else:
525
+ output = output_parallel
526
+ output_bias = self.bias if self.skip_bias_add else None
527
+ if not self.return_bias:
528
+ return output
529
+ return output, output_bias
530
+
531
+ def extra_repr(self) -> str:
532
+ s = f"in_features={self.input_size}"
533
+ s += f", output_features={self.output_size_per_partition}"
534
+ s += f", bias={self.bias is not None}"
535
+ s += f", tp_size={self.tp_size}"
536
+ s += f", gather_output={self.gather_output}"
537
+ return s
538
+
539
+
540
+ class MergedColumnParallelLinear(ColumnParallelLinear):
541
+ """Packed linear layers with column parallelism.
542
+
543
+ Similar to ColumnParallelLinear, but the weight matrix is concatenated
544
+ along the output dimension. When the weight matrix is loaded, the
545
+ different partitions are sharded separately.
546
+
547
+ Args:
548
+ input_size: input dimension of the linear layer.
549
+ output_sizes: list of output dimensions of the linear layer.
550
+ bias: If true, add bias.
551
+ gather_output: If true, call all-gather on output and make the output
552
+ available to all GPUs, otherwise, every GPU will have
553
+ its own output.
554
+ skip_bias_add: This was added to enable performance optimizations where
555
+ bias can be fused with other element-wise operations. we
556
+ skip adding bias but instead return it.
557
+ params_dtype: Data type for the parameters.
558
+ quant_config: Quantization configure.
559
+ prefix: The name of the layer in the state dict, including all parents
560
+ (e.g. model.layers.0.qkv_proj)
561
+ return_bias: If true, return bias together with outputs in forward pass.
562
+ disable_tp: If true, all weights matrix won't be sharded, this layer
563
+ will be treated as a "Replicated" MergedLinear.
564
+ """
565
+
566
+ def __init__(
567
+ self,
568
+ input_size: int,
569
+ output_sizes: list[int],
570
+ bias: bool = True,
571
+ gather_output: bool = False,
572
+ skip_bias_add: bool = False,
573
+ params_dtype: Optional[torch.dtype] = None,
574
+ quant_config: Optional[QuantizationConfig] = None,
575
+ prefix: str = "",
576
+ *,
577
+ return_bias: bool = True,
578
+ disable_tp: bool = False,
579
+ ):
580
+ self.output_sizes = output_sizes
581
+ self.tp_size = (get_tensor_model_parallel_world_size()
582
+ if not disable_tp else 1)
583
+ self.tp_rank = (get_tensor_model_parallel_rank()
584
+ if not disable_tp else 0)
585
+
586
+ assert all(output_size % self.tp_size == 0
587
+ for output_size in output_sizes)
588
+ super().__init__(input_size=input_size,
589
+ output_size=sum(output_sizes),
590
+ bias=bias,
591
+ gather_output=gather_output,
592
+ skip_bias_add=skip_bias_add,
593
+ params_dtype=params_dtype,
594
+ quant_config=quant_config,
595
+ prefix=prefix,
596
+ return_bias=return_bias,
597
+ disable_tp=disable_tp)
598
+
599
+ def weight_loader(self,
600
+ param: Parameter,
601
+ loaded_weight: torch.Tensor,
602
+ loaded_shard_id: Optional[int] = None):
603
+
604
+ # Special case for GGUF
605
+ # initialize GGUF param after we know the quantize type
606
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
607
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
608
+ if is_gguf_weight_type:
609
+ if loaded_shard_id is not None:
610
+ param.data[loaded_shard_id].copy_(loaded_weight)
611
+ param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
612
+ else:
613
+ param.shard_weight_type = {
614
+ i: loaded_weight.item()
615
+ for i, _ in enumerate(self.output_sizes)
616
+ }
617
+ return
618
+
619
+ if is_gguf_weight:
620
+
621
+ output_dim = getattr(param, "output_dim", None)
622
+ shard_size = loaded_weight.size(output_dim) // self.tp_size
623
+ start_idx = self.tp_rank * shard_size
624
+
625
+ if loaded_shard_id is not None:
626
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
627
+ shard_size)
628
+ param.shard_id.append(loaded_shard_id)
629
+ param.shard_id_map[loaded_shard_id] = len(param.data_container)
630
+ param.data_container.append(loaded_weight)
631
+ return
632
+
633
+ param_data = param.data
634
+ output_dim = getattr(param, "output_dim", None)
635
+ # Special case for per-tensor scale to load scalar into fused array.
636
+ needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
637
+
638
+ if loaded_shard_id is None:
639
+ # Loaded weight is already fused on disk (mlp).
640
+ # (e.g., Phi-3's gate_up_proj).
641
+ if output_dim is None:
642
+ if needs_scalar_to_array:
643
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
644
+ param_data, loaded_weight, 0)
645
+
646
+ assert param_data.shape == loaded_weight.shape
647
+ param_data.copy_(loaded_weight)
648
+ return
649
+ current_shard_offset = 0
650
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
651
+ False)
652
+ shard_offsets: list[tuple[int, int, int]] = []
653
+ for i, output_size in enumerate(self.output_sizes):
654
+ shard_offsets.append((i, current_shard_offset, output_size))
655
+ current_shard_offset += output_size
656
+ packed_dim = getattr(param, "packed_dim", None)
657
+ for shard_id, shard_offset, shard_size in shard_offsets:
658
+ # Special case for Quantization.
659
+ # If quantized, we need to adjust the offset and size to account
660
+ # for the packing.
661
+ if packed_dim == output_dim:
662
+ shard_size = shard_size // param.packed_factor
663
+ shard_offset = shard_offset // param.packed_factor
664
+ # Special case for Marlin.
665
+ shard_size, shard_offset = adjust_marlin_shard(
666
+ param, shard_size, shard_offset)
667
+
668
+ shard_size, shard_offset = adjust_bitblas_shard(
669
+ param, shard_size, shard_offset)
670
+
671
+ if use_bitsandbytes_4bit:
672
+ index = list(itertools.accumulate([0] + self.output_sizes))
673
+ orig_offsets = {
674
+ str(i): (index[i], size)
675
+ for i, size in enumerate(self.output_sizes)
676
+ }
677
+ orig_offsets["total"] = (self.output_size, 0)
678
+ shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
679
+ param, orig_offsets, str(shard_id))
680
+
681
+ loaded_weight_shard = loaded_weight.narrow(
682
+ output_dim, shard_offset, shard_size)
683
+ self.weight_loader(param, loaded_weight_shard, shard_id)
684
+ return
685
+
686
+ assert loaded_shard_id < len(self.output_sizes)
687
+ if output_dim is not None:
688
+ shard_offset = (sum(self.output_sizes[:loaded_shard_id]) //
689
+ self.tp_size)
690
+ shard_size = self.output_sizes[loaded_shard_id] // self.tp_size
691
+ # Special case for quantization.
692
+ # If quantized, we need to adjust the offset and size to account
693
+ # for the packing.
694
+ packed_dim = getattr(param, "packed_dim", None)
695
+ if packed_dim == output_dim:
696
+ shard_size = shard_size // param.packed_factor
697
+ shard_offset = shard_offset // param.packed_factor
698
+ # Special case for Marlin.
699
+ shard_size, shard_offset = adjust_marlin_shard(
700
+ param, shard_size, shard_offset)
701
+ shard_size, shard_offset = adjust_bitblas_shard(
702
+ param, shard_size, shard_offset)
703
+
704
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
705
+ False)
706
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
707
+ # bitsandbytes loads the weights of the specific portion
708
+ # no need to narrow
709
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
710
+
711
+ if use_bitsandbytes_4bit:
712
+ shard_size = loaded_weight.shape[output_dim]
713
+ shard_offset = loaded_weight.shape[output_dim] * \
714
+ loaded_shard_id
715
+
716
+ param_data = param_data.narrow(output_dim, shard_offset,
717
+ shard_size)
718
+ start_idx = self.tp_rank * shard_size
719
+ if not is_sharded_weight:
720
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
721
+ shard_size)
722
+ # Special case for per-tensor scales in fused case.
723
+ elif needs_scalar_to_array:
724
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
725
+ param_data, loaded_weight, loaded_shard_id)
726
+
727
+ else:
728
+ ignore_warning = getattr(param, "ignore_warning", False)
729
+ if not ignore_warning:
730
+ logger.warning(
731
+ "Loading a weight without `output_dim` attribute in "
732
+ "MergedColumnParallelLinear, assume the weight is "
733
+ "the same for all partitions.")
734
+
735
+ assert param_data.shape == loaded_weight.shape
736
+ param_data.copy_(loaded_weight)
737
+
738
+ def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
739
+ loaded_weight: torch.Tensor):
740
+ """
741
+ Handle special case for models where MLP layers are already
742
+ fused on disk. In this case, we have no shard id. This function
743
+ determmines the shard id by splitting these layers and then calls
744
+ the weight loader using the shard id.
745
+
746
+ An example of a model with these fused layers:
747
+ https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
748
+ """
749
+
750
+ current_shard_offset = 0
751
+ shard_offsets: list[tuple[int, int, int]] = []
752
+ for i, output_size in enumerate(self.output_sizes):
753
+ shard_offsets.append((i, current_shard_offset, output_size))
754
+ current_shard_offset += output_size
755
+
756
+ for shard_id, shard_offset, shard_size in shard_offsets:
757
+ # Special case for Quantization.
758
+ # If quantized, we need to adjust the offset and size to account
759
+ # for the packing.
760
+ if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
761
+ )) and param.packed_dim == param.output_dim:
762
+ shard_size, shard_offset = \
763
+ param.adjust_shard_indexes_for_packing(
764
+ shard_size=shard_size, shard_offset=shard_offset)
765
+
766
+ loaded_weight_shard = loaded_weight.narrow(param.output_dim,
767
+ shard_offset,
768
+ shard_size)
769
+ self.weight_loader_v2(param, loaded_weight_shard, shard_id)
770
+
771
+ def weight_loader_v2(self,
772
+ param: BasevLLMParameter,
773
+ loaded_weight: torch.Tensor,
774
+ loaded_shard_id: Optional[int] = None):
775
+ if loaded_shard_id is None:
776
+ if isinstance(param, PerTensorScaleParameter):
777
+ param.load_merged_column_weight(loaded_weight=loaded_weight,
778
+ shard_id=0)
779
+ return
780
+ elif type(param) in (RowvLLMParameter, BasevLLMParameter):
781
+ param.load_merged_column_weight(loaded_weight=loaded_weight)
782
+ return
783
+ # TODO: @dsikka - move to parameter.py
784
+ self._load_fused_module_from_checkpoint(param, loaded_weight)
785
+ return
786
+
787
+ assert loaded_shard_id < len(self.output_sizes)
788
+
789
+ if isinstance(param, BlockQuantScaleParameter):
790
+ from vllm.model_executor.layers.quantization.fp8 import (
791
+ Fp8LinearMethod, Fp8MoEMethod)
792
+ assert self.quant_method is not None
793
+ assert isinstance(self.quant_method,
794
+ (Fp8LinearMethod, Fp8MoEMethod))
795
+ weight_block_size = self.quant_method.quant_config.weight_block_size
796
+ assert weight_block_size is not None
797
+ block_n, _ = weight_block_size[0], weight_block_size[1]
798
+ shard_offset = (
799
+ (sum(self.output_sizes[:loaded_shard_id]) + block_n - 1) //
800
+ block_n) // self.tp_size
801
+ shard_size = ((self.output_sizes[loaded_shard_id] + block_n - 1) //
802
+ block_n // self.tp_size)
803
+ else:
804
+ shard_offset = sum(
805
+ self.output_sizes[:loaded_shard_id]) // self.tp_size
806
+ shard_size = self.output_sizes[loaded_shard_id] // self.tp_size
807
+
808
+ param.load_merged_column_weight(loaded_weight=loaded_weight,
809
+ shard_id=loaded_shard_id,
810
+ shard_offset=shard_offset,
811
+ shard_size=shard_size,
812
+ tp_rank=self.tp_rank)
813
+
814
+
815
+ class QKVParallelLinear(ColumnParallelLinear):
816
+ """Linear layers for the attention's QKV transformation.
817
+
818
+ Linear layers for the linear transformation of the query, key, and value
819
+ vectors in the attention layer. The weight matrix is concatenated along
820
+ the output dimension. The layer is parallelized along the head dimension.
821
+ When the number of key/value heads is smaller than the number of query
822
+ heads (e.g., multi-query/grouped-query attention), the key/value head may
823
+ be replicated while the query heads are partitioned.
824
+
825
+ Args:
826
+ hidden_size: input hidden state size of the transformer.
827
+ head_size: size of each attention head.
828
+ total_num_heads: total number of attention query heads.
829
+ total_num_kv_heads: total number of attention key/value heads. If
830
+ None, assume total_num_kv_heads = total_num_heads.
831
+ bias: If true, add bias.
832
+ skip_bias_add: This was added to enable performance optimizations where
833
+ bias can be fused with other element-wise operations. we
834
+ skip adding bias but instead return it.
835
+ params_dtype: Data type for the parameters.
836
+ quant_config: Quantization configure.
837
+ prefix: The name of the layer in the state dict, including all parents
838
+ (e.g. model.layers.0.qkv_proj)
839
+ return_bias: If true, return bias together with outputs in forward pass.
840
+ disable_tp: If true, weights matrix won't be sharded through tp rank.
841
+ """
842
+
843
+ def __init__(
844
+ self,
845
+ hidden_size: int,
846
+ head_size: int,
847
+ total_num_heads: int,
848
+ total_num_kv_heads: Optional[int] = None,
849
+ bias: bool = True,
850
+ skip_bias_add: bool = False,
851
+ params_dtype: Optional[torch.dtype] = None,
852
+ quant_config: Optional[QuantizationConfig] = None,
853
+ prefix: str = "",
854
+ *,
855
+ return_bias: bool = True,
856
+ disable_tp: bool = False,
857
+ ):
858
+ self.hidden_size = hidden_size
859
+ self.head_size = head_size
860
+ self.total_num_heads = total_num_heads
861
+ if total_num_kv_heads is None:
862
+ total_num_kv_heads = total_num_heads
863
+ self.total_num_kv_heads = total_num_kv_heads
864
+ # Divide the weight matrix along the last dimension.
865
+ tp_size = (get_tensor_model_parallel_world_size()
866
+ if not disable_tp else 1)
867
+ self.num_heads = divide(self.total_num_heads, tp_size)
868
+ if tp_size >= self.total_num_kv_heads:
869
+ self.num_kv_heads = 1
870
+ self.num_kv_head_replicas = divide(tp_size,
871
+ self.total_num_kv_heads)
872
+ else:
873
+ self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
874
+ self.num_kv_head_replicas = 1
875
+ input_size = self.hidden_size
876
+ output_size = (self.num_heads +
877
+ 2 * self.num_kv_heads) * tp_size * self.head_size
878
+ self.output_sizes = [
879
+ self.num_heads * self.head_size * tp_size, # q_proj
880
+ self.num_kv_heads * self.head_size * tp_size, # k_proj
881
+ self.num_kv_heads * self.head_size * tp_size, # v_proj
882
+ ]
883
+
884
+ super().__init__(input_size=input_size,
885
+ output_size=output_size,
886
+ bias=bias,
887
+ gather_output=False,
888
+ skip_bias_add=skip_bias_add,
889
+ params_dtype=params_dtype,
890
+ quant_config=quant_config,
891
+ prefix=prefix,
892
+ return_bias=return_bias,
893
+ disable_tp=disable_tp)
894
+
895
+ def _get_shard_offset_mapping(self, loaded_shard_id: str):
896
+ shard_offset_mapping = {
897
+ "q": 0,
898
+ "k": self.num_heads * self.head_size,
899
+ "v": (self.num_heads + self.num_kv_heads) * self.head_size,
900
+ "total": (self.num_heads + 2 * self.num_kv_heads) * self.head_size
901
+ }
902
+ return shard_offset_mapping.get(loaded_shard_id)
903
+
904
+ def _get_shard_size_mapping(self, loaded_shard_id: str):
905
+ shard_size_mapping = {
906
+ "q": self.num_heads * self.head_size,
907
+ "k": self.num_kv_heads * self.head_size,
908
+ "v": self.num_kv_heads * self.head_size,
909
+ }
910
+ return shard_size_mapping.get(loaded_shard_id)
911
+
912
+ def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
913
+ loaded_weight: torch.Tensor):
914
+ """
915
+ Handle special case for models where QKV layers are already
916
+ fused on disk. In this case, we have no shard id. This function
917
+ determmines the shard id by splitting these layers and then calls
918
+ the weight loader using the shard id.
919
+
920
+ An example of a model with these fused layers:
921
+ https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
922
+ """
923
+ shard_offsets = [
924
+ # (shard_id, shard_offset, shard_size)
925
+ ("q", 0, self.total_num_heads * self.head_size),
926
+ ("k", self.total_num_heads * self.head_size,
927
+ self.total_num_kv_heads * self.head_size),
928
+ ("v",
929
+ (self.total_num_heads + self.total_num_kv_heads) * self.head_size,
930
+ self.total_num_kv_heads * self.head_size),
931
+ ]
932
+
933
+ for shard_id, shard_offset, shard_size in shard_offsets:
934
+ # Special case for Quantization.
935
+ # If quantized, we need to adjust the offset and size to account
936
+ # for the packing.
937
+ if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
938
+ )) and param.packed_dim == param.output_dim:
939
+ shard_size, shard_offset = \
940
+ param.adjust_shard_indexes_for_packing(
941
+ shard_size=shard_size, shard_offset=shard_offset)
942
+
943
+ loaded_weight_shard = loaded_weight.narrow(param.output_dim,
944
+ shard_offset,
945
+ shard_size)
946
+ self.weight_loader_v2(param, loaded_weight_shard, shard_id)
947
+
948
+ def weight_loader_v2(self,
949
+ param: BasevLLMParameter,
950
+ loaded_weight: torch.Tensor,
951
+ loaded_shard_id: Optional[str] = None):
952
+ if loaded_shard_id is None: # special case for certain models
953
+ if isinstance(param, PerTensorScaleParameter):
954
+ param.load_qkv_weight(loaded_weight=loaded_weight,
955
+ shard_id=0,
956
+ tp_rank=self.tp_rank)
957
+ return
958
+ elif type(param) in (RowvLLMParameter, BasevLLMParameter):
959
+ param.load_qkv_weight(loaded_weight=loaded_weight,
960
+ tp_rank=self.tp_rank)
961
+ return
962
+ # TODO: @dsikka - move to parameter.py
963
+ self._load_fused_module_from_checkpoint(param, loaded_weight)
964
+ return
965
+
966
+ assert loaded_shard_id in ["q", "k", "v"]
967
+
968
+ shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
969
+ shard_size = self._get_shard_size_mapping(loaded_shard_id)
970
+
971
+ # Note(simon): This is needed for Qwen3's fp8 quantization.
972
+ if isinstance(param, BlockQuantScaleParameter):
973
+ assert self.quant_method is not None
974
+ assert hasattr(self.quant_method, "quant_config")
975
+ weight_block_size = self.quant_method.quant_config.weight_block_size
976
+ block_n, _ = weight_block_size[0], weight_block_size[1]
977
+ shard_offset = (shard_offset + block_n - 1) // block_n
978
+ shard_size = (shard_size + block_n - 1) // block_n
979
+
980
+ param.load_qkv_weight(loaded_weight=loaded_weight,
981
+ num_heads=self.num_kv_head_replicas,
982
+ shard_id=loaded_shard_id,
983
+ shard_offset=shard_offset,
984
+ shard_size=shard_size,
985
+ tp_rank=self.tp_rank)
986
+
987
+ def weight_loader(self,
988
+ param: Parameter,
989
+ loaded_weight: torch.Tensor,
990
+ loaded_shard_id: Optional[str] = None):
991
+
992
+ # Special case for GGUF
993
+ # initialize GGUF param after we know the quantize type
994
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
995
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
996
+ if is_gguf_weight_type:
997
+ idx_map = {"q": 0, "k": 1, "v": 2}
998
+ if loaded_shard_id is not None:
999
+ param.data[idx_map[loaded_shard_id]].copy_(loaded_weight)
1000
+ param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
1001
+ else:
1002
+ param.shard_weight_type = {
1003
+ k: loaded_weight.item()
1004
+ for k in idx_map
1005
+ }
1006
+ return
1007
+
1008
+ if is_gguf_weight:
1009
+ output_dim = getattr(param, "output_dim", None)
1010
+ shard_size = loaded_weight.size(output_dim) // self.tp_size
1011
+ start_idx = self.tp_rank * shard_size
1012
+
1013
+ if loaded_shard_id is not None:
1014
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
1015
+ shard_size)
1016
+ param.shard_id.append(loaded_shard_id)
1017
+ param.shard_id_map[loaded_shard_id] = len(param.data_container)
1018
+ param.data_container.append(loaded_weight)
1019
+ return
1020
+
1021
+ param_data = param.data
1022
+ output_dim = getattr(param, "output_dim", None)
1023
+
1024
+ # Special case for per-tensor scales in fused case.
1025
+ needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
1026
+
1027
+ if loaded_shard_id is None:
1028
+ # Loaded weight is already fused on disk (qkv).
1029
+ # (e.g., Phi-3's qkv_proj).
1030
+ if output_dim is None:
1031
+ if needs_scalar_to_array:
1032
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
1033
+ param_data, loaded_weight, 0)
1034
+
1035
+ assert param_data.shape == loaded_weight.shape
1036
+ param_data.copy_(loaded_weight)
1037
+ return
1038
+ shard_offsets = [
1039
+ # (shard_id, shard_offset, shard_size)
1040
+ ("q", 0, self.total_num_heads * self.head_size),
1041
+ ("k", self.total_num_heads * self.head_size,
1042
+ self.total_num_kv_heads * self.head_size),
1043
+ ("v", (self.total_num_heads + self.total_num_kv_heads) *
1044
+ self.head_size, self.total_num_kv_heads * self.head_size),
1045
+ ]
1046
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
1047
+ False)
1048
+
1049
+ packed_dim = getattr(param, "packed_dim", None)
1050
+ for shard_id, shard_offset, shard_size in shard_offsets:
1051
+ # Special case for Quantized Weights.
1052
+ # If quantized, we need to adjust the offset and size to account
1053
+ # for the packing.
1054
+ if packed_dim == output_dim:
1055
+ shard_size = shard_size // param.packed_factor
1056
+ shard_offset = shard_offset // param.packed_factor
1057
+
1058
+ # Special case for Marlin.
1059
+ shard_size, shard_offset = adjust_marlin_shard(
1060
+ param, shard_size, shard_offset)
1061
+
1062
+ if use_bitsandbytes_4bit:
1063
+ orig_qkv_offsets = {
1064
+ "q": (0, self.total_num_heads * self.head_size),
1065
+ "k": (self.total_num_heads * self.head_size,
1066
+ self.total_num_kv_heads * self.head_size),
1067
+ "v":
1068
+ ((self.total_num_heads + self.total_num_kv_heads) *
1069
+ self.head_size,
1070
+ self.total_num_kv_heads * self.head_size),
1071
+ "total":
1072
+ ((self.total_num_heads + 2 * self.total_num_kv_heads) *
1073
+ self.head_size, 0)
1074
+ }
1075
+
1076
+ shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
1077
+ param, orig_qkv_offsets, shard_id)
1078
+
1079
+ loaded_weight_shard = loaded_weight.narrow(
1080
+ output_dim, shard_offset, shard_size)
1081
+ self.weight_loader(param, loaded_weight_shard, shard_id)
1082
+ return
1083
+
1084
+ assert loaded_shard_id in ["q", "k", "v"]
1085
+
1086
+ # If output dim is defined, use the default loading process.
1087
+ if output_dim is not None:
1088
+ if loaded_shard_id == "q":
1089
+ shard_offset = 0
1090
+ shard_size = self.num_heads * self.head_size
1091
+ elif loaded_shard_id == "k":
1092
+ shard_offset = self.num_heads * self.head_size
1093
+ shard_size = self.num_kv_heads * self.head_size
1094
+ elif loaded_shard_id == "v":
1095
+ shard_offset = (self.num_heads +
1096
+ self.num_kv_heads) * self.head_size
1097
+ shard_size = self.num_kv_heads * self.head_size
1098
+ # Special case for Quantized Weights.
1099
+ # If quantized, we need to adjust the offset and size to account
1100
+ # for the packing.
1101
+ packed_dim = getattr(param, "packed_dim", None)
1102
+ if packed_dim == output_dim:
1103
+ shard_size = shard_size // param.packed_factor
1104
+ shard_offset = shard_offset // param.packed_factor
1105
+
1106
+ # Special case for Marlin.
1107
+ shard_size, shard_offset = adjust_marlin_shard(
1108
+ param, shard_size, shard_offset)
1109
+
1110
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
1111
+ False)
1112
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
1113
+ # bitsandbytes loads the weights of the specific portion
1114
+ # no need to narrow
1115
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
1116
+
1117
+ if use_bitsandbytes_4bit:
1118
+ orig_qkv_offsets = {
1119
+ "q": (0, self.num_heads * self.head_size),
1120
+ "k": (self.num_heads * self.head_size,
1121
+ self.num_kv_heads * self.head_size),
1122
+ "v":
1123
+ ((self.num_heads + self.num_kv_heads) * self.head_size,
1124
+ self.num_kv_heads * self.head_size),
1125
+ "total":
1126
+ ((self.num_heads + 2 * self.num_kv_heads) * self.head_size,
1127
+ 0)
1128
+ }
1129
+ shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
1130
+ param, orig_qkv_offsets, loaded_shard_id)
1131
+
1132
+ param_data = param_data.narrow(output_dim, shard_offset,
1133
+ shard_size)
1134
+ if loaded_shard_id == "q":
1135
+ shard_id = self.tp_rank
1136
+ else:
1137
+ shard_id = self.tp_rank // self.num_kv_head_replicas
1138
+ start_idx = shard_id * shard_size
1139
+
1140
+ if not is_sharded_weight:
1141
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
1142
+ shard_size)
1143
+
1144
+ # Special case for per-tensor scales in fused case.
1145
+ elif needs_scalar_to_array:
1146
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
1147
+ param_data, loaded_weight, loaded_shard_id)
1148
+ else:
1149
+ ignore_warning = getattr(param, "ignore_warning", False)
1150
+ if not ignore_warning:
1151
+ logger.warning(
1152
+ "Loading a weight without `output_dim` attribute in "
1153
+ "QKVParallelLinear, assume the weight is the same "
1154
+ "for all partitions.")
1155
+
1156
+ assert param_data.shape == loaded_weight.shape
1157
+ param_data.copy_(loaded_weight)
1158
+
1159
+
1160
+ @CustomOp.register("row_parallel_linear")
1161
+ class RowParallelLinear(LinearBase):
1162
+ """Linear layer with row parallelism.
1163
+
1164
+ The linear layer is defined as Y = XA + b. A is parallelized along
1165
+ its first dimension and X along its second dimension as:
1166
+ - -
1167
+ | A_1 |
1168
+ | . |
1169
+ A = | . | X = [X_1, ..., X_p]
1170
+ | . |
1171
+ | A_p |
1172
+ - -
1173
+ Arguments:
1174
+ input_size: first dimension of matrix A.
1175
+ output_size: second dimension of matrix A.
1176
+ bias: If true, add bias. Note that bias is not parallelized.
1177
+ input_is_parallel: If true, we assume that the input is already
1178
+ split across the GPUs and we do not split
1179
+ again.
1180
+ skip_bias_add: This was added to enable performance optimization where
1181
+ bias can be fused with other element-wise operations.
1182
+ We skip adding bias but instead return it.
1183
+ params_dtype: Data type for the parameters.
1184
+ reduce_results: If true, call all-reduce on output and make Y available
1185
+ to all GPUs, otherwise, every GPU will have its output
1186
+ which is Y = X_iA_i
1187
+ quant_config: Quantization configure.
1188
+ prefix: The name of the layer in the state dict, including all parents
1189
+ (e.g. model.layers.0.down_proj)
1190
+ return_bias: If true, return bias together with outputs in forward pass.
1191
+ disable_tp: If true, weights matrix won't be sharded through tp rank.
1192
+ """
1193
+
1194
+ def __init__(
1195
+ self,
1196
+ input_size: int,
1197
+ output_size: int,
1198
+ bias: bool = True,
1199
+ input_is_parallel: bool = True,
1200
+ skip_bias_add: bool = False,
1201
+ params_dtype: Optional[torch.dtype] = None,
1202
+ reduce_results: bool = True,
1203
+ quant_config: Optional[QuantizationConfig] = None,
1204
+ prefix: str = "",
1205
+ *,
1206
+ return_bias: bool = True,
1207
+ disable_tp: bool = False,
1208
+ ):
1209
+ # Divide the weight matrix along the first dimension.
1210
+ self.tp_rank = (get_tensor_model_parallel_rank()
1211
+ if not disable_tp else 0)
1212
+ self.tp_size = (get_tensor_model_parallel_world_size()
1213
+ if not disable_tp else 1)
1214
+ self.input_size_per_partition = divide(input_size, self.tp_size)
1215
+ self.output_size_per_partition = output_size
1216
+ self.output_partition_sizes = [output_size]
1217
+
1218
+ super().__init__(input_size,
1219
+ output_size,
1220
+ skip_bias_add,
1221
+ params_dtype,
1222
+ quant_config,
1223
+ prefix,
1224
+ return_bias=return_bias,
1225
+ disable_tp=disable_tp)
1226
+
1227
+ self.input_is_parallel = input_is_parallel
1228
+ self.reduce_results = reduce_results
1229
+
1230
+ assert self.quant_method is not None
1231
+ self.quant_method.create_weights(
1232
+ layer=self,
1233
+ input_size_per_partition=self.input_size_per_partition,
1234
+ output_partition_sizes=self.output_partition_sizes,
1235
+ input_size=self.input_size,
1236
+ output_size=self.output_size,
1237
+ params_dtype=self.params_dtype,
1238
+ weight_loader=(
1239
+ self.weight_loader_v2 if self.quant_method.__class__.__name__
1240
+ in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
1241
+ if not reduce_results and (bias and not skip_bias_add):
1242
+ raise ValueError("When not reduce the results, adding bias to the "
1243
+ "results can lead to incorrect results")
1244
+
1245
+ if bias:
1246
+ self.bias = Parameter(
1247
+ torch.empty(self.output_size, dtype=params_dtype))
1248
+ set_weight_attrs(self.bias, {
1249
+ "output_dim": 0,
1250
+ "weight_loader": self.weight_loader,
1251
+ })
1252
+ else:
1253
+ self.register_parameter("bias", None)
1254
+ self.update_param_tp_status()
1255
+
1256
+ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
1257
+ input_dim = getattr(param, "input_dim", None)
1258
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
1259
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
1260
+ # bitsandbytes loads the weights of the specific portion
1261
+ # no need to narrow
1262
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
1263
+
1264
+ # Special case for GGUF
1265
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
1266
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
1267
+ if is_gguf_weight_type:
1268
+ param.weight_type = loaded_weight.item()
1269
+
1270
+ # Materialize GGUF UninitializedParameter
1271
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
1272
+ weight_shape = list(loaded_weight.shape)
1273
+ if input_dim:
1274
+ weight_shape[input_dim] = (weight_shape[input_dim] //
1275
+ self.tp_size)
1276
+ param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype)
1277
+
1278
+ param_data = param.data
1279
+ if input_dim is not None and not is_sharded_weight:
1280
+ shard_size = param_data.shape[input_dim]
1281
+ start_idx = self.tp_rank * shard_size
1282
+ loaded_weight = loaded_weight.narrow(input_dim, start_idx,
1283
+ shard_size)
1284
+
1285
+ # Special case for loading scales off disk, which often do not
1286
+ # have a shape (such as in the case of AutoFP8).
1287
+ if len(loaded_weight.shape) == 0:
1288
+ loaded_weight = loaded_weight.reshape(1)
1289
+
1290
+ assert param_data.shape == loaded_weight.shape
1291
+ param_data.copy_(loaded_weight)
1292
+
1293
+ def weight_loader_v2(self, param: BasevLLMParameter,
1294
+ loaded_weight: torch.Tensor):
1295
+
1296
+ # Special case for loading scales off disk, which often do not
1297
+ # have a shape (such as in the case of AutoFP8).
1298
+ if len(loaded_weight.shape) == 0:
1299
+ assert loaded_weight.numel() == 1
1300
+ loaded_weight = loaded_weight.reshape(1)
1301
+
1302
+ param.load_row_parallel_weight(loaded_weight=loaded_weight)
1303
+
1304
+ def forward(
1305
+ self, input_
1306
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
1307
+ if self.input_is_parallel:
1308
+ input_parallel = input_
1309
+ else:
1310
+ splitted_input = split_tensor_along_last_dim(
1311
+ input_, num_partitions=self.tp_size)
1312
+ input_parallel = splitted_input[self.tp_rank].contiguous()
1313
+
1314
+ # Matrix multiply.
1315
+ assert self.quant_method is not None
1316
+ # Only fuse bias add into GEMM for rank 0 (this ensures that
1317
+ # bias will not get added more than once in TP>1 case)
1318
+ bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
1319
+ output_parallel = self.quant_method.apply(self,
1320
+ input_parallel,
1321
+ bias=bias_)
1322
+ if self.reduce_results and self.tp_size > 1:
1323
+ output = tensor_model_parallel_all_reduce(output_parallel)
1324
+ else:
1325
+ output = output_parallel
1326
+
1327
+ output_bias = self.bias if self.skip_bias_add else None
1328
+
1329
+ if not self.return_bias:
1330
+ return output
1331
+ return output, output_bias
1332
+
1333
+ def extra_repr(self) -> str:
1334
+ s = f"in_features={self.input_size_per_partition}"
1335
+ s += f", output_features={self.output_size}"
1336
+ s += f", bias={self.bias is not None}"
1337
+ s += f", tp_size={self.tp_size}"
1338
+ s += f", reduce_results={self.reduce_results}"
1339
+ return s
1340
+
1341
+
1342
+ @CustomOp.register("qkv_cross_parallel_linear")
1343
+ class QKVCrossParallelLinear(LinearBase):
1344
+ """Linear layers for efficient cross-attention's QKV transformation.
1345
+
1346
+ Args:
1347
+ hidden_size: input hidden state size of the transformer.
1348
+ head_size: size of each attention head.
1349
+ total_num_heads: total number of attention query heads.
1350
+ total_num_kv_heads: total number of attention key/value heads. If
1351
+ None, assume total_num_kv_heads = total_num_heads.
1352
+ bias: If true, add bias.
1353
+ skip_bias_add: This was added to enable performance optimizations where
1354
+ bias can be fused with other element-wise operations. we
1355
+ skip adding bias but instead return it.
1356
+ params_dtype: Data type for the parameters.
1357
+ quant_config: Quantization configure.
1358
+ prefix: The name of the layer in the state dict, including all parents
1359
+ (e.g. model.layers.0.qkv_proj)
1360
+ """
1361
+
1362
+ def __init__(self,
1363
+ hidden_size: int,
1364
+ head_size: int,
1365
+ total_num_heads: int,
1366
+ total_num_kv_heads: Optional[int] = None,
1367
+ bias: bool = True,
1368
+ skip_bias_add: bool = False,
1369
+ params_dtype: Optional[torch.dtype] = None,
1370
+ quant_config: Optional[QuantizationConfig] = None,
1371
+ prefix: str = ""):
1372
+ # input_size and output_size are not used, just for alignment
1373
+ input_size = hidden_size
1374
+ output_size = (total_num_heads + (total_num_kv_heads or 0)) * head_size
1375
+ super().__init__(input_size=input_size,
1376
+ output_size=output_size,
1377
+ skip_bias_add=skip_bias_add,
1378
+ params_dtype=params_dtype,
1379
+ quant_config=quant_config,
1380
+ prefix=prefix)
1381
+
1382
+ self.quant_config = quant_config
1383
+
1384
+ # Empty placeholders for loading as a single module.
1385
+ placeholder_size = 0
1386
+ assert self.quant_method is not None
1387
+ self.quant_method.create_weights(self,
1388
+ placeholder_size, [placeholder_size],
1389
+ placeholder_size,
1390
+ placeholder_size,
1391
+ self.params_dtype,
1392
+ weight_loader=self.weight_loader)
1393
+
1394
+ # Use a dictionary to avoid submodules parameters auto-registration:
1395
+ # drop-in replacement for a `QKVParallelLinear` module.
1396
+ self.proj = dict()
1397
+ self.proj["q_proj_decoder"] = ColumnParallelLinear(
1398
+ input_size=hidden_size,
1399
+ output_size=total_num_heads * head_size,
1400
+ bias=bias,
1401
+ quant_config=quant_config,
1402
+ skip_bias_add=skip_bias_add,
1403
+ params_dtype=params_dtype,
1404
+ prefix=f"{prefix}.q_proj_decoder")
1405
+
1406
+ self.proj["kv_proj_encoder"] = QKVParallelLinear(
1407
+ hidden_size=hidden_size,
1408
+ head_size=head_size,
1409
+ total_num_heads=0,
1410
+ total_num_kv_heads=total_num_kv_heads,
1411
+ bias=bias,
1412
+ quant_config=quant_config,
1413
+ skip_bias_add=skip_bias_add,
1414
+ params_dtype=params_dtype,
1415
+ prefix=f"{prefix}.kv_proj_encoder")
1416
+
1417
+ # `kv_proj_encoder.num_kv_heads` accounts for sharding with tp>1.
1418
+ self.q_size = self.q_proj_decoder.output_size_per_partition
1419
+ self.kv_size = self.kv_proj_encoder.num_kv_heads * head_size
1420
+
1421
+ if bias:
1422
+ self.bias = torch.nn.Parameter()
1423
+ set_weight_attrs(self.bias, {
1424
+ "output_dim": 0,
1425
+ "weight_loader": self.weight_loader_v1,
1426
+ })
1427
+ else:
1428
+ self.bias = None
1429
+
1430
+ def process_weights_after_loading(self):
1431
+ for layer in self.proj.values():
1432
+ if self.quant_method is not None:
1433
+ self.quant_method.process_weights_after_loading(layer)
1434
+
1435
+ @property
1436
+ def q_proj_decoder(self) -> ColumnParallelLinear:
1437
+ layer = self.proj["q_proj_decoder"]
1438
+ for name, param in self.named_parameters():
1439
+ target_param = getattr(layer, name, None)
1440
+ if target_param is not None:
1441
+ self.sync_weight_attrs(param,
1442
+ target_param,
1443
+ mode="q_proj_decoder")
1444
+ return layer
1445
+
1446
+ @property
1447
+ def kv_proj_encoder(self) -> QKVParallelLinear:
1448
+ layer = self.proj["kv_proj_encoder"]
1449
+ for name, param in self.named_parameters():
1450
+ target_param = getattr(layer, name, None)
1451
+ if target_param is not None:
1452
+ self.sync_weight_attrs(param,
1453
+ target_param,
1454
+ mode="kv_proj_encoder")
1455
+ return layer
1456
+
1457
+ def sync_weight_attrs(
1458
+ self,
1459
+ src_param: nn.Parameter,
1460
+ tgt_param: nn.Parameter,
1461
+ mode: Literal["q_proj_decoder", "kv_proj_encoder"],
1462
+ ):
1463
+ missing_attrs_dict = {
1464
+ k: getattr(src_param, k)
1465
+ for k in (set(vars(src_param).keys()) -
1466
+ set(vars(tgt_param).keys()))
1467
+ }
1468
+ # TODO(Isotr0py): handle bitsandbytes 8bit
1469
+ use_bitsandbytes_4bit = getattr(src_param, "use_bitsandbytes_4bit",
1470
+ False)
1471
+ if (missing_attrs_dict and use_bitsandbytes_4bit):
1472
+ q_proj_attrs, kv_proj_attrs = left_shift_bitsandbytes_4bit_shard(
1473
+ missing_attrs_dict)
1474
+ if mode == "q_proj_decoder":
1475
+ set_weight_attrs(tgt_param, q_proj_attrs)
1476
+ elif mode == "kv_proj_encoder":
1477
+ set_weight_attrs(tgt_param, kv_proj_attrs)
1478
+ else:
1479
+ set_weight_attrs(tgt_param, missing_attrs_dict)
1480
+
1481
+ def _is_same_param(
1482
+ self,
1483
+ src_param: torch.nn.Parameter,
1484
+ map_param: torch.nn.Parameter,
1485
+ ) -> bool:
1486
+ """Check if two parameters are exactly pointing to same things."""
1487
+ # ignore weight_loader because it's always different
1488
+ key_to_ignore = ["weight_loader", "_weight_loader"]
1489
+ has_same_type_name = type(src_param) is type(map_param)
1490
+ src_param_attrs = {
1491
+ k: v
1492
+ for k, v in src_param.__dict__.items() if k not in key_to_ignore
1493
+ }
1494
+ map_param_attrs = {
1495
+ k: v
1496
+ for k, v in map_param.__dict__.items() if k not in key_to_ignore
1497
+ }
1498
+ has_same_attrs = src_param_attrs == map_param_attrs
1499
+ return has_same_type_name and has_same_attrs
1500
+
1501
+ def select_proj_params(
1502
+ self,
1503
+ layer: nn.Module,
1504
+ param: nn.Parameter,
1505
+ ) -> nn.Parameter:
1506
+ """
1507
+ Given the placeholder param,
1508
+ return the corresponding param in the proj layers.
1509
+ """
1510
+ target_param_list = [
1511
+ v for _, v in layer.named_parameters()
1512
+ if self._is_same_param(param, v)
1513
+ ]
1514
+ assert len(target_param_list) == 1
1515
+ target_param = target_param_list[0]
1516
+ return target_param
1517
+
1518
+ def forward( # type: ignore[override]
1519
+ self,
1520
+ decoder_hidden_states: torch.Tensor,
1521
+ encoder_hidden_states: torch.Tensor,
1522
+ ) -> tuple[torch.Tensor, ...]:
1523
+ q, _ = self.q_proj_decoder(decoder_hidden_states)
1524
+ if encoder_hidden_states is None:
1525
+ # Encoder KV already cached.
1526
+ k = None
1527
+ v = None
1528
+ else:
1529
+ # Prefill phase, encoder KV cached here.
1530
+ kv_enc, _ = self.kv_proj_encoder(encoder_hidden_states)
1531
+ # Split kv in half
1532
+ k, v = kv_enc.split(self.kv_size, dim=-1)
1533
+ return q, k, v
1534
+
1535
+ def weight_loader_v1(self,
1536
+ param: torch.nn.Parameter,
1537
+ loaded_weight: torch.Tensor,
1538
+ loaded_shard_id: Optional[str] = None):
1539
+ # just like all other parameters, does not yet
1540
+ # support loading bias with weight_loader_v2
1541
+ layer = (self.q_proj_decoder
1542
+ if loaded_shard_id == "q" else self.kv_proj_encoder)
1543
+ target_param = self.select_proj_params(layer, param)
1544
+ shard_id_args = (loaded_shard_id, ) if loaded_shard_id != "q" else ()
1545
+ layer.weight_loader(target_param, loaded_weight, *shard_id_args)
1546
+
1547
+ def weight_loader(self,
1548
+ param: torch.nn.Parameter,
1549
+ loaded_weight: torch.Tensor,
1550
+ loaded_shard_id: Optional[str] = None):
1551
+ layer = (self.q_proj_decoder
1552
+ if loaded_shard_id == "q" else self.kv_proj_encoder)
1553
+ target_param = self.select_proj_params(layer, param)
1554
+ shard_id_args = (loaded_shard_id, ) if loaded_shard_id != "q" else ()
1555
+ if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED:
1556
+ layer.weight_loader_v2(target_param, loaded_weight, *shard_id_args)
1557
+ else:
1558
+ layer.weight_loader(target_param, loaded_weight, *shard_id_args)
1559
+
1560
+ def extra_repr(self) -> str:
1561
+ s = f"in_features={self.input_size}"
1562
+ s += f", q_size={self.q_size}"
1563
+ s += f", kv_size={self.kv_size}"
1564
+ s += f", bias={self.bias is not None}"
1565
+ s += f", tp_size={get_tensor_model_parallel_world_size()}"
1566
+ s += ", gather_output=False"
1567
+ return s