vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1786 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Adapted from
5
+ # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
6
+ # Copyright 2023 The vLLM team.
7
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
8
+ #
9
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
10
+ # and OPT implementations in this library. It has been modified from its
11
+ # original forms to accommodate minor architectural differences compared
12
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
13
+ #
14
+ # Licensed under the Apache License, Version 2.0 (the "License");
15
+ # you may not use this file except in compliance with the License.
16
+ # You may obtain a copy of the License at
17
+ #
18
+ # http://www.apache.org/licenses/LICENSE-2.0
19
+ #
20
+ # Unless required by applicable law or agreed to in writing, software
21
+ # distributed under the License is distributed on an "AS IS" BASIS,
22
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
23
+ # See the License for the specific language governing permissions and
24
+ # limitations under the License.
25
+ """Inference-only MiniCPM-V model compatible with HuggingFace weights."""
26
+ import math
27
+ from collections import defaultdict
28
+ from collections.abc import Iterable, Mapping, Sequence
29
+ from functools import partial
30
+ from itertools import chain
31
+ from typing import Annotated, Any, Callable, Literal, Optional, Union
32
+
33
+ import numpy as np
34
+ import torch
35
+ import torch.types
36
+ from torch import nn
37
+ from torch.nn.init import trunc_normal_
38
+ from transformers import BatchFeature, PretrainedConfig
39
+ from typing_extensions import TypeVar
40
+
41
+ from vllm.config import VllmConfig
42
+ from vllm.model_executor.layers.quantization import QuantizationConfig
43
+ from vllm.model_executor.layers.quantization.awq import AWQConfig
44
+ from vllm.model_executor.layers.quantization.awq_marlin import AWQMarlinConfig
45
+ from vllm.model_executor.layers.resampler import (BaseResampler, Resampler2,
46
+ get_2d_sincos_pos_embed)
47
+ from vllm.model_executor.model_loader.utils import set_default_torch_dtype
48
+ from vllm.model_executor.models.llama import LlamaForCausalLM
49
+ from vllm.model_executor.models.minicpm import MiniCPMForCausalLM
50
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
51
+ from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
52
+ from vllm.model_executor.models.qwen3 import Qwen3ForCausalLM
53
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
54
+ from vllm.multimodal import MULTIMODAL_REGISTRY
55
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
56
+ MultiModalKwargsItems, NestedTensors)
57
+ from vllm.multimodal.parse import (DictEmbeddingItems, ImageItem,
58
+ ImageProcessorItems, ImageSize,
59
+ ModalityData, ModalityDataItems,
60
+ MultiModalDataItems, MultiModalDataParser,
61
+ VideoItem, VideoProcessorItems)
62
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
63
+ BaseProcessingInfo, PromptReplacement,
64
+ PromptUpdate, PromptUpdateDetails,
65
+ ResolvedPromptUpdate, _seq2text)
66
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
67
+ from vllm.platforms import current_platform
68
+ from vllm.sequence import IntermediateTensors
69
+ from vllm.utils import flatten_2d_lists
70
+ from vllm.utils.tensor_schema import TensorSchema, TensorShape
71
+
72
+ from .idefics2_vision_model import Idefics2VisionTransformer
73
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
74
+ SupportsMultiModal, SupportsPP)
75
+ from .utils import (AutoWeightsLoader, flatten_bn, maybe_prefix,
76
+ merge_multimodal_embeddings)
77
+
78
+ # For profile run
79
+ _MAX_FRAMES_PER_VIDEO = 16
80
+
81
+
82
+ class MiniCPMVImagePixelInputs(TensorSchema):
83
+ """
84
+ Dimensions:
85
+ - bns: Batch size * number of images * number of slices
86
+ - bn: Batch size * number of images
87
+ - c: Number of channels
88
+ - h: Height
89
+ - w: Width
90
+ """
91
+
92
+ type: Literal["pixel_values"] = "pixel_values"
93
+
94
+ # Note that the image size may vary, so we pass it as a list instead of a
95
+ # batched tensor.
96
+ pixel_values: Annotated[
97
+ list[torch.Tensor],
98
+ TensorShape("bns", "c", "h", "w", dynamic_dims={"h", "w"}),
99
+ ]
100
+ tgt_sizes: Annotated[
101
+ torch.Tensor,
102
+ TensorShape("bns", 2), # This should be in `(height, width)` format.
103
+ ]
104
+ num_slices: Annotated[
105
+ torch.Tensor,
106
+ TensorShape("bn"),
107
+ ]
108
+
109
+
110
+ class MiniCPMVImageEmbeddingInputs(TensorSchema):
111
+ """
112
+ Dimensions:
113
+ - bn: Batch size * number of images
114
+ - ns: Number of slices
115
+ - hs: Hidden size (must match language model backbone)
116
+ """
117
+
118
+ type: Literal["image_embeds"]
119
+ image_embeds: Annotated[
120
+ Union[torch.Tensor, list[torch.Tensor]],
121
+ TensorShape("bn", "ns", "hs"),
122
+ ]
123
+
124
+
125
+ MiniCPMVImageInputs = Union[MiniCPMVImagePixelInputs,
126
+ MiniCPMVImageEmbeddingInputs]
127
+
128
+ DEFAULT_LN = partial(nn.LayerNorm, eps=1e-6)
129
+
130
+
131
+ class Resampler2_5(BaseResampler):
132
+
133
+ def __init__(self,
134
+ num_queries: int,
135
+ embed_dim: int,
136
+ num_heads: int,
137
+ kv_dim: Optional[int] = None,
138
+ norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN,
139
+ max_size: tuple[int, int] = (70, 70),
140
+ quant_config: Optional[QuantizationConfig] = None,
141
+ prefix: str = "") -> None:
142
+ super().__init__(num_queries,
143
+ embed_dim,
144
+ num_heads,
145
+ kv_dim,
146
+ norm_layer,
147
+ quant_config=quant_config,
148
+ prefix=prefix)
149
+
150
+ self.max_size = max_size
151
+ self._set_2d_pos_cache(self.max_size)
152
+
153
+ def _set_2d_pos_cache(self,
154
+ max_size: tuple[int, int],
155
+ device: torch.types.Device = "cpu") -> None:
156
+ pos_embed_arr = get_2d_sincos_pos_embed(self.embed_dim,
157
+ max_size,
158
+ version=(2, 5))
159
+ pos_embed = torch.from_numpy(pos_embed_arr).float().to(device)
160
+ self.register_buffer("pos_embed", pos_embed, persistent=False)
161
+
162
+ def _adjust_pos_cache(self, tgt_sizes: torch.Tensor,
163
+ device: torch.types.Device) -> None:
164
+ max_h = tgt_sizes[:, 0].max().item()
165
+ max_w = tgt_sizes[:, 1].max().item()
166
+ assert isinstance(max_h, int) and isinstance(max_w, int)
167
+
168
+ if max_h > self.max_size[0] or max_w > self.max_size[1]:
169
+ self.max_size = (
170
+ max(max_h, self.max_size[0]),
171
+ max(max_w, self.max_size[1]),
172
+ )
173
+ self._set_2d_pos_cache(self.max_size, device)
174
+
175
+ def forward(self, x: torch.Tensor,
176
+ tgt_sizes: torch.Tensor) -> torch.Tensor:
177
+ assert x.shape[0] == tgt_sizes.shape[0]
178
+ bs = x.shape[0]
179
+
180
+ device = x.device
181
+ dtype = x.dtype
182
+
183
+ patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
184
+
185
+ self._adjust_pos_cache(tgt_sizes, device=device)
186
+
187
+ max_patch_len = patch_len.max().item()
188
+ assert isinstance(max_patch_len, int)
189
+
190
+ key_padding_mask = torch.zeros((bs, max_patch_len),
191
+ dtype=torch.bool,
192
+ device=device)
193
+
194
+ pos_embed = []
195
+ for i in range(bs):
196
+ tgt_h, tgt_w = tgt_sizes[i].tolist()
197
+ pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape(
198
+ (tgt_h * tgt_w, -1)).to(dtype)) # patches * D
199
+ key_padding_mask[i, patch_len[i]:] = True
200
+ pos_embed = torch.nn.utils.rnn.pad_sequence(pos_embed,
201
+ batch_first=True,
202
+ padding_value=0.0).permute(
203
+ 1, 0,
204
+ 2) # BLD => L * B * D
205
+ x, _ = self.kv_proj(x) # B * L * D
206
+ x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
207
+
208
+ q = self.ln_q(self.query) # Q * D
209
+
210
+ out = self.attn(
211
+ self._repeat(q, bs), # Q * B * D
212
+ x + pos_embed, # L * B * D + L * B * D
213
+ x,
214
+ key_padding_mask=key_padding_mask,
215
+ )[0]
216
+ # out: Q * B * D
217
+ x = out.permute(1, 0, 2) # B * Q * D
218
+
219
+ x = self.ln_post(x)
220
+ x = x @ self.proj
221
+ return x
222
+
223
+
224
+ class Resampler4_5(Resampler2_5):
225
+
226
+ def __init__(self,
227
+ num_queries: int,
228
+ embed_dim: int,
229
+ num_heads: int,
230
+ kv_dim: Optional[int] = None,
231
+ norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN,
232
+ max_size: tuple[int, int] = (70, 70),
233
+ max_temporal_size: int = 36000,
234
+ quant_config: Optional[QuantizationConfig] = None,
235
+ prefix: str = "") -> None:
236
+ super().__init__(num_queries,
237
+ embed_dim,
238
+ num_heads,
239
+ kv_dim,
240
+ norm_layer,
241
+ max_size,
242
+ quant_config=quant_config,
243
+ prefix=prefix)
244
+
245
+ trunc_normal_(self.query, std=.02)
246
+ self.max_temporal_size = max_temporal_size
247
+ self._set_temporal_pos_cache(self.max_temporal_size)
248
+ self.apply(self._init_weights)
249
+
250
+ def get_1d_sincos_pos_embed_from_temporal_size(self, embed_dim: int,
251
+ pos: np.ndarray):
252
+ """
253
+ embed_dim: output dimension for each position
254
+ pos: a list of positions to be encoded: size (M,)
255
+ out: (M, D)
256
+ """
257
+ assert embed_dim % 2 == 0
258
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
259
+ omega /= embed_dim / 2.
260
+ omega = 1. / 10000**omega # (D/2,)
261
+
262
+ pos = pos.reshape(-1) # (M,)
263
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
264
+
265
+ emb_sin = np.sin(out) # (M, D/2)
266
+ emb_cos = np.cos(out) # (M, D/2)
267
+
268
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
269
+ return emb
270
+
271
+ def _set_temporal_pos_cache(self,
272
+ max_temporal_size: int,
273
+ device: torch.types.Device = "cpu") -> None:
274
+ temporal_size = np.arange(max_temporal_size, dtype=np.float32)
275
+ pos_embed = torch.from_numpy(
276
+ self.get_1d_sincos_pos_embed_from_temporal_size(
277
+ self.embed_dim, temporal_size)).float().to(device)
278
+ self.register_buffer("temporal_pos_embed", pos_embed, persistent=False)
279
+
280
+ def _adjust_temporal_pos_cache(self,
281
+ max_temporal_size: int,
282
+ device: torch.types.Device = "cpu"):
283
+ if max_temporal_size > self.max_temporal_size:
284
+ self.max_temporal_size = max_temporal_size
285
+ self._set_temporal_pos_cache(self.max_temporal_size, device)
286
+
287
+ def _init_weights(self, m: Union[nn.Linear, nn.LayerNorm]):
288
+ if isinstance(m, nn.Linear):
289
+ trunc_normal_(m.weight, std=.02)
290
+ if isinstance(m, nn.Linear) and m.bias is not None:
291
+ nn.init.constant_(m.bias, 0)
292
+ elif isinstance(m, nn.LayerNorm):
293
+ nn.init.constant_(m.bias, 0)
294
+ nn.init.constant_(m.weight, 1.0)
295
+
296
+ def forward(
297
+ self,
298
+ x: torch.Tensor,
299
+ tgt_sizes: torch.Tensor,
300
+ # temporal_ids for high refresh rate videos
301
+ temporal_ids=None
302
+ ) -> torch.Tensor:
303
+ assert x.shape[0] == tgt_sizes.shape[0]
304
+ bs = x.shape[0]
305
+
306
+ device = x.device
307
+ dtype = x.dtype
308
+
309
+ patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
310
+
311
+ self._adjust_pos_cache(tgt_sizes, device=device)
312
+
313
+ temporal_pos_emb = False
314
+ temporal_ids_flatten = None
315
+ if temporal_ids is not None:
316
+ # example: [[-1], [-1], [2, 6, 9]]
317
+ temporal_ids_flatten = list(chain.from_iterable(temporal_ids))
318
+ max_temporal_size = max(temporal_ids_flatten, default=0)
319
+ if max_temporal_size > -1:
320
+ temporal_pos_emb = True
321
+ if max_temporal_size > self.max_temporal_size:
322
+ self._adjust_temporal_pos_cache(max_temporal_size, device)
323
+
324
+ max_patch_len = patch_len.max().item()
325
+ assert isinstance(max_patch_len, int)
326
+
327
+ key_padding_mask = torch.zeros((bs, max_patch_len),
328
+ dtype=torch.bool,
329
+ device=device)
330
+
331
+ x, _ = self.kv_proj(x) # B * L * D
332
+ x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
333
+ q = self.ln_q(self.query) # Q * D
334
+
335
+ pos_embed_2d = []
336
+ pos_embed_temporal = []
337
+ for i in range(bs):
338
+ tgt_h, tgt_w = tgt_sizes[i]
339
+ if temporal_pos_emb:
340
+ if temporal_ids_flatten[i] == -1:
341
+ pos_embed_temporal.append(
342
+ torch.zeros(self.embed_dim, dtype=dtype,
343
+ device=device))
344
+ else:
345
+ pos_embed_temporal.append(self.temporal_pos_embed[
346
+ temporal_ids_flatten[i]].to(dtype)) # D
347
+
348
+ pos_embed_2d.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape(
349
+ (tgt_h * tgt_w, -1)).to(dtype)) # patches * D
350
+ key_padding_mask[i, patch_len[i]:] = True
351
+
352
+ pos_embed_2d = torch.nn.utils.rnn.pad_sequence(
353
+ pos_embed_2d, batch_first=True,
354
+ padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
355
+
356
+ k = x
357
+ v = x + pos_embed_2d
358
+ if pos_embed_temporal:
359
+ k += torch.stack(pos_embed_temporal, dim=0)
360
+ bs = len(temporal_ids)
361
+ merge_k = []
362
+ merge_v = []
363
+ merge_key_padding_mask = []
364
+
365
+ start = 0
366
+ for tp in temporal_ids:
367
+ end = start + len(tp)
368
+ # L * (end-start) * D -> (end-start) * L * D
369
+ # -> 1 * L*(end-start) * D
370
+ merge_k.append(k[:, start:end, :].permute(1, 0, 2).reshape(
371
+ -1, self.embed_dim))
372
+ merge_v.append(v[:, start:end, :].permute(1, 0, 2).reshape(
373
+ -1, self.embed_dim))
374
+ merge_key_padding_mask.append(
375
+ key_padding_mask[start:end, :].reshape(-1, 1))
376
+
377
+ start = end
378
+
379
+ k = torch.nn.utils.rnn.pad_sequence(merge_k,
380
+ batch_first=True,
381
+ padding_value=0.0).permute(
382
+ 1, 0, 2) # L*(end-start)
383
+ v = torch.nn.utils.rnn.pad_sequence(merge_v,
384
+ batch_first=True,
385
+ padding_value=0.0).permute(
386
+ 1, 0, 2) # L*(end-start)
387
+ key_padding_mask = torch.nn.utils.rnn.pad_sequence(
388
+ merge_key_padding_mask, batch_first=True,
389
+ padding_value=True).squeeze(-1)
390
+
391
+ out = self.attn(
392
+ self._repeat(q, bs), # Q * B * D
393
+ k, # L * B * D + L * B * D
394
+ v,
395
+ key_padding_mask=key_padding_mask,
396
+ )[0]
397
+ # out: Q * B * D
398
+ x = out.permute(1, 0, 2) # B * Q * D
399
+
400
+ x = self.ln_post(x)
401
+ x = x @ self.proj
402
+ return x
403
+
404
+
405
+ def get_version_by_config(config: PretrainedConfig) -> tuple[int, ...]:
406
+ version_float = getattr(config, "version", None)
407
+
408
+ # The old configs do not include version number
409
+ # TODO: Remove this after the HF repos are updated
410
+ if version_float is None:
411
+ if config.hidden_size == 2304 and config.query_num == 64:
412
+ return (2, 0)
413
+ return (2, 5)
414
+ version_str = str(version_float)
415
+ return tuple(int(x) for x in version_str.split("."))
416
+
417
+
418
+ def _minicpmv_field_config(hf_inputs: Mapping[str, torch.Tensor]):
419
+ pixel_values = hf_inputs.get("pixel_values", torch.empty(0))
420
+ num_images = len(pixel_values)
421
+
422
+ video_pixel_values = hf_inputs.get("video_pixel_values", torch.empty(0))
423
+ num_videos = len(video_pixel_values)
424
+
425
+ return dict(
426
+ pixel_values=MultiModalFieldConfig.batched("image"),
427
+ image_sizes=MultiModalFieldConfig.batched("image"),
428
+ tgt_sizes=MultiModalFieldConfig.batched("image"),
429
+ image_embeds=MultiModalFieldConfig.batched("image"),
430
+ video_pixel_values=MultiModalFieldConfig.batched("video"),
431
+ video_image_sizes=MultiModalFieldConfig.batched("video"),
432
+ video_tgt_sizes=MultiModalFieldConfig.batched("video"),
433
+ video_embeds=MultiModalFieldConfig.batched("video"),
434
+ image_token_id=MultiModalFieldConfig.shared("image", num_images),
435
+ video_token_id=MultiModalFieldConfig.shared("video", num_videos),
436
+ )
437
+
438
+
439
+ class MiniCPMVImageEmbeddingItems(DictEmbeddingItems):
440
+
441
+ def __init__(
442
+ self,
443
+ data: Mapping[str, torch.Tensor],
444
+ fields_factory: Callable[
445
+ [Mapping[str, torch.Tensor]],
446
+ Mapping[str, MultiModalFieldConfig],
447
+ ],
448
+ ) -> None:
449
+ super().__init__(
450
+ data,
451
+ modality="image",
452
+ required_fields={"image_embeds", "image_sizes"},
453
+ fields_factory=fields_factory,
454
+ )
455
+
456
+ def get_image_size(self, index: int) -> ImageSize:
457
+ image_size = self.get(index)["image_sizes"].tolist()
458
+ return ImageSize(width=image_size[0], height=image_size[1])
459
+
460
+
461
+ class MiniCPMVVideoEmbeddingItems(DictEmbeddingItems):
462
+
463
+ def __init__(
464
+ self,
465
+ data: Mapping[str, torch.Tensor],
466
+ fields_factory: Callable[
467
+ [Mapping[str, torch.Tensor]],
468
+ Mapping[str, MultiModalFieldConfig],
469
+ ],
470
+ ) -> None:
471
+ super().__init__(
472
+ data,
473
+ modality="video",
474
+ required_fields={"video_embeds", "video_image_sizes"},
475
+ fields_factory=fields_factory,
476
+ )
477
+
478
+ def get_frame_size(self, index: int) -> ImageSize:
479
+ frame_size = self.get(index)["video_image_sizes"].tolist()
480
+ return ImageSize(width=frame_size[0], height=frame_size[1])
481
+
482
+ def get_num_frames(self, index: int) -> int:
483
+ return len(self.get(index)["video_image_sizes"])
484
+
485
+
486
+ class MiniCPMVMultiModalDataParser(MultiModalDataParser):
487
+
488
+ def _parse_image_data(
489
+ self,
490
+ data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
491
+ ) -> Optional[ModalityDataItems[Any, Any]]:
492
+ if isinstance(data, dict):
493
+ return MiniCPMVImageEmbeddingItems(
494
+ data,
495
+ fields_factory=_minicpmv_field_config,
496
+ )
497
+
498
+ return super()._parse_image_data(data)
499
+
500
+ def _parse_video_data(
501
+ self,
502
+ data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
503
+ ) -> Optional[ModalityDataItems[Any, Any]]:
504
+ if isinstance(data, dict):
505
+ return MiniCPMVVideoEmbeddingItems(
506
+ data,
507
+ fields_factory=_minicpmv_field_config,
508
+ )
509
+
510
+ return super()._parse_video_data(data)
511
+
512
+
513
+ class MiniCPMVProcessingInfo(BaseProcessingInfo):
514
+ image_pattern = "(<image>./</image>)"
515
+ video_pattern = "(<video>./</video>)"
516
+
517
+ def get_hf_config(self):
518
+ return self.ctx.get_hf_config()
519
+
520
+ def get_hf_processor(self, **kwargs: object):
521
+ hf_processor = self.ctx.get_hf_processor(**kwargs)
522
+
523
+ # NumPy arrays are considered as Iterable but not Sequence in
524
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/image_transforms.py#L428
525
+ image_processor = hf_processor.image_processor # type: ignore
526
+ for attr in ("mean", "std"):
527
+ val = getattr(image_processor, attr)
528
+ if isinstance(val, np.ndarray):
529
+ setattr(image_processor, attr, val.tolist())
530
+
531
+ return hf_processor
532
+
533
+ def get_image_processor(self, **kwargs: object):
534
+ return self.get_hf_processor(**kwargs).image_processor
535
+
536
+ def get_model_version(self):
537
+ return get_version_by_config(self.get_hf_config())
538
+
539
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
540
+ mm_limits = {"image": None}
541
+ if self.get_model_version() in {(2, 6), (4, 0), (4, 5)}:
542
+ mm_limits["video"] = None
543
+
544
+ return mm_limits
545
+
546
+ def get_slice_image_placeholder(
547
+ self,
548
+ image_size: ImageSize,
549
+ # For MiniCPM V/O 2.6
550
+ image_idx: int = 0,
551
+ max_slice_nums: Optional[int] = None,
552
+ use_image_id: bool = True,
553
+ ) -> str:
554
+ image_processor = self.get_image_processor()
555
+ version = self.get_model_version()
556
+
557
+ if version == (2, 0) or version == (2, 5):
558
+ return image_processor.get_slice_image_placeholder(image_size)
559
+
560
+ return image_processor.get_slice_image_placeholder(
561
+ image_size,
562
+ image_idx=image_idx,
563
+ max_slice_nums=max_slice_nums,
564
+ use_image_id=use_image_id,
565
+ )
566
+
567
+ def get_sliced_grid(
568
+ self,
569
+ image_size: ImageSize,
570
+ # For MiniCPM V/O 2.6
571
+ max_slice_nums: Optional[int] = None,
572
+ ) -> Optional[tuple[int, int]]:
573
+ image_processor = self.get_image_processor()
574
+ version = self.get_model_version()
575
+
576
+ if version == (2, 0) or version == (2, 5):
577
+ return image_processor.get_sliced_grid(image_size)
578
+
579
+ if max_slice_nums is None:
580
+ max_slice_nums = image_processor.max_slice_nums
581
+
582
+ return image_processor.get_sliced_grid(
583
+ image_size,
584
+ max_slice_nums=max_slice_nums,
585
+ )
586
+
587
+ def get_num_image_tokens(
588
+ self,
589
+ image_size: ImageSize,
590
+ max_slice_nums: Optional[int] = None,
591
+ ) -> int:
592
+ image_processor = self.get_image_processor()
593
+
594
+ grid = self.get_sliced_grid(
595
+ image_size,
596
+ max_slice_nums=max_slice_nums,
597
+ )
598
+ if grid is None:
599
+ ncols = nrows = 0
600
+ else:
601
+ ncols, nrows = grid
602
+
603
+ return (ncols * nrows + 1) * image_processor.image_feature_size
604
+
605
+ def get_max_image_tokens(self) -> int:
606
+ image_size = self.get_image_size_with_most_features()
607
+ return self.get_num_image_tokens(image_size)
608
+
609
+ def get_image_max_slice_num(self) -> int:
610
+ return getattr(self.get_hf_config(), "max_slice_num", 9)
611
+
612
+ def get_image_size_with_most_features(self) -> ImageSize:
613
+ image_size = getattr(self.get_hf_config(), "image_size", 448)
614
+ max_slice_num = self.get_image_max_slice_num()
615
+ return ImageSize(width=image_size, height=image_size * max_slice_num)
616
+
617
+ def get_max_video_frame_tokens(self) -> int:
618
+ frame_size = self.get_video_frame_size_with_most_features()
619
+
620
+ return self.get_num_image_tokens(
621
+ frame_size,
622
+ max_slice_nums=self.get_video_max_slice_num(),
623
+ )
624
+
625
+ def get_max_video_tokens(
626
+ self,
627
+ seq_len: int,
628
+ mm_counts: Mapping[str, int],
629
+ ) -> int:
630
+ num_frames = self.get_num_frames_with_most_features(seq_len, mm_counts)
631
+ num_video_tokens_total = self.get_max_video_frame_tokens() * num_frames
632
+ return num_video_tokens_total
633
+
634
+ def get_video_max_slice_num(self) -> int:
635
+ return 1
636
+
637
+ def get_video_frame_size_with_most_features(self) -> ImageSize:
638
+ image_size = getattr(self.get_hf_config(), "image_size", 448)
639
+ max_slice_num = self.get_video_max_slice_num()
640
+ return ImageSize(width=image_size, height=image_size * max_slice_num)
641
+
642
+ def get_max_video_frames(self, max_tokens: int) -> int:
643
+ num_frame_tokens = self.get_max_video_frame_tokens()
644
+ num_frames = max_tokens // num_frame_tokens
645
+ return num_frames
646
+
647
+ def get_num_frames_with_most_features(
648
+ self,
649
+ seq_len: int,
650
+ mm_counts: Mapping[str, int],
651
+ ) -> int:
652
+ max_images = mm_counts.get("image", 0)
653
+ max_videos = mm_counts.get("video", 0)
654
+
655
+ max_image_tokens = self.get_max_image_tokens() * max_images
656
+ max_total_frames = self.get_max_video_frames(seq_len -
657
+ max_image_tokens)
658
+ max_frames_per_video = min(max_total_frames // max(max_videos, 1),
659
+ _MAX_FRAMES_PER_VIDEO)
660
+
661
+ return max(max_frames_per_video, 1)
662
+
663
+
664
+ _I = TypeVar("_I",
665
+ bound=MiniCPMVProcessingInfo,
666
+ default=MiniCPMVProcessingInfo)
667
+
668
+
669
+ class MiniCPMVDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
670
+
671
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
672
+ num_images = mm_counts.get("image", 0)
673
+ num_videos = mm_counts.get("video", 0)
674
+
675
+ image_prompt_texts = self.info.image_pattern * num_images
676
+ video_prompt_texts = self.info.video_pattern * num_videos
677
+
678
+ return image_prompt_texts + video_prompt_texts
679
+
680
+ def get_dummy_mm_data(
681
+ self,
682
+ seq_len: int,
683
+ mm_counts: Mapping[str, int],
684
+ ) -> MultiModalDataDict:
685
+ num_images = mm_counts.get("image", 0)
686
+ num_videos = mm_counts.get("video", 0)
687
+
688
+ image_width, image_height = \
689
+ self.info.get_image_size_with_most_features()
690
+ video_width, video_height = \
691
+ self.info.get_video_frame_size_with_most_features()
692
+ num_video_frames = \
693
+ self.info.get_num_frames_with_most_features(seq_len, mm_counts)
694
+
695
+ return {
696
+ "image":
697
+ self._get_dummy_images(width=image_width,
698
+ height=image_height,
699
+ num_images=num_images),
700
+ "video": [
701
+ self._get_dummy_images(width=video_width,
702
+ height=video_height,
703
+ num_images=num_video_frames)
704
+ ] * num_videos,
705
+ }
706
+
707
+
708
+ class MiniCPMVMultiModalProcessor(BaseMultiModalProcessor[_I]):
709
+
710
+ def _get_data_parser(self) -> MultiModalDataParser:
711
+ return MiniCPMVMultiModalDataParser()
712
+
713
+ def get_image_prompt_texts(self,
714
+ image_size: ImageSize,
715
+ image_idx: int = 0) -> str:
716
+ return self.info.get_slice_image_placeholder(
717
+ image_size,
718
+ image_idx=image_idx,
719
+ )
720
+
721
+ def get_video_prompt_texts(self, image_size: ImageSize,
722
+ num_frames: int) -> str:
723
+ return self.info.get_slice_image_placeholder(
724
+ image_size=image_size,
725
+ image_idx=0,
726
+ max_slice_nums=self.info.get_video_max_slice_num(),
727
+ use_image_id=False,
728
+ ) * num_frames
729
+
730
+ def process_images(
731
+ self,
732
+ mm_data: Mapping[str, object],
733
+ mm_kwargs: Mapping[str, object],
734
+ tok_kwargs: Mapping[str, object],
735
+ ) -> Mapping[str, NestedTensors]:
736
+ if (images := mm_data.get("images")) is None:
737
+ return {}
738
+
739
+ parsed_images = (self._get_data_parser().parse_mm_data({
740
+ "image": images
741
+ }).get_items("image",
742
+ (MiniCPMVImageEmbeddingItems, ImageProcessorItems)))
743
+
744
+ if isinstance(parsed_images, MiniCPMVImageEmbeddingItems):
745
+ image_inputs = {}
746
+ else:
747
+ image_inputs = self._base_call_hf_processor(
748
+ prompts=[self.info.image_pattern] * len(parsed_images),
749
+ mm_data={"images": [[image] for image in parsed_images]},
750
+ mm_kwargs=mm_kwargs,
751
+ tok_kwargs=tok_kwargs,
752
+ out_keys={"pixel_values", "image_sizes", "tgt_sizes"},
753
+ )
754
+
755
+ tokenizer = self.info.get_tokenizer()
756
+ unk_token_id = tokenizer.get_vocab()["<unk>"]
757
+ image_inputs["image_token_id"] = torch.tensor(unk_token_id)
758
+
759
+ return image_inputs
760
+
761
+ def process_videos(
762
+ self,
763
+ mm_data: Mapping[str, object],
764
+ mm_kwargs: Mapping[str, object],
765
+ tok_kwargs: Mapping[str, object],
766
+ ) -> Mapping[str, NestedTensors]:
767
+ if (videos := mm_data.get("videos")) is None:
768
+ return {}
769
+
770
+ parsed_videos = (self._get_data_parser().parse_mm_data({
771
+ "video": videos
772
+ }).get_items("video",
773
+ (MiniCPMVVideoEmbeddingItems, VideoProcessorItems)))
774
+
775
+ if isinstance(parsed_videos, MiniCPMVVideoEmbeddingItems):
776
+ video_inputs = {}
777
+ else:
778
+ video_inputs = self._base_call_hf_processor(
779
+ prompts=[
780
+ self.info.image_pattern * len(video)
781
+ for video in parsed_videos
782
+ ],
783
+ mm_data={"images": list(parsed_videos)},
784
+ mm_kwargs={
785
+ **mm_kwargs,
786
+ "max_slice_nums":
787
+ self.info.get_video_max_slice_num(),
788
+ },
789
+ tok_kwargs=tok_kwargs,
790
+ out_keys={"pixel_values", "image_sizes", "tgt_sizes"},
791
+ )
792
+
793
+ video_inputs = {f"video_{k}": v for k, v in video_inputs.items()}
794
+
795
+ tokenizer = self.info.get_tokenizer()
796
+ unk_token_id = tokenizer.get_vocab()["<unk>"]
797
+ video_inputs["video_token_id"] = torch.tensor(unk_token_id)
798
+
799
+ return video_inputs
800
+
801
+ def process_mm_inputs(
802
+ self,
803
+ mm_data: Mapping[str, object],
804
+ mm_kwargs: Mapping[str, object],
805
+ tok_kwargs: Mapping[str, object],
806
+ ) -> Mapping[str, NestedTensors]:
807
+ return {
808
+ **self.process_images(mm_data, mm_kwargs, tok_kwargs),
809
+ **self.process_videos(mm_data, mm_kwargs, tok_kwargs),
810
+ }
811
+
812
+ def _base_call_hf_processor(
813
+ self,
814
+ prompts: list[str],
815
+ mm_data: Mapping[str, Sequence[object]],
816
+ mm_kwargs: Mapping[str, object],
817
+ tok_kwargs: Mapping[str, object],
818
+ *,
819
+ out_keys: set[str],
820
+ ) -> dict[str, NestedTensors]:
821
+ # This processor supports zipping prompt and mm_data together
822
+ if self.info.get_model_version() in {(2, 6), (4, 0), (4, 5)}:
823
+ inputs = super()._call_hf_processor(
824
+ prompt=prompts, # type: ignore
825
+ mm_data=mm_data,
826
+ mm_kwargs=mm_kwargs,
827
+ tok_kwargs=tok_kwargs,
828
+ )
829
+ else:
830
+ inputs = defaultdict[str, list[torch.Tensor]](list)
831
+
832
+ for i, prompt in enumerate(prompts):
833
+ inputs_one = super()._call_hf_processor(
834
+ prompt=prompt,
835
+ mm_data={
836
+ k: v[i]
837
+ for k, v in mm_data.items()
838
+ },
839
+ mm_kwargs=mm_kwargs,
840
+ tok_kwargs=tok_kwargs,
841
+ )
842
+
843
+ for k, v in inputs_one.items():
844
+ assert len(v) == 1, (k, len(v))
845
+ inputs[k].append(v[0])
846
+
847
+ return {k: inputs[k] for k in out_keys}
848
+
849
+ def _call_hf_processor(
850
+ self,
851
+ prompt: str,
852
+ mm_data: Mapping[str, object],
853
+ mm_kwargs: Mapping[str, object],
854
+ tok_kwargs: Mapping[str, object],
855
+ ) -> BatchFeature:
856
+ tokenizer = self.info.get_tokenizer()
857
+
858
+ input_ids = torch.tensor([tokenizer.encode(prompt, **tok_kwargs)])
859
+ mm_inputs = self.process_mm_inputs(mm_data, mm_kwargs, tok_kwargs)
860
+
861
+ return BatchFeature({
862
+ "input_ids": input_ids,
863
+ **mm_inputs,
864
+ })
865
+
866
+ def _hf_processor_applies_updates(
867
+ self,
868
+ prompt_text: str,
869
+ mm_items: MultiModalDataItems,
870
+ hf_processor_mm_kwargs: Mapping[str, object],
871
+ tokenization_kwargs: Mapping[str, object],
872
+ ) -> bool:
873
+ return False
874
+
875
+ def _get_prompt_updates(
876
+ self,
877
+ mm_items: MultiModalDataItems,
878
+ hf_processor_mm_kwargs: Mapping[str, object],
879
+ out_mm_kwargs: MultiModalKwargsItems,
880
+ ) -> Sequence[PromptUpdate]:
881
+ placeholders = [("image", self.info.image_pattern),
882
+ ("video", self.info.video_pattern)]
883
+
884
+ # hard code for inconsistency of encode-decode image_pattern
885
+ additional_placeholders = []
886
+ tokenizer = self.info.get_tokenizer()
887
+ for modality, pattern in placeholders:
888
+ sub_pattern = tokenizer.decode(
889
+ tokenizer.encode(pattern, add_special_tokens=False))
890
+ if sub_pattern != pattern:
891
+ additional_placeholders.append((modality, sub_pattern))
892
+ placeholders += additional_placeholders
893
+
894
+ def get_image_replacement(item_idx: int):
895
+ images = mm_items.get_items(
896
+ "image", (MiniCPMVImageEmbeddingItems, ImageProcessorItems))
897
+
898
+ image_size = images.get_image_size(item_idx)
899
+
900
+ return PromptUpdateDetails.select_text(
901
+ self.get_image_prompt_texts(image_size, item_idx),
902
+ "<unk>",
903
+ )
904
+
905
+ def get_video_replacement(item_idx: int):
906
+ videos = mm_items.get_items(
907
+ "video", (MiniCPMVVideoEmbeddingItems, VideoProcessorItems))
908
+
909
+ frame_size = videos.get_frame_size(item_idx)
910
+ num_frames = videos.get_num_frames(item_idx)
911
+
912
+ return PromptUpdateDetails.select_text(
913
+ self.get_video_prompt_texts(frame_size, num_frames),
914
+ "<unk>",
915
+ )
916
+
917
+ get_replacement = {
918
+ "image": get_image_replacement,
919
+ "video": get_video_replacement,
920
+ }
921
+
922
+ return [
923
+ PromptReplacement(modality=modality,
924
+ target=pattern,
925
+ replacement=get_replacement[modality])
926
+ for modality, pattern in placeholders
927
+ ]
928
+
929
+ def _recompute_cached_prompt_update(
930
+ self,
931
+ cached_update: ResolvedPromptUpdate,
932
+ new_item_idx: int,
933
+ ) -> ResolvedPromptUpdate:
934
+ new_update = super()._recompute_cached_prompt_update(
935
+ cached_update,
936
+ new_item_idx,
937
+ )
938
+
939
+ if cached_update.modality == "image":
940
+ tokenizer = self.info.get_tokenizer()
941
+ image_processor = self.info.get_image_processor()
942
+ version = self.info.get_model_version()
943
+
944
+ text = _seq2text(tokenizer, cached_update.content.full)
945
+ prev_item_idx = cached_update.item_idx
946
+
947
+ if version == (2, 0) or version == (2, 5):
948
+ im_start = image_processor.im_start_token
949
+ im_end = image_processor.im_end_token
950
+ else:
951
+ im_start = image_processor.im_id_start
952
+ im_end = image_processor.im_id_end
953
+
954
+ new_update = new_update.with_content(
955
+ PromptUpdateDetails.select_text(
956
+ text.replace(
957
+ f"{im_start}{prev_item_idx}{im_end}",
958
+ f"{im_start}{new_item_idx}{im_end}",
959
+ 1,
960
+ ),
961
+ "<unk>",
962
+ ))
963
+
964
+ return new_update
965
+
966
+ def _get_mm_fields_config(
967
+ self,
968
+ hf_inputs: BatchFeature,
969
+ hf_processor_mm_kwargs: Mapping[str, object],
970
+ ) -> Mapping[str, MultiModalFieldConfig]:
971
+ return _minicpmv_field_config(hf_inputs)
972
+
973
+
974
+ class MiniCPMVBaseModel(nn.Module, SupportsMultiModal, SupportsPP):
975
+ """
976
+ The abstract class of MiniCPMV can only be inherited, but cannot be
977
+ instantiated.
978
+ """
979
+
980
+ supports_encoder_tp_data = True
981
+
982
+ @classmethod
983
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
984
+ if modality.startswith("image"):
985
+ return "(<image>./</image>)"
986
+ if modality.startswith("video"):
987
+ return "(<video>./</video>)"
988
+
989
+ raise ValueError("Only image or video modality is supported")
990
+
991
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
992
+ config = vllm_config.model_config.hf_config
993
+ multimodal_config = vllm_config.model_config.multimodal_config
994
+ quant_config = vllm_config.quant_config
995
+ self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
996
+ super().__init__()
997
+ # All MiniCPM-V models disable `tie_word_embeddings` but
998
+ # `PretrainedConfig.tie_word_embeddings` defaults to True; we cannot
999
+ # check `tie_word_embeddings` until vLLM integrate MiniCPM-V model
1000
+ # and config class
1001
+ self.config = config
1002
+ self.multimodal_config = multimodal_config
1003
+
1004
+ self.version = get_version_by_config(self.config)
1005
+ self.llm = self.init_llm(vllm_config=vllm_config,
1006
+ prefix=maybe_prefix(prefix, "llm"))
1007
+ self.vpm = self.init_vision_module(config,
1008
+ quant_config,
1009
+ prefix=maybe_prefix(prefix, "vpm"))
1010
+ self.vision_dim = (self.vpm.embed_dim if self.version == (2, 0) else
1011
+ self.vpm.embeddings.embed_dim)
1012
+ self.embed_dim = self.config.hidden_size
1013
+
1014
+ self.resampler = self.init_resampler(self.embed_dim,
1015
+ self.vision_dim,
1016
+ quant_config=quant_config,
1017
+ prefix=maybe_prefix(
1018
+ prefix, "resampler"))
1019
+
1020
+ self.mm_token_ids = set[int]()
1021
+ self.make_empty_intermediate_tensors = (
1022
+ self.llm.make_empty_intermediate_tensors)
1023
+
1024
+ def _parse_and_validate_vision_input(
1025
+ self,
1026
+ modality: str,
1027
+ **kwargs: object,
1028
+ ) -> Optional[MiniCPMVImageInputs]:
1029
+ pixel_values = kwargs.pop("pixel_values", None)
1030
+ image_embeds = kwargs.pop("image_embeds", None)
1031
+
1032
+ if pixel_values is None and image_embeds is None:
1033
+ return None
1034
+
1035
+ image_token_id = kwargs.pop("image_token_id")
1036
+ if image_token_id is not None:
1037
+ assert isinstance(image_token_id, torch.Tensor)
1038
+ self.mm_token_ids.add(image_token_id.flatten().unique().item())
1039
+
1040
+ if image_embeds is not None:
1041
+ if not isinstance(image_embeds, (torch.Tensor, list)):
1042
+ raise ValueError(
1043
+ f"Incorrect type of image_embeds for {modality=}. "
1044
+ f"Got type: {type(image_embeds)}")
1045
+
1046
+ image_embeds_flat = flatten_bn(image_embeds)
1047
+
1048
+ return MiniCPMVImageEmbeddingInputs(
1049
+ type="image_embeds",
1050
+ image_embeds=image_embeds_flat,
1051
+ )
1052
+
1053
+ if not isinstance(pixel_values, (torch.Tensor, list)):
1054
+ raise ValueError(
1055
+ f"Incorrect type of pixel_values for {modality=}. "
1056
+ f"Got type: {type(pixel_values)}")
1057
+
1058
+ tgt_sizes = kwargs.pop("tgt_sizes")
1059
+ if not isinstance(tgt_sizes, (torch.Tensor, list)):
1060
+ raise ValueError(f"Incorrect type of tgt_sizes for {modality=}. "
1061
+ f"Got type: {type(tgt_sizes)}")
1062
+
1063
+ num_slices = [[len(p) for p in ps] for ps in pixel_values]
1064
+ num_slices_flat = flatten_bn(torch.tensor(num_slices))
1065
+
1066
+ pixel_values_flat = flatten_bn(flatten_2d_lists(pixel_values))
1067
+ tgt_sizes_flat = flatten_bn(flatten_2d_lists(tgt_sizes), concat=True)
1068
+
1069
+ return MiniCPMVImagePixelInputs(
1070
+ type="pixel_values",
1071
+ pixel_values=pixel_values_flat,
1072
+ tgt_sizes=tgt_sizes_flat,
1073
+ num_slices=num_slices_flat,
1074
+ )
1075
+
1076
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1077
+ modalities = {}
1078
+
1079
+ # Preserve the order of modalities if there are multiple of them
1080
+ # from the order of kwargs.
1081
+ for input_key in kwargs:
1082
+ if input_key in ("pixel_values",
1083
+ "image_embeds") and "images" not in modalities:
1084
+ modalities["images"] = self._parse_and_validate_vision_input(
1085
+ "images", **kwargs)
1086
+ if input_key in ("video_pixel_values",
1087
+ "video_embeds") and "videos" not in modalities:
1088
+
1089
+ def _image_key(video_key: str):
1090
+ if video_key == "video_token_id":
1091
+ return "image_token_id"
1092
+
1093
+ return video_key.removeprefix("video_")
1094
+
1095
+ modalities["videos"] = self._parse_and_validate_vision_input(
1096
+ "videos", **{
1097
+ _image_key(k): v
1098
+ for k, v in kwargs.items()
1099
+ })
1100
+
1101
+ return modalities
1102
+
1103
+ def _process_vision_input(
1104
+ self,
1105
+ image_input: MiniCPMVImageInputs,
1106
+ ) -> Union[torch.Tensor, list[torch.Tensor], tuple[torch.Tensor, ...]]:
1107
+ if image_input["type"] == "image_embeds":
1108
+ return image_input["image_embeds"]
1109
+
1110
+ image_features_flat = self.get_vision_hidden_states(image_input)
1111
+
1112
+ num_slices = image_input["num_slices"]
1113
+ return [
1114
+ e.flatten(0, 1)
1115
+ for e in image_features_flat.split(num_slices.tolist())
1116
+ ]
1117
+
1118
+ def _process_multimodal_inputs(self, modalities: dict):
1119
+ # The result multimodal_embeddings is tuple of tensors, with each
1120
+ # tensor correspoending to a multimodal data item (image or video).
1121
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1122
+
1123
+ # NOTE: It is important to iterate over the keys in this dictionary
1124
+ # to preserve the order of the modalities.
1125
+ for modality in modalities:
1126
+ if modality == "images":
1127
+ image_input = modalities["images"]
1128
+ image_features = self._process_vision_input(image_input)
1129
+ multimodal_embeddings += tuple(image_features)
1130
+ if modality == "videos":
1131
+ video_input = modalities["videos"]
1132
+ video_features = self._process_vision_input(video_input)
1133
+ multimodal_embeddings += tuple(video_features)
1134
+
1135
+ return multimodal_embeddings
1136
+
1137
+ def get_language_model(self) -> torch.nn.Module:
1138
+ return self.llm
1139
+
1140
+ def get_multimodal_embeddings(self,
1141
+ **kwargs: object) -> MultiModalEmbeddings:
1142
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1143
+ if not modalities:
1144
+ return []
1145
+
1146
+ return self._process_multimodal_inputs(modalities)
1147
+
1148
+ def get_input_embeddings(
1149
+ self,
1150
+ input_ids: torch.Tensor,
1151
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1152
+ ) -> torch.Tensor:
1153
+ inputs_embeds = self.llm.get_input_embeddings(input_ids)
1154
+ if multimodal_embeddings is not None \
1155
+ and len(multimodal_embeddings) != 0:
1156
+ assert len(self.mm_token_ids) > 0
1157
+ inputs_embeds = merge_multimodal_embeddings(
1158
+ input_ids,
1159
+ inputs_embeds,
1160
+ multimodal_embeddings,
1161
+ list(self.mm_token_ids),
1162
+ )
1163
+ return inputs_embeds
1164
+
1165
+ def forward(
1166
+ self,
1167
+ input_ids: torch.Tensor,
1168
+ positions: torch.Tensor,
1169
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1170
+ inputs_embeds: Optional[torch.Tensor] = None,
1171
+ **kwargs: Any,
1172
+ ) -> torch.Tensor:
1173
+ if intermediate_tensors is not None:
1174
+ inputs_embeds = None
1175
+
1176
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1177
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1178
+ # condition is only for v0 compatibility.
1179
+ elif inputs_embeds is None:
1180
+ vision_embeddings = self.get_multimodal_embeddings(**kwargs)
1181
+
1182
+ inputs_embeds = self.get_input_embeddings(input_ids,
1183
+ vision_embeddings)
1184
+ input_ids = None
1185
+
1186
+ hidden_states = self.llm.model(
1187
+ input_ids=input_ids,
1188
+ positions=positions,
1189
+ intermediate_tensors=intermediate_tensors,
1190
+ inputs_embeds=inputs_embeds,
1191
+ )
1192
+ return hidden_states
1193
+
1194
+ def compute_logits(
1195
+ self,
1196
+ hidden_states: torch.Tensor,
1197
+ sampling_metadata: SamplingMetadata,
1198
+ ) -> Optional[torch.Tensor]:
1199
+ return self.llm.compute_logits(hidden_states, sampling_metadata)
1200
+
1201
+ def load_weights(self, weights: Iterable[tuple[str,
1202
+ torch.Tensor]]) -> set[str]:
1203
+ loader = AutoWeightsLoader(self)
1204
+ return loader.load_weights(weights)
1205
+
1206
+ def get_mm_mapping(self) -> MultiModelKeys:
1207
+ """
1208
+ Get the module prefix in multimodal models
1209
+ """
1210
+ return MultiModelKeys.from_string_field(language_model="llm",
1211
+ connector="resampler",
1212
+ tower_model="vpm")
1213
+
1214
+ def init_llm(
1215
+ self,
1216
+ vllm_config: VllmConfig,
1217
+ prefix: str = "",
1218
+ ) -> nn.Module:
1219
+ raise NotImplementedError
1220
+
1221
+ def init_vision_module(
1222
+ self,
1223
+ config: PretrainedConfig,
1224
+ quant_config: Optional[QuantizationConfig],
1225
+ prefix: str = "",
1226
+ ) -> nn.Module:
1227
+ raise NotImplementedError
1228
+
1229
+ def init_resampler(self,
1230
+ embed_dim: int,
1231
+ vision_dim: int,
1232
+ quant_config: Optional[QuantizationConfig] = None,
1233
+ prefix: str = "") -> nn.Module:
1234
+ raise NotImplementedError
1235
+
1236
+ def get_vision_hidden_states(
1237
+ self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
1238
+ raise NotImplementedError
1239
+
1240
+
1241
+ class MiniCPMV2_0(MiniCPMVBaseModel):
1242
+
1243
+ supports_encoder_tp_data = False
1244
+
1245
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1246
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1247
+ assert self.version == (2, 0)
1248
+
1249
+ def init_llm(
1250
+ self,
1251
+ vllm_config: VllmConfig,
1252
+ prefix: str = "",
1253
+ ) -> nn.Module:
1254
+ return MiniCPMForCausalLM(vllm_config=vllm_config, prefix=prefix)
1255
+
1256
+ def init_vision_module(
1257
+ self,
1258
+ config: PretrainedConfig,
1259
+ quant_config: Optional[QuantizationConfig],
1260
+ prefix: str = "",
1261
+ ) -> nn.Module:
1262
+ # TODO: refactor vision model through timm wrapper from transformers
1263
+ try:
1264
+ import timm
1265
+ except ImportError:
1266
+ raise ImportError("Please install timm==0.9.10") from ImportError
1267
+
1268
+ with set_default_torch_dtype(torch.float16):
1269
+ model = timm.create_model(
1270
+ "vit_so400m_patch14_siglip_384.webli",
1271
+ pretrained=False,
1272
+ num_classes=0,
1273
+ dynamic_img_size=True,
1274
+ dynamic_img_pad=True,
1275
+ )
1276
+
1277
+ model = model.to(dtype=torch.get_default_dtype())
1278
+
1279
+ if (isinstance(model, timm.models.VisionTransformer)
1280
+ and model.attn_pool is not None):
1281
+ model.attn_pool = torch.nn.Identity()
1282
+
1283
+ if self.config.drop_vision_last_layer:
1284
+ model.blocks = model.blocks[:-1]
1285
+
1286
+ return model
1287
+
1288
+ def init_resampler(self,
1289
+ embed_dim: int,
1290
+ vision_dim: int,
1291
+ quant_config: Optional[QuantizationConfig] = None,
1292
+ prefix: str = "") -> nn.Module:
1293
+ with set_default_torch_dtype(torch.float16):
1294
+ resampler = Resampler2(embed_dim=embed_dim,
1295
+ num_heads=embed_dim // 128,
1296
+ grid_size=int(
1297
+ math.sqrt(self.config.query_num)),
1298
+ kv_dim=vision_dim,
1299
+ adaptive=False,
1300
+ do_post_projection=True,
1301
+ quant_config=quant_config,
1302
+ prefix=prefix)
1303
+
1304
+ return resampler.to(device=current_platform.device_type,
1305
+ dtype=torch.get_default_dtype())
1306
+
1307
+ def get_vision_hidden_states(
1308
+ self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
1309
+ pixel_values = data["pixel_values"]
1310
+
1311
+ P_h, P_w = self.vpm.patch_embed.patch_size
1312
+ dtype: torch.dtype = self.vpm.pos_embed.data.dtype
1313
+ num_prefix_tokens = getattr(self.vpm, "num_prefix_tokens", 0)
1314
+
1315
+ res = list[torch.Tensor]()
1316
+ for pixel_value in pixel_values:
1317
+ H, W = pixel_value[0].shape[-2:]
1318
+ tgt_size = (math.ceil(H / P_h), math.ceil(W / P_w))
1319
+ vision_embedding = self.vpm.forward_features(
1320
+ pixel_value.unsqueeze(0).type(dtype))
1321
+
1322
+ if num_prefix_tokens > 0:
1323
+ vision_embedding = vision_embedding[:, num_prefix_tokens:]
1324
+ res.append(self.resampler(vision_embedding, tgt_size))
1325
+
1326
+ return torch.vstack(res)
1327
+
1328
+
1329
+ class MiniCPMV2_5(MiniCPMVBaseModel, SupportsLoRA):
1330
+ packed_modules_mapping = {
1331
+ "qkv_proj": [
1332
+ "q_proj",
1333
+ "k_proj",
1334
+ "v_proj",
1335
+ ],
1336
+ "gate_up_proj": [
1337
+ "gate_proj",
1338
+ "up_proj",
1339
+ ],
1340
+ }
1341
+
1342
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1343
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1344
+ assert self.version == (2, 5)
1345
+
1346
+ def init_llm(
1347
+ self,
1348
+ vllm_config: VllmConfig,
1349
+ prefix: str = "",
1350
+ ) -> nn.Module:
1351
+ return LlamaForCausalLM(vllm_config=vllm_config, prefix=prefix)
1352
+
1353
+ def init_vision_module(
1354
+ self,
1355
+ config: PretrainedConfig,
1356
+ quant_config: Optional[QuantizationConfig],
1357
+ prefix: str = "",
1358
+ ) -> nn.Module:
1359
+ model = Idefics2VisionTransformer(
1360
+ config.vision_config,
1361
+ quant_config=quant_config,
1362
+ prefix=prefix,
1363
+ use_data_parallel=self.use_data_parallel,
1364
+ )
1365
+ if self.config.drop_vision_last_layer:
1366
+ model.encoder.layers = model.encoder.layers[:-1]
1367
+ return model
1368
+
1369
+ def init_resampler(self,
1370
+ embed_dim: int,
1371
+ vision_dim: int,
1372
+ quant_config: Optional[QuantizationConfig] = None,
1373
+ prefix: str = "") -> nn.Module:
1374
+ with set_default_torch_dtype(torch.float16):
1375
+ resampler = Resampler2_5(num_queries=self.config.query_num,
1376
+ embed_dim=embed_dim,
1377
+ num_heads=embed_dim // 128,
1378
+ kv_dim=vision_dim,
1379
+ quant_config=quant_config,
1380
+ prefix=prefix)
1381
+
1382
+ return resampler.to(device=current_platform.device_type,
1383
+ dtype=torch.get_default_dtype())
1384
+
1385
+ def get_vision_hidden_states(
1386
+ self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
1387
+ pixel_values = data["pixel_values"]
1388
+ tgt_sizes = data["tgt_sizes"]
1389
+
1390
+ B = len(pixel_values)
1391
+ P = pixel_values[0].shape[-2]
1392
+ L = max(item.shape[-1] for item in pixel_values)
1393
+ device = pixel_values[0].device
1394
+ dtype = pixel_values[0].dtype
1395
+
1396
+ all_pixel_values = torch.zeros((B, 3, P, L),
1397
+ dtype=dtype,
1398
+ device=device)
1399
+ for i, pixel_values_item in enumerate(pixel_values):
1400
+ L_item = pixel_values_item.shape[-1]
1401
+ all_pixel_values[i, ..., :L_item] = pixel_values_item
1402
+
1403
+ num_patches = tgt_sizes.prod(-1)
1404
+ max_patches = num_patches.max().item()
1405
+ assert isinstance(max_patches, int)
1406
+
1407
+ patch_attn_mask = torch.zeros((B, max_patches),
1408
+ dtype=torch.bool,
1409
+ device=device)
1410
+ for i, num_patches_item in enumerate(num_patches):
1411
+ patch_attn_mask[i, :num_patches_item] = True
1412
+
1413
+ vision_embedding = self.vpm(
1414
+ all_pixel_values,
1415
+ patch_attention_mask=patch_attn_mask.unsqueeze(1),
1416
+ tgt_sizes=None,
1417
+ )
1418
+
1419
+ return self.resampler(vision_embedding, tgt_sizes)
1420
+
1421
+
1422
+ class MiniCPMV2_6(MiniCPMVBaseModel, SupportsLoRA):
1423
+ packed_modules_mapping = {
1424
+ "qkv_proj": [
1425
+ "q_proj",
1426
+ "k_proj",
1427
+ "v_proj",
1428
+ ],
1429
+ "gate_up_proj": [
1430
+ "gate_proj",
1431
+ "up_proj",
1432
+ ],
1433
+ }
1434
+
1435
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1436
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1437
+ assert self.version == (2, 6)
1438
+
1439
+ def init_llm(
1440
+ self,
1441
+ vllm_config: VllmConfig,
1442
+ prefix: str = "",
1443
+ ) -> nn.Module:
1444
+ return Qwen2ForCausalLM(vllm_config=vllm_config, prefix=prefix)
1445
+
1446
+ def init_vision_module(
1447
+ self,
1448
+ config: PretrainedConfig,
1449
+ quant_config: Optional[QuantizationConfig] = None,
1450
+ prefix: str = "",
1451
+ ) -> nn.Module:
1452
+ model = Idefics2VisionTransformer(
1453
+ config.vision_config,
1454
+ quant_config=quant_config,
1455
+ prefix=prefix,
1456
+ use_data_parallel=self.use_data_parallel,
1457
+ )
1458
+ if self.config.drop_vision_last_layer:
1459
+ model.encoder.layers = model.encoder.layers[:-1]
1460
+ return model
1461
+
1462
+ def init_resampler(self,
1463
+ embed_dim: int,
1464
+ vision_dim: int,
1465
+ quant_config: Optional[QuantizationConfig] = None,
1466
+ prefix: str = "") -> nn.Module:
1467
+ with set_default_torch_dtype(torch.float16):
1468
+ # The resampler in 2.6 remains consistent with the one in 2.5.
1469
+ resampler = Resampler2_5(num_queries=self.config.query_num,
1470
+ embed_dim=embed_dim,
1471
+ num_heads=embed_dim // 128,
1472
+ kv_dim=vision_dim,
1473
+ quant_config=quant_config,
1474
+ prefix=prefix)
1475
+
1476
+ return resampler.to(device=current_platform.device_type,
1477
+ dtype=torch.get_default_dtype())
1478
+
1479
+ def get_vision_hidden_states(
1480
+ self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
1481
+ pixel_values = data["pixel_values"]
1482
+ tgt_sizes = data["tgt_sizes"]
1483
+
1484
+ B = len(pixel_values)
1485
+ P = pixel_values[0].shape[-2]
1486
+ L = max(item.shape[-1] for item in pixel_values)
1487
+ device = pixel_values[0].device
1488
+ dtype = pixel_values[0].dtype
1489
+
1490
+ all_pixel_values = torch.zeros((B, 3, P, L),
1491
+ dtype=dtype,
1492
+ device=device)
1493
+ for i, pixel_values_item in enumerate(pixel_values):
1494
+ L_item = pixel_values_item.shape[-1]
1495
+ all_pixel_values[i, ..., :L_item] = pixel_values_item
1496
+
1497
+ num_patches = tgt_sizes.prod(-1)
1498
+ max_patches = num_patches.max().item()
1499
+ assert isinstance(max_patches, int)
1500
+
1501
+ patch_attn_mask = torch.zeros((B, max_patches),
1502
+ dtype=torch.bool,
1503
+ device=device)
1504
+ for i, num_patches_item in enumerate(num_patches):
1505
+ patch_attn_mask[i, :num_patches_item] = True
1506
+
1507
+ vision_embedding = self.vpm(
1508
+ all_pixel_values,
1509
+ patch_attention_mask=patch_attn_mask.unsqueeze(1),
1510
+ tgt_sizes=tgt_sizes,
1511
+ )
1512
+
1513
+ return self.resampler(vision_embedding, tgt_sizes)
1514
+
1515
+ def load_weights(self, weights: Iterable[tuple[str,
1516
+ torch.Tensor]]) -> set[str]:
1517
+ loader = AutoWeightsLoader(self,
1518
+ skip_prefixes=["apm.", "audio", "tts"])
1519
+ return loader.load_weights(weights)
1520
+
1521
+
1522
+ class MiniCPMV4_0(MiniCPMVBaseModel, SupportsLoRA):
1523
+ packed_modules_mapping = {
1524
+ "qkv_proj": [
1525
+ "q_proj",
1526
+ "k_proj",
1527
+ "v_proj",
1528
+ ],
1529
+ "gate_up_proj": [
1530
+ "gate_proj",
1531
+ "up_proj",
1532
+ ],
1533
+ }
1534
+
1535
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1536
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1537
+ assert self.version == (4, 0)
1538
+
1539
+ def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
1540
+ if isinstance(quant_config, (AWQConfig, AWQMarlinConfig)):
1541
+ return None
1542
+ return quant_config
1543
+
1544
+ def init_llm(
1545
+ self,
1546
+ vllm_config: VllmConfig,
1547
+ prefix: str = "",
1548
+ ) -> nn.Module:
1549
+ return LlamaForCausalLM(vllm_config=vllm_config, prefix=prefix)
1550
+
1551
+ def init_vision_module(
1552
+ self,
1553
+ config: PretrainedConfig,
1554
+ quant_config: Optional[QuantizationConfig] = None,
1555
+ prefix: str = "",
1556
+ ) -> nn.Module:
1557
+ quant_config = self._maybe_ignore_quant_config(quant_config)
1558
+ model = Idefics2VisionTransformer(
1559
+ config.vision_config,
1560
+ quant_config=quant_config,
1561
+ prefix=prefix,
1562
+ use_data_parallel=self.use_data_parallel,
1563
+ )
1564
+ if self.config.drop_vision_last_layer:
1565
+ model.encoder.layers = model.encoder.layers[:-1]
1566
+ return model
1567
+
1568
+ def init_resampler(
1569
+ self,
1570
+ embed_dim: int,
1571
+ vision_dim: int,
1572
+ quant_config: Optional[QuantizationConfig] = None,
1573
+ prefix: str = "",
1574
+ ) -> nn.Module:
1575
+ quant_config = self._maybe_ignore_quant_config(quant_config)
1576
+ with set_default_torch_dtype(torch.float16):
1577
+ # The resampler in 4.0 remains consistent with the one in 2.5/2.6.
1578
+ resampler = Resampler2_5(num_queries=self.config.query_num,
1579
+ embed_dim=embed_dim,
1580
+ num_heads=embed_dim // 128,
1581
+ kv_dim=vision_dim,
1582
+ quant_config=quant_config,
1583
+ prefix=prefix)
1584
+
1585
+ return resampler.to(device=current_platform.device_type,
1586
+ dtype=torch.get_default_dtype())
1587
+
1588
+ def get_vision_hidden_states(
1589
+ self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
1590
+ pixel_values = data["pixel_values"]
1591
+ tgt_sizes = data["tgt_sizes"]
1592
+
1593
+ B = len(pixel_values)
1594
+ P = pixel_values[0].shape[-2]
1595
+ L = max(item.shape[-1] for item in pixel_values)
1596
+ device = pixel_values[0].device
1597
+ dtype = pixel_values[0].dtype
1598
+
1599
+ all_pixel_values = torch.zeros((B, 3, P, L),
1600
+ dtype=dtype,
1601
+ device=device)
1602
+ for i, pixel_values_item in enumerate(pixel_values):
1603
+ L_item = pixel_values_item.shape[-1]
1604
+ all_pixel_values[i, ..., :L_item] = pixel_values_item
1605
+
1606
+ num_patches = tgt_sizes.prod(-1)
1607
+ max_patches = num_patches.max().item()
1608
+ assert isinstance(max_patches, int)
1609
+
1610
+ patch_attn_mask = torch.zeros((B, max_patches),
1611
+ dtype=torch.bool,
1612
+ device=device)
1613
+ for i, num_patches_item in enumerate(num_patches):
1614
+ patch_attn_mask[i, :num_patches_item] = True
1615
+
1616
+ vision_embedding = self.vpm(
1617
+ all_pixel_values,
1618
+ patch_attention_mask=patch_attn_mask.unsqueeze(1),
1619
+ tgt_sizes=tgt_sizes,
1620
+ )
1621
+
1622
+ return self.resampler(vision_embedding, tgt_sizes)
1623
+
1624
+ def load_weights(self, weights: Iterable[tuple[str,
1625
+ torch.Tensor]]) -> set[str]:
1626
+ loader = AutoWeightsLoader(self,
1627
+ skip_prefixes=["apm.", "audio", "tts"])
1628
+ return loader.load_weights(weights)
1629
+
1630
+
1631
+ class MiniCPMV4_5(MiniCPMVBaseModel, SupportsLoRA):
1632
+ packed_modules_mapping = {
1633
+ "qkv_proj": [
1634
+ "q_proj",
1635
+ "k_proj",
1636
+ "v_proj",
1637
+ ],
1638
+ "gate_up_proj": [
1639
+ "gate_proj",
1640
+ "up_proj",
1641
+ ],
1642
+ }
1643
+
1644
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1645
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1646
+ assert self.version == (4, 5)
1647
+
1648
+ def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
1649
+ if isinstance(quant_config, (AWQConfig, AWQMarlinConfig)):
1650
+ return None
1651
+ return quant_config
1652
+
1653
+ def init_llm(
1654
+ self,
1655
+ vllm_config: VllmConfig,
1656
+ prefix: str = "",
1657
+ ) -> nn.Module:
1658
+ return Qwen3ForCausalLM(vllm_config=vllm_config, prefix=prefix)
1659
+
1660
+ def init_vision_module(
1661
+ self,
1662
+ config: PretrainedConfig,
1663
+ quant_config: Optional[QuantizationConfig] = None,
1664
+ prefix: str = "",
1665
+ ) -> nn.Module:
1666
+ quant_config = self._maybe_ignore_quant_config(quant_config)
1667
+ model = Idefics2VisionTransformer(
1668
+ config.vision_config,
1669
+ quant_config=quant_config,
1670
+ prefix=prefix,
1671
+ use_data_parallel=self.use_data_parallel,
1672
+ )
1673
+ if self.config.drop_vision_last_layer:
1674
+ model.encoder.layers = model.encoder.layers[:-1]
1675
+ return model
1676
+
1677
+ def init_resampler(
1678
+ self,
1679
+ embed_dim: int,
1680
+ vision_dim: int,
1681
+ quant_config: Optional[QuantizationConfig] = None,
1682
+ prefix: str = "",
1683
+ ) -> nn.Module:
1684
+ quant_config = self._maybe_ignore_quant_config(quant_config)
1685
+ with set_default_torch_dtype(torch.float16):
1686
+ # The resampler in 4.0 remains consistent with the one in 2.5/2.6.
1687
+ resampler = Resampler4_5(num_queries=self.config.query_num,
1688
+ embed_dim=embed_dim,
1689
+ num_heads=embed_dim // 128,
1690
+ kv_dim=vision_dim,
1691
+ quant_config=quant_config,
1692
+ prefix=prefix)
1693
+
1694
+ return resampler.to(device=current_platform.device_type,
1695
+ dtype=torch.get_default_dtype())
1696
+
1697
+ def get_vision_hidden_states(
1698
+ self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
1699
+ pixel_values = data["pixel_values"]
1700
+ tgt_sizes = data["tgt_sizes"]
1701
+ temporal_ids = data.get('temporal_ids', None)
1702
+
1703
+ B = len(pixel_values)
1704
+ P = pixel_values[0].shape[-2]
1705
+ L = max(item.shape[-1] for item in pixel_values)
1706
+ device = pixel_values[0].device
1707
+ dtype = pixel_values[0].dtype
1708
+
1709
+ all_pixel_values = torch.zeros((B, 3, P, L),
1710
+ dtype=dtype,
1711
+ device=device)
1712
+ all_temporal_ids = None if temporal_ids is None else flatten_2d_lists(
1713
+ temporal_ids)
1714
+ for i, pixel_values_item in enumerate(pixel_values):
1715
+ L_item = pixel_values_item.shape[-1]
1716
+ all_pixel_values[i, ..., :L_item] = pixel_values_item
1717
+
1718
+ num_patches = tgt_sizes.prod(-1)
1719
+ max_patches = num_patches.max().item()
1720
+ assert isinstance(max_patches, int)
1721
+
1722
+ patch_attn_mask = torch.zeros((B, max_patches),
1723
+ dtype=torch.bool,
1724
+ device=device)
1725
+ for i, num_patches_item in enumerate(num_patches):
1726
+ patch_attn_mask[i, :num_patches_item] = True
1727
+
1728
+ vision_embedding = self.vpm(
1729
+ all_pixel_values,
1730
+ patch_attention_mask=patch_attn_mask.unsqueeze(1),
1731
+ tgt_sizes=tgt_sizes,
1732
+ )
1733
+
1734
+ return self.resampler(vision_embedding, tgt_sizes, all_temporal_ids)
1735
+
1736
+ def load_weights(self, weights: Iterable[tuple[str,
1737
+ torch.Tensor]]) -> set[str]:
1738
+ loader = AutoWeightsLoader(self,
1739
+ skip_prefixes=["apm.", "audio", "tts"])
1740
+ return loader.load_weights(weights)
1741
+
1742
+
1743
+ _SUPPORT_VERSION = {
1744
+ (2, 0): MiniCPMV2_0,
1745
+ (2, 5): MiniCPMV2_5,
1746
+ (2, 6): MiniCPMV2_6,
1747
+ (4, 0): MiniCPMV4_0,
1748
+ (4, 5): MiniCPMV4_5,
1749
+ }
1750
+
1751
+
1752
+ @MULTIMODAL_REGISTRY.register_processor(
1753
+ MiniCPMVMultiModalProcessor,
1754
+ info=MiniCPMVProcessingInfo,
1755
+ dummy_inputs=MiniCPMVDummyInputsBuilder)
1756
+ class MiniCPMV(MiniCPMVBaseModel, SupportsMultiModal, SupportsLoRA):
1757
+ """
1758
+ Different versions of MiniCPMV use different visual encoders and LLMs,
1759
+ which is not conducive to the current integration logic of LoRA and
1760
+ bitsandbytes in vLLM. Therefore, it is necessary to separate them.
1761
+ """
1762
+
1763
+ def __new__(cls, *, vllm_config: VllmConfig, prefix: str = ""):
1764
+ config = vllm_config.model_config.hf_config
1765
+ if not hasattr(config, "version"):
1766
+ if config.hidden_size == 2304 and config.query_num == 64:
1767
+ version = (2, 0)
1768
+ else:
1769
+ version = (2, 5)
1770
+ else:
1771
+ version = str(config.version).split(".")
1772
+ version = tuple([int(x) for x in version])
1773
+ # Dispatch class based on version
1774
+ instance_cls = _SUPPORT_VERSION.get(version)
1775
+ if instance_cls is None:
1776
+ supported_versions = ", ".join(
1777
+ [f"{v[0]}.{v[1]}" for v in sorted(_SUPPORT_VERSION.keys())])
1778
+ raise ValueError(f"Currently, MiniCPMV only supports versions "
1779
+ f"{supported_versions}. Got version: {version}")
1780
+
1781
+ # quant_config references base class members,
1782
+ # so update values before init is called
1783
+ cls.packed_modules_mapping.update(instance_cls.packed_modules_mapping)
1784
+ cls.embedding_modules.update(instance_cls.embedding_modules)
1785
+ cls.embedding_padding_modules += instance_cls.embedding_padding_modules
1786
+ return instance_cls(vllm_config=vllm_config, prefix=prefix)