vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1697 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """PyTorch Mllama model."""
18
+ import math
19
+ from collections.abc import Iterable, Mapping, Sequence
20
+ from typing import Annotated, Literal, Optional, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import transformers.models.mllama.configuration_mllama as config_mllama
26
+ from PIL.Image import Image
27
+ from torch import nn
28
+ from transformers import BatchFeature, MllamaConfig
29
+ from transformers.modeling_outputs import (BaseModelOutput,
30
+ CausalLMOutputWithPast)
31
+ from transformers.models.mllama.image_processing_mllama import (
32
+ get_optimal_tiled_canvas)
33
+ from transformers.models.mllama.processing_mllama import (
34
+ MllamaProcessor, get_cross_attention_token_mask)
35
+
36
+ import vllm.distributed.parallel_state as ps
37
+ from vllm.attention import Attention, AttentionMetadata, AttentionType
38
+ from vllm.attention.layer import MultiHeadAttention
39
+ from vllm.attention.ops.paged_attn import PagedAttention
40
+ from vllm.attention.selector import _Backend
41
+ from vllm.config import VllmConfig
42
+ from vllm.distributed import get_pp_group, get_tp_group
43
+ from vllm.forward_context import get_forward_context
44
+ from vllm.logger import init_logger
45
+ from vllm.model_executor.layers.layernorm import RMSNorm
46
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
47
+ QKVCrossParallelLinear,
48
+ QKVParallelLinear,
49
+ RowParallelLinear)
50
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
51
+ from vllm.model_executor.layers.quantization import QuantizationConfig
52
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
53
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
54
+ from vllm.model_executor.model_loader.weight_utils import (
55
+ default_weight_loader, maybe_remap_kv_scale_name)
56
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
57
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
58
+ from vllm.multimodal import MULTIMODAL_REGISTRY
59
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalEncDecInputs,
60
+ MultiModalFieldConfig,
61
+ MultiModalKwargsItems, MultiModalUUIDDict)
62
+ from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
63
+ MultiModalDataItems)
64
+ from vllm.multimodal.processing import (BaseProcessingInfo,
65
+ EncDecMultiModalProcessor,
66
+ PromptReplacement, PromptUpdate)
67
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
68
+ from vllm.utils.tensor_schema import TensorSchema, TensorShape
69
+
70
+ from .clip import CLIPMLP
71
+ from .interfaces import SupportsMultiModal, SupportsV0Only
72
+ from .llama import LlamaDecoderLayer, LlamaMLP
73
+ from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix
74
+
75
+ logger = init_logger(__name__)
76
+
77
+
78
+ class MllamaImagePixelInputs(TensorSchema):
79
+ """
80
+ Dimensions:
81
+ - batch_size: Batch size
82
+ - max_num_image: Max number of images
83
+ - max_num_chunk: Max number of chunks
84
+ - max_num_tiles: Max number of tiles per image
85
+ - num_channel: Number of channels
86
+ - height: Height
87
+ - width: Width
88
+ """
89
+
90
+ type: Literal["pixel_values"] = "pixel_values"
91
+
92
+ data: Annotated[torch.Tensor,
93
+ TensorShape("batch_size", "max_num_image", "max_num_chunk",
94
+ "num_channel", "height", "width")]
95
+
96
+ aspect_ratio_ids: Annotated[torch.Tensor,
97
+ TensorShape("batch_size", "max_num_image")]
98
+
99
+ aspect_ratio_mask: Annotated[
100
+ torch.Tensor,
101
+ TensorShape("batch_size", "max_num_image", "max_num_tiles")]
102
+
103
+
104
+ # TODO: support LlamaImageEmbeddingInputs
105
+
106
+
107
+ def calc_token_per_chunk(image_size: int) -> int:
108
+ assert image_size % 14 == 0, "chunk size should be multiple of 14"
109
+ token_per_chunk = (image_size // 14)**2 + 1
110
+ return token_per_chunk
111
+
112
+
113
+ class MllamaProcessingInfo(BaseProcessingInfo):
114
+
115
+ def get_hf_config(self) -> MllamaConfig:
116
+ return self.ctx.get_hf_config(MllamaConfig)
117
+
118
+ def get_hf_processor(self, **kwargs: object) -> MllamaProcessor:
119
+ return self.ctx.get_hf_processor(MllamaProcessor, **kwargs)
120
+
121
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
122
+ return {"image": None}
123
+
124
+ def get_token_per_chunk_from_config(self) -> int:
125
+ image_size = self.get_hf_config().vision_config.image_size
126
+ return calc_token_per_chunk(image_size)
127
+
128
+ def get_num_tiles_per_image(self, image_height: int,
129
+ image_width: int) -> int:
130
+ vision_config = self.get_hf_config().vision_config
131
+ max_num_tiles = vision_config.max_num_tiles
132
+ image_size = vision_config.image_size
133
+ tiled_height, tiled_width = get_optimal_tiled_canvas(
134
+ image_height,
135
+ image_width,
136
+ max_num_tiles,
137
+ tile_size=image_size,
138
+ )
139
+ num_tiles_height = tiled_height // image_size
140
+ num_tiles_width = tiled_width // image_size
141
+ return num_tiles_height * num_tiles_width
142
+
143
+ def get_image_size_with_most_features(self) -> ImageSize:
144
+ vision_config = self.get_hf_config().vision_config
145
+ image_size = vision_config.image_size
146
+ max_num_tiles = vision_config.max_num_tiles
147
+ # Result in the max possible feature size (h:w = 16:1)
148
+ return ImageSize(height=max_num_tiles * image_size, width=image_size)
149
+
150
+
151
+ class MllamaDummyInputsBuilder(BaseDummyInputsBuilder[MllamaProcessingInfo]):
152
+
153
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
154
+ num_images = mm_counts.get("image", 0)
155
+
156
+ processor = self.info.get_hf_processor()
157
+ image_token = processor.image_token
158
+
159
+ return image_token * num_images
160
+
161
+ def get_dummy_mm_data(
162
+ self,
163
+ seq_len: int,
164
+ mm_counts: Mapping[str, int],
165
+ ) -> MultiModalDataDict:
166
+ num_images = mm_counts.get("image", 0)
167
+
168
+ target_width, target_height = \
169
+ self.info.get_image_size_with_most_features()
170
+
171
+ return {
172
+ "image":
173
+ self._get_dummy_images(width=target_width,
174
+ height=target_height,
175
+ num_images=num_images)
176
+ }
177
+
178
+
179
+ class MllamaMultiModalProcessor(EncDecMultiModalProcessor[MllamaProcessingInfo]
180
+ ):
181
+
182
+ def apply(
183
+ self,
184
+ prompt: Union[str, list[int]],
185
+ mm_data: MultiModalDataDict,
186
+ hf_processor_mm_kwargs: Mapping[str, object],
187
+ tokenization_kwargs: Optional[Mapping[str, object]] = None,
188
+ mm_uuids: Optional[MultiModalUUIDDict] = None,
189
+ ) -> MultiModalEncDecInputs:
190
+ mm_inputs = super().apply(prompt,
191
+ mm_data,
192
+ hf_processor_mm_kwargs,
193
+ tokenization_kwargs,
194
+ mm_uuids=mm_uuids)
195
+
196
+ image_token_id = self.info.get_hf_config().image_token_index
197
+ # Check that the number of image tokens in the decoder prompt matches
198
+ # the number of images provided in mm_data
199
+ num_image_tokens = mm_inputs['prompt_token_ids'].count(image_token_id)
200
+ image_data = mm_data.get("image", [])
201
+ num_images = 1 if isinstance(image_data, Image) else len(image_data)
202
+ if num_image_tokens != num_images:
203
+ raise ValueError(
204
+ f"The number of image tokens ({num_image_tokens}) must be"
205
+ f" the same as the number of images ({num_images})")
206
+
207
+ # Given prompt: <IMG0> P0 P1 <IMG1> <IMG2> P3 P4 D5 D6...., (P-prefill, D-decode) # noqa: E501
208
+ # P0 & P1 do cross attention with placeholder of <IMG0>
209
+ # P3 P4 D5 D6 do cross attention with placeholder of <IMG1> and <IMG2>
210
+ # Example input to encoder and decoder:
211
+ # {
212
+ # 'encoder': {
213
+ # 'type': 'token',
214
+ # 'prompt_token_ids': [128256, 128256, ..., 128256],
215
+ # 'prompt': '<|image|><|image|>...<|image|>',
216
+ # 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
217
+ # },
218
+ # 'decoder': {
219
+ # 'type': 'token',
220
+ # 'prompt_token_ids': [128000, 128256, 128000, 3923, 374, 279, 2262, 315, 420, 2217, 30], # noqa: E501
221
+ # 'prompt': '<|image|><|begin_of_text|>What is the content of this image?', # noqa: E501
222
+ # 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
223
+ # },
224
+ # }
225
+
226
+ if mm_data:
227
+ hf_processor = self.info.get_hf_processor()
228
+ image_token: str = hf_processor.image_token
229
+
230
+ # Since only the last group of consecutive images
231
+ # are attended by the decoded tokens, we only need to
232
+ # get the number of tokens for those images.
233
+ token_per_chunk = self.info.get_token_per_chunk_from_config()
234
+ num_decode_images = self._get_num_image_in_last_group(
235
+ mm_inputs["prompt_token_ids"])
236
+ num_encode_images = num_images - num_decode_images
237
+
238
+ # Set encoder prompt length based on the number of tiles.
239
+ # This tells the block manager to allocate correct number
240
+ # of slots for encoder tokens.
241
+ num_tiles = mm_inputs["mm_kwargs"].get_data()["num_tiles"]
242
+ decode_tiles = num_tiles[num_encode_images:num_images].sum().item()
243
+ num_tokens = decode_tiles * token_per_chunk
244
+ mm_inputs["encoder_prompt_token_ids"] = [image_token_id
245
+ ] * num_tokens
246
+ mm_inputs["encoder_prompt"] = image_token * num_tokens
247
+
248
+ return mm_inputs
249
+
250
+ def _get_num_image_in_last_group(self, prompt_token_ids: list[int]) -> int:
251
+ num_images = 0
252
+ for token_id in prompt_token_ids[::-1]:
253
+ if token_id == self.info.get_hf_config().image_token_index:
254
+ num_images += 1
255
+ elif num_images > 0:
256
+ break
257
+ return num_images
258
+
259
+ def _call_hf_processor(
260
+ self,
261
+ prompt: str,
262
+ mm_data: Mapping[str, object],
263
+ mm_kwargs: Mapping[str, object],
264
+ tok_kwargs: Mapping[str, object],
265
+ ) -> BatchFeature:
266
+ tokenizer = self.info.get_tokenizer()
267
+ if mm_data:
268
+ num_tiles = [
269
+ self.info.get_num_tiles_per_image(img.height, img.width)
270
+ for img in mm_data["images"]
271
+ ]
272
+ processed_outputs = super()._call_hf_processor(
273
+ prompt, mm_data, mm_kwargs, tok_kwargs)
274
+ processed_outputs["num_tiles"] = torch.tensor(num_tiles)
275
+ for k in ('pixel_values', 'aspect_ratio_ids', "aspect_ratio_mask"):
276
+ processed_outputs[k] = processed_outputs[k].squeeze(0)
277
+
278
+ processed_token_ids = processed_outputs.pop("input_ids")
279
+ start_idx, end_idx = 0, processed_token_ids.size(1)
280
+ processed_prompt_text = tokenizer.decode(processed_token_ids[0])
281
+
282
+ hf_processor = self.info.get_hf_processor()
283
+ bos_token = hf_processor.bos_token
284
+ # Remove the bos_token from the start of prompt,
285
+ # because we all know there would be image_token.
286
+ if processed_prompt_text.startswith(bos_token):
287
+ start_idx += 1
288
+ # Remove the bos_token from the end of prompt,
289
+ # because text is empty in this case.
290
+ if processed_prompt_text.endswith(bos_token):
291
+ end_idx -= 1
292
+ processed_outputs[
293
+ "input_ids"] = processed_token_ids[:, start_idx:end_idx]
294
+ else:
295
+ processed_outputs = tokenizer(prompt,
296
+ add_special_tokens=False,
297
+ return_tensors="pt")
298
+ return processed_outputs
299
+
300
+ def _get_mm_fields_config(
301
+ self,
302
+ hf_inputs: BatchFeature,
303
+ hf_processor_mm_kwargs: Mapping[str, object],
304
+ ) -> Mapping[str, MultiModalFieldConfig]:
305
+ return dict(
306
+ pixel_values=MultiModalFieldConfig.batched("image"),
307
+ aspect_ratio_ids=MultiModalFieldConfig.batched("image"),
308
+ aspect_ratio_mask=MultiModalFieldConfig.batched("image"),
309
+ num_tiles=MultiModalFieldConfig.batched("image"),
310
+ )
311
+
312
+ def create_encoder_prompt(
313
+ self,
314
+ prompt: Union[str, list[int]],
315
+ mm_data: MultiModalDataDict,
316
+ ) -> Union[str, list[int]]:
317
+ data = mm_data.get("image", [])
318
+ num_images = 1 if isinstance(data, Image) else len(data)
319
+ image_token_id = self.info.get_hf_config().image_token_index
320
+ return [image_token_id] * num_images
321
+
322
+ def _get_prompt_updates(
323
+ self,
324
+ mm_items: MultiModalDataItems,
325
+ hf_processor_mm_kwargs: Mapping[str, object],
326
+ out_mm_kwargs: MultiModalKwargsItems,
327
+ ) -> Sequence[PromptUpdate]:
328
+ token_per_chunk = self.info.get_token_per_chunk_from_config()
329
+ image_token_id = self.info.get_hf_config().image_token_index
330
+
331
+ def get_replacement_mllama(item_idx):
332
+ images = mm_items.get_items("image", ImageProcessorItems)
333
+ image_size = images.get_image_size(item_idx)
334
+ num_tile = self.info.get_num_tiles_per_image(
335
+ image_height=image_size.height,
336
+ image_width=image_size.width,
337
+ )
338
+ num_tokens = num_tile * token_per_chunk
339
+ return [image_token_id] * num_tokens
340
+
341
+ return [
342
+ PromptReplacement(
343
+ modality="image",
344
+ target=[image_token_id],
345
+ replacement=get_replacement_mllama,
346
+ )
347
+ ]
348
+
349
+
350
+ def _prepare_aspect_ratio_attention_mask(
351
+ aspect_ratio_mask: torch.Tensor,
352
+ num_patches: int,
353
+ target_length: int,
354
+ dtype: torch.dtype,
355
+ ) -> torch.Tensor:
356
+ # Expand aspect ratio mask to target_length
357
+ batch_size, max_num_tiles = aspect_ratio_mask.shape
358
+ attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1,
359
+ 1).to(dtype)
360
+ attention_mask = attention_mask.repeat(1, 1, target_length, 1)
361
+
362
+ # Mask padding patches
363
+ pad_patches = target_length - num_patches
364
+ attention_mask[:, :, -pad_patches:] = 0
365
+
366
+ # Invert the mask (0 -> 1, 1 -> 0)
367
+ attention_mask = 1 - attention_mask
368
+
369
+ # Reshape to 2D and create 4D attention mask
370
+ # (batch_size, 1, max_num_tiles*target_length, max_num_tiles*target_length)
371
+ attention_mask = attention_mask.reshape(batch_size,
372
+ max_num_tiles * target_length, 1)
373
+ attention_mask = attention_mask @ attention_mask.transpose(
374
+ -1, -2) * torch.finfo(dtype).min
375
+ attention_mask = attention_mask.unsqueeze(1)
376
+
377
+ return attention_mask
378
+
379
+
380
+ class ColumnParallelConv2dPatch(torch.nn.Module):
381
+ """Conv2D Patching layer with model parallelism.
382
+ Column parallel over unfolded input.
383
+ Arguments:
384
+ in_channels: Input channels.
385
+ out_channels: Output channels.
386
+ kernel_size: Size of convolution kernel.
387
+ stride (default 1): Stride for convolution.
388
+ bias (default False): Use bias in Conv2d.
389
+ Input: (bsz, in_channels, width, height)
390
+ Output: (bsz, num_tokens, out_channels)
391
+ """
392
+
393
+ def __init__(
394
+ self,
395
+ in_channels: int,
396
+ out_channels: int,
397
+ kernel_size: Union[int, tuple[int, int]],
398
+ stride: Union[int, tuple[int, int]],
399
+ bias: bool = False,
400
+ ) -> None:
401
+ super().__init__()
402
+ if isinstance(kernel_size, int):
403
+ kernel_size = (kernel_size, kernel_size)
404
+ self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
405
+ self._linear = ColumnParallelLinear(
406
+ in_channels * kernel_size[0] * kernel_size[1],
407
+ out_channels,
408
+ bias=bias,
409
+ )
410
+
411
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
412
+ x = self._unfold(x)
413
+ x = x.permute(0, 2, 1)
414
+ x, _ = self._linear(x)
415
+ return x
416
+
417
+
418
+ class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
419
+
420
+ def __init__(self,
421
+ config: config_mllama.MllamaVisionConfig,
422
+ is_gated: bool = True):
423
+ super().__init__()
424
+ self.max_num_tiles = config.max_num_tiles
425
+ self.hidden_size = config.hidden_size
426
+ self.max_aspect_ratio_id = config.max_aspect_ratio_id
427
+ self.is_gated = is_gated
428
+
429
+ self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1,
430
+ self.max_num_tiles * self.hidden_size)
431
+ if is_gated:
432
+ self.gate = nn.Parameter(torch.zeros(1))
433
+
434
+ def forward(self, hidden_state: torch.Tensor,
435
+ aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
436
+ embeddings = self.embedding(aspect_ratio_ids)
437
+ embeddings = embeddings.reshape(-1, self.max_num_tiles, 1,
438
+ self.hidden_size)
439
+
440
+ if self.is_gated:
441
+ embeddings = embeddings * self.gate.tanh()
442
+
443
+ hidden_state = hidden_state + embeddings
444
+ return hidden_state
445
+
446
+
447
+ class MllamaPrecomputedPositionEmbedding(nn.Module):
448
+
449
+ def __init__(self, config: config_mllama.MllamaVisionConfig):
450
+ super().__init__()
451
+ self.max_num_tiles = config.max_num_tiles
452
+ self.max_aspect_ratio_id = config.max_aspect_ratio_id
453
+ self.num_patches = (config.image_size // config.patch_size)**2 + 1
454
+ self.hidden_size = config.hidden_size
455
+ self.scale = config.hidden_size**-0.5
456
+
457
+ self.gate = nn.Parameter(torch.zeros(1))
458
+
459
+ # position embedding
460
+ position_embedding = torch.randn(self.num_patches, self.hidden_size)
461
+ self.embedding = nn.Parameter(self.scale * position_embedding)
462
+
463
+ # tile position embedding
464
+ self.tile_embedding = nn.Embedding(
465
+ self.max_aspect_ratio_id + 1,
466
+ self.max_num_tiles * self.num_patches * self.hidden_size)
467
+
468
+ def forward(self, hidden_state: torch.Tensor,
469
+ aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
470
+ # position embeddings
471
+ gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
472
+ hidden_state = hidden_state + gated_position_embedding.view(
473
+ 1, 1, self.num_patches, self.hidden_size)
474
+
475
+ # precomputed tile position embeddings
476
+ tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
477
+ batch_size = hidden_state.shape[0]
478
+ tile_position_embedding = tile_position_embedding.reshape(
479
+ batch_size, self.max_num_tiles, self.num_patches, self.hidden_size)
480
+ gated_tile_position_embedding = self.gate.tanh(
481
+ ) * tile_position_embedding
482
+ hidden_state = hidden_state + gated_tile_position_embedding
483
+
484
+ return hidden_state
485
+
486
+
487
+ # TODO: support other attention backends for attention in vision model
488
+ class MllamaVisionSdpaAttention(nn.Module):
489
+
490
+ def __init__(self,
491
+ config: config_mllama.MllamaVisionConfig,
492
+ quant_config: Optional[QuantizationConfig] = None,
493
+ prefix: str = ""):
494
+ super().__init__()
495
+
496
+ tensor_parallel_size = get_tp_group().world_size
497
+ self.embed_dim = config.hidden_size
498
+ self.num_heads = config.attention_heads
499
+ self.head_dim = config.hidden_size // config.attention_heads
500
+ self.num_local_heads = self.num_heads // tensor_parallel_size
501
+ self.q_size = self.num_local_heads * self.head_dim
502
+ self.kv_size = self.num_local_heads * self.head_dim
503
+
504
+ self.qkv_proj = QKVParallelLinear(
505
+ self.embed_dim,
506
+ self.head_dim,
507
+ self.num_heads,
508
+ bias=False,
509
+ quant_config=quant_config,
510
+ prefix=f"{prefix}.qkv_proj",
511
+ )
512
+ self.o_proj = RowParallelLinear(
513
+ self.num_heads * self.head_dim,
514
+ self.embed_dim,
515
+ bias=False,
516
+ input_is_parallel=True,
517
+ quant_config=quant_config,
518
+ prefix=f"{prefix}.o_proj",
519
+ )
520
+
521
+ # Use unified MultiHeadAttention with automatic backend selection
522
+ self.attn = MultiHeadAttention(self.num_local_heads, self.head_dim,
523
+ 1.0 / math.sqrt(self.head_dim))
524
+
525
+ def forward(
526
+ self,
527
+ hidden_state: torch.Tensor,
528
+ attention_mask: Optional[torch.Tensor] = None,
529
+ ) -> torch.Tensor:
530
+ qkv, _ = self.qkv_proj(hidden_state)
531
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
532
+
533
+ # Use unified MultiHeadAttention with automatic backend selection
534
+ attn_output = self.attn(q, k, v)
535
+
536
+ attn_output = attn_output.reshape(attn_output.shape[0],
537
+ attn_output.shape[1], -1)
538
+ output, _ = self.o_proj(attn_output)
539
+ return output
540
+
541
+
542
+ class MllamaVisionEncoderLayer(nn.Module):
543
+
544
+ def __init__(
545
+ self,
546
+ config: config_mllama.MllamaVisionConfig,
547
+ quant_config: Optional[QuantizationConfig],
548
+ prefix: str = "",
549
+ is_gated: bool = False,
550
+ ) -> None:
551
+ super().__init__()
552
+
553
+ self.hidden_size = config.hidden_size
554
+ self.num_attention_heads = config.attention_heads
555
+ self.is_gated = is_gated
556
+ self.intermediate_size = config.intermediate_size
557
+
558
+ self.self_attn = MllamaVisionSdpaAttention(
559
+ config, quant_config=quant_config, prefix=f"{prefix}.self_attn")
560
+ self.mlp = CLIPMLP(config,
561
+ quant_config=quant_config,
562
+ prefix=f"{prefix}.mlp")
563
+
564
+ self.input_layernorm = nn.LayerNorm(self.hidden_size,
565
+ eps=config.norm_eps)
566
+ self.post_attention_layernorm = nn.LayerNorm(self.hidden_size,
567
+ eps=config.norm_eps)
568
+
569
+ # there used to be an if else here, no code path
570
+ if is_gated:
571
+ self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4)
572
+ self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4)
573
+
574
+ def forward(
575
+ self,
576
+ hidden_state: torch.Tensor,
577
+ attention_mask: Optional[torch.Tensor] = None,
578
+ ):
579
+ # Self Attention
580
+ residual = hidden_state
581
+ hidden_state = self.input_layernorm(hidden_state)
582
+ hidden_state = self.self_attn(hidden_state,
583
+ attention_mask=attention_mask)
584
+ gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
585
+ hidden_state = residual + gate_attn * hidden_state
586
+
587
+ # Feed forward
588
+ residual = hidden_state
589
+ hidden_state = self.post_attention_layernorm(hidden_state)
590
+ hidden_state = self.mlp(hidden_state)
591
+ gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
592
+ hidden_state = residual + gate_ffn * hidden_state
593
+
594
+ return hidden_state
595
+
596
+
597
+ class MllamaVisionEncoder(nn.Module):
598
+
599
+ def __init__(
600
+ self,
601
+ config: config_mllama.MllamaVisionConfig,
602
+ quant_config: Optional[QuantizationConfig],
603
+ num_layers: int = 32,
604
+ is_gated: bool = False,
605
+ output_hidden_states=None,
606
+ prefix: str = "",
607
+ ) -> None:
608
+ super().__init__()
609
+ self.config = config
610
+ self.layers = nn.ModuleList([
611
+ MllamaVisionEncoderLayer(config,
612
+ quant_config=quant_config,
613
+ is_gated=is_gated,
614
+ prefix=f"{prefix}.layers.{layer_idx}")
615
+ for layer_idx in range(num_layers)
616
+ ])
617
+ self.output_hidden_states = output_hidden_states or []
618
+
619
+ def forward(
620
+ self,
621
+ hidden_states: torch.Tensor,
622
+ attention_mask: Optional[torch.Tensor] = None,
623
+ ) -> Union[BaseModelOutput]:
624
+ encoder_states = ()
625
+
626
+ for i, encoder_layer in enumerate(self.layers):
627
+ if i in self.output_hidden_states:
628
+ encoder_states = encoder_states + (hidden_states, )
629
+ hidden_states = encoder_layer(
630
+ hidden_states,
631
+ attention_mask,
632
+ )
633
+
634
+ if len(self.layers) - 1 in self.output_hidden_states:
635
+ encoder_states = encoder_states + (hidden_states, )
636
+
637
+ return hidden_states, encoder_states
638
+
639
+
640
+ class MllamaVisionModel(nn.Module):
641
+
642
+ def __init__(
643
+ self,
644
+ config: config_mllama.MllamaVisionConfig,
645
+ quant_config: Optional[QuantizationConfig],
646
+ prefix: str = "",
647
+ ) -> None:
648
+ super().__init__()
649
+
650
+ self.image_size = config.image_size
651
+ self.patch_size = config.patch_size
652
+ self.max_num_tiles = config.max_num_tiles
653
+ self.hidden_size = config.hidden_size
654
+ self.in_channels = config.num_channels
655
+ self.intermediate_layers_indices = config.intermediate_layers_indices
656
+
657
+ self.num_patches = (self.image_size // self.patch_size)**2 + 1
658
+ self.scale = config.hidden_size**-0.5
659
+
660
+ self.patch_embedding = ColumnParallelConv2dPatch(
661
+ in_channels=config.num_channels,
662
+ out_channels=self.hidden_size,
663
+ kernel_size=self.patch_size,
664
+ stride=self.patch_size,
665
+ bias=False,
666
+ )
667
+
668
+ self.class_embedding = nn.Parameter(self.scale *
669
+ torch.randn(self.hidden_size))
670
+ self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(
671
+ config)
672
+
673
+ self.pre_tile_positional_embedding = \
674
+ MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
675
+ self.post_tile_positional_embedding = \
676
+ MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
677
+
678
+ # layer norms
679
+ self.layernorm_pre = nn.LayerNorm(self.hidden_size)
680
+ self.layernorm_post = nn.LayerNorm(self.hidden_size)
681
+
682
+ # encoders
683
+ self.transformer = MllamaVisionEncoder(
684
+ config,
685
+ quant_config,
686
+ config.num_hidden_layers,
687
+ is_gated=False,
688
+ output_hidden_states=config.intermediate_layers_indices,
689
+ prefix=f"{prefix}.transformer",
690
+ )
691
+ self.global_transformer = MllamaVisionEncoder(
692
+ config,
693
+ quant_config,
694
+ config.num_global_layers,
695
+ is_gated=True,
696
+ prefix=f"{prefix}.global_transformer",
697
+ )
698
+
699
+ def apply_class_embedding(self,
700
+ hidden_state: torch.Tensor) -> torch.Tensor:
701
+ batch_size, _, hidden_size = hidden_state.shape
702
+ class_embedding = self.class_embedding.expand(batch_size, 1,
703
+ hidden_size)
704
+ hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
705
+ return hidden_state
706
+
707
+ def forward(self, pixel_values: torch.Tensor,
708
+ aspect_ratio_ids: torch.Tensor,
709
+ aspect_ratio_mask: torch.Tensor) -> torch.Tensor:
710
+ batch_size, num_concurrent_media, num_tiles, num_channels, \
711
+ height, width = pixel_values.shape
712
+
713
+ pixel_values = pixel_values.reshape(
714
+ batch_size * num_concurrent_media * num_tiles, num_channels,
715
+ height, width)
716
+ aspect_ratio_ids = aspect_ratio_ids.reshape(
717
+ batch_size * num_concurrent_media, -1)
718
+
719
+ # patch embedding
720
+ patch_embeds = self.patch_embedding(
721
+ pixel_values.to(self.layernorm_pre.weight.dtype))
722
+ hidden_state = patch_embeds
723
+ hidden_state = ps.get_tp_group().all_gather(hidden_state)
724
+
725
+ # tile embeddings
726
+ _, num_patches, dim = hidden_state.shape
727
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
728
+ num_tiles, -1, dim)
729
+ hidden_state = self.pre_tile_positional_embedding(
730
+ hidden_state, aspect_ratio_ids)
731
+
732
+ # apply cls token
733
+ hidden_state = hidden_state.reshape(
734
+ batch_size * num_concurrent_media * num_tiles, num_patches, dim)
735
+ hidden_state = self.apply_class_embedding(hidden_state)
736
+ num_patches += 1
737
+
738
+ # apply position embeddings
739
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
740
+ num_tiles, num_patches, dim)
741
+ hidden_state = self.gated_positional_embedding(hidden_state,
742
+ aspect_ratio_ids)
743
+
744
+ # apply encoder
745
+ hidden_state = self.layernorm_pre(hidden_state)
746
+
747
+ # Compute the number of tokens to pad
748
+ num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
749
+ # Compute padding tuple for pad function
750
+ padding = (
751
+ 0, 0, 0, num_padding_patches
752
+ ) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
753
+ # Pad the tensor
754
+ hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
755
+ slice_index = -num_padding_patches if num_padding_patches > 0 else None
756
+
757
+ attention_mask = aspect_ratio_mask.reshape(
758
+ batch_size * num_concurrent_media, -1)
759
+ attention_mask = _prepare_aspect_ratio_attention_mask(
760
+ aspect_ratio_mask=attention_mask,
761
+ num_patches=self.num_patches,
762
+ target_length=hidden_state.shape[2],
763
+ dtype=self.layernorm_pre.weight.dtype,
764
+ )
765
+
766
+ hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1,
767
+ dim)
768
+ output = self.transformer(
769
+ hidden_state,
770
+ attention_mask=attention_mask,
771
+ )
772
+ hidden_state, intermediate_hidden_states = output[0], output[1]
773
+ intermediate_hidden_states = torch.stack(intermediate_hidden_states,
774
+ dim=-1)
775
+
776
+ # apply global encoder
777
+ hidden_state = self.layernorm_post(hidden_state)
778
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
779
+ num_tiles,
780
+ num_patches + num_padding_patches,
781
+ dim)
782
+ hidden_state = self.post_tile_positional_embedding(
783
+ hidden_state, aspect_ratio_ids)
784
+ hidden_state = hidden_state.reshape(
785
+ batch_size * num_concurrent_media,
786
+ num_tiles * (num_patches + num_padding_patches), dim)
787
+ hidden_state = self.global_transformer(
788
+ hidden_state, attention_mask=attention_mask)[0]
789
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
790
+ num_tiles,
791
+ num_patches + num_padding_patches,
792
+ dim)
793
+ hidden_state = hidden_state[:, :, :slice_index]
794
+
795
+ # adding intermediate layer outputs
796
+ hidden_state = hidden_state.reshape(batch_size, num_concurrent_media,
797
+ num_tiles, num_patches, dim)
798
+ intermediate_hidden_states = intermediate_hidden_states.reshape(
799
+ batch_size * num_concurrent_media, num_tiles,
800
+ num_patches + num_padding_patches, -1)
801
+ intermediate_hidden_states = intermediate_hidden_states[:, :, :
802
+ slice_index]
803
+ intermediate_hidden_states = intermediate_hidden_states.reshape(
804
+ batch_size, num_concurrent_media, num_tiles, num_patches, -1)
805
+ hidden_state = torch.cat([hidden_state, intermediate_hidden_states],
806
+ dim=-1)
807
+ return hidden_state
808
+
809
+ def load_weights(self, weights: Iterable[tuple[str,
810
+ torch.Tensor]]) -> set[str]:
811
+ stacked_params_mapping = [
812
+ # (param_name, shard_name, shard_id)
813
+ (".qkv_proj", ".q_proj", "q"),
814
+ (".qkv_proj", ".k_proj", "k"),
815
+ (".qkv_proj", ".v_proj", "v"),
816
+ ]
817
+ params_dict = dict(self.named_parameters())
818
+ updated_params: set[str] = set()
819
+ for name, loaded_weight in weights:
820
+ if 'patch_embedding._linear.weight' in name:
821
+ loaded_weight = loaded_weight.view(loaded_weight.shape[0], -1)
822
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
823
+ if weight_name not in name:
824
+ continue
825
+ name = name.replace(weight_name, param_name)
826
+ param = params_dict[name]
827
+ updated_params.add(name)
828
+ weight_loader = param.weight_loader
829
+ weight_loader(param, loaded_weight, shard_id)
830
+ break
831
+ else:
832
+ param = params_dict.pop(name)
833
+ weight_loader = getattr(param, "weight_loader",
834
+ default_weight_loader)
835
+ weight_loader(param, loaded_weight)
836
+ updated_params.add(name)
837
+ return updated_params
838
+
839
+
840
+ class MllamaTextRMSNorm(nn.Module):
841
+
842
+ def __init__(self, hidden_size, eps=1e-6):
843
+ """
844
+ MllamaTextRMSNorm is equivalent to T5LayerNorm
845
+ """
846
+ super().__init__()
847
+ self.weight = nn.Parameter(torch.ones(hidden_size))
848
+ self.variance_epsilon = eps
849
+
850
+ def forward(self, hidden_states):
851
+ input_dtype = hidden_states.dtype
852
+ hidden_states = hidden_states.to(torch.float32)
853
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
854
+ hidden_states = hidden_states * torch.rsqrt(variance +
855
+ self.variance_epsilon)
856
+ return self.weight * hidden_states.to(input_dtype)
857
+
858
+ def extra_repr(self):
859
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
860
+
861
+
862
+ class MllamaTextCrossAttention(nn.Module):
863
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
864
+
865
+ def __init__(
866
+ self,
867
+ config: Optional[config_mllama.MllamaTextConfig] = None,
868
+ layer_idx: Optional[int] = None,
869
+ quant_config: Optional[QuantizationConfig] = None,
870
+ prefix: str = "",
871
+ ):
872
+ super().__init__()
873
+ self.config = config
874
+ self.pipeline_parallel_rank = get_pp_group().rank_in_group
875
+ self.tensor_parallel_size = get_tp_group().world_size
876
+ self.num_heads = config.num_attention_heads
877
+ self.num_key_value_heads = config.num_key_value_heads
878
+
879
+ self.num_local_heads = self.num_heads // self.tensor_parallel_size
880
+ self.num_local_key_value_heads = \
881
+ self.num_key_value_heads // self.tensor_parallel_size
882
+ self.hidden_size = config.hidden_size
883
+ self.head_dim = config.hidden_size // self.num_heads
884
+ self.num_key_value_heads = config.num_key_value_heads
885
+
886
+ self.layer_idx = layer_idx
887
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
888
+ self.q_local_size = self.num_local_heads * self.head_dim
889
+ self.kv_local_size = self.num_local_key_value_heads * self.head_dim
890
+
891
+ self.qkv_proj = QKVCrossParallelLinear(
892
+ self.hidden_size,
893
+ self.head_dim,
894
+ self.num_heads,
895
+ self.num_key_value_heads,
896
+ bias=False,
897
+ quant_config=quant_config,
898
+ prefix=f"{prefix}.qkv_proj",
899
+ )
900
+
901
+ self.o_proj = RowParallelLinear(
902
+ self.num_heads * self.head_dim,
903
+ self.hidden_size,
904
+ bias=False,
905
+ input_is_parallel=True,
906
+ quant_config=quant_config,
907
+ prefix=f"{prefix}.o_proj",
908
+ )
909
+ # vllm.model_executor.layers.layernorm.RMSNorm has precision issue,
910
+ # use huggingface's instead
911
+ self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
912
+ self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
913
+ self.scaling = self.head_dim**-0.5
914
+
915
+ self.attn = Attention(
916
+ self.num_local_heads,
917
+ self.head_dim,
918
+ self.scaling,
919
+ self.num_local_key_value_heads,
920
+ prefix=f"{prefix}.attn",
921
+ attn_type=AttentionType.ENCODER_DECODER,
922
+ )
923
+
924
+ def forward(
925
+ self,
926
+ hidden_states: torch.Tensor,
927
+ attention_mask: Optional[torch.Tensor],
928
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
929
+ cross_attention_states: Optional[torch.Tensor],
930
+ ) -> torch.Tensor:
931
+ q, k, v = self.qkv_proj(hidden_states, cross_attention_states)
932
+ if cross_attention_states is not None:
933
+ k = k.view(-1, self.num_local_key_value_heads, self.head_dim)
934
+ v = v.view(-1, self.num_local_key_value_heads, self.head_dim)
935
+ k = self.k_norm(k)
936
+
937
+ q = q.view(-1, self.num_local_heads, self.head_dim)
938
+ q = self.q_norm(q)
939
+
940
+ if attention_mask is not None:
941
+ output = self._attention_with_mask(q, k, v, attention_mask,
942
+ kv_range_for_decode)
943
+ else:
944
+ output = self.attn(
945
+ q.view(-1, self.num_local_heads * self.head_dim), k, v)
946
+ out, _ = self.o_proj(output)
947
+ return out
948
+
949
+ def _attention_with_mask(
950
+ self,
951
+ q: torch.Tensor,
952
+ k: torch.Tensor,
953
+ v: torch.Tensor,
954
+ attention_mask: torch.Tensor,
955
+ kv_range_for_decode: list[tuple[int, int]],
956
+ ) -> torch.Tensor:
957
+ kv_cache = self.attn.kv_cache[self.pipeline_parallel_rank]
958
+ attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
959
+ # Skip writing kv-cache for the initial profiling run.
960
+ # TODO (NickLucche) replace with custom attn bias and use standard attn
961
+ if len(kv_cache.shape) > 1:
962
+ i = torch.ones(1, dtype=torch.float32)
963
+ if self.attn.backend in (_Backend.FLASH_ATTN,
964
+ _Backend.FLASH_ATTN_VLLM_V1):
965
+ cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
966
+ cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
967
+ torch.ops._C_cache_ops.reshape_and_cache_flash(
968
+ cached_k,
969
+ cached_v,
970
+ kv_cache[0],
971
+ kv_cache[1],
972
+ attn_metadata.
973
+ cross_slot_mapping, # type: ignore[union-attr]
974
+ "auto",
975
+ i,
976
+ i,
977
+ )
978
+ elif self.attn.backend in (_Backend.XFORMERS, _Backend.ROCM_FLASH,
979
+ _Backend.TORCH_SDPA):
980
+ key_cache, value_cache = PagedAttention.split_kv_cache(
981
+ kv_cache, self.num_local_key_value_heads, self.head_dim)
982
+ cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
983
+ cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
984
+ PagedAttention.write_to_paged_cache(
985
+ cached_k, cached_v, key_cache, value_cache,
986
+ attn_metadata.cross_slot_mapping, "auto", i, i)
987
+ else:
988
+ raise ValueError(
989
+ f"Unsupported Attention backend {self.attn.backend} "
990
+ "enum found. Expected the Attention backend to be "
991
+ "FLASH_ATTN, FLASH_ATTN_VLLM_V1, "
992
+ "XFORMERS or TORCH_SDPA.")
993
+
994
+ # We have to call torch.sdpa for prefill when using a
995
+ # custom cross-attention mask. Because the mask is not a
996
+ # standard causal mask, neither a block diagonal mask which
997
+ # can be optimized by xformers.BlockDiagonalMask.
998
+ # The mask is specially calculated for supporting multi
999
+ # images and interleaved images.
1000
+ q_len = q.shape[0]
1001
+ kv_len = k.shape[0]
1002
+ q = q.transpose(0, 1).view(self.num_local_key_value_heads,
1003
+ self.num_key_value_groups, q_len,
1004
+ self.head_dim).contiguous()
1005
+ k = k.transpose(0,
1006
+ 1)[:,
1007
+ None, :, :].expand(self.num_local_key_value_heads,
1008
+ self.num_key_value_groups,
1009
+ kv_len,
1010
+ self.head_dim).contiguous()
1011
+ v = v.transpose(0,
1012
+ 1)[:,
1013
+ None, :, :].expand(self.num_local_key_value_heads,
1014
+ self.num_key_value_groups,
1015
+ kv_len,
1016
+ self.head_dim).contiguous()
1017
+ attention_mask = attention_mask.view(1, 1, q_len, kv_len)
1018
+ output = F.scaled_dot_product_attention(q,
1019
+ k,
1020
+ v,
1021
+ attn_mask=attention_mask,
1022
+ is_causal=False)
1023
+ output = output.permute(2, 0, 1, 3).reshape(
1024
+ q_len, self.num_local_heads * self.head_dim)
1025
+ return output
1026
+
1027
+
1028
+ class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
1029
+ """Cross-attention transformer block with tanh-gated attention
1030
+ and feedforward."""
1031
+
1032
+ def __init__(
1033
+ self,
1034
+ config: config_mllama.MllamaTextConfig,
1035
+ layer_idx: int,
1036
+ quant_config: Optional[QuantizationConfig],
1037
+ prefix: str = "",
1038
+ ) -> None:
1039
+ super().__init__()
1040
+
1041
+ self.layer_idx = layer_idx
1042
+ self.cross_attn = MllamaTextCrossAttention(
1043
+ config=config,
1044
+ layer_idx=layer_idx,
1045
+ quant_config=quant_config,
1046
+ prefix=f"{prefix}.cross_attn",
1047
+ )
1048
+
1049
+ self.input_layernorm = RMSNorm(config.hidden_size,
1050
+ eps=config.rms_norm_eps)
1051
+ self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1))
1052
+
1053
+ self.mlp = LlamaMLP(
1054
+ hidden_size=config.hidden_size,
1055
+ intermediate_size=config.intermediate_size,
1056
+ hidden_act=config.hidden_act,
1057
+ quant_config=quant_config,
1058
+ prefix=f"{prefix}.mlp",
1059
+ )
1060
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
1061
+ eps=config.rms_norm_eps)
1062
+ self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1))
1063
+
1064
+ def forward(
1065
+ self,
1066
+ hidden_states: torch.Tensor,
1067
+ cross_attention_states: torch.Tensor,
1068
+ cross_attention_mask: torch.Tensor,
1069
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
1070
+ full_text_row_masked_out_mask: torch.Tensor,
1071
+ ) -> torch.Tensor:
1072
+ residual = hidden_states
1073
+ hidden_states = self.input_layernorm(hidden_states)
1074
+
1075
+ hidden_states = self.cross_attn(
1076
+ hidden_states=hidden_states,
1077
+ attention_mask=cross_attention_mask,
1078
+ kv_range_for_decode=kv_range_for_decode,
1079
+ cross_attention_states=cross_attention_states,
1080
+ )
1081
+ hidden_states = full_text_row_masked_out_mask * hidden_states
1082
+ hidden_states = residual + self.cross_attn_attn_gate.tanh(
1083
+ ) * hidden_states
1084
+
1085
+ residual = hidden_states
1086
+ hidden_states = self.post_attention_layernorm(hidden_states)
1087
+ hidden_states = self.mlp(hidden_states)
1088
+ hidden_states = full_text_row_masked_out_mask * hidden_states
1089
+ hidden_states = residual + self.cross_attn_mlp_gate.tanh(
1090
+ ) * hidden_states
1091
+ return hidden_states
1092
+
1093
+
1094
+ class MllamaTextModel(nn.Module):
1095
+ config_class = config_mllama.MllamaTextConfig
1096
+ base_model_prefix = "model"
1097
+
1098
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1099
+ super().__init__()
1100
+
1101
+ config = vllm_config.model_config.hf_config.text_config
1102
+ cache_config = vllm_config.cache_config
1103
+ quant_config = vllm_config.quant_config
1104
+
1105
+ self.vocab_size = config.vocab_size
1106
+ self.embed_tokens = VocabParallelEmbedding(config.vocab_size + 8,
1107
+ config.hidden_size)
1108
+ self.cross_attention_layers = config.cross_attention_layers
1109
+
1110
+ layers = []
1111
+ for layer_idx in range(config.num_hidden_layers):
1112
+ if layer_idx in self.cross_attention_layers:
1113
+ layers.append(
1114
+ MllamaCrossAttentionDecoderLayer(
1115
+ config,
1116
+ layer_idx,
1117
+ quant_config=quant_config,
1118
+ prefix=f"{prefix}.layers.{layer_idx}",
1119
+ ))
1120
+ else:
1121
+ # TODO: force LlamaDecoderLayer to config.attention_bias=False
1122
+ layers.append(
1123
+ LlamaDecoderLayer(
1124
+ config,
1125
+ cache_config=cache_config,
1126
+ quant_config=quant_config,
1127
+ prefix=f"{prefix}.layers.{layer_idx}",
1128
+ ))
1129
+
1130
+ self.layers = nn.ModuleList(layers)
1131
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1132
+
1133
+ def forward(
1134
+ self,
1135
+ input_ids: torch.LongTensor,
1136
+ positions: Optional[torch.LongTensor],
1137
+ cross_attention_states: Optional[torch.LongTensor],
1138
+ cross_attention_mask: Optional[torch.LongTensor],
1139
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
1140
+ full_text_row_masked_out_mask: Optional[tuple[torch.Tensor,
1141
+ torch.Tensor]],
1142
+ skip_cross_attention: bool,
1143
+ ) -> torch.Tensor:
1144
+ inputs_embeds = self.embed_tokens(input_ids)
1145
+ hidden_states = inputs_embeds
1146
+
1147
+ for idx, decoder_layer in enumerate(self.layers):
1148
+ if idx in self.cross_attention_layers:
1149
+ if not skip_cross_attention:
1150
+ hidden_states = decoder_layer(
1151
+ hidden_states=hidden_states,
1152
+ cross_attention_states=cross_attention_states,
1153
+ cross_attention_mask=cross_attention_mask,
1154
+ kv_range_for_decode=kv_range_for_decode,
1155
+ full_text_row_masked_out_mask=
1156
+ full_text_row_masked_out_mask,
1157
+ )
1158
+ else:
1159
+ hidden_states, residual = decoder_layer(
1160
+ positions=positions,
1161
+ hidden_states=hidden_states,
1162
+ residual=None,
1163
+ )
1164
+ hidden_states = hidden_states + residual
1165
+ hidden_states = self.norm(hidden_states)
1166
+ return hidden_states
1167
+
1168
+
1169
+ class MllamaForCausalLM(nn.Module):
1170
+ config_class = config_mllama.MllamaTextConfig
1171
+ base_model_prefix = "language_model"
1172
+ _no_split_modules = [
1173
+ "MllamaCrossAttentionDecoderLayer", "MllamaSelfAttentionDecoderLayer"
1174
+ ]
1175
+
1176
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1177
+ super().__init__()
1178
+
1179
+ config = vllm_config.model_config.hf_config.text_config
1180
+ quant_config = vllm_config.quant_config
1181
+ self.quant_config = quant_config
1182
+
1183
+ self.vocab_size = config.vocab_size
1184
+ self.model = MllamaTextModel(vllm_config=vllm_config,
1185
+ prefix=f"{prefix}.model")
1186
+ self.lm_head = ParallelLMHead(
1187
+ config.vocab_size,
1188
+ config.hidden_size,
1189
+ org_num_embeddings=config.vocab_size,
1190
+ padding_size=DEFAULT_VOCAB_PADDING_SIZE,
1191
+ quant_config=quant_config,
1192
+ prefix=f"{prefix}.lm_head",
1193
+ )
1194
+
1195
+ def forward(
1196
+ self,
1197
+ input_ids: torch.LongTensor,
1198
+ positions: Optional[torch.LongTensor],
1199
+ cross_attention_states: Optional[torch.LongTensor],
1200
+ cross_attention_mask: Optional[torch.LongTensor],
1201
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
1202
+ full_text_row_masked_out_mask: Optional[tuple[torch.Tensor,
1203
+ torch.Tensor]],
1204
+ skip_cross_attention: bool,
1205
+ ) -> torch.Tensor:
1206
+ hidden_states = self.model(
1207
+ input_ids=input_ids,
1208
+ positions=positions,
1209
+ cross_attention_states=cross_attention_states,
1210
+ cross_attention_mask=cross_attention_mask,
1211
+ kv_range_for_decode=kv_range_for_decode,
1212
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
1213
+ skip_cross_attention=skip_cross_attention,
1214
+ )
1215
+ return hidden_states
1216
+
1217
+ def load_weights(self, weights: Iterable[tuple[str,
1218
+ torch.Tensor]]) -> set[str]:
1219
+ stacked_params_mapping = [
1220
+ # (param_name, shard_name, shard_id)
1221
+ (".qkv_proj", ".q_proj", "q"),
1222
+ (".qkv_proj", ".k_proj", "k"),
1223
+ (".qkv_proj", ".v_proj", "v"),
1224
+ (".gate_up_proj", ".gate_proj", 0),
1225
+ (".gate_up_proj", ".up_proj", 1),
1226
+ ]
1227
+ params_dict = dict(self.named_parameters())
1228
+ updated_params: set[str] = set()
1229
+ for name, loaded_weight in weights:
1230
+ if 'patch_embedding.weight' in name:
1231
+ name = name.replace('patch_embedding.weight',
1232
+ 'patch_embedding._linear.weight')
1233
+ loaded_weight = loaded_weight.view(loaded_weight.shape[0], -1)
1234
+ if (self.quant_config is not None and
1235
+ (scale_name := self.quant_config.get_cache_scale(name))):
1236
+ # Loading kv cache quantization scales
1237
+ param = params_dict[scale_name]
1238
+ weight_loader = getattr(param, "weight_loader",
1239
+ default_weight_loader)
1240
+ loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
1241
+ loaded_weight[0])
1242
+ weight_loader(param, loaded_weight)
1243
+ updated_params.add(scale_name)
1244
+ continue
1245
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
1246
+ if weight_name not in name:
1247
+ continue
1248
+ name = name.replace(weight_name, param_name)
1249
+ param = params_dict[name]
1250
+ updated_params.add(name)
1251
+ weight_loader = param.weight_loader
1252
+ weight_loader(param, loaded_weight, shard_id)
1253
+ break
1254
+ else:
1255
+ orig_name = name
1256
+ name = maybe_remap_kv_scale_name(name, params_dict)
1257
+ if name is None:
1258
+ logger.debug("Missing name %s, orig name %s", name,
1259
+ orig_name)
1260
+ continue
1261
+
1262
+ param = params_dict.pop(name)
1263
+ weight_loader = getattr(param, "weight_loader",
1264
+ default_weight_loader)
1265
+ weight_loader(param, loaded_weight)
1266
+ updated_params.add(name)
1267
+ return updated_params
1268
+
1269
+
1270
+ @MULTIMODAL_REGISTRY.register_processor(MllamaMultiModalProcessor,
1271
+ info=MllamaProcessingInfo,
1272
+ dummy_inputs=MllamaDummyInputsBuilder)
1273
+ class MllamaForConditionalGeneration(nn.Module, SupportsMultiModal,
1274
+ SupportsV0Only):
1275
+ packed_modules_mapping = {
1276
+ "qkv_proj": ["q_proj", "k_proj", "v_proj"],
1277
+ "gate_up_proj": ["gate_proj", "up_proj"]
1278
+ }
1279
+
1280
+ hf_to_vllm_mapper = WeightsMapper(
1281
+ orig_to_new_prefix={
1282
+ # mapping for new names in checkpoint saved after transformers v4.52
1283
+ "model.vision_model.": "vision_model.",
1284
+ "model.multi_modal_projector.": "multi_modal_projector.",
1285
+ "model.language_model.": "language_model.model.",
1286
+ "lm_head.": "language_model.lm_head.",
1287
+ },
1288
+ orig_to_new_suffix={
1289
+ "patch_embedding.weight": "patch_embedding._linear.weight",
1290
+ },
1291
+ )
1292
+
1293
+ @classmethod
1294
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
1295
+ if modality.startswith("image"):
1296
+ return "<|image|>"
1297
+
1298
+ raise ValueError("Only image modality is supported")
1299
+
1300
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1301
+ super().__init__()
1302
+ config: MllamaConfig = vllm_config.model_config.hf_config
1303
+ quant_config = vllm_config.quant_config
1304
+ self.config = config
1305
+ self.quant_config = quant_config
1306
+ self.vocab_size = config.text_config.vocab_size
1307
+ self.hidden_size = config.text_config.hidden_size
1308
+ self.max_num_tiles = config.vision_config.max_num_tiles
1309
+ self.vision_output_dim = config.vision_config.vision_output_dim
1310
+ self.pad_token_id = \
1311
+ config.pad_token_id if config.pad_token_id is not None else -1
1312
+ self.image_size = config.vision_config.image_size
1313
+ self.image_token_id = config.image_token_index
1314
+
1315
+ self.vision_model = MllamaVisionModel(config.vision_config,
1316
+ quant_config,
1317
+ prefix=maybe_prefix(
1318
+ prefix, "vision_model"))
1319
+ self.language_model = MllamaForCausalLM(
1320
+ vllm_config=vllm_config,
1321
+ prefix=maybe_prefix(prefix, "language_model"),
1322
+ )
1323
+ self.multi_modal_projector = ColumnParallelLinear(
1324
+ config.vision_config.vision_output_dim,
1325
+ config.text_config.hidden_size,
1326
+ bias=True,
1327
+ quant_config=quant_config,
1328
+ gather_output=True,
1329
+ prefix=maybe_prefix(prefix, "multi_modal_projector"),
1330
+ )
1331
+ self.logits_processor = LogitsProcessor(config.output_hidden_states,
1332
+ config.text_config.vocab_size)
1333
+
1334
+ def compute_logits(
1335
+ self,
1336
+ hidden_states: torch.Tensor,
1337
+ sampling_metadata: SamplingMetadata,
1338
+ ) -> Optional[torch.Tensor]:
1339
+ logits = self.logits_processor(self.language_model.lm_head,
1340
+ hidden_states, sampling_metadata)
1341
+ return logits
1342
+
1343
+ def unpack_data(self,
1344
+ image_data: Union[list[torch.Tensor], torch.Tensor],
1345
+ padding_value=0) -> torch.Tensor:
1346
+ if isinstance(image_data, torch.Tensor):
1347
+ # torch.Tensor
1348
+ return image_data
1349
+ else:
1350
+ assert isinstance(
1351
+ image_data[0],
1352
+ torch.Tensor), "Image data is not properly batched."
1353
+ # list[torch.Tensor]
1354
+ bsz = len(image_data)
1355
+ max_length = max(t.size(0) for t in image_data)
1356
+ trailing_dims = image_data[0].shape[1:]
1357
+ for data in image_data:
1358
+ cur_trailing_dims = data.shape[1:]
1359
+ assert cur_trailing_dims == trailing_dims
1360
+ output_tensor = torch.full((bsz, max_length, *trailing_dims),
1361
+ padding_value,
1362
+ dtype=image_data[0].dtype,
1363
+ device=image_data[0].device)
1364
+ for i, t in enumerate(image_data):
1365
+ output_tensor[i, :t.size(0)] = t
1366
+ return output_tensor
1367
+
1368
+ def _parse_and_validate_image_input(
1369
+ self, **kwargs: object) -> Optional[MllamaImagePixelInputs]:
1370
+ # tensor with the same shape will be batched together by
1371
+ # MultiModalKwargs.batch, so pixel_values here can be:
1372
+ # - list[torch.Tensor]:
1373
+ # with shape (num_image, num_tiles, 3, image_res, image_res)
1374
+ # - torch.Tensor:
1375
+ # with shape (bs, num_image, num_tiles, 3, image_res, image_res)
1376
+ pixel_values: Optional[Union[list[list[torch.Tensor]],
1377
+ list[torch.Tensor],
1378
+ torch.Tensor]] = kwargs.pop(
1379
+ "pixel_values", None)
1380
+ image_embeds: Optional[Union[list[list[torch.Tensor]],
1381
+ list[torch.Tensor],
1382
+ torch.Tensor]] = kwargs.pop(
1383
+ "image_embeds", None)
1384
+ aspect_ratio_ids: Optional[Union[list[list[torch.Tensor]],
1385
+ list[torch.Tensor],
1386
+ torch.Tensor]] = kwargs.pop(
1387
+ "aspect_ratio_ids", None)
1388
+ aspect_ratio_mask: Optional[Union[list[list[torch.Tensor]],
1389
+ list[torch.Tensor],
1390
+ torch.Tensor]] = kwargs.pop(
1391
+ "aspect_ratio_mask", None)
1392
+
1393
+ if pixel_values is None and image_embeds is None:
1394
+ return None
1395
+
1396
+ if pixel_values is not None and image_embeds is not None:
1397
+ raise ValueError(
1398
+ "Both pixel values and image embeds are provided.")
1399
+
1400
+ if pixel_values is not None:
1401
+ assert aspect_ratio_ids is not None
1402
+ assert aspect_ratio_mask is not None
1403
+
1404
+ return MllamaImagePixelInputs(
1405
+ type="pixel_values",
1406
+ data=self.unpack_data(pixel_values),
1407
+ aspect_ratio_ids=self.unpack_data(aspect_ratio_ids),
1408
+ aspect_ratio_mask=self.unpack_data(aspect_ratio_mask))
1409
+
1410
+ if image_embeds is not None:
1411
+ raise NotImplementedError
1412
+
1413
+ raise AssertionError("This line should be unreachable.")
1414
+
1415
+ def _get_and_validate_encoder_lens(
1416
+ self,
1417
+ encoder_seq_lens: list[int],
1418
+ num_tiles: list[list[int]],
1419
+ num_tokens_per_tile: int,
1420
+ ) -> list[int]:
1421
+ # Get the actual number of encoder tokens for each sample.
1422
+ # Because attn_metadata.encoder_seq_lens only counts the last
1423
+ # group of images for each sample, which is used to cheat the
1424
+ # block manager to allocate blocks for those images only.
1425
+ # See MllamaMultiModalProcessor for more details.
1426
+ actual_encoder_seq_lens = [
1427
+ sum(num_tile) * num_tokens_per_tile for num_tile in num_tiles
1428
+ ]
1429
+
1430
+ # remove 0 encoder len entries for text-only requests for these
1431
+ # assertions
1432
+ attn_metadata_lens = [x for x in encoder_seq_lens if x > 0]
1433
+ assert len(actual_encoder_seq_lens) == len(attn_metadata_lens)
1434
+ for actual_len, last_group_len in zip(actual_encoder_seq_lens,
1435
+ attn_metadata_lens):
1436
+ assert actual_len >= last_group_len
1437
+
1438
+ return actual_encoder_seq_lens
1439
+
1440
+ def flat_encoder_result(self, cross_attention_states: torch.Tensor,
1441
+ attn_metadata: AttentionMetadata,
1442
+ actual_encoder_seq_lens: list[int]):
1443
+
1444
+ cross_attention_states_flat = torch.zeros(
1445
+ sum(actual_encoder_seq_lens),
1446
+ cross_attention_states.shape[-1],
1447
+ device=cross_attention_states.device,
1448
+ dtype=cross_attention_states.dtype)
1449
+ start_pos = 0
1450
+ for seq_len, vision_token_in_batch in zip(actual_encoder_seq_lens,
1451
+ cross_attention_states):
1452
+ end_pos = start_pos + seq_len
1453
+ cross_attention_states_flat[
1454
+ start_pos:end_pos] = vision_token_in_batch[:seq_len]
1455
+ start_pos = end_pos
1456
+ cross_attention_states = cross_attention_states_flat
1457
+ return cross_attention_states
1458
+
1459
+ def get_language_model(self) -> torch.nn.Module:
1460
+ return self.language_model
1461
+
1462
+ def get_cross_attention_states(
1463
+ self,
1464
+ image_inputs: MllamaImagePixelInputs,
1465
+ attn_metadata: AttentionMetadata,
1466
+ actual_encoder_seq_lens: list[int],
1467
+ ) -> tuple[torch.Tensor]:
1468
+ # NOTE: llama's reference implementation runs vision model on CPU
1469
+ pixel_values = image_inputs['data']
1470
+ aspect_ratio_ids = image_inputs['aspect_ratio_ids']
1471
+ aspect_ratio_mask = image_inputs['aspect_ratio_mask']
1472
+ cross_attention_states = self.vision_model(pixel_values,
1473
+ aspect_ratio_ids,
1474
+ aspect_ratio_mask)
1475
+ cross_attention_states, _ = self.multi_modal_projector(
1476
+ cross_attention_states)
1477
+
1478
+ bsz, _, _, _, image_token_dim = tuple(cross_attention_states.shape)
1479
+ cross_attention_states = cross_attention_states.view(
1480
+ bsz, -1, image_token_dim)
1481
+
1482
+ cross_attention_states = self.flat_encoder_result(
1483
+ cross_attention_states, attn_metadata, actual_encoder_seq_lens)
1484
+
1485
+ return cross_attention_states
1486
+
1487
+ def get_cross_attention_mask(
1488
+ self,
1489
+ input_ids: torch.Tensor,
1490
+ attn_metadata: AttentionMetadata,
1491
+ num_tiles: list[list[int]],
1492
+ num_tokens_per_tile: int,
1493
+ dtype: torch.dtype,
1494
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1495
+ token_ids = input_ids.tolist()
1496
+ start = 0
1497
+ batch_token_ids = []
1498
+ for seq_len in attn_metadata.seq_lens:
1499
+ batch_token_ids.append(token_ids[start:start + seq_len])
1500
+ start += seq_len
1501
+ sparse_mask = [
1502
+ get_cross_attention_token_mask(t, self.image_token_id)
1503
+ for t in batch_token_ids
1504
+ ]
1505
+
1506
+ # Skip generating cross-attention mask if all samples
1507
+ # are text-only or have only 1 leading image.
1508
+ if skip_attention_mask(sparse_mask):
1509
+ return None, None
1510
+
1511
+ dense_mask, tile_range_for_decode = \
1512
+ convert_sparse_cross_attention_mask_to_dense(
1513
+ sparse_mask, num_tiles, attn_metadata.seq_lens)
1514
+ cross_attention_mask = \
1515
+ convert_dense_cross_attention_mask_to_tensor(
1516
+ dense_mask, num_tokens_per_tile, input_ids.device, dtype)
1517
+ kv_range_for_decode = [[
1518
+ t[0] * num_tokens_per_tile, t[1] * num_tokens_per_tile
1519
+ ] for t in tile_range_for_decode]
1520
+
1521
+ return cross_attention_mask, kv_range_for_decode
1522
+
1523
+ def get_full_text_row_masked_out_mask(
1524
+ self,
1525
+ attn_metadata: AttentionMetadata,
1526
+ device: torch.device,
1527
+ ) -> torch.Tensor:
1528
+ full_text_row_masked_out_mask = torch.ones(
1529
+ (attn_metadata.num_prefill_tokens, 1), dtype=torch.bool)
1530
+ start_pos = 0
1531
+ for seq_len, encoder_seq_len in zip(attn_metadata.seq_lens,
1532
+ attn_metadata.encoder_seq_lens):
1533
+ if encoder_seq_len == 0:
1534
+ full_text_row_masked_out_mask[start_pos:start_pos +
1535
+ seq_len] = False
1536
+ start_pos += seq_len
1537
+ full_text_row_masked_out_mask = full_text_row_masked_out_mask.to(
1538
+ device)
1539
+ return full_text_row_masked_out_mask
1540
+
1541
+ def forward(
1542
+ self,
1543
+ input_ids: torch.Tensor,
1544
+ positions: torch.Tensor,
1545
+ **kwargs: object,
1546
+ ) -> Union[CausalLMOutputWithPast]:
1547
+ attn_metadata = get_forward_context().attn_metadata
1548
+ if attn_metadata.num_prefill_tokens > 0 and \
1549
+ attn_metadata.num_decode_tokens > 0:
1550
+ raise ValueError("Chunk prefill not supported")
1551
+ image_inputs = self._parse_and_validate_image_input(**kwargs)
1552
+ cross_attention_states = None
1553
+ cross_attention_mask = None
1554
+ kv_range_for_decode = None
1555
+
1556
+ # For 1) text-only prefill and decode, 2) image-present decode.
1557
+ if image_inputs is None:
1558
+ full_text_row_masked_out_mask = (
1559
+ attn_metadata.encoder_seq_lens_tensor
1560
+ != 0).reshape(-1, 1).to(input_ids.device)
1561
+ skip_cross_attention = attn_metadata.max_encoder_seq_len == 0
1562
+
1563
+ # For image-present prefill.
1564
+ else:
1565
+ skip_cross_attention = False
1566
+
1567
+ num_tiles = [t.tolist() for t in kwargs.pop("num_tiles")]
1568
+ num_tokens_per_tile = calc_token_per_chunk(self.image_size)
1569
+
1570
+ actual_encoder_seq_lens = self._get_and_validate_encoder_lens(
1571
+ attn_metadata.encoder_seq_lens,
1572
+ num_tiles,
1573
+ num_tokens_per_tile,
1574
+ )
1575
+
1576
+ cross_attention_states = self.get_cross_attention_states(
1577
+ image_inputs, attn_metadata, actual_encoder_seq_lens)
1578
+
1579
+ full_text_row_masked_out_mask = \
1580
+ self.get_full_text_row_masked_out_mask(
1581
+ attn_metadata, input_ids.device)
1582
+
1583
+ cross_attention_mask, kv_range_for_decode = \
1584
+ self.get_cross_attention_mask(
1585
+ input_ids, attn_metadata, num_tiles,
1586
+ num_tokens_per_tile, cross_attention_states.dtype)
1587
+
1588
+ outputs = self.language_model(
1589
+ input_ids=input_ids,
1590
+ positions=positions,
1591
+ cross_attention_states=cross_attention_states,
1592
+ cross_attention_mask=cross_attention_mask,
1593
+ kv_range_for_decode=kv_range_for_decode,
1594
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
1595
+ skip_cross_attention=skip_cross_attention,
1596
+ )
1597
+
1598
+ return outputs
1599
+
1600
+ def load_weights(self, weights: Iterable[tuple[str,
1601
+ torch.Tensor]]) -> set[str]:
1602
+ loader = AutoWeightsLoader(self)
1603
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1604
+
1605
+ def get_mm_mapping(self) -> MultiModelKeys:
1606
+ """
1607
+ Get the module prefix in multimodal models
1608
+ """
1609
+ return MultiModelKeys.from_string_field(
1610
+ language_model="language_model",
1611
+ connector="multi_modal_projector",
1612
+ tower_model="vision_model")
1613
+
1614
+
1615
+ def skip_attention_mask(sparse_mask: list[list[int]]) -> bool:
1616
+ for mask in sparse_mask:
1617
+ # Skip text-only samples.
1618
+ if len(mask) == 0:
1619
+ continue
1620
+ # If the sample contains more than 1 images,
1621
+ # we can't skip mask.
1622
+ if len(mask) != 1:
1623
+ return False
1624
+ # If the sample contains only 1 image,
1625
+ # but the image is not the leading one,
1626
+ # we can't skip mask.
1627
+ if mask[0][0] != 0 or mask[0][1] != -1:
1628
+ return False
1629
+ return True
1630
+
1631
+
1632
+ def convert_sparse_cross_attention_mask_to_dense(
1633
+ sparse_mask: list[list[list[int]]],
1634
+ num_tiles: list[list[int]],
1635
+ lengths: list[int],
1636
+ ) -> tuple[np.ndarray, list[tuple[int, int]]]:
1637
+ total_length = sum(lengths)
1638
+ total_tiles = sum([sum(tiles) for tiles in num_tiles])
1639
+ dense_mask = np.zeros(shape=(total_length, total_tiles), dtype=np.int64)
1640
+ # A list of ranges, range[i] = [start, end] means that the i-th image will
1641
+ # use tiles[start, end] for cross-attention decoding.
1642
+ tile_range_for_decode = []
1643
+
1644
+ seq_start = 0
1645
+ tile_start = 0
1646
+
1647
+ # sparse_mask has an [] entry for each sequence that does not have images,
1648
+ # but num_tiles does not have these entries...
1649
+ num_tiles_idx = 0
1650
+ for masks, length in zip(sparse_mask, lengths):
1651
+ if len(masks) == 0:
1652
+ # Text only
1653
+ continue
1654
+
1655
+ tiles = num_tiles[num_tiles_idx]
1656
+ num_tiles_idx += 1
1657
+ ts, td = -1, 0
1658
+ for mask, tile in zip(masks, tiles):
1659
+ if len(mask) != 2:
1660
+ continue
1661
+ start, end = mask
1662
+ end = min(end, length)
1663
+ if end == -1:
1664
+ end = length
1665
+ if end == length:
1666
+ if ts == -1:
1667
+ ts = tile_start
1668
+ td += tile
1669
+ dense_mask[seq_start + start:seq_start + end,
1670
+ tile_start:tile_start + tile] = 1
1671
+ tile_start += tile
1672
+ assert ts != -1
1673
+ assert td != 0
1674
+ tile_range_for_decode.append((ts, ts + td))
1675
+ seq_start += length
1676
+ assert num_tiles_idx == len(num_tiles)
1677
+
1678
+ return dense_mask, tile_range_for_decode
1679
+
1680
+
1681
+ def convert_dense_cross_attention_mask_to_tensor(
1682
+ cross_attention_token_mask: np.ndarray,
1683
+ num_tokens_per_tile: int,
1684
+ device: torch.device,
1685
+ dtype: torch.dtype,
1686
+ ) -> torch.Tensor:
1687
+ mask = torch.tensor(cross_attention_token_mask, dtype=dtype, device=device)
1688
+ mask = mask.repeat_interleave(num_tokens_per_tile, dim=1)
1689
+
1690
+ mask = 1.0 - mask
1691
+ mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(dtype).min)
1692
+
1693
+ ninf = torch.finfo(dtype).min
1694
+ full_text_mask = ((mask != ninf).any(dim=-1).type_as(mask)[..., None])
1695
+ mask *= full_text_mask
1696
+ # (num_prompt_tokens, num_encoder_tokens)
1697
+ return mask