vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1651 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import enum
5
+ from enum import Enum
6
+ from typing import Callable, Optional, Union
7
+
8
+ import torch
9
+ from compressed_tensors import CompressionFormat
10
+ from compressed_tensors.quantization import (ActivationOrdering,
11
+ QuantizationStrategy)
12
+
13
+ import vllm.envs as envs
14
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
15
+ from vllm import _custom_ops as ops
16
+ from vllm.logger import init_logger
17
+ from vllm.model_executor.layers.fused_moe import (
18
+ FusedMoE, FusedMoEActivationFormat, FusedMoEConfig, FusedMoEMethodBase,
19
+ FusedMoEPermuteExpertsUnpermute, FusedMoEPrepareAndFinalize,
20
+ FusedMoeWeightScaleSupported)
21
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
22
+ is_valid_flashinfer_cutlass_fused_moe)
23
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
24
+ WNA16_SUPPORTED_BITS, WNA16_SUPPORTED_TYPES_MAP)
25
+ from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
26
+ find_matched_target)
27
+ from vllm.model_executor.layers.quantization.utils import replace_parameter
28
+ from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
29
+ build_flashinfer_fp4_cutlass_moe_prepare_finalize, reorder_w1w3_to_w3w1,
30
+ select_nvfp4_gemm_impl)
31
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
32
+ check_moe_marlin_supports_layer, marlin_make_workspace_new,
33
+ marlin_moe_permute_scales)
34
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
35
+ prepare_moe_fp4_layer_for_marlin)
36
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
37
+ prepare_moe_fp8_layer_for_marlin)
38
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
39
+ swizzle_blockscale)
40
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
41
+ all_close_1d, normalize_e4m3fn_to_e4m3fnuz, per_tensor_dequantize)
42
+ from vllm.model_executor.utils import set_weight_attrs
43
+ from vllm.platforms import current_platform
44
+ from vllm.scalar_type import scalar_types
45
+
46
+ logger = init_logger(__name__)
47
+
48
+
49
+ class GPTQMarlinState(Enum):
50
+ REPACK = enum.auto()
51
+ READY = enum.auto()
52
+
53
+
54
+ __all__ = [
55
+ "CompressedTensorsMoEMethod", "CompressedTensorsW8A8Fp8MoEMethod",
56
+ "CompressedTensorsW8A8Int8MoEMethod",
57
+ "CompressedTensorsWNA16MarlinMoEMethod", "CompressedTensorsWNA16MoEMethod",
58
+ "CompressedTensorsW4A4MoeMethod"
59
+ ]
60
+
61
+
62
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
63
+
64
+ def __init_(self, moe: FusedMoEConfig):
65
+ super().__init__(moe)
66
+
67
+ @staticmethod
68
+ def get_moe_method(
69
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
70
+ layer: torch.nn.Module
71
+ ) -> "CompressedTensorsMoEMethod":
72
+ # TODO: @dsikka: refactor this to use schemes as other kernels
73
+ # are supported + check if the layer is being ignored.
74
+ # Check if a using "Linear" to select schemes
75
+ if "Linear" in quant_config.target_scheme_map:
76
+ matched_target = "Linear"
77
+ else:
78
+ # May have instead defined the linear layers in the fused model
79
+
80
+ fused_layers = [
81
+ "re:.*down_proj.*", "re:.*gate_proj.*", "re:.*up_proj.*"
82
+ ]
83
+ current_scheme = None
84
+ for fused_layer in fused_layers:
85
+ # Check if one of the fused layers are defined in quant_config
86
+ matched_target = find_matched_target(
87
+ layer_name=fused_layer,
88
+ module=layer,
89
+ targets=quant_config.target_scheme_map.keys(),
90
+ fused_mapping=quant_config.packed_modules_mapping)
91
+
92
+ # Only valid if down_proj, gate_proj, and up_proj
93
+ # are mapped to the same quant scheme in the quant_config
94
+ if current_scheme is None:
95
+ current_scheme = quant_config.target_scheme_map.get(
96
+ matched_target)
97
+ else:
98
+ assert current_scheme == quant_config.target_scheme_map.get(
99
+ matched_target)
100
+
101
+ weight_quant = quant_config.target_scheme_map[matched_target].get(
102
+ "weights")
103
+ input_quant = quant_config.target_scheme_map[matched_target].get(
104
+ "input_activations")
105
+
106
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
107
+ # group_size=None means channelwise
108
+ group_size = weight_quant.group_size or -1
109
+ # Prefer to use the MarlinMoE kernel when it is supported.
110
+ if not check_moe_marlin_supports_layer(layer, group_size):
111
+ if (weight_quant.strategy in QuantizationStrategy.GROUP and
112
+ weight_quant.actorder in (ActivationOrdering.GROUP,
113
+ ActivationOrdering.DYNAMIC)):
114
+ raise ValueError(
115
+ "WNA16MoE is not supported with actorder=group/dynamic."
116
+ )
117
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
118
+ return CompressedTensorsWNA16MoEMethod(quant_config,
119
+ layer.moe_config)
120
+ else:
121
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
122
+ return CompressedTensorsWNA16MarlinMoEMethod(
123
+ quant_config, layer.moe_config)
124
+ elif quant_config._is_fp4a4_nvfp4(weight_quant, input_quant):
125
+ return CompressedTensorsW4A4MoeMethod(layer.moe_config, layer)
126
+ elif (quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant)
127
+ or quant_config._is_fp8_w8a8_sm100(weight_quant, input_quant)
128
+ or quant_config._is_fp8_w8a8(weight_quant, input_quant)):
129
+ return CompressedTensorsW8A8Fp8MoEMethod(quant_config,
130
+ layer.moe_config)
131
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
132
+ return CompressedTensorsW8A8Int8MoEMethod(quant_config,
133
+ layer.moe_config)
134
+ else:
135
+ raise RuntimeError(
136
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}")
137
+
138
+
139
+ class CompressedTensorsW4A4MoeMethod(CompressedTensorsMoEMethod):
140
+
141
+ def __init__(self, moe: FusedMoEConfig, layer: torch.nn.Module):
142
+ from vllm.model_executor.layers.quantization.utils.nvfp4_moe_support import ( # noqa: E501
143
+ detect_nvfp4_moe_support)
144
+ super().__init__(moe)
145
+ _nvfp4 = detect_nvfp4_moe_support(self.__class__.__name__)
146
+ self.cutlass_nvfp4_supported = _nvfp4.cutlass_supported
147
+ self.allow_flashinfer = _nvfp4.allow_flashinfer
148
+ self.use_marlin = _nvfp4.use_marlin
149
+ self.group_size = 16
150
+ self.layer = layer
151
+
152
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
153
+ hidden_size: int, intermediate_size_per_partition: int,
154
+ params_dtype: torch.dtype, **extra_weight_attrs):
155
+
156
+ layer.num_experts = num_experts
157
+ layer.params_dtype = params_dtype
158
+
159
+ w13_weight = torch.nn.Parameter(
160
+ torch.empty(
161
+ num_experts,
162
+ 2 * intermediate_size_per_partition,
163
+ # 2 fp4 items are packed in the input dimension
164
+ hidden_size // 2,
165
+ requires_grad=False,
166
+ dtype=torch.uint8),
167
+ requires_grad=False)
168
+ layer.register_parameter("w13_weight_packed", w13_weight)
169
+ set_weight_attrs(w13_weight, extra_weight_attrs)
170
+
171
+ w2_weight = torch.nn.Parameter(
172
+ torch.empty(
173
+ num_experts,
174
+ hidden_size,
175
+ # 2 fp4 items are packed in the input dimension
176
+ intermediate_size_per_partition // 2,
177
+ dtype=torch.uint8),
178
+ requires_grad=False)
179
+ layer.register_parameter("w2_weight_packed", w2_weight)
180
+ set_weight_attrs(w2_weight, extra_weight_attrs)
181
+
182
+ # Weight Scales
183
+ w13_weight_scale = torch.nn.Parameter(
184
+ torch.empty(
185
+ num_experts,
186
+ 2 * intermediate_size_per_partition,
187
+ # 2 fp4 items are packed in the input dimension
188
+ hidden_size // self.group_size,
189
+ dtype=torch.float8_e4m3fn),
190
+ requires_grad=False)
191
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
192
+ extra_weight_attrs.update(
193
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value})
194
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
195
+
196
+ w2_weight_scale = torch.nn.Parameter(
197
+ torch.empty(
198
+ num_experts,
199
+ hidden_size,
200
+ # 2 fp4 items are packed in the input dimension
201
+ intermediate_size_per_partition // self.group_size,
202
+ dtype=torch.float8_e4m3fn),
203
+ requires_grad=False)
204
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
205
+ extra_weight_attrs.update(
206
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value})
207
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
208
+
209
+ # Weight Global Scales
210
+ w13_weight_scale_2 = torch.nn.Parameter(torch.empty(
211
+ num_experts, 2, dtype=torch.float32),
212
+ requires_grad=False)
213
+ layer.register_parameter("w13_weight_global_scale", w13_weight_scale_2)
214
+ extra_weight_attrs.update(
215
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
216
+ set_weight_attrs(w13_weight_scale_2, extra_weight_attrs)
217
+
218
+ w2_weight_scale_2 = torch.nn.Parameter(torch.empty(
219
+ num_experts, dtype=torch.float32),
220
+ requires_grad=False)
221
+ layer.register_parameter("w2_weight_global_scale", w2_weight_scale_2)
222
+ extra_weight_attrs.update(
223
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
224
+ set_weight_attrs(w2_weight_scale_2, extra_weight_attrs)
225
+
226
+ # Input Global Scales
227
+ w13_input_scale = torch.nn.Parameter(torch.empty(num_experts,
228
+ 2,
229
+ dtype=torch.float32),
230
+ requires_grad=False)
231
+ layer.register_parameter("w13_input_global_scale", w13_input_scale)
232
+ extra_weight_attrs.update(
233
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
234
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
235
+
236
+ w2_input_scale = torch.nn.Parameter(torch.empty(num_experts,
237
+ dtype=torch.float32),
238
+ requires_grad=False)
239
+ layer.register_parameter("w2_input_global_scale", w2_input_scale)
240
+ extra_weight_attrs.update(
241
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
242
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
243
+
244
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
245
+
246
+ # From packed to weight
247
+ layer.w13_weight = torch.nn.Parameter(layer.w13_weight_packed.data,
248
+ requires_grad=False)
249
+
250
+ layer.w2_weight = torch.nn.Parameter(layer.w2_weight_packed.data,
251
+ requires_grad=False)
252
+
253
+ # reorder GEMM1 weights and block scales for FlashInfer CUTLASS kernel.
254
+ if self.allow_flashinfer:
255
+ w, s = reorder_w1w3_to_w3w1(layer.w13_weight.data,
256
+ layer.w13_weight_scale.data,
257
+ dim=-2)
258
+ layer.w13_weight = torch.nn.Parameter(w, requires_grad=False)
259
+ layer.w13_weight_scale = torch.nn.Parameter(s, requires_grad=False)
260
+
261
+ if not torch.allclose(layer.w13_weight_global_scale[:, 0],
262
+ layer.w13_weight_global_scale[:, 1]):
263
+ logger.warning_once(
264
+ "w1_weight_global_scale must match w3_weight_global_scale. "
265
+ "Accuracy may be affected.")
266
+
267
+ # Take inverse of global scale saved to disk
268
+ layer.w13_weight_scale_2 = torch.nn.Parameter(
269
+ 1 / layer.w13_weight_global_scale[:, 0], requires_grad=False)
270
+
271
+ layer.w2_weight_scale_2 = torch.nn.Parameter(
272
+ 1 / layer.w2_weight_global_scale.data, requires_grad=False)
273
+
274
+ if self.use_marlin:
275
+ prepare_moe_fp4_layer_for_marlin(layer)
276
+ return
277
+
278
+ # swizzle weight scales
279
+ layer.w13_weight_scale = torch.nn.Parameter(swizzle_blockscale(
280
+ layer.w13_weight_scale),
281
+ requires_grad=False)
282
+
283
+ layer.w2_weight_scale = torch.nn.Parameter(swizzle_blockscale(
284
+ layer.w2_weight_scale),
285
+ requires_grad=False)
286
+
287
+ # w13
288
+ w13_input_global_scale = layer.w13_input_global_scale.max(
289
+ dim=1).values.to(torch.float32)
290
+
291
+ layer.g1_alphas = torch.nn.Parameter(
292
+ ((1 / w13_input_global_scale) * layer.w13_weight_scale_2),
293
+ requires_grad=False)
294
+
295
+ layer.w13_input_scale_quant = torch.nn.Parameter(
296
+ (w13_input_global_scale), requires_grad=False)
297
+
298
+ # w2
299
+ layer.g2_alphas = torch.nn.Parameter(
300
+ ((1 / layer.w2_input_global_scale) * layer.w2_weight_scale_2).to(
301
+ torch.float32),
302
+ requires_grad=False)
303
+
304
+ layer.w2_input_scale_quant = torch.nn.Parameter(
305
+ (layer.w2_input_global_scale), requires_grad=False)
306
+
307
+ def maybe_make_prepare_finalize(
308
+ self,
309
+ moe: FusedMoEConfig,
310
+ ) -> Optional[mk.FusedMoEPrepareAndFinalize]:
311
+ if not self.allow_flashinfer:
312
+ return super().maybe_make_prepare_finalize(moe)
313
+
314
+ prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(
315
+ moe,
316
+ a1_gscale=self.layer.w13_input_scale_quant,
317
+ )
318
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
319
+ return prepare_finalize
320
+
321
+ def select_gemm_impl(
322
+ self,
323
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
324
+ moe: FusedMoEConfig,
325
+ layer: torch.nn.Module,
326
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
327
+ """Return the appropriate GEMM experts implementation."""
328
+ experts = select_nvfp4_gemm_impl(
329
+ moe,
330
+ g1_alphas=self.layer.g1_alphas,
331
+ g2_alphas=self.layer.g2_alphas,
332
+ a1_gscale=self.layer.w13_input_scale_quant,
333
+ a2_gscale=self.layer.w2_input_scale_quant,
334
+ allow_flashinfer=self.allow_flashinfer,
335
+ )
336
+ logger.debug_once("Using %s", experts.__class__.__name__)
337
+ return experts
338
+
339
+ def apply(
340
+ self,
341
+ layer: torch.nn.Module,
342
+ x: torch.Tensor,
343
+ router_logits: torch.Tensor,
344
+ top_k: int,
345
+ renormalize: bool,
346
+ use_grouped_topk: bool = False,
347
+ topk_group: Optional[int] = None,
348
+ num_expert_group: Optional[int] = None,
349
+ global_num_experts: int = -1,
350
+ expert_map: Optional[torch.Tensor] = None,
351
+ custom_routing_function: Optional[Callable] = None,
352
+ scoring_func: str = "softmax",
353
+ routed_scaling_factor: float = 1.0,
354
+ e_score_correction_bias: Optional[torch.Tensor] = None,
355
+ apply_router_weight_on_input: bool = False,
356
+ activation: str = "silu",
357
+ enable_eplb: bool = False,
358
+ expert_load_view: Optional[torch.Tensor] = None,
359
+ logical_to_physical_map: Optional[torch.Tensor] = None,
360
+ logical_replica_count: Optional[torch.Tensor] = None,
361
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
362
+ assert self.fused_experts is None
363
+
364
+ if enable_eplb:
365
+ raise NotImplementedError("EPLB not supported for "
366
+ "`CompressedTensorsW4A4MoeMethod` yet.")
367
+ assert activation == "silu", "Only SiLU activation is supported."
368
+
369
+ topk_weights, topk_ids = FusedMoE.select_experts(
370
+ hidden_states=x,
371
+ router_logits=router_logits,
372
+ use_grouped_topk=use_grouped_topk,
373
+ top_k=top_k,
374
+ renormalize=renormalize,
375
+ topk_group=topk_group,
376
+ num_expert_group=num_expert_group,
377
+ custom_routing_function=custom_routing_function,
378
+ scoring_func=scoring_func,
379
+ routed_scaling_factor=routed_scaling_factor,
380
+ e_score_correction_bias=e_score_correction_bias,
381
+ indices_type=self.topk_indices_dtype,
382
+ )
383
+
384
+ if self.use_marlin:
385
+ return torch.ops.vllm.fused_marlin_moe(
386
+ x,
387
+ layer.w13_weight,
388
+ layer.w2_weight,
389
+ None,
390
+ None,
391
+ layer.w13_weight_scale,
392
+ layer.w2_weight_scale,
393
+ router_logits,
394
+ topk_weights,
395
+ topk_ids,
396
+ global_scale1=layer.w13_weight_scale_2,
397
+ global_scale2=layer.w2_weight_scale_2,
398
+ quant_type_id=scalar_types.float4_e2m1f.id,
399
+ apply_router_weight_on_input=apply_router_weight_on_input,
400
+ global_num_experts=global_num_experts,
401
+ expert_map=expert_map)
402
+
403
+ # FlashInfer fused experts path
404
+ if self.fused_experts is not None:
405
+ assert is_valid_flashinfer_cutlass_fused_moe(
406
+ x, layer.w13_weight, layer.w2_weight), (
407
+ "Flashinfer CUTLASS Fused MoE not applicable!")
408
+
409
+ return self.fused_experts(
410
+ hidden_states=x,
411
+ w1=layer.w13_weight,
412
+ w2=layer.w2_weight,
413
+ topk_weights=topk_weights,
414
+ topk_ids=topk_ids,
415
+ inplace=False, # TODO(shuw): fix later, now output is high prec
416
+ activation=activation,
417
+ global_num_experts=global_num_experts,
418
+ expert_map=expert_map,
419
+ w1_scale=layer.w13_weight_scale,
420
+ w2_scale=layer.w2_weight_scale,
421
+ apply_router_weight_on_input=apply_router_weight_on_input,
422
+ )
423
+
424
+ elif self.allow_flashinfer:
425
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
426
+ flashinfer_cutlass_moe_fp4)
427
+
428
+ assert is_valid_flashinfer_cutlass_fused_moe(
429
+ x, layer.w13_weight, layer.w2_weight), (
430
+ "Flashinfer CUTLASS Fused MoE not applicable!")
431
+
432
+ return flashinfer_cutlass_moe_fp4(
433
+ hidden_states=x,
434
+ w1=layer.w13_weight,
435
+ w2=layer.w2_weight,
436
+ topk_weights=topk_weights,
437
+ topk_ids=topk_ids,
438
+ inplace=False, # TODO(shuw): fix later, now output is high prec
439
+ activation=activation,
440
+ global_num_experts=global_num_experts,
441
+ expert_map=expert_map,
442
+ w1_scale=layer.w13_weight_scale,
443
+ w2_scale=layer.w2_weight_scale,
444
+ g1_alphas=layer.g1_alphas,
445
+ g2_alphas=layer.g2_alphas,
446
+ a1_gscale=layer.w13_input_scale_quant,
447
+ a2_gscale=layer.w2_input_scale_quant,
448
+ apply_router_weight_on_input=apply_router_weight_on_input,
449
+ )
450
+
451
+ assert expert_map is None, ("Expert Parallelism / expert_map "
452
+ "is currently not supported for "
453
+ "CompressedTensorsW4A4MoeMethod.")
454
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
455
+ cutlass_moe_fp4)
456
+
457
+ # Cutlass moe takes in activations in BF16/Half precision
458
+ # and fp4 quantized weights loaded from the checkpoint
459
+ return cutlass_moe_fp4(
460
+ a=x,
461
+ w1_fp4=layer.w13_weight,
462
+ w2_fp4=layer.w2_weight,
463
+ w1_blockscale=layer.w13_weight_scale,
464
+ w2_blockscale=layer.w2_weight_scale,
465
+ g1_alphas=layer.g1_alphas,
466
+ g2_alphas=layer.g2_alphas,
467
+ a1_gscale=layer.w13_input_scale_quant,
468
+ a2_gscale=layer.w2_input_scale_quant,
469
+ topk_weights=topk_weights,
470
+ topk_ids=topk_ids,
471
+ m=x.shape[0],
472
+ n=layer.w2_weight.shape[2] * 2,
473
+ k=x.shape[1],
474
+ e=layer.w13_weight.shape[0],
475
+ apply_router_weight_on_input=apply_router_weight_on_input).to(
476
+ x.dtype)
477
+
478
+
479
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
480
+
481
+ def __init__(
482
+ self,
483
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
484
+ moe: FusedMoEConfig,
485
+ ):
486
+ super().__init__(moe)
487
+ self.quant_config = quant_config
488
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
489
+ "weights")
490
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
491
+ "input_activations")
492
+
493
+ per_tensor = (self.weight_quant.strategy == QuantizationStrategy.TENSOR
494
+ and self.input_quant.strategy
495
+ == QuantizationStrategy.TENSOR)
496
+ per_channel = (
497
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
498
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
499
+ if not (per_tensor or per_channel):
500
+ raise ValueError(
501
+ "For FP8 Fused MoE layers, we require per tensor "
502
+ "or channelwise, dynamic per token quantization. Found "
503
+ f"{self.weight_quant}, {self.input_quant}")
504
+
505
+ self.static_input_scales = not self.input_quant.dynamic
506
+ if self.static_input_scales and per_channel:
507
+ raise ValueError(
508
+ "For FP8 Fused MoE layer, we require either per tensor or "
509
+ "channelwise, dynamic per token quantization.")
510
+
511
+ # For GPUs that lack FP8 hardware support, we can leverage the Marlin
512
+ # kernel for fast weight-only FP8 quantization
513
+ self.use_marlin = (not current_platform.has_device_capability(89)
514
+ or envs.VLLM_TEST_FORCE_FP8_MARLIN)
515
+ # Disable marlin for rocm
516
+ if current_platform.is_rocm():
517
+ self.use_marlin = False
518
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
519
+ is_rocm_aiter_moe_enabled)
520
+
521
+ self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
522
+
523
+ # cutlass path
524
+ self.is_fp8_w8a8_sm100 = quant_config._is_fp8_w8a8_sm100(
525
+ self.weight_quant, self.input_quant)
526
+ self.use_cutlass = (quant_config._is_fp8_w8a8_sm90(
527
+ self.weight_quant, self.input_quant) or self.is_fp8_w8a8_sm100)
528
+ self.disable_expert_map = False
529
+
530
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
531
+ hidden_size: int, intermediate_size_per_partition: int,
532
+ params_dtype: torch.dtype, **extra_weight_attrs):
533
+
534
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
535
+ layer.hidden_size = hidden_size
536
+ layer.num_experts = num_experts
537
+ layer.orig_dtype = params_dtype
538
+ layer.weight_block_size = None
539
+
540
+ params_dtype = torch.float8_e4m3fn
541
+
542
+ # WEIGHTS
543
+ w13_weight = torch.nn.Parameter(torch.empty(
544
+ num_experts,
545
+ 2 * intermediate_size_per_partition,
546
+ hidden_size,
547
+ dtype=params_dtype),
548
+ requires_grad=False)
549
+ layer.register_parameter("w13_weight", w13_weight)
550
+ set_weight_attrs(w13_weight, extra_weight_attrs)
551
+
552
+ w2_weight = torch.nn.Parameter(torch.empty(
553
+ num_experts,
554
+ hidden_size,
555
+ intermediate_size_per_partition,
556
+ dtype=params_dtype),
557
+ requires_grad=False)
558
+ layer.register_parameter("w2_weight", w2_weight)
559
+ set_weight_attrs(w2_weight, extra_weight_attrs)
560
+
561
+ # WEIGHT_SCALES
562
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
563
+ # Allocate 2 scales for w1 and w3 respectively.
564
+ # They are combined to a single scale after weight loading.
565
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
566
+ num_experts, 2, dtype=torch.float32),
567
+ requires_grad=False)
568
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
569
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
570
+ num_experts, dtype=torch.float32),
571
+ requires_grad=False)
572
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
573
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
574
+ extra_weight_attrs.update(
575
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
576
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
577
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
578
+
579
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
580
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
581
+ num_experts,
582
+ 2 * intermediate_size_per_partition,
583
+ 1,
584
+ dtype=torch.float32),
585
+ requires_grad=False)
586
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
587
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
588
+ num_experts, hidden_size, 1, dtype=torch.float32),
589
+ requires_grad=False)
590
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
591
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
592
+ extra_weight_attrs.update(
593
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
594
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
595
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
596
+
597
+ # INPUT_SCALES
598
+ if self.static_input_scales:
599
+ w13_input_scale = torch.nn.Parameter(torch.ones(
600
+ num_experts, dtype=torch.float32),
601
+ requires_grad=False)
602
+ layer.register_parameter("w13_input_scale", w13_input_scale)
603
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
604
+
605
+ w2_input_scale = torch.nn.Parameter(torch.ones(
606
+ num_experts, dtype=torch.float32),
607
+ requires_grad=False)
608
+ layer.register_parameter("w2_input_scale", w2_input_scale)
609
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
610
+ else:
611
+ layer.w13_input_scale = None
612
+ layer.w2_input_scale = None
613
+
614
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
615
+ # Fp8 moe kernels require a single activation scale.
616
+ # We take the max of all the scales in case they differ.
617
+ if self.static_input_scales:
618
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
619
+ if (layer.w13_input_scale is None or layer.w2_input_scale is None):
620
+ raise ValueError(
621
+ "QuantConfig has static quantization, but found "
622
+ "activation scales are None.")
623
+ if (not all_close_1d(layer.w13_input_scale)
624
+ or not all_close_1d(layer.w2_input_scale)):
625
+ logger.warning_once(
626
+ "Found input_scales that are not equal for "
627
+ "fp8 MoE layer. Using the maximum across experts "
628
+ "for each layer.")
629
+ layer.w13_input_scale = torch.nn.Parameter(
630
+ layer.w13_input_scale.max(), requires_grad=False)
631
+ layer.w2_input_scale = torch.nn.Parameter(
632
+ layer.w2_input_scale.max(), requires_grad=False)
633
+
634
+ if current_platform.is_fp8_fnuz():
635
+ # Normalize the weights and scales
636
+ w13_weight, w13_weight_scale, w13_input_scale = \
637
+ normalize_e4m3fn_to_e4m3fnuz(
638
+ layer.w13_weight, layer.w13_weight_scale,
639
+ layer.w13_input_scale)
640
+ w2_weight, w2_weight_scale, w2_input_scale = \
641
+ normalize_e4m3fn_to_e4m3fnuz(
642
+ layer.w2_weight, layer.w2_weight_scale,
643
+ layer.w2_input_scale)
644
+ # Reset the parameter
645
+ layer.w13_weight = torch.nn.Parameter(w13_weight,
646
+ requires_grad=False)
647
+ layer.w13_weight_scale = torch.nn.Parameter(w13_weight_scale,
648
+ requires_grad=False)
649
+ if w13_input_scale is not None:
650
+ layer.w13_input_scale = torch.nn.Parameter(w13_input_scale,
651
+ requires_grad=False)
652
+ layer.w2_weight = torch.nn.Parameter(w2_weight,
653
+ requires_grad=False)
654
+ layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
655
+ requires_grad=False)
656
+ if w2_input_scale is not None:
657
+ layer.w2_input_scale = torch.nn.Parameter(w2_input_scale,
658
+ requires_grad=False)
659
+
660
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
661
+ # for w13 per expert. Use max then dequant and requant each expert.
662
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
663
+ assert layer.w13_weight_scale is not None
664
+ shard_size = layer.intermediate_size_per_partition
665
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
666
+ for expert_id in range(layer.local_num_experts):
667
+ start = 0
668
+ for shard_id in range(2):
669
+ dq_weight = per_tensor_dequantize(
670
+ layer.w13_weight[expert_id][start:start +
671
+ shard_size, :],
672
+ layer.w13_weight_scale[expert_id][shard_id])
673
+ layer.w13_weight[expert_id][
674
+ start:start + shard_size, :], _ = ops.scaled_fp8_quant(
675
+ dq_weight, max_w13_scales[expert_id])
676
+ start += shard_size
677
+ layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
678
+ requires_grad=False)
679
+
680
+ # Property to determine if AITER is used
681
+ if self.rocm_aiter_moe_enabled:
682
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
683
+ rocm_aiter_fused_experts, shuffle_weights)
684
+
685
+ # reshaping weights is required for aiter moe kernel.
686
+ shuffled_w13, shuffled_w2 = shuffle_weights(
687
+ layer.w13_weight.data, layer.w2_weight.data)
688
+
689
+ layer.w13_weight = torch.nn.Parameter(shuffled_w13,
690
+ requires_grad=False)
691
+ layer.w2_weight = torch.nn.Parameter(shuffled_w2,
692
+ requires_grad=False)
693
+
694
+ self.rocm_aiter_fused_experts_func = rocm_aiter_fused_experts
695
+ elif self.use_marlin:
696
+ prepare_moe_fp8_layer_for_marlin(layer, False)
697
+ # Activations not quantized for marlin.
698
+ del layer.w13_input_scale
699
+ del layer.w2_input_scale
700
+ self.fused_experts_func = None
701
+ else:
702
+ from vllm.model_executor.layers.fused_moe import fused_experts
703
+ self.fused_experts_func = fused_experts
704
+
705
+ if self.use_cutlass:
706
+ device = layer.w13_weight.device
707
+ # ab_strides1 and c_strides2 are the same
708
+ self.ab_strides1_c_strides2 = torch.full(
709
+ (layer.local_num_experts, ),
710
+ layer.hidden_size,
711
+ device=device,
712
+ dtype=torch.int64)
713
+ self.ab_strides2 = torch.full(
714
+ (layer.local_num_experts, ),
715
+ layer.intermediate_size_per_partition,
716
+ device=device,
717
+ dtype=torch.int64)
718
+ self.c_strides1 = torch.full(
719
+ (layer.local_num_experts, ),
720
+ 2 * layer.intermediate_size_per_partition,
721
+ device=device,
722
+ dtype=torch.int64)
723
+
724
+ def select_gemm_impl(
725
+ self, prepare_finalize: FusedMoEPrepareAndFinalize,
726
+ moe: FusedMoEConfig,
727
+ layer: torch.nn.Module) -> FusedMoEPermuteExpertsUnpermute:
728
+ # cutlass path
729
+ if self.use_cutlass:
730
+ from vllm.model_executor.layers.fused_moe import (
731
+ CutlassBatchedExpertsFp8, CutlassExpertsFp8)
732
+
733
+ experts: FusedMoEPermuteExpertsUnpermute
734
+
735
+ num_dispatchers = prepare_finalize.num_dispatchers()
736
+
737
+ if (prepare_finalize.activation_format ==
738
+ FusedMoEActivationFormat.BatchedExperts):
739
+ logger.debug("CutlassBatchedExpertsFp8(%s)",
740
+ self.__class__.__name__)
741
+ experts = CutlassBatchedExpertsFp8(
742
+ moe.num_local_experts,
743
+ num_dispatchers,
744
+ moe.in_dtype,
745
+ self.input_quant.strategy == QuantizationStrategy.TOKEN,
746
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL,
747
+ ab_strides1=self.ab_strides1_c_strides2,
748
+ ab_strides2=self.ab_strides2,
749
+ c_strides1=self.c_strides1,
750
+ c_strides2=self.ab_strides1_c_strides2,
751
+ )
752
+ else:
753
+ logger.debug("CutlassExpertsFp8(%s)", self.__class__.__name__)
754
+ experts = CutlassExpertsFp8(
755
+ moe.in_dtype,
756
+ self.input_quant.strategy == QuantizationStrategy.TOKEN,
757
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL,
758
+ ab_strides1=self.ab_strides1_c_strides2,
759
+ ab_strides2=self.ab_strides2,
760
+ c_strides1=self.c_strides1,
761
+ c_strides2=self.ab_strides1_c_strides2,
762
+ )
763
+
764
+ self.disable_expert_map = (num_dispatchers > 1
765
+ or not experts.supports_expert_map())
766
+
767
+ return experts
768
+
769
+ # triton path
770
+ from vllm.model_executor.layers.fused_moe import TritonExperts
771
+ from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
772
+ BatchedTritonExperts)
773
+
774
+ assert not self.rocm_aiter_moe_enabled and not self.use_marlin
775
+
776
+ logger.debug("BatchedTritonExperts(%s)", self.__class__.__name__)
777
+
778
+ if (prepare_finalize.activation_format ==
779
+ FusedMoEActivationFormat.BatchedExperts):
780
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank(
781
+ )
782
+ assert max_num_tokens_per_rank is not None
783
+
784
+ return BatchedTritonExperts(
785
+ max_num_tokens=max_num_tokens_per_rank,
786
+ num_dispatchers=prepare_finalize.num_dispatchers(),
787
+ use_fp8_w8a8=True,
788
+ block_shape=self.quant_config.weight_block_size,
789
+ per_act_token_quant=(
790
+ self.input_quant.strategy == QuantizationStrategy.TOKEN),
791
+ )
792
+ else:
793
+ return TritonExperts(
794
+ use_fp8_w8a8=True,
795
+ block_shape=self.quant_config.weight_block_size,
796
+ per_act_token_quant=(
797
+ self.input_quant.strategy == QuantizationStrategy.TOKEN),
798
+ )
799
+
800
+ def apply(
801
+ self,
802
+ layer: torch.nn.Module,
803
+ x: torch.Tensor,
804
+ router_logits: torch.Tensor,
805
+ top_k: int,
806
+ renormalize: bool,
807
+ use_grouped_topk: bool = False,
808
+ topk_group: Optional[int] = None,
809
+ num_expert_group: Optional[int] = None,
810
+ global_num_experts: int = -1,
811
+ expert_map: Optional[torch.Tensor] = None,
812
+ custom_routing_function: Optional[Callable] = None,
813
+ scoring_func: str = "softmax",
814
+ routed_scaling_factor: float = 1.0,
815
+ e_score_correction_bias: Optional[torch.Tensor] = None,
816
+ apply_router_weight_on_input: bool = False,
817
+ activation: str = "silu",
818
+ enable_eplb: bool = False,
819
+ expert_load_view: Optional[torch.Tensor] = None,
820
+ logical_to_physical_map: Optional[torch.Tensor] = None,
821
+ logical_replica_count: Optional[torch.Tensor] = None,
822
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
823
+ if enable_eplb:
824
+ raise NotImplementedError(
825
+ "EPLB not supported for "
826
+ "`CompressedTensorsW8A8Fp8MoEMethod` yet.")
827
+
828
+ topk_weights, topk_ids = FusedMoE.select_experts(
829
+ hidden_states=x,
830
+ router_logits=router_logits,
831
+ use_grouped_topk=use_grouped_topk,
832
+ top_k=top_k,
833
+ renormalize=renormalize,
834
+ topk_group=topk_group,
835
+ num_expert_group=num_expert_group,
836
+ custom_routing_function=custom_routing_function,
837
+ scoring_func=scoring_func,
838
+ routed_scaling_factor=routed_scaling_factor,
839
+ e_score_correction_bias=e_score_correction_bias,
840
+ indices_type=self.topk_indices_dtype,
841
+ )
842
+
843
+ # cutlass path
844
+ if self.use_cutlass:
845
+ per_act_token = (
846
+ self.input_quant.strategy == QuantizationStrategy.TOKEN)
847
+ per_channel_quant = (
848
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL)
849
+
850
+ # small-batch fallback on SM100
851
+ if self.is_fp8_w8a8_sm100 and topk_ids.shape[0] <= 8:
852
+ from vllm.model_executor.layers.fused_moe import fused_experts
853
+ return fused_experts(
854
+ hidden_states=x,
855
+ w1=layer.w13_weight,
856
+ w2=layer.w2_weight,
857
+ topk_weights=topk_weights,
858
+ topk_ids=topk_ids,
859
+ inplace=True,
860
+ activation=activation,
861
+ apply_router_weight_on_input=apply_router_weight_on_input,
862
+ use_fp8_w8a8=True,
863
+ per_channel_quant=per_channel_quant,
864
+ global_num_experts=global_num_experts,
865
+ expert_map=None if self.disable_expert_map else expert_map,
866
+ w1_scale=layer.w13_weight_scale,
867
+ w2_scale=layer.w2_weight_scale,
868
+ a1_scale=layer.w13_input_scale,
869
+ a2_scale=layer.w2_input_scale)
870
+
871
+ if self.fused_experts is None:
872
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
873
+ cutlass_moe_fp8)
874
+ return cutlass_moe_fp8(
875
+ x,
876
+ layer.w13_weight,
877
+ layer.w2_weight,
878
+ topk_weights,
879
+ topk_ids,
880
+ per_act_token=per_act_token,
881
+ activation=activation,
882
+ global_num_experts=global_num_experts,
883
+ expert_map=None if self.disable_expert_map else expert_map,
884
+ w1_scale=layer.w13_weight_scale,
885
+ w2_scale=layer.w2_weight_scale,
886
+ ab_strides1=self.ab_strides1_c_strides2,
887
+ ab_strides2=self.ab_strides2,
888
+ c_strides1=self.c_strides1,
889
+ c_strides2=self.ab_strides1_c_strides2,
890
+ a1_scale=layer.w13_input_scale,
891
+ a2_scale=layer.w2_input_scale,
892
+ )
893
+ else:
894
+ return self.fused_experts(
895
+ x,
896
+ layer.w13_weight,
897
+ layer.w2_weight,
898
+ topk_weights,
899
+ topk_ids,
900
+ activation=activation,
901
+ global_num_experts=global_num_experts,
902
+ expert_map=None if self.disable_expert_map else expert_map,
903
+ w1_scale=layer.w13_weight_scale,
904
+ w2_scale=layer.w2_weight_scale,
905
+ a1_scale=layer.w13_input_scale,
906
+ a2_scale=layer.w2_input_scale,
907
+ )
908
+
909
+ if self.rocm_aiter_moe_enabled:
910
+ return self.rocm_aiter_fused_experts_func(
911
+ hidden_states=x,
912
+ w1=layer.w13_weight,
913
+ w2=layer.w2_weight,
914
+ topk_weights=topk_weights,
915
+ topk_ids=topk_ids,
916
+ activation=activation,
917
+ apply_router_weight_on_input=apply_router_weight_on_input,
918
+ use_fp8_w8a8=True,
919
+ per_channel_quant=self.weight_quant.strategy ==
920
+ QuantizationStrategy.CHANNEL,
921
+ w1_scale=layer.w13_weight_scale,
922
+ w2_scale=layer.w2_weight_scale,
923
+ a1_scale=layer.w13_input_scale,
924
+ a2_scale=layer.w2_input_scale,
925
+ expert_map=expert_map)
926
+ if self.use_marlin:
927
+ assert activation == "silu", (
928
+ f"{activation} not supported for Marlin MoE.")
929
+ return torch.ops.vllm.fused_marlin_moe(
930
+ x,
931
+ layer.w13_weight,
932
+ layer.w2_weight,
933
+ None,
934
+ None,
935
+ layer.w13_weight_scale,
936
+ layer.w2_weight_scale,
937
+ router_logits,
938
+ topk_weights,
939
+ topk_ids,
940
+ quant_type_id=scalar_types.float8_e4m3fn.id,
941
+ apply_router_weight_on_input=apply_router_weight_on_input,
942
+ global_num_experts=global_num_experts,
943
+ expert_map=expert_map)
944
+
945
+ assert self.fused_experts_func is not None
946
+
947
+ return self.fused_experts_func(
948
+ hidden_states=x,
949
+ w1=layer.w13_weight,
950
+ w2=layer.w2_weight,
951
+ topk_weights=topk_weights,
952
+ topk_ids=topk_ids,
953
+ inplace=True,
954
+ activation=activation,
955
+ apply_router_weight_on_input=apply_router_weight_on_input,
956
+ use_fp8_w8a8=True,
957
+ per_channel_quant=self.weight_quant.strategy ==
958
+ QuantizationStrategy.CHANNEL,
959
+ global_num_experts=global_num_experts,
960
+ expert_map=expert_map,
961
+ w1_scale=layer.w13_weight_scale,
962
+ w2_scale=layer.w2_weight_scale,
963
+ a1_scale=layer.w13_input_scale,
964
+ a2_scale=layer.w2_input_scale)
965
+
966
+
967
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
968
+
969
+ def __init__(
970
+ self,
971
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
972
+ moe: FusedMoEConfig,
973
+ ):
974
+ super().__init__(moe)
975
+ self.quant_config = quant_config
976
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
977
+ "weights")
978
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
979
+ "input_activations")
980
+
981
+ per_channel = (
982
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
983
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
984
+ if not per_channel:
985
+ raise ValueError(
986
+ "For INT8 Fused MoE layers, we require channelwise, "
987
+ "dynamic per token quantization. Found "
988
+ f"{self.weight_quant}, {self.input_quant}")
989
+
990
+ self.static_input_scales = not self.input_quant.dynamic
991
+ if self.static_input_scales:
992
+ raise ValueError(
993
+ "For INT8 Fused MoE layers, we require channelwise, "
994
+ "dynamic per token quantization. Found static input scales.")
995
+
996
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
997
+ hidden_size: int, intermediate_size_per_partition: int,
998
+ params_dtype: torch.dtype, **extra_weight_attrs):
999
+
1000
+ params_dtype = torch.int8
1001
+
1002
+ # WEIGHTS
1003
+ w13_weight = torch.nn.Parameter(torch.empty(
1004
+ num_experts,
1005
+ 2 * intermediate_size_per_partition,
1006
+ hidden_size,
1007
+ dtype=params_dtype),
1008
+ requires_grad=False)
1009
+ layer.register_parameter("w13_weight", w13_weight)
1010
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1011
+
1012
+ w2_weight = torch.nn.Parameter(torch.empty(
1013
+ num_experts,
1014
+ hidden_size,
1015
+ intermediate_size_per_partition,
1016
+ dtype=params_dtype),
1017
+ requires_grad=False)
1018
+ layer.register_parameter("w2_weight", w2_weight)
1019
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1020
+
1021
+ # WEIGHT_SCALES
1022
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1023
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
1024
+ num_experts,
1025
+ 2 * intermediate_size_per_partition,
1026
+ 1,
1027
+ dtype=torch.float32),
1028
+ requires_grad=False)
1029
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1030
+ w2_weight_scale = torch.nn.Parameter(torch.ones(num_experts,
1031
+ hidden_size,
1032
+ 1,
1033
+ dtype=torch.float32),
1034
+ requires_grad=False)
1035
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1036
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
1037
+ extra_weight_attrs.update(
1038
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
1039
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
1040
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
1041
+
1042
+ # INPUT_SCALES
1043
+ assert not self.static_input_scales
1044
+ layer.w13_input_scale = None
1045
+ layer.w2_input_scale = None
1046
+
1047
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1048
+ pass
1049
+
1050
+ def apply(
1051
+ self,
1052
+ layer: torch.nn.Module,
1053
+ x: torch.Tensor,
1054
+ router_logits: torch.Tensor,
1055
+ top_k: int,
1056
+ renormalize: bool,
1057
+ use_grouped_topk: bool = False,
1058
+ topk_group: Optional[int] = None,
1059
+ num_expert_group: Optional[int] = None,
1060
+ global_num_experts: int = -1,
1061
+ expert_map: Optional[torch.Tensor] = None,
1062
+ custom_routing_function: Optional[Callable] = None,
1063
+ scoring_func: str = "softmax",
1064
+ routed_scaling_factor: float = 1.0,
1065
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1066
+ apply_router_weight_on_input: bool = False,
1067
+ activation: str = "silu",
1068
+ enable_eplb: bool = False,
1069
+ expert_load_view: Optional[torch.Tensor] = None,
1070
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1071
+ logical_replica_count: Optional[torch.Tensor] = None,
1072
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
1073
+ assert self.fused_experts is None
1074
+
1075
+ if enable_eplb:
1076
+ raise NotImplementedError(
1077
+ "EPLB not supported for "
1078
+ "`CompressedTensorsW8A8Int8MoEMethod` yet.")
1079
+
1080
+ from vllm.model_executor.layers.fused_moe import fused_experts
1081
+
1082
+ topk_weights, topk_ids = FusedMoE.select_experts(
1083
+ hidden_states=x,
1084
+ router_logits=router_logits,
1085
+ use_grouped_topk=use_grouped_topk,
1086
+ top_k=top_k,
1087
+ renormalize=renormalize,
1088
+ topk_group=topk_group,
1089
+ num_expert_group=num_expert_group,
1090
+ custom_routing_function=custom_routing_function,
1091
+ scoring_func=scoring_func,
1092
+ routed_scaling_factor=routed_scaling_factor,
1093
+ e_score_correction_bias=e_score_correction_bias,
1094
+ indices_type=self.topk_indices_dtype)
1095
+
1096
+ return fused_experts(
1097
+ hidden_states=x,
1098
+ w1=layer.w13_weight,
1099
+ w2=layer.w2_weight,
1100
+ topk_weights=topk_weights,
1101
+ topk_ids=topk_ids,
1102
+ inplace=True,
1103
+ activation=activation,
1104
+ apply_router_weight_on_input=apply_router_weight_on_input,
1105
+ use_int8_w8a8=True,
1106
+ per_channel_quant=True,
1107
+ global_num_experts=global_num_experts,
1108
+ expert_map=expert_map,
1109
+ w1_scale=layer.w13_weight_scale,
1110
+ w2_scale=layer.w2_weight_scale,
1111
+ a1_scale=layer.w13_input_scale,
1112
+ a2_scale=layer.w2_input_scale)
1113
+
1114
+
1115
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
1116
+
1117
+ def __init__(
1118
+ self,
1119
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1120
+ moe: FusedMoEConfig,
1121
+ ):
1122
+ super().__init__(moe)
1123
+ self.quant_config = quant_config
1124
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1125
+ # are supported + check if the layer is being ignored.
1126
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1127
+ self.num_bits = config.num_bits
1128
+ self.packed_factor = 32 // config.num_bits
1129
+ self.strategy = config.strategy
1130
+ self.group_size = config.group_size
1131
+ self.actorder = config.actorder
1132
+ assert config.symmetric, (
1133
+ "Only symmetric quantization is supported for MoE")
1134
+
1135
+ if not (self.quant_config.quant_format
1136
+ == CompressionFormat.pack_quantized.value
1137
+ and self.num_bits in WNA16_SUPPORTED_BITS):
1138
+ raise ValueError("For Fused MoE layers, only ",
1139
+ f"{CompressionFormat.pack_quantized.value} ",
1140
+ "is supported for the following bits: ",
1141
+ f"{WNA16_SUPPORTED_BITS}")
1142
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
1143
+
1144
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1145
+ hidden_size: int, intermediate_size_per_partition: int,
1146
+ params_dtype: torch.dtype, **extra_weight_attrs):
1147
+
1148
+ intermediate_size_full = extra_weight_attrs.pop(
1149
+ "intermediate_size_full")
1150
+
1151
+ # Will transpose the loaded weight along the
1152
+ # intermediate and hidden dim sizes. Will
1153
+ # shard for TP along the transposed dims
1154
+ extra_weight_attrs.update({
1155
+ "is_transposed": True,
1156
+ "quant_method": self.strategy
1157
+ })
1158
+ w13_weight = torch.nn.Parameter(torch.empty(
1159
+ num_experts,
1160
+ hidden_size // self.packed_factor,
1161
+ 2 * intermediate_size_per_partition,
1162
+ dtype=torch.int32),
1163
+ requires_grad=False)
1164
+ layer.register_parameter("w13_weight_packed", w13_weight)
1165
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1166
+
1167
+ w2_weight = torch.nn.Parameter(torch.empty(
1168
+ num_experts,
1169
+ intermediate_size_per_partition // self.packed_factor,
1170
+ hidden_size,
1171
+ dtype=torch.int32),
1172
+ requires_grad=False)
1173
+ layer.register_parameter("w2_weight_packed", w2_weight)
1174
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1175
+
1176
+ # In the case where we have actorder/g_idx,
1177
+ # we do not partition the w2 scales
1178
+ load_full_w2 = self.actorder and self.group_size != -1
1179
+ w2_scales_size = (intermediate_size_full
1180
+ if load_full_w2 else intermediate_size_per_partition)
1181
+
1182
+ self.is_k_full = (not self.actorder) or (
1183
+ intermediate_size_per_partition == intermediate_size_full)
1184
+
1185
+ if self.strategy == "channel":
1186
+ num_groups_w2 = num_groups_w13 = 1
1187
+ self.group_size = -1
1188
+ else:
1189
+ num_groups_w2 = w2_scales_size // self.group_size
1190
+ num_groups_w13 = hidden_size // self.group_size
1191
+
1192
+ w13_scale = torch.nn.Parameter(torch.ones(
1193
+ num_experts,
1194
+ num_groups_w13,
1195
+ 2 * intermediate_size_per_partition,
1196
+ dtype=params_dtype),
1197
+ requires_grad=False)
1198
+ layer.register_parameter("w13_weight_scale", w13_scale)
1199
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1200
+
1201
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
1202
+ num_groups_w2,
1203
+ hidden_size,
1204
+ dtype=params_dtype),
1205
+ requires_grad=False)
1206
+ layer.register_parameter("w2_weight_scale", w2_scale)
1207
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1208
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
1209
+
1210
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1211
+ requires_grad=False)
1212
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1213
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1214
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1215
+ requires_grad=False)
1216
+
1217
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1218
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1219
+
1220
+ w13_g_idx = torch.nn.Parameter(
1221
+ torch.empty(
1222
+ num_experts,
1223
+ hidden_size,
1224
+ dtype=torch.int32,
1225
+ ),
1226
+ requires_grad=False,
1227
+ )
1228
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1229
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1230
+
1231
+ w2_g_idx = torch.nn.Parameter(
1232
+ torch.empty(
1233
+ num_experts,
1234
+ intermediate_size_per_partition,
1235
+ dtype=torch.int32,
1236
+ ),
1237
+ requires_grad=False,
1238
+ )
1239
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1240
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1241
+
1242
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1243
+ torch.empty(
1244
+ num_experts,
1245
+ hidden_size,
1246
+ dtype=torch.int32,
1247
+ ),
1248
+ requires_grad=False,
1249
+ )
1250
+ layer.register_parameter("w13_g_idx_sort_indices",
1251
+ w13_g_idx_sort_indices)
1252
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1253
+
1254
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1255
+ torch.empty(
1256
+ num_experts,
1257
+ intermediate_size_per_partition,
1258
+ dtype=torch.int32,
1259
+ ),
1260
+ requires_grad=False,
1261
+ )
1262
+ layer.register_parameter("w2_g_idx_sort_indices",
1263
+ w2_g_idx_sort_indices)
1264
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1265
+
1266
+ layer.a13_scale = None
1267
+ layer.a2_scale = None
1268
+ layer.marlin_state = GPTQMarlinState.REPACK
1269
+
1270
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1271
+ num_experts = layer.w13_weight_g_idx.shape[0]
1272
+ device = layer.w13_weight_g_idx.device
1273
+
1274
+ # when running models with grouped act order,
1275
+ # resort to g_idx values provided in checkpoint
1276
+ if self.actorder == "group":
1277
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
1278
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
1279
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
1280
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
1281
+
1282
+ for e in range(num_experts):
1283
+ w13_g_idx_sort_indices[e] = torch.argsort(
1284
+ layer.w13_weight_g_idx[e]).to(torch.int32)
1285
+ w2_g_idx_sort_indices[e] = torch.argsort(
1286
+ layer.w2_weight_g_idx[e]).to(torch.int32)
1287
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
1288
+ w13_g_idx_sort_indices[e]]
1289
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][
1290
+ w2_g_idx_sort_indices[e]]
1291
+
1292
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
1293
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
1294
+ replace_parameter(layer, "w13_g_idx_sort_indices",
1295
+ w13_g_idx_sort_indices)
1296
+ replace_parameter(layer, "w2_g_idx_sort_indices",
1297
+ w2_g_idx_sort_indices)
1298
+
1299
+ else:
1300
+ layer.w13_weight_g_idx = torch.nn.Parameter(
1301
+ torch.empty((num_experts, 0), dtype=torch.int32,
1302
+ device=device),
1303
+ requires_grad=False,
1304
+ )
1305
+ layer.w2_weight_g_idx = torch.nn.Parameter(
1306
+ torch.empty((num_experts, 0), dtype=torch.int32,
1307
+ device=device),
1308
+ requires_grad=False,
1309
+ )
1310
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
1311
+ torch.empty((num_experts, 0), dtype=torch.int32,
1312
+ device=device),
1313
+ requires_grad=False,
1314
+ )
1315
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
1316
+ torch.empty((num_experts, 0), dtype=torch.int32,
1317
+ device=device),
1318
+ requires_grad=False,
1319
+ )
1320
+
1321
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
1322
+ layer.w13_weight_packed,
1323
+ layer.w13_g_idx_sort_indices,
1324
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
1325
+ layer.w13_weight_packed.shape[2],
1326
+ self.num_bits,
1327
+ )
1328
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
1329
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
1330
+ layer.w2_weight_packed,
1331
+ layer.w2_g_idx_sort_indices,
1332
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
1333
+ layer.w2_weight_packed.shape[2],
1334
+ self.num_bits,
1335
+ )
1336
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
1337
+ # Repack scales
1338
+ marlin_w13_scales = marlin_moe_permute_scales(
1339
+ s=layer.w13_weight_scale,
1340
+ size_k=layer.w13_weight_packed.shape[2],
1341
+ size_n=layer.w13_weight_scale.shape[2],
1342
+ group_size=self.group_size,
1343
+ )
1344
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
1345
+ marlin_w2_scales = marlin_moe_permute_scales(
1346
+ s=layer.w2_weight_scale,
1347
+ size_k=layer.w2_weight_scale.shape[1] *
1348
+ (self.group_size if self.group_size != -1 else self.packed_factor),
1349
+ size_n=layer.w2_weight_scale.shape[2],
1350
+ group_size=self.group_size,
1351
+ )
1352
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
1353
+
1354
+ layer.workspace = marlin_make_workspace_new(device, 4)
1355
+
1356
+ def apply(
1357
+ self,
1358
+ layer: torch.nn.Module,
1359
+ x: torch.Tensor,
1360
+ router_logits: torch.Tensor,
1361
+ top_k: int,
1362
+ renormalize: bool,
1363
+ use_grouped_topk: bool = False,
1364
+ topk_group: Optional[int] = None,
1365
+ num_expert_group: Optional[int] = None,
1366
+ global_num_experts: int = -1,
1367
+ expert_map: Optional[torch.Tensor] = None,
1368
+ custom_routing_function: Optional[Callable] = None,
1369
+ scoring_func: str = "softmax",
1370
+ routed_scaling_factor: float = 1.0,
1371
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1372
+ apply_router_weight_on_input: bool = False,
1373
+ activation: str = "silu",
1374
+ enable_eplb: bool = False,
1375
+ expert_load_view: Optional[torch.Tensor] = None,
1376
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1377
+ logical_replica_count: Optional[torch.Tensor] = None,
1378
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
1379
+ assert self.fused_experts is None
1380
+
1381
+ if enable_eplb:
1382
+ raise NotImplementedError(
1383
+ "EPLB not supported for "
1384
+ "`CompressedTensorsWNA16MarlinMoEMethod` yet.")
1385
+
1386
+ assert activation == "silu", (
1387
+ f"{activation} not supported for Marlin MoE.")
1388
+
1389
+ topk_weights, topk_ids = FusedMoE.select_experts(
1390
+ hidden_states=x,
1391
+ router_logits=router_logits,
1392
+ use_grouped_topk=use_grouped_topk,
1393
+ top_k=top_k,
1394
+ renormalize=renormalize,
1395
+ topk_group=topk_group,
1396
+ num_expert_group=num_expert_group,
1397
+ custom_routing_function=custom_routing_function,
1398
+ scoring_func=scoring_func,
1399
+ routed_scaling_factor=routed_scaling_factor,
1400
+ e_score_correction_bias=e_score_correction_bias,
1401
+ indices_type=self.topk_indices_dtype)
1402
+
1403
+ return torch.ops.vllm.fused_marlin_moe(
1404
+ x,
1405
+ layer.w13_weight_packed,
1406
+ layer.w2_weight_packed,
1407
+ None,
1408
+ None,
1409
+ layer.w13_weight_scale,
1410
+ layer.w2_weight_scale,
1411
+ router_logits,
1412
+ topk_weights,
1413
+ topk_ids,
1414
+ quant_type_id=self.quant_type.id,
1415
+ apply_router_weight_on_input=apply_router_weight_on_input,
1416
+ global_num_experts=global_num_experts,
1417
+ expert_map=expert_map,
1418
+ g_idx1=layer.w13_weight_g_idx,
1419
+ g_idx2=layer.w2_weight_g_idx,
1420
+ sort_indices1=layer.w13_g_idx_sort_indices,
1421
+ sort_indices2=layer.w2_g_idx_sort_indices,
1422
+ workspace=layer.workspace,
1423
+ is_k_full=self.is_k_full)
1424
+
1425
+
1426
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1427
+
1428
+ def __init__(
1429
+ self,
1430
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1431
+ moe: FusedMoEConfig,
1432
+ ):
1433
+ super().__init__(moe)
1434
+ self.quant_config = quant_config
1435
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1436
+ # are supported + check if the layer is being ignored.
1437
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1438
+ self.num_bits = config.num_bits
1439
+ self.packed_factor = 32 // config.num_bits
1440
+ self.strategy = config.strategy
1441
+ # channelwise is not supported by this kernel
1442
+ assert config.strategy == "group"
1443
+ self.group_size = config.group_size
1444
+ # grouped actorder isn't supported by this kernel
1445
+ assert config.actorder != "group"
1446
+ assert config.symmetric, (
1447
+ "Only symmetric quantization is supported for MoE")
1448
+
1449
+ if not (self.quant_config.quant_format
1450
+ == CompressionFormat.pack_quantized.value
1451
+ and self.num_bits in WNA16_SUPPORTED_BITS):
1452
+ raise ValueError("For Fused MoE layers, only ",
1453
+ f"{CompressionFormat.pack_quantized.value} ",
1454
+ "is supported for the following bits: ",
1455
+ f"{WNA16_SUPPORTED_BITS}")
1456
+
1457
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1458
+ hidden_size: int, intermediate_size_per_partition: int,
1459
+ params_dtype: torch.dtype, **extra_weight_attrs):
1460
+
1461
+ # Will transpose the loaded weight along the
1462
+ # intermediate and hidden dim sizes. Will
1463
+ # shard for TP along the transposed dims
1464
+ extra_weight_attrs.update({
1465
+ "is_transposed": True,
1466
+ "quant_method": self.strategy
1467
+ })
1468
+ w13_weight = torch.nn.Parameter(torch.empty(
1469
+ num_experts,
1470
+ hidden_size // self.packed_factor,
1471
+ 2 * intermediate_size_per_partition,
1472
+ dtype=torch.int32),
1473
+ requires_grad=False)
1474
+ layer.register_parameter("w13_weight_packed", w13_weight)
1475
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1476
+
1477
+ w2_weight = torch.nn.Parameter(torch.empty(
1478
+ num_experts,
1479
+ intermediate_size_per_partition // self.packed_factor,
1480
+ hidden_size,
1481
+ dtype=torch.int32),
1482
+ requires_grad=False)
1483
+ layer.register_parameter("w2_weight_packed", w2_weight)
1484
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1485
+
1486
+ w2_scales_size = intermediate_size_per_partition
1487
+
1488
+ if self.strategy == "channel":
1489
+ num_groups_w2 = num_groups_w13 = 1
1490
+ self.group_size = -1
1491
+ else:
1492
+ num_groups_w2 = w2_scales_size // self.group_size
1493
+ num_groups_w13 = hidden_size // self.group_size
1494
+
1495
+ w13_scale = torch.nn.Parameter(torch.ones(
1496
+ num_experts,
1497
+ num_groups_w13,
1498
+ 2 * intermediate_size_per_partition,
1499
+ dtype=params_dtype),
1500
+ requires_grad=False)
1501
+ layer.register_parameter("w13_weight_scale", w13_scale)
1502
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1503
+
1504
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
1505
+ num_groups_w2,
1506
+ hidden_size,
1507
+ dtype=params_dtype),
1508
+ requires_grad=False)
1509
+ layer.register_parameter("w2_weight_scale", w2_scale)
1510
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1511
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1512
+
1513
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1514
+ requires_grad=False)
1515
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1516
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1517
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1518
+ requires_grad=False)
1519
+
1520
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1521
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1522
+
1523
+ w13_g_idx = torch.nn.Parameter(
1524
+ torch.empty(
1525
+ num_experts,
1526
+ hidden_size,
1527
+ dtype=torch.int32,
1528
+ ),
1529
+ requires_grad=False,
1530
+ )
1531
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1532
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1533
+
1534
+ w2_g_idx = torch.nn.Parameter(
1535
+ torch.empty(
1536
+ num_experts,
1537
+ intermediate_size_per_partition,
1538
+ dtype=torch.int32,
1539
+ ),
1540
+ requires_grad=False,
1541
+ )
1542
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1543
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1544
+
1545
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1546
+ torch.empty(
1547
+ num_experts,
1548
+ hidden_size,
1549
+ dtype=torch.int32,
1550
+ ),
1551
+ requires_grad=False,
1552
+ )
1553
+ layer.register_parameter("w13_g_idx_sort_indices",
1554
+ w13_g_idx_sort_indices)
1555
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1556
+
1557
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1558
+ torch.empty(
1559
+ num_experts,
1560
+ intermediate_size_per_partition,
1561
+ dtype=torch.int32,
1562
+ ),
1563
+ requires_grad=False,
1564
+ )
1565
+ layer.register_parameter("w2_g_idx_sort_indices",
1566
+ w2_g_idx_sort_indices)
1567
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1568
+
1569
+ layer.a13_scale = None
1570
+ layer.a2_scale = None
1571
+
1572
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1573
+ # Reconfigure packed weights and scales to match moe_wna16 format
1574
+ layer.w13_weight_packed = torch.nn.Parameter(
1575
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(
1576
+ torch.uint8),
1577
+ requires_grad=False)
1578
+ layer.w2_weight_packed = torch.nn.Parameter(
1579
+ layer.w2_weight_packed.transpose(1,
1580
+ 2).contiguous().view(torch.uint8),
1581
+ requires_grad=False)
1582
+ layer.w13_weight_scale = torch.nn.Parameter(
1583
+ layer.w13_weight_scale.transpose(1, 2).contiguous(),
1584
+ requires_grad=False)
1585
+ layer.w2_weight_scale = torch.nn.Parameter(
1586
+ layer.w2_weight_scale.transpose(1, 2).contiguous(),
1587
+ requires_grad=False)
1588
+
1589
+ def apply(
1590
+ self,
1591
+ layer: torch.nn.Module,
1592
+ x: torch.Tensor,
1593
+ router_logits: torch.Tensor,
1594
+ top_k: int,
1595
+ renormalize: bool,
1596
+ use_grouped_topk: bool = False,
1597
+ topk_group: Optional[int] = None,
1598
+ num_expert_group: Optional[int] = None,
1599
+ global_num_experts: int = -1,
1600
+ expert_map: Optional[torch.Tensor] = None,
1601
+ custom_routing_function: Optional[Callable] = None,
1602
+ scoring_func: str = "softmax",
1603
+ routed_scaling_factor: float = 1.0,
1604
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1605
+ apply_router_weight_on_input: bool = False,
1606
+ activation: str = "silu",
1607
+ enable_eplb: bool = False,
1608
+ expert_load_view: Optional[torch.Tensor] = None,
1609
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1610
+ logical_replica_count: Optional[torch.Tensor] = None,
1611
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
1612
+ assert self.fused_experts is None
1613
+
1614
+ if enable_eplb:
1615
+ raise NotImplementedError("EPLB not supported for "
1616
+ "`CompressedTensorsWNA16MoEMethod` yet.")
1617
+
1618
+ from vllm.model_executor.layers.fused_moe import fused_experts
1619
+
1620
+ topk_weights, topk_ids = FusedMoE.select_experts(
1621
+ hidden_states=x,
1622
+ router_logits=router_logits,
1623
+ use_grouped_topk=use_grouped_topk,
1624
+ top_k=top_k,
1625
+ renormalize=renormalize,
1626
+ topk_group=topk_group,
1627
+ num_expert_group=num_expert_group,
1628
+ custom_routing_function=custom_routing_function,
1629
+ scoring_func=scoring_func,
1630
+ routed_scaling_factor=routed_scaling_factor,
1631
+ e_score_correction_bias=e_score_correction_bias,
1632
+ indices_type=self.topk_indices_dtype)
1633
+
1634
+ return fused_experts(
1635
+ x,
1636
+ layer.w13_weight_packed,
1637
+ layer.w2_weight_packed,
1638
+ topk_weights=topk_weights,
1639
+ topk_ids=topk_ids,
1640
+ inplace=True,
1641
+ activation=activation,
1642
+ use_int4_w4a16=self.num_bits == 4,
1643
+ use_int8_w8a16=self.num_bits == 8,
1644
+ global_num_experts=global_num_experts,
1645
+ apply_router_weight_on_input=apply_router_weight_on_input,
1646
+ expert_map=expert_map,
1647
+ w1_scale=layer.w13_weight_scale,
1648
+ w2_scale=layer.w2_weight_scale,
1649
+ w1_zp=None,
1650
+ w2_zp=None,
1651
+ block_shape=[0, self.group_size])