vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +220 -0
- vllm/_bc_linter.py +59 -0
- vllm/_custom_ops.py +2022 -0
- vllm/_ipex_ops.py +404 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +50 -0
- vllm/assets/video.py +138 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +348 -0
- vllm/attention/backends/differential_flash_attn.py +935 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
- vllm/attention/backends/flash_attn.py +933 -0
- vllm/attention/backends/flashmla.py +238 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1310 -0
- vllm/attention/backends/placeholder_attn.py +340 -0
- vllm/attention/backends/rocm_aiter_mla.py +410 -0
- vllm/attention/backends/rocm_flash_attn.py +953 -0
- vllm/attention/backends/triton_mla.py +111 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +805 -0
- vllm/attention/layer.py +552 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +91 -0
- vllm/attention/layers/cross_attention.py +159 -0
- vllm/attention/layers/encoder_only_attention.py +86 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
- vllm/attention/ops/common.py +139 -0
- vllm/attention/ops/flashmla.py +123 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/paged_attn.py +261 -0
- vllm/attention/ops/pallas_kv_cache_update.py +124 -0
- vllm/attention/ops/prefix_prefill.py +928 -0
- vllm/attention/ops/rocm_aiter_mla.py +104 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +676 -0
- vllm/attention/ops/triton_flash_attention.py +984 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +854 -0
- vllm/attention/selector.py +243 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +85 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +2651 -0
- vllm/benchmarks/latency.py +170 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +510 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +80 -0
- vllm/benchmarks/serve.py +1247 -0
- vllm/benchmarks/throughput.py +696 -0
- vllm/collect_env.py +823 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +193 -0
- vllm/compilation/backends.py +641 -0
- vllm/compilation/base_static_graph.py +51 -0
- vllm/compilation/collective_fusion.py +1190 -0
- vllm/compilation/compiler_interface.py +572 -0
- vllm/compilation/counter.py +47 -0
- vllm/compilation/cuda_graph.py +193 -0
- vllm/compilation/cuda_piecewise_backend.py +117 -0
- vllm/compilation/decorators.py +316 -0
- vllm/compilation/fix_functionalization.py +208 -0
- vllm/compilation/fusion.py +600 -0
- vllm/compilation/fusion_attn.py +303 -0
- vllm/compilation/fx_utils.py +84 -0
- vllm/compilation/inductor_pass.py +136 -0
- vllm/compilation/monitor.py +57 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +165 -0
- vllm/compilation/pass_manager.py +88 -0
- vllm/compilation/sequence_parallelism.py +484 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +50 -0
- vllm/compilation/wrapper.py +138 -0
- vllm/config/__init__.py +3921 -0
- vllm/config/cache.py +214 -0
- vllm/config/compilation.py +580 -0
- vllm/config/kv_events.py +50 -0
- vllm/config/kv_transfer.py +111 -0
- vllm/config/load.py +113 -0
- vllm/config/lora.py +132 -0
- vllm/config/parallel.py +446 -0
- vllm/config/scheduler.py +304 -0
- vllm/config/utils.py +29 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +439 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +523 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +139 -0
- vllm/core/placeholder_block_space_manager.py +103 -0
- vllm/core/scheduler.py +2028 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +286 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +259 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
- vllm/distributed/device_communicators/base_device_communicator.py +277 -0
- vllm/distributed/device_communicators/cpu_communicator.py +201 -0
- vllm/distributed/device_communicators/cuda_communicator.py +294 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
- vllm/distributed/device_communicators/pynccl.py +290 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
- vllm/distributed/device_communicators/ray_communicator.py +258 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/symm_mem.py +136 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +69 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +619 -0
- vllm/distributed/eplb/rebalance_algo.py +234 -0
- vllm/distributed/eplb/rebalance_execute.py +424 -0
- vllm/distributed/kv_events.py +362 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +13 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
- vllm/distributed/parallel_state.py +1489 -0
- vllm/distributed/tpu_distributed_utils.py +178 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1857 -0
- vllm/engine/async_llm_engine.py +1044 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +1849 -0
- vllm/engine/metrics.py +577 -0
- vllm/engine/metrics_types.py +84 -0
- vllm/engine/multiprocessing/__init__.py +145 -0
- vllm/engine/multiprocessing/client.py +643 -0
- vllm/engine/multiprocessing/engine.py +470 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +61 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +343 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1535 -0
- vllm/entrypoints/cli/__init__.py +12 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +58 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +36 -0
- vllm/entrypoints/cli/main.py +60 -0
- vllm/entrypoints/cli/openai.py +214 -0
- vllm/entrypoints/cli/run_batch.py +69 -0
- vllm/entrypoints/cli/serve.py +232 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +444 -0
- vllm/entrypoints/harmony_utils.py +431 -0
- vllm/entrypoints/launcher.py +168 -0
- vllm/entrypoints/llm.py +1579 -0
- vllm/entrypoints/logger.py +79 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2011 -0
- vllm/entrypoints/openai/cli_args.py +281 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +2590 -0
- vllm/entrypoints/openai/run_batch.py +497 -0
- vllm/entrypoints/openai/serving_chat.py +1591 -0
- vllm/entrypoints/openai/serving_classification.py +176 -0
- vllm/entrypoints/openai/serving_completion.py +688 -0
- vllm/entrypoints/openai/serving_embedding.py +632 -0
- vllm/entrypoints/openai/serving_engine.py +996 -0
- vllm/entrypoints/openai/serving_models.py +288 -0
- vllm/entrypoints/openai/serving_pooling.py +277 -0
- vllm/entrypoints/openai/serving_responses.py +1690 -0
- vllm/entrypoints/openai/serving_score.py +479 -0
- vllm/entrypoints/openai/serving_tokenization.py +196 -0
- vllm/entrypoints/openai/serving_transcription.py +136 -0
- vllm/entrypoints/openai/speech_to_text.py +388 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
- vllm/entrypoints/renderer.py +395 -0
- vllm/entrypoints/score_utils.py +232 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/tool.py +139 -0
- vllm/entrypoints/tool_server.py +195 -0
- vllm/entrypoints/utils.py +328 -0
- vllm/env_override.py +23 -0
- vllm/envs.py +1354 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +378 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +35 -0
- vllm/executor/multiproc_worker_utils.py +279 -0
- vllm/executor/ray_distributed_executor.py +699 -0
- vllm/executor/ray_utils.py +410 -0
- vllm/executor/uniproc_executor.py +152 -0
- vllm/forward_context.py +273 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +356 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +973 -0
- vllm/inputs/registry.py +251 -0
- vllm/logger.py +229 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +81 -0
- vllm/logging_utils/formatter.py +79 -0
- vllm/logits_process.py +119 -0
- vllm/logprobs.py +28 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +34 -0
- vllm/lora/layers/base.py +69 -0
- vllm/lora/layers/base_linear.py +184 -0
- vllm/lora/layers/column_parallel_linear.py +622 -0
- vllm/lora/layers/logits_processor.py +247 -0
- vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
- vllm/lora/layers/replicated_linear.py +61 -0
- vllm/lora/layers/row_parallel_linear.py +201 -0
- vllm/lora/layers/utils.py +60 -0
- vllm/lora/layers/vocal_parallel_embedding.py +172 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +792 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +7 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
- vllm/lora/ops/triton_ops/utils.py +126 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +127 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +458 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +279 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +391 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +136 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +246 -0
- vllm/lora/worker_manager.py +256 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +575 -0
- vllm/model_executor/layers/attention_layer_base.py +23 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +225 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
- vllm/model_executor/layers/fla/ops/index.py +39 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
- vllm/model_executor/layers/fla/ops/op.py +39 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
- vllm/model_executor/layers/fla/ops/utils.py +180 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
- vllm/model_executor/layers/fused_moe/__init__.py +80 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
- vllm/model_executor/layers/fused_moe/config.py +497 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
- vllm/model_executor/layers/fused_moe/layer.py +1951 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
- vllm/model_executor/layers/fused_moe/utils.py +270 -0
- vllm/model_executor/layers/layernorm.py +381 -0
- vllm/model_executor/layers/lightning_attn.py +661 -0
- vllm/model_executor/layers/linear.py +1567 -0
- vllm/model_executor/layers/logits_processor.py +199 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +45 -0
- vllm/model_executor/layers/mamba/linear_attn.py +432 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
- vllm/model_executor/layers/mamba/short_conv.py +270 -0
- vllm/model_executor/layers/mla.py +158 -0
- vllm/model_executor/layers/pooler.py +732 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/auto_round.py +388 -0
- vllm/model_executor/layers/quantization/awq.py +228 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +164 -0
- vllm/model_executor/layers/quantization/bitblas.py +464 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepgemm.py +81 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
- vllm/model_executor/layers/quantization/experts_int8.py +215 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +1179 -0
- vllm/model_executor/layers/quantization/gguf.py +597 -0
- vllm/model_executor/layers/quantization/gptq.py +300 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
- vllm/model_executor/layers/quantization/inc.py +61 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/modelopt.py +1548 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
- vllm/model_executor/layers/quantization/mxfp4.py +951 -0
- vllm/model_executor/layers/quantization/petit.py +306 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +431 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/rtn.py +456 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +214 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
- vllm/model_executor/layers/rotary_embedding/base.py +156 -0
- vllm/model_executor/layers/rotary_embedding/common.py +105 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
- vllm/model_executor/layers/sampler.py +1198 -0
- vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
- vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
- vllm/model_executor/layers/utils.py +196 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +138 -0
- vllm/model_executor/model_loader/base_loader.py +52 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
- vllm/model_executor/model_loader/default_loader.py +278 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +155 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
- vllm/model_executor/model_loader/tensorizer.py +743 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
- vllm/model_executor/model_loader/tpu.py +114 -0
- vllm/model_executor/model_loader/utils.py +271 -0
- vllm/model_executor/model_loader/weight_utils.py +946 -0
- vllm/model_executor/models/__init__.py +30 -0
- vllm/model_executor/models/adapters.py +542 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/apertus.py +582 -0
- vllm/model_executor/models/arcee.py +423 -0
- vllm/model_executor/models/arctic.py +560 -0
- vllm/model_executor/models/aria.py +662 -0
- vllm/model_executor/models/aya_vision.py +470 -0
- vllm/model_executor/models/baichuan.py +475 -0
- vllm/model_executor/models/bailing_moe.py +529 -0
- vllm/model_executor/models/bamba.py +582 -0
- vllm/model_executor/models/bart.py +1343 -0
- vllm/model_executor/models/bert.py +613 -0
- vllm/model_executor/models/bert_with_rope.py +687 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +716 -0
- vllm/model_executor/models/bloom.py +374 -0
- vllm/model_executor/models/chameleon.py +1141 -0
- vllm/model_executor/models/chatglm.py +479 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/cohere2_vision.py +484 -0
- vllm/model_executor/models/commandr.py +467 -0
- vllm/model_executor/models/config.py +434 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +473 -0
- vllm/model_executor/models/deepseek.py +491 -0
- vllm/model_executor/models/deepseek_eagle.py +241 -0
- vllm/model_executor/models/deepseek_mtp.py +282 -0
- vllm/model_executor/models/deepseek_v2.py +1058 -0
- vllm/model_executor/models/deepseek_vl2.py +661 -0
- vllm/model_executor/models/donut.py +387 -0
- vllm/model_executor/models/dots1.py +547 -0
- vllm/model_executor/models/ernie45.py +43 -0
- vllm/model_executor/models/ernie45_moe.py +608 -0
- vllm/model_executor/models/ernie45_vl.py +1510 -0
- vllm/model_executor/models/ernie45_vl_moe.py +728 -0
- vllm/model_executor/models/ernie_mtp.py +287 -0
- vllm/model_executor/models/exaone.py +552 -0
- vllm/model_executor/models/exaone4.py +535 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +511 -0
- vllm/model_executor/models/falcon_h1.py +739 -0
- vllm/model_executor/models/florence2.py +1107 -0
- vllm/model_executor/models/fuyu.py +401 -0
- vllm/model_executor/models/gemma.py +428 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +542 -0
- vllm/model_executor/models/gemma3_mm.py +723 -0
- vllm/model_executor/models/gemma3n.py +830 -0
- vllm/model_executor/models/gemma3n_mm.py +767 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1669 -0
- vllm/model_executor/models/glm4_moe.py +703 -0
- vllm/model_executor/models/glm4_moe_mtp.py +306 -0
- vllm/model_executor/models/glm4v.py +654 -0
- vllm/model_executor/models/gpt2.py +383 -0
- vllm/model_executor/models/gpt_bigcode.py +346 -0
- vllm/model_executor/models/gpt_j.py +340 -0
- vllm/model_executor/models/gpt_neox.py +333 -0
- vllm/model_executor/models/gpt_oss.py +687 -0
- vllm/model_executor/models/granite.py +498 -0
- vllm/model_executor/models/granite_speech.py +799 -0
- vllm/model_executor/models/granitemoe.py +541 -0
- vllm/model_executor/models/granitemoehybrid.py +684 -0
- vllm/model_executor/models/granitemoeshared.py +342 -0
- vllm/model_executor/models/gritlm.py +262 -0
- vllm/model_executor/models/grok1.py +550 -0
- vllm/model_executor/models/h2ovl.py +536 -0
- vllm/model_executor/models/hunyuan_v1.py +937 -0
- vllm/model_executor/models/hyperclovax_vision.py +1206 -0
- vllm/model_executor/models/idefics2_vision_model.py +416 -0
- vllm/model_executor/models/idefics3.py +758 -0
- vllm/model_executor/models/interfaces.py +854 -0
- vllm/model_executor/models/interfaces_base.py +195 -0
- vllm/model_executor/models/intern_vit.py +481 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +148 -0
- vllm/model_executor/models/interns1.py +832 -0
- vllm/model_executor/models/interns1_vit.py +418 -0
- vllm/model_executor/models/internvl.py +1423 -0
- vllm/model_executor/models/jais.py +374 -0
- vllm/model_executor/models/jamba.py +630 -0
- vllm/model_executor/models/jina_vl.py +144 -0
- vllm/model_executor/models/keye.py +1684 -0
- vllm/model_executor/models/keye_vl1_5.py +601 -0
- vllm/model_executor/models/kimi_vl.py +620 -0
- vllm/model_executor/models/lfm2.py +558 -0
- vllm/model_executor/models/llama.py +671 -0
- vllm/model_executor/models/llama4.py +732 -0
- vllm/model_executor/models/llama4_eagle.py +241 -0
- vllm/model_executor/models/llama_eagle.py +171 -0
- vllm/model_executor/models/llama_eagle3.py +292 -0
- vllm/model_executor/models/llava.py +872 -0
- vllm/model_executor/models/llava_next.py +572 -0
- vllm/model_executor/models/llava_next_video.py +479 -0
- vllm/model_executor/models/llava_onevision.py +945 -0
- vllm/model_executor/models/mamba.py +310 -0
- vllm/model_executor/models/mamba2.py +346 -0
- vllm/model_executor/models/mamba_cache.py +83 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/midashenglm.py +788 -0
- vllm/model_executor/models/mimo.py +191 -0
- vllm/model_executor/models/mimo_mtp.py +273 -0
- vllm/model_executor/models/minicpm.py +593 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +804 -0
- vllm/model_executor/models/minicpmv.py +1786 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1027 -0
- vllm/model_executor/models/minimax_vl_01.py +431 -0
- vllm/model_executor/models/mistral3.py +628 -0
- vllm/model_executor/models/mixtral.py +494 -0
- vllm/model_executor/models/mllama.py +1697 -0
- vllm/model_executor/models/mllama4.py +1079 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +374 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1569 -0
- vllm/model_executor/models/moonvit.py +663 -0
- vllm/model_executor/models/motif.py +345 -0
- vllm/model_executor/models/mpt.py +332 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
- vllm/model_executor/models/nemotron.py +509 -0
- vllm/model_executor/models/nemotron_h.py +633 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nemotron_vl.py +655 -0
- vllm/model_executor/models/nvlm_d.py +203 -0
- vllm/model_executor/models/olmo.py +406 -0
- vllm/model_executor/models/olmo2.py +428 -0
- vllm/model_executor/models/olmoe.py +485 -0
- vllm/model_executor/models/opt.py +413 -0
- vllm/model_executor/models/orion.py +350 -0
- vllm/model_executor/models/ovis.py +572 -0
- vllm/model_executor/models/ovis2_5.py +644 -0
- vllm/model_executor/models/paligemma.py +414 -0
- vllm/model_executor/models/persimmon.py +345 -0
- vllm/model_executor/models/phi.py +357 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3v.py +701 -0
- vllm/model_executor/models/phi4_multimodal.py +1478 -0
- vllm/model_executor/models/phi4flash.py +737 -0
- vllm/model_executor/models/phi4mm.py +1281 -0
- vllm/model_executor/models/phi4mm_audio.py +1254 -0
- vllm/model_executor/models/phi4mm_utils.py +1875 -0
- vllm/model_executor/models/phimoe.py +681 -0
- vllm/model_executor/models/pixtral.py +1348 -0
- vllm/model_executor/models/plamo2.py +1126 -0
- vllm/model_executor/models/qwen.py +363 -0
- vllm/model_executor/models/qwen2.py +526 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
- vllm/model_executor/models/qwen2_5_vl.py +1256 -0
- vllm/model_executor/models/qwen2_audio.py +492 -0
- vllm/model_executor/models/qwen2_moe.py +558 -0
- vllm/model_executor/models/qwen2_rm.py +122 -0
- vllm/model_executor/models/qwen2_vl.py +1512 -0
- vllm/model_executor/models/qwen3.py +344 -0
- vllm/model_executor/models/qwen3_moe.py +704 -0
- vllm/model_executor/models/qwen3_next.py +1298 -0
- vllm/model_executor/models/qwen3_next_mtp.py +285 -0
- vllm/model_executor/models/qwen_vl.py +795 -0
- vllm/model_executor/models/registry.py +891 -0
- vllm/model_executor/models/roberta.py +252 -0
- vllm/model_executor/models/rvl.py +103 -0
- vllm/model_executor/models/seed_oss.py +488 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/siglip2navit.py +688 -0
- vllm/model_executor/models/skyworkr1v.py +914 -0
- vllm/model_executor/models/smolvlm.py +44 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +344 -0
- vllm/model_executor/models/starcoder2.py +357 -0
- vllm/model_executor/models/step3_text.py +521 -0
- vllm/model_executor/models/step3_vl.py +1091 -0
- vllm/model_executor/models/swin.py +475 -0
- vllm/model_executor/models/tarsier.py +649 -0
- vllm/model_executor/models/telechat2.py +151 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/terratorch.py +294 -0
- vllm/model_executor/models/transformers.py +883 -0
- vllm/model_executor/models/ultravox.py +667 -0
- vllm/model_executor/models/utils.py +770 -0
- vllm/model_executor/models/vision.py +125 -0
- vllm/model_executor/models/voxtral.py +789 -0
- vllm/model_executor/models/whisper.py +966 -0
- vllm/model_executor/models/zamba2.py +1056 -0
- vllm/model_executor/parameter.py +599 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +97 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
- vllm/model_executor/warmup/kernel_warmup.py +83 -0
- vllm/multimodal/__init__.py +35 -0
- vllm/multimodal/audio.py +116 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/cache.py +507 -0
- vllm/multimodal/hasher.py +110 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +979 -0
- vllm/multimodal/parse.py +496 -0
- vllm/multimodal/processing.py +1921 -0
- vllm/multimodal/profiling.py +313 -0
- vllm/multimodal/registry.py +375 -0
- vllm/multimodal/utils.py +754 -0
- vllm/multimodal/video.py +312 -0
- vllm/outputs.py +517 -0
- vllm/platforms/__init__.py +263 -0
- vllm/platforms/cpu.py +353 -0
- vllm/platforms/cuda.py +731 -0
- vllm/platforms/interface.py +599 -0
- vllm/platforms/rocm.py +504 -0
- vllm/platforms/tpu.py +236 -0
- vllm/platforms/xpu.py +243 -0
- vllm/plugins/__init__.py +72 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +67 -0
- vllm/plugins/lora_resolvers/README.md +16 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +183 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +22 -0
- vllm/ray/ray_env.py +72 -0
- vllm/reasoning/__init__.py +25 -0
- vllm/reasoning/abs_reasoning_parsers.py +202 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
- vllm/reasoning/gptoss_reasoning_parser.py +87 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
- vllm/reasoning/mistral_reasoning_parser.py +47 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/reasoning/step3_reasoning_parser.py +109 -0
- vllm/sampling_params.py +577 -0
- vllm/scalar_type.py +349 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1465 -0
- vllm/tasks.py +11 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +136 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +71 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1043 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +55 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/midashenglm.py +101 -0
- vllm/transformers_utils/configs/mistral.py +165 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +259 -0
- vllm/transformers_utils/configs/nemotron_vl.py +56 -0
- vllm/transformers_utils/configs/ovis.py +176 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +32 -0
- vllm/transformers_utils/configs/speculators/base.py +91 -0
- vllm/transformers_utils/configs/step3_vl.py +123 -0
- vllm/transformers_utils/configs/ultravox.py +120 -0
- vllm/transformers_utils/detokenizer.py +169 -0
- vllm/transformers_utils/detokenizer_utils.py +199 -0
- vllm/transformers_utils/dynamic_module.py +60 -0
- vllm/transformers_utils/processor.py +245 -0
- vllm/transformers_utils/processors/__init__.py +16 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/processors/ovis2_5.py +458 -0
- vllm/transformers_utils/runai_utils.py +99 -0
- vllm/transformers_utils/s3_utils.py +90 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +132 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +520 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +16 -0
- vllm/triton_utils/importing.py +95 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +259 -0
- vllm/utils/__init__.py +3438 -0
- vllm/utils/deep_gemm.py +212 -0
- vllm/utils/flashinfer.py +372 -0
- vllm/utils/jsontree.py +90 -0
- vllm/utils/tensor_schema.py +236 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +922 -0
- vllm/v1/attention/backends/flash_attn.py +800 -0
- vllm/v1/attention/backends/flashinfer.py +1128 -0
- vllm/v1/attention/backends/flex_attention.py +796 -0
- vllm/v1/attention/backends/gdn_attn.py +320 -0
- vllm/v1/attention/backends/linear_attn.py +68 -0
- vllm/v1/attention/backends/mamba1_attn.py +81 -0
- vllm/v1/attention/backends/mamba2_attn.py +224 -0
- vllm/v1/attention/backends/mamba_attn.py +52 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +1608 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
- vllm/v1/attention/backends/mla/flashmla.py +213 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
- vllm/v1/attention/backends/mla/triton_mla.py +175 -0
- vllm/v1/attention/backends/pallas.py +413 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
- vllm/v1/attention/backends/short_conv_attn.py +82 -0
- vllm/v1/attention/backends/tree_attn.py +450 -0
- vllm/v1/attention/backends/triton_attn.py +430 -0
- vllm/v1/attention/backends/utils.py +834 -0
- vllm/v1/attention/backends/xformers.py +437 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +330 -0
- vllm/v1/core/encoder_cache_manager.py +333 -0
- vllm/v1/core/kv_cache_coordinator.py +440 -0
- vllm/v1/core/kv_cache_manager.py +398 -0
- vllm/v1/core/kv_cache_utils.py +1169 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +47 -0
- vllm/v1/core/sched/interface.py +158 -0
- vllm/v1/core/sched/output.py +162 -0
- vllm/v1/core/sched/request_queue.py +224 -0
- vllm/v1/core/sched/scheduler.py +1287 -0
- vllm/v1/core/sched/utils.py +69 -0
- vllm/v1/core/single_type_kv_cache_manager.py +670 -0
- vllm/v1/cudagraph_dispatcher.py +121 -0
- vllm/v1/engine/__init__.py +202 -0
- vllm/v1/engine/async_llm.py +757 -0
- vllm/v1/engine/coordinator.py +357 -0
- vllm/v1/engine/core.py +1245 -0
- vllm/v1/engine/core_client.py +1333 -0
- vllm/v1/engine/detokenizer.py +300 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +332 -0
- vllm/v1/engine/logprobs.py +201 -0
- vllm/v1/engine/output_processor.py +558 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +524 -0
- vllm/v1/engine/utils.py +857 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +126 -0
- vllm/v1/executor/multiproc_executor.py +683 -0
- vllm/v1/executor/ray_distributed_executor.py +109 -0
- vllm/v1/kv_cache_interface.py +275 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +717 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +133 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +248 -0
- vllm/v1/outputs.py +147 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +77 -0
- vllm/v1/request.py +237 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +294 -0
- vllm/v1/sample/logits_processor/builtin.py +273 -0
- vllm/v1/sample/logits_processor/interface.py +97 -0
- vllm/v1/sample/logits_processor/state.py +161 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/logprobs.py +26 -0
- vllm/v1/sample/ops/penalties.py +43 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
- vllm/v1/sample/rejection_sampler.py +623 -0
- vllm/v1/sample/sampler.py +281 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +213 -0
- vllm/v1/serial_utils.py +395 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +740 -0
- vllm/v1/spec_decode/medusa.py +66 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +191 -0
- vllm/v1/spec_decode/ngram_proposer.py +157 -0
- vllm/v1/spec_decode/utils.py +14 -0
- vllm/v1/structured_output/__init__.py +297 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
- vllm/v1/structured_output/backend_outlines.py +320 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +323 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +373 -0
- vllm/v1/utils.py +382 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +221 -0
- vllm/v1/worker/cpu_model_runner.py +163 -0
- vllm/v1/worker/cpu_worker.py +183 -0
- vllm/v1/worker/gpu_input_batch.py +821 -0
- vllm/v1/worker/gpu_model_runner.py +3743 -0
- vllm/v1/worker/gpu_worker.py +697 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
- vllm/v1/worker/lora_model_runner_mixin.py +192 -0
- vllm/v1/worker/tpu_input_batch.py +585 -0
- vllm/v1/worker/tpu_model_runner.py +1947 -0
- vllm/v1/worker/tpu_worker.py +340 -0
- vllm/v1/worker/utils.py +290 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/v1/worker/xpu_model_runner.py +53 -0
- vllm/v1/worker/xpu_worker.py +179 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/enc_dec_model_runner.py +553 -0
- vllm/worker/model_runner.py +2016 -0
- vllm/worker/model_runner_base.py +307 -0
- vllm/worker/utils.py +49 -0
- vllm/worker/worker.py +670 -0
- vllm/worker/worker_base.py +651 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
import dataclasses
|
|
5
|
+
from contextlib import ExitStack
|
|
6
|
+
from typing import Any, Callable, Optional
|
|
7
|
+
from unittest.mock import patch
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
import vllm.envs as envs
|
|
12
|
+
from vllm.compilation.counter import compilation_counter
|
|
13
|
+
from vllm.compilation.monitor import validate_cudagraph_capturing_enabled
|
|
14
|
+
from vllm.config import CUDAGraphMode, VllmConfig
|
|
15
|
+
from vllm.forward_context import BatchDescriptor, get_forward_context
|
|
16
|
+
from vllm.logger import init_logger
|
|
17
|
+
from vllm.platforms import current_platform
|
|
18
|
+
from vllm.utils import weak_ref_tensors
|
|
19
|
+
|
|
20
|
+
logger = init_logger(__name__)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@dataclasses.dataclass
|
|
24
|
+
class CUDAGraphEntry:
|
|
25
|
+
batch_descriptor: BatchDescriptor
|
|
26
|
+
cudagraph: Optional[torch.cuda.CUDAGraph] = None
|
|
27
|
+
output: Optional[Any] = None
|
|
28
|
+
|
|
29
|
+
# for cudagraph debugging, track the input addresses
|
|
30
|
+
# during capture, and check if they are the same during replay
|
|
31
|
+
input_addresses: Optional[list[int]] = None
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@dataclasses.dataclass
|
|
35
|
+
class CUDAGraphOptions:
|
|
36
|
+
debug_log_enable: bool = True
|
|
37
|
+
gc_disable: bool = False
|
|
38
|
+
weak_ref_output: bool = True
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class CUDAGraphWrapper:
|
|
42
|
+
"""Wraps a runnable to add CUDA graph capturing and replaying ability. And
|
|
43
|
+
provide attribute access to the underlying `runnable` via `__getattr__`.
|
|
44
|
+
|
|
45
|
+
The workflow of this wrapper in the cudagraph dispatching is as follows:
|
|
46
|
+
1. At initialization, a runtime mode is assigned to the wrapper (FULL or
|
|
47
|
+
PIECEWISE).
|
|
48
|
+
2. At runtime, the wrapper receives a runtime_mode and a
|
|
49
|
+
batch_descriptor(key) from the forward context and blindly trust them
|
|
50
|
+
for cudagraph dispatching.
|
|
51
|
+
3. If runtime_mode is NONE or runtime_mode does not match the mode of the
|
|
52
|
+
wrapper, just call the runnable directly.
|
|
53
|
+
4. Otherwise, i.e., the runtime_mode matches the mode of the wrapper,
|
|
54
|
+
the wrapper will perform cudagraph capture(if key does not exist, create
|
|
55
|
+
a new entry and cache it) or replay (if key exists in the cache).
|
|
56
|
+
|
|
57
|
+
Note: CUDAGraphWrapper does not store persistent buffers or copy any
|
|
58
|
+
runtime inputs into that buffers for replay. We assume implementing them
|
|
59
|
+
is done outside of the wrapper. That is because we do not make any
|
|
60
|
+
assumption on the dynamic shape (batch size) of the runtime inputs, as a
|
|
61
|
+
trade-off for staying orthogonal to compilation logic. Nevertheless,
|
|
62
|
+
tracing and checking the input addresses to be consistent during replay is
|
|
63
|
+
guaranteed when VLLM_LOGGING_LEVEL == "DEBUG".
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
def __init__(self,
|
|
67
|
+
runnable: Callable,
|
|
68
|
+
vllm_config: VllmConfig,
|
|
69
|
+
runtime_mode: CUDAGraphMode,
|
|
70
|
+
cudagraph_options: Optional[CUDAGraphOptions] = None):
|
|
71
|
+
self.runnable = runnable
|
|
72
|
+
self.vllm_config = vllm_config
|
|
73
|
+
self.runtime_mode = runtime_mode
|
|
74
|
+
self.compilation_config = vllm_config.compilation_config
|
|
75
|
+
|
|
76
|
+
self.first_run_finished = False
|
|
77
|
+
self.is_debugging_mode = envs.VLLM_LOGGING_LEVEL == "DEBUG"
|
|
78
|
+
|
|
79
|
+
# assert runtime_mode is not NONE(no cudagraph), otherwise, we don't
|
|
80
|
+
# need to initialize a CUDAGraphWrapper.
|
|
81
|
+
assert self.runtime_mode != CUDAGraphMode.NONE
|
|
82
|
+
# TODO: in the future, if we want to use multiple
|
|
83
|
+
# streams, it might not be safe to share a global pool.
|
|
84
|
+
# only investigate this when we use multiple streams
|
|
85
|
+
self.graph_pool = current_platform.get_global_graph_pool()
|
|
86
|
+
|
|
87
|
+
if cudagraph_options is None:
|
|
88
|
+
cudagraph_options = CUDAGraphOptions()
|
|
89
|
+
self.cudagraph_options = cudagraph_options
|
|
90
|
+
# the entries for different batch descriptors that we need to capture
|
|
91
|
+
# cudagraphs for.
|
|
92
|
+
self.concrete_cudagraph_entries: dict[BatchDescriptor, CUDAGraphEntry]\
|
|
93
|
+
= {}
|
|
94
|
+
|
|
95
|
+
def __getattr__(self, key: str):
|
|
96
|
+
# allow accessing the attributes of the runnable.
|
|
97
|
+
if hasattr(self.runnable, key):
|
|
98
|
+
return getattr(self.runnable, key)
|
|
99
|
+
raise AttributeError(f"Attribute {key} not exists in the runnable of "
|
|
100
|
+
f"cudagraph wrapper: {self.runnable}")
|
|
101
|
+
|
|
102
|
+
def unwrap(self) -> Callable:
|
|
103
|
+
# in case we need to access the original runnable.
|
|
104
|
+
return self.runnable
|
|
105
|
+
|
|
106
|
+
def __call__(self, *args, **kwargs):
|
|
107
|
+
forward_context = get_forward_context()
|
|
108
|
+
batch_descriptor = forward_context.batch_descriptor
|
|
109
|
+
cudagraph_runtime_mode = forward_context.cudagraph_runtime_mode
|
|
110
|
+
|
|
111
|
+
if cudagraph_runtime_mode == CUDAGraphMode.NONE or \
|
|
112
|
+
cudagraph_runtime_mode != self.runtime_mode:
|
|
113
|
+
# CUDAGraphMode.NONE could mean the profile run, a warmup run, or
|
|
114
|
+
# running without cudagraphs.
|
|
115
|
+
# We do not trigger capture/replay if the runtime mode is not
|
|
116
|
+
# matches. This enables properly dispatching to the correct
|
|
117
|
+
# CUDAGraphWrapper when nesting multiple instances with different
|
|
118
|
+
# runtime modes.
|
|
119
|
+
return self.runnable(*args, **kwargs)
|
|
120
|
+
|
|
121
|
+
if batch_descriptor not in self.concrete_cudagraph_entries:
|
|
122
|
+
# create a new entry for this batch descriptor
|
|
123
|
+
self.concrete_cudagraph_entries[batch_descriptor] = \
|
|
124
|
+
CUDAGraphEntry(batch_descriptor=batch_descriptor)
|
|
125
|
+
|
|
126
|
+
entry = self.concrete_cudagraph_entries[batch_descriptor]
|
|
127
|
+
|
|
128
|
+
if entry.cudagraph is None:
|
|
129
|
+
if self.cudagraph_options.debug_log_enable:
|
|
130
|
+
# Since we capture cudagraph for many different shapes and
|
|
131
|
+
# capturing is fast, we don't need to log it for every
|
|
132
|
+
# shape. E.g. we only log it for the first subgraph in
|
|
133
|
+
# piecewise mode.
|
|
134
|
+
logger.debug("Capturing a cudagraph on (%s,%s)",
|
|
135
|
+
self.runtime_mode.name, entry.batch_descriptor)
|
|
136
|
+
# validate that cudagraph capturing is legal at this point.
|
|
137
|
+
validate_cudagraph_capturing_enabled()
|
|
138
|
+
|
|
139
|
+
input_addresses = [
|
|
140
|
+
x.data_ptr() for x in args if isinstance(x, torch.Tensor)
|
|
141
|
+
]
|
|
142
|
+
entry.input_addresses = input_addresses
|
|
143
|
+
cudagraph = torch.cuda.CUDAGraph()
|
|
144
|
+
|
|
145
|
+
with ExitStack() as stack:
|
|
146
|
+
if self.cudagraph_options.gc_disable:
|
|
147
|
+
# during every model forward for piecewise cudagraph
|
|
148
|
+
# mode, we will capture many pieces of cudagraphs
|
|
149
|
+
# (roughly one per layer). running gc again and again
|
|
150
|
+
# across layers will make the cudagraph capture very slow.
|
|
151
|
+
# therefore, we only run gc for the first graph,
|
|
152
|
+
# and disable gc for the rest of the graphs.
|
|
153
|
+
stack.enter_context(patch("gc.collect", lambda: None))
|
|
154
|
+
stack.enter_context(
|
|
155
|
+
patch("torch.cuda.empty_cache", lambda: None))
|
|
156
|
+
|
|
157
|
+
# mind-exploding: carefully manage the reference and memory.
|
|
158
|
+
with torch.cuda.graph(cudagraph, pool=self.graph_pool):
|
|
159
|
+
# `output` is managed by pytorch's cudagraph pool
|
|
160
|
+
output = self.runnable(*args, **kwargs)
|
|
161
|
+
if self.cudagraph_options.weak_ref_output:
|
|
162
|
+
# by converting it to weak ref,
|
|
163
|
+
# the original `output` will immediately be released
|
|
164
|
+
# to save memory. It is only safe to do this for
|
|
165
|
+
# the last graph in piecewise cuadgraph mode, because
|
|
166
|
+
# the output of the last graph will not be used by
|
|
167
|
+
# any other cuda graph.
|
|
168
|
+
output = weak_ref_tensors(output)
|
|
169
|
+
|
|
170
|
+
# here we always use weak ref for the output
|
|
171
|
+
# to save memory
|
|
172
|
+
entry.output = weak_ref_tensors(output)
|
|
173
|
+
entry.cudagraph = cudagraph
|
|
174
|
+
|
|
175
|
+
compilation_counter.num_cudagraph_captured += 1
|
|
176
|
+
|
|
177
|
+
# important: we need to return the output, rather than
|
|
178
|
+
# the weak ref of the output, so that pytorch can correctly
|
|
179
|
+
# manage the memory during cuda graph capture
|
|
180
|
+
return output
|
|
181
|
+
|
|
182
|
+
if self.is_debugging_mode:
|
|
183
|
+
# check if the input addresses are the same
|
|
184
|
+
new_input_addresses = [
|
|
185
|
+
x.data_ptr() for x in args if isinstance(x, torch.Tensor)
|
|
186
|
+
]
|
|
187
|
+
assert new_input_addresses == entry.input_addresses, (
|
|
188
|
+
f"Input addresses for cudagraphs are different "
|
|
189
|
+
f"during replay. Expected {entry.input_addresses}, "
|
|
190
|
+
f"got {new_input_addresses}")
|
|
191
|
+
|
|
192
|
+
entry.cudagraph.replay()
|
|
193
|
+
return entry.output
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
import dataclasses
|
|
5
|
+
from typing import Any, Callable
|
|
6
|
+
|
|
7
|
+
import torch.fx as fx
|
|
8
|
+
|
|
9
|
+
import vllm.envs as envs
|
|
10
|
+
from vllm.compilation.backends import VllmBackend
|
|
11
|
+
from vllm.compilation.monitor import end_monitoring_torch_compile
|
|
12
|
+
from vllm.config import VllmConfig
|
|
13
|
+
from vllm.logger import init_logger
|
|
14
|
+
|
|
15
|
+
logger = init_logger(__name__)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@dataclasses.dataclass
|
|
19
|
+
class ConcreteSizeEntry:
|
|
20
|
+
runtime_shape: int
|
|
21
|
+
compiled: bool = False
|
|
22
|
+
runnable: Callable = None # type: ignore
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class PiecewiseBackend:
|
|
26
|
+
|
|
27
|
+
def __init__(self, graph: fx.GraphModule, vllm_config: VllmConfig,
|
|
28
|
+
piecewise_compile_index: int, total_piecewise_compiles: int,
|
|
29
|
+
sym_shape_indices: list[int],
|
|
30
|
+
compiled_graph_for_general_shape: Callable,
|
|
31
|
+
vllm_backend: VllmBackend):
|
|
32
|
+
"""
|
|
33
|
+
The backend for piecewise compilation.
|
|
34
|
+
It mainly handles the compilation of static shapes and
|
|
35
|
+
dispatching based on runtime shape.
|
|
36
|
+
|
|
37
|
+
We will compile `self.graph` once for the general shape,
|
|
38
|
+
and then compile for different shapes specified in
|
|
39
|
+
`compilation_config.compile_sizes`.
|
|
40
|
+
"""
|
|
41
|
+
self.graph = graph
|
|
42
|
+
self.vllm_config = vllm_config
|
|
43
|
+
self.compilation_config = vllm_config.compilation_config
|
|
44
|
+
self.piecewise_compile_index = piecewise_compile_index
|
|
45
|
+
self.total_piecewise_compiles = total_piecewise_compiles
|
|
46
|
+
self.vllm_backend = vllm_backend
|
|
47
|
+
|
|
48
|
+
self.is_first_graph = piecewise_compile_index == 0
|
|
49
|
+
self.is_last_graph = (
|
|
50
|
+
piecewise_compile_index == total_piecewise_compiles - 1)
|
|
51
|
+
|
|
52
|
+
self.is_full_graph = total_piecewise_compiles == 1
|
|
53
|
+
|
|
54
|
+
self.compile_sizes: set[int] = set(
|
|
55
|
+
self.compilation_config.compile_sizes)
|
|
56
|
+
|
|
57
|
+
self.first_run_finished = False
|
|
58
|
+
|
|
59
|
+
self.compiled_graph_for_general_shape = compiled_graph_for_general_shape # noqa
|
|
60
|
+
|
|
61
|
+
self.sym_shape_indices = sym_shape_indices
|
|
62
|
+
|
|
63
|
+
self.is_debugging_mode = envs.VLLM_LOGGING_LEVEL == "DEBUG"
|
|
64
|
+
|
|
65
|
+
# the entries for different shapes that we need to compile
|
|
66
|
+
self.concrete_size_entries: dict[int, ConcreteSizeEntry] = {}
|
|
67
|
+
|
|
68
|
+
# to_be_compiled_sizes tracks the remaining sizes to compile,
|
|
69
|
+
# and updates during the compilation process, so we need to copy it
|
|
70
|
+
self.to_be_compiled_sizes: set[int] = self.compile_sizes.copy()
|
|
71
|
+
|
|
72
|
+
# We only keep compilation management inside this class directly.
|
|
73
|
+
for shape in self.compile_sizes:
|
|
74
|
+
self.concrete_size_entries[shape] = ConcreteSizeEntry(
|
|
75
|
+
runtime_shape=shape,
|
|
76
|
+
runnable=self.compiled_graph_for_general_shape,
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
def check_for_ending_compilation(self):
|
|
80
|
+
if self.is_last_graph and not self.to_be_compiled_sizes:
|
|
81
|
+
# no specific sizes to compile
|
|
82
|
+
# save the hash of the inductor graph for the next run
|
|
83
|
+
self.vllm_backend.compiler_manager.save_to_file()
|
|
84
|
+
end_monitoring_torch_compile(self.vllm_config)
|
|
85
|
+
|
|
86
|
+
def __call__(self, *args) -> Any:
|
|
87
|
+
if not self.first_run_finished:
|
|
88
|
+
self.first_run_finished = True
|
|
89
|
+
self.check_for_ending_compilation()
|
|
90
|
+
return self.compiled_graph_for_general_shape(*args)
|
|
91
|
+
|
|
92
|
+
runtime_shape = args[self.sym_shape_indices[0]]
|
|
93
|
+
|
|
94
|
+
if runtime_shape not in self.concrete_size_entries:
|
|
95
|
+
# we don't need to do anything for this shape
|
|
96
|
+
return self.compiled_graph_for_general_shape(*args)
|
|
97
|
+
|
|
98
|
+
entry = self.concrete_size_entries[runtime_shape]
|
|
99
|
+
|
|
100
|
+
if not entry.compiled:
|
|
101
|
+
entry.compiled = True
|
|
102
|
+
self.to_be_compiled_sizes.remove(runtime_shape)
|
|
103
|
+
# args are real arguments
|
|
104
|
+
entry.runnable = self.vllm_backend.compiler_manager.compile(
|
|
105
|
+
self.graph,
|
|
106
|
+
args,
|
|
107
|
+
self.compilation_config.inductor_compile_config,
|
|
108
|
+
self.compilation_config,
|
|
109
|
+
graph_index=self.piecewise_compile_index,
|
|
110
|
+
num_graphs=self.total_piecewise_compiles,
|
|
111
|
+
runtime_shape=runtime_shape)
|
|
112
|
+
|
|
113
|
+
# finished compilations for all required shapes
|
|
114
|
+
if self.is_last_graph and not self.to_be_compiled_sizes:
|
|
115
|
+
self.check_for_ending_compilation()
|
|
116
|
+
|
|
117
|
+
return entry.runnable(*args)
|
|
@@ -0,0 +1,316 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
import inspect
|
|
5
|
+
from typing import Callable, Optional, TypeVar, Union, overload
|
|
6
|
+
from unittest.mock import patch
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.nn as nn
|
|
10
|
+
from torch._dynamo.symbolic_convert import InliningInstructionTranslator
|
|
11
|
+
|
|
12
|
+
from vllm.compilation.counter import compilation_counter
|
|
13
|
+
from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher
|
|
14
|
+
from vllm.config import CompilationLevel, VllmConfig
|
|
15
|
+
from vllm.logger import init_logger
|
|
16
|
+
from vllm.sequence import IntermediateTensors
|
|
17
|
+
from vllm.utils import supports_dynamo
|
|
18
|
+
|
|
19
|
+
from .monitor import start_monitoring_torch_compile
|
|
20
|
+
|
|
21
|
+
logger = init_logger(__name__)
|
|
22
|
+
|
|
23
|
+
IGNORE_COMPILE_KEY = "_ignore_compile_vllm"
|
|
24
|
+
|
|
25
|
+
_T = TypeVar("_T", bound=type[nn.Module])
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def ignore_torch_compile(cls: _T) -> _T:
|
|
29
|
+
"""
|
|
30
|
+
A decorator to ignore support_torch_compile decorator
|
|
31
|
+
on the class. This is useful when a parent class has
|
|
32
|
+
a support_torch_compile decorator, but we don't want to
|
|
33
|
+
compile the class `cls` that inherits the parent class.
|
|
34
|
+
This only ignores compiling the forward of the class the
|
|
35
|
+
decorator is applied to.
|
|
36
|
+
|
|
37
|
+
If the parent has ignore_torch_compile but the child has
|
|
38
|
+
support_torch_compile, the child will still be compiled.
|
|
39
|
+
|
|
40
|
+
If the class has one or more submodules
|
|
41
|
+
that have support_torch_compile decorator applied, compile will
|
|
42
|
+
not be ignored for those submodules.
|
|
43
|
+
"""
|
|
44
|
+
setattr(cls, IGNORE_COMPILE_KEY, True)
|
|
45
|
+
return cls
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def _should_ignore_torch_compile(cls) -> bool:
|
|
49
|
+
"""
|
|
50
|
+
Check if the class should be ignored for torch.compile.
|
|
51
|
+
"""
|
|
52
|
+
return getattr(cls, IGNORE_COMPILE_KEY, False)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@overload
|
|
56
|
+
def support_torch_compile(
|
|
57
|
+
*,
|
|
58
|
+
enable_if: Optional[Callable[[VllmConfig], bool]] = None,
|
|
59
|
+
) -> Callable[[_T], _T]:
|
|
60
|
+
...
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
@overload
|
|
64
|
+
def support_torch_compile(
|
|
65
|
+
*,
|
|
66
|
+
dynamic_arg_dims: Optional[dict[str, Union[int, list[int]]]],
|
|
67
|
+
) -> Callable[[_T], _T]:
|
|
68
|
+
...
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@overload
|
|
72
|
+
def support_torch_compile(cls: _T) -> _T:
|
|
73
|
+
...
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def support_torch_compile(
|
|
77
|
+
cls: Optional[_T] = None,
|
|
78
|
+
*,
|
|
79
|
+
dynamic_arg_dims: Optional[dict[str, Union[int, list[int]]]] = None,
|
|
80
|
+
enable_if: Optional[Callable[[VllmConfig], bool]] = None,
|
|
81
|
+
) -> Union[Callable[[_T], _T], _T]:
|
|
82
|
+
"""
|
|
83
|
+
A decorator to add support for compiling the forward method of a class.
|
|
84
|
+
|
|
85
|
+
Usage 1: use directly as a decorator without arguments:
|
|
86
|
+
|
|
87
|
+
```python
|
|
88
|
+
@support_torch_compile
|
|
89
|
+
class MyModel(nn.Module):
|
|
90
|
+
def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
|
|
91
|
+
...
|
|
92
|
+
```
|
|
93
|
+
|
|
94
|
+
Usage 2: use as a decorator with arguments:
|
|
95
|
+
|
|
96
|
+
```python
|
|
97
|
+
@support_torch_compile(dynamic_arg_dims={"x": 0, "y": 0})
|
|
98
|
+
class MyModel(nn.Module):
|
|
99
|
+
def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
|
|
100
|
+
...
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
`dynamic_arg_dims` is a dictionary that maps argument names to the dynamic
|
|
104
|
+
dimensions of the argument. The dynamic dimensions can be either a single
|
|
105
|
+
integer or a list of integers.
|
|
106
|
+
|
|
107
|
+
if `dynamic_arg_dims` is `None`, it is inferred from the type annotation
|
|
108
|
+
of the `forward` method, based on the following default rules:
|
|
109
|
+
|
|
110
|
+
- if the argument is annotated as `torch.Tensor` or
|
|
111
|
+
`Optional[torch.Tensor]`, the first dimension will be
|
|
112
|
+
marked as dynamic.
|
|
113
|
+
- if the argument is annotated as `IntermediateTensors`, the first
|
|
114
|
+
dimension of all the tensors in the intermediate tensors
|
|
115
|
+
will be marked as dynamic.
|
|
116
|
+
|
|
117
|
+
During runtime, when we actually mark dimensions of tensors,
|
|
118
|
+
it depends on the value of arguments:
|
|
119
|
+
|
|
120
|
+
- if it is a single integer (can be negative), the corresponding dimension
|
|
121
|
+
of the argument will be marked as dynamic.
|
|
122
|
+
- if it is `None`, ignored.
|
|
123
|
+
- if it is `IntermediateTensors`, all the tensors in the intermediate
|
|
124
|
+
tensors will be marked as dynamic.
|
|
125
|
+
- otherwise, it will raise an error.
|
|
126
|
+
|
|
127
|
+
NOTE: if an argument is `None`, it should always be passed as `None` during
|
|
128
|
+
the lifetime of the model, otherwise, it cannot be captured as a single
|
|
129
|
+
computation graph.
|
|
130
|
+
|
|
131
|
+
`enable_if` is a function that takes a `VllmConfig` object as input and
|
|
132
|
+
returns a boolean value indicating whether to compile the model or not.
|
|
133
|
+
This is useful if you want to compile the model only when certain
|
|
134
|
+
conditions are met.
|
|
135
|
+
"""
|
|
136
|
+
|
|
137
|
+
def cls_decorator_helper(cls: _T) -> _T:
|
|
138
|
+
# helper to pass `dynamic_arg_dims`` to `_support_torch_compile``
|
|
139
|
+
# to avoid too much indentation for `_support_torch_compile``
|
|
140
|
+
if not hasattr(cls, 'forward'):
|
|
141
|
+
raise TypeError("decorated class should have a forward method.")
|
|
142
|
+
sig = inspect.signature(cls.forward)
|
|
143
|
+
inferred_dynamic_arg_dims = dynamic_arg_dims
|
|
144
|
+
if inferred_dynamic_arg_dims is None:
|
|
145
|
+
inferred_dynamic_arg_dims = {}
|
|
146
|
+
for k, v in sig.parameters.items():
|
|
147
|
+
if v.annotation in [
|
|
148
|
+
torch.Tensor, Optional[torch.Tensor],
|
|
149
|
+
IntermediateTensors, Optional[IntermediateTensors]
|
|
150
|
+
]:
|
|
151
|
+
inferred_dynamic_arg_dims[k] = 0
|
|
152
|
+
|
|
153
|
+
logger.debug(("Inferred dynamic dimensions for "
|
|
154
|
+
"forward method of %s: %s"), cls,
|
|
155
|
+
list(inferred_dynamic_arg_dims.keys()))
|
|
156
|
+
|
|
157
|
+
if len(inferred_dynamic_arg_dims) == 0:
|
|
158
|
+
raise ValueError(
|
|
159
|
+
"No dynamic dimensions found in the forward method of "
|
|
160
|
+
f"{cls}. Please provide dynamic_arg_dims explicitly.")
|
|
161
|
+
|
|
162
|
+
for k in inferred_dynamic_arg_dims:
|
|
163
|
+
if k not in sig.parameters:
|
|
164
|
+
raise ValueError(
|
|
165
|
+
f"Argument {k} not found in the forward method of {cls}")
|
|
166
|
+
return _support_torch_compile(cls, inferred_dynamic_arg_dims,
|
|
167
|
+
enable_if)
|
|
168
|
+
|
|
169
|
+
if cls is not None:
|
|
170
|
+
# use `support_torch_compile` as a decorator without arguments
|
|
171
|
+
assert isinstance(cls, type)
|
|
172
|
+
return cls_decorator_helper(cls)
|
|
173
|
+
|
|
174
|
+
return cls_decorator_helper
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def _support_torch_compile(
|
|
178
|
+
cls: _T,
|
|
179
|
+
dynamic_arg_dims: dict[str, Union[int, list[int]]],
|
|
180
|
+
enable_if: Optional[Callable[[VllmConfig], bool]] = None,
|
|
181
|
+
) -> _T:
|
|
182
|
+
"""
|
|
183
|
+
A decorator to add support for compiling the forward method of a class.
|
|
184
|
+
"""
|
|
185
|
+
if TorchCompileWrapperWithCustomDispatcher in cls.__bases__:
|
|
186
|
+
# support decorating multiple times
|
|
187
|
+
return cls
|
|
188
|
+
|
|
189
|
+
# take care of method resolution order
|
|
190
|
+
# make sure super().__init__ is called on the base class
|
|
191
|
+
# other than TorchCompileWrapperWithCustomDispatcher
|
|
192
|
+
cls.__bases__ = cls.__bases__ + (TorchCompileWrapperWithCustomDispatcher, )
|
|
193
|
+
|
|
194
|
+
old_init = cls.__init__
|
|
195
|
+
|
|
196
|
+
setattr(cls, IGNORE_COMPILE_KEY, False)
|
|
197
|
+
|
|
198
|
+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs):
|
|
199
|
+
old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
|
|
200
|
+
self.vllm_config = vllm_config
|
|
201
|
+
enable_compile = enable_if is None or enable_if(vllm_config)
|
|
202
|
+
# for CompilationLevel.DYNAMO_AS_IS , the upper level model runner
|
|
203
|
+
# will handle the compilation, so we don't need to do anything here.
|
|
204
|
+
self.do_not_compile = \
|
|
205
|
+
vllm_config.compilation_config.level in [
|
|
206
|
+
CompilationLevel.NO_COMPILATION, CompilationLevel.DYNAMO_AS_IS
|
|
207
|
+
] or not supports_dynamo() or _should_ignore_torch_compile(
|
|
208
|
+
self.__class__) or not enable_compile
|
|
209
|
+
if self.do_not_compile:
|
|
210
|
+
return
|
|
211
|
+
|
|
212
|
+
compilation_counter.num_models_seen += 1
|
|
213
|
+
TorchCompileWrapperWithCustomDispatcher.__init__(
|
|
214
|
+
self, compilation_level=vllm_config.compilation_config.level)
|
|
215
|
+
|
|
216
|
+
cls.__init__ = __init__
|
|
217
|
+
|
|
218
|
+
def __call__(self, *args, **kwargs):
|
|
219
|
+
# torch.compiler.is_compiling() means we are inside the compilation
|
|
220
|
+
# e.g. TPU has the compilation logic in model runner, so we don't
|
|
221
|
+
# need to compile the model inside.
|
|
222
|
+
if self.do_not_compile or torch.compiler.is_compiling():
|
|
223
|
+
return self.forward(*args, **kwargs)
|
|
224
|
+
|
|
225
|
+
# the first compilation needs to have dynamic shapes marked
|
|
226
|
+
if len(self.compiled_codes) < 1:
|
|
227
|
+
sig = inspect.signature(self.__class__.forward)
|
|
228
|
+
bound_args = sig.bind(self, *args, **kwargs)
|
|
229
|
+
bound_args.apply_defaults()
|
|
230
|
+
for k, dims in dynamic_arg_dims.items():
|
|
231
|
+
arg = bound_args.arguments.get(k)
|
|
232
|
+
if arg is not None:
|
|
233
|
+
dims = [dims] if isinstance(dims, int) else dims
|
|
234
|
+
if isinstance(arg, torch.Tensor):
|
|
235
|
+
# In case dims is specified with negative indexing
|
|
236
|
+
dims = [
|
|
237
|
+
arg.ndim + dim if dim < 0 else dim for dim in dims
|
|
238
|
+
]
|
|
239
|
+
torch._dynamo.mark_dynamic(arg, dims)
|
|
240
|
+
elif isinstance(arg, IntermediateTensors):
|
|
241
|
+
for tensor in arg.tensors.values():
|
|
242
|
+
# In case dims is specified with negative indexing
|
|
243
|
+
dims = [
|
|
244
|
+
tensor.ndim + dim if dim < 0 else dim
|
|
245
|
+
for dim in dims
|
|
246
|
+
]
|
|
247
|
+
torch._dynamo.mark_dynamic(tensor, dims)
|
|
248
|
+
else:
|
|
249
|
+
raise ValueError(
|
|
250
|
+
"Unsupported dynamic dimensions"
|
|
251
|
+
f" {dims} for argument {k} with type {type(arg)}.")
|
|
252
|
+
# here, it is the starting point of the `torch.compile` process
|
|
253
|
+
start_monitoring_torch_compile(self.vllm_config)
|
|
254
|
+
logger.debug("Start compiling function %s",
|
|
255
|
+
self.original_code_object)
|
|
256
|
+
|
|
257
|
+
# if we don't use custom dispatcher, we can directly call the
|
|
258
|
+
# compiled function and let torch.compile handle the dispatching,
|
|
259
|
+
# with the overhead of guard evaluation and recompilation.
|
|
260
|
+
if len(self.compiled_codes) < 1 or not self.use_custom_dispatcher:
|
|
261
|
+
# it seems Dynamo reuse the compilation across instances,
|
|
262
|
+
# while we need to make sure the compiled code is not reused.
|
|
263
|
+
# we need to control all the compilation of the model.
|
|
264
|
+
torch._dynamo.eval_frame.remove_from_cache(
|
|
265
|
+
self.original_code_object)
|
|
266
|
+
|
|
267
|
+
# collect all relevant files traced by Dynamo,
|
|
268
|
+
# so that the compilation cache can trigger re-compilation
|
|
269
|
+
# properly when any of these files change.
|
|
270
|
+
|
|
271
|
+
# 1. the file containing the top-level forward function
|
|
272
|
+
self.vllm_config.compilation_config.traced_files.add(
|
|
273
|
+
self.original_code_object.co_filename)
|
|
274
|
+
|
|
275
|
+
# 2. every time Dynamo sees a function call, it will inline
|
|
276
|
+
# the function by calling InliningInstructionTranslator.inline_call
|
|
277
|
+
# we hijack this function to know all the functions called
|
|
278
|
+
# during Dynamo tracing, and their corresponding files
|
|
279
|
+
inline_call = InliningInstructionTranslator.inline_call
|
|
280
|
+
|
|
281
|
+
def patched_inline_call(parent, func, args, kwargs):
|
|
282
|
+
code = func.get_code()
|
|
283
|
+
self.vllm_config.compilation_config.traced_files.add(
|
|
284
|
+
code.co_filename)
|
|
285
|
+
return inline_call(parent, func, args, kwargs)
|
|
286
|
+
|
|
287
|
+
# Disable the C++ compilation of symbolic shape guards. C++-fication
|
|
288
|
+
# of symbolic shape guards can improve guard overhead. But, since
|
|
289
|
+
# vllm skip guards anyways, setting this flag to False can improve
|
|
290
|
+
# compile time.
|
|
291
|
+
dynamo_config_patches = {}
|
|
292
|
+
try:
|
|
293
|
+
_ = torch._dynamo.config.enable_cpp_symbolic_shape_guards
|
|
294
|
+
dynamo_config_patches[
|
|
295
|
+
"enable_cpp_symbolic_shape_guards"] = False
|
|
296
|
+
except AttributeError:
|
|
297
|
+
# Note: this config is not available in torch 2.6, we can skip
|
|
298
|
+
# if the config doesn't exist
|
|
299
|
+
logger.debug(
|
|
300
|
+
"enable_cpp_symbolic_shape_guards config not available")
|
|
301
|
+
|
|
302
|
+
with patch.object(InliningInstructionTranslator, 'inline_call',
|
|
303
|
+
patched_inline_call), torch._dynamo.config.patch(
|
|
304
|
+
**dynamo_config_patches):
|
|
305
|
+
output = self.compiled_callable(*args, **kwargs)
|
|
306
|
+
return output
|
|
307
|
+
|
|
308
|
+
# usually, capturing the model once is enough, and then we can
|
|
309
|
+
# dispatch to the compiled code directly, without going through
|
|
310
|
+
# the Dynamo guard mechanism.
|
|
311
|
+
with self.dispatch_to_code(0):
|
|
312
|
+
model_output = self.forward(*args, **kwargs)
|
|
313
|
+
return model_output
|
|
314
|
+
|
|
315
|
+
cls.__call__ = __call__
|
|
316
|
+
return cls
|