vllm-cpu-avx512vnni 0.10.2.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1395) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2022 -0
  5. vllm/_ipex_ops.py +404 -0
  6. vllm/_version.py +34 -0
  7. vllm/adapter_commons/__init__.py +0 -0
  8. vllm/adapter_commons/layers.py +16 -0
  9. vllm/adapter_commons/models.py +106 -0
  10. vllm/adapter_commons/request.py +26 -0
  11. vllm/adapter_commons/utils.py +93 -0
  12. vllm/adapter_commons/worker_manager.py +39 -0
  13. vllm/assets/__init__.py +0 -0
  14. vllm/assets/audio.py +45 -0
  15. vllm/assets/base.py +41 -0
  16. vllm/assets/image.py +50 -0
  17. vllm/assets/video.py +138 -0
  18. vllm/attention/__init__.py +19 -0
  19. vllm/attention/backends/__init__.py +0 -0
  20. vllm/attention/backends/abstract.py +348 -0
  21. vllm/attention/backends/differential_flash_attn.py +935 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1499 -0
  23. vllm/attention/backends/flash_attn.py +933 -0
  24. vllm/attention/backends/flashmla.py +238 -0
  25. vllm/attention/backends/mla/__init__.py +0 -0
  26. vllm/attention/backends/mla/common.py +1310 -0
  27. vllm/attention/backends/placeholder_attn.py +340 -0
  28. vllm/attention/backends/rocm_aiter_mla.py +410 -0
  29. vllm/attention/backends/rocm_flash_attn.py +953 -0
  30. vllm/attention/backends/triton_mla.py +111 -0
  31. vllm/attention/backends/utils.py +610 -0
  32. vllm/attention/backends/xformers.py +805 -0
  33. vllm/attention/layer.py +552 -0
  34. vllm/attention/layers/__init__.py +0 -0
  35. vllm/attention/layers/chunked_local_attention.py +91 -0
  36. vllm/attention/layers/cross_attention.py +159 -0
  37. vllm/attention/layers/encoder_only_attention.py +86 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  40. vllm/attention/ops/common.py +139 -0
  41. vllm/attention/ops/flashmla.py +123 -0
  42. vllm/attention/ops/merge_attn_states.py +43 -0
  43. vllm/attention/ops/paged_attn.py +261 -0
  44. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  45. vllm/attention/ops/prefix_prefill.py +928 -0
  46. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  47. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  48. vllm/attention/ops/triton_decode_attention.py +676 -0
  49. vllm/attention/ops/triton_flash_attention.py +984 -0
  50. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  51. vllm/attention/ops/triton_unified_attention.py +854 -0
  52. vllm/attention/selector.py +243 -0
  53. vllm/attention/utils/__init__.py +0 -0
  54. vllm/attention/utils/fa_utils.py +85 -0
  55. vllm/attention/utils/kv_sharing_utils.py +33 -0
  56. vllm/beam_search.py +87 -0
  57. vllm/benchmarks/__init__.py +0 -0
  58. vllm/benchmarks/datasets.py +2651 -0
  59. vllm/benchmarks/latency.py +170 -0
  60. vllm/benchmarks/lib/__init__.py +3 -0
  61. vllm/benchmarks/lib/endpoint_request_func.py +510 -0
  62. vllm/benchmarks/lib/ready_checker.py +72 -0
  63. vllm/benchmarks/lib/utils.py +80 -0
  64. vllm/benchmarks/serve.py +1247 -0
  65. vllm/benchmarks/throughput.py +696 -0
  66. vllm/collect_env.py +823 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/activation_quant_fusion.py +193 -0
  69. vllm/compilation/backends.py +641 -0
  70. vllm/compilation/base_static_graph.py +51 -0
  71. vllm/compilation/collective_fusion.py +1190 -0
  72. vllm/compilation/compiler_interface.py +572 -0
  73. vllm/compilation/counter.py +47 -0
  74. vllm/compilation/cuda_graph.py +193 -0
  75. vllm/compilation/cuda_piecewise_backend.py +117 -0
  76. vllm/compilation/decorators.py +316 -0
  77. vllm/compilation/fix_functionalization.py +208 -0
  78. vllm/compilation/fusion.py +600 -0
  79. vllm/compilation/fusion_attn.py +303 -0
  80. vllm/compilation/fx_utils.py +84 -0
  81. vllm/compilation/inductor_pass.py +136 -0
  82. vllm/compilation/monitor.py +57 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +165 -0
  85. vllm/compilation/pass_manager.py +88 -0
  86. vllm/compilation/sequence_parallelism.py +484 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +50 -0
  89. vllm/compilation/wrapper.py +138 -0
  90. vllm/config/__init__.py +3921 -0
  91. vllm/config/cache.py +214 -0
  92. vllm/config/compilation.py +580 -0
  93. vllm/config/kv_events.py +50 -0
  94. vllm/config/kv_transfer.py +111 -0
  95. vllm/config/load.py +113 -0
  96. vllm/config/lora.py +132 -0
  97. vllm/config/parallel.py +446 -0
  98. vllm/config/scheduler.py +304 -0
  99. vllm/config/utils.py +29 -0
  100. vllm/connections.py +174 -0
  101. vllm/core/__init__.py +0 -0
  102. vllm/core/block/__init__.py +0 -0
  103. vllm/core/block/block_table.py +399 -0
  104. vllm/core/block/common.py +371 -0
  105. vllm/core/block/cpu_gpu_block_allocator.py +439 -0
  106. vllm/core/block/interfaces.py +319 -0
  107. vllm/core/block/naive_block.py +466 -0
  108. vllm/core/block/prefix_caching_block.py +1135 -0
  109. vllm/core/block/utils.py +28 -0
  110. vllm/core/block_manager.py +523 -0
  111. vllm/core/evictor.py +157 -0
  112. vllm/core/interfaces.py +139 -0
  113. vllm/core/placeholder_block_space_manager.py +103 -0
  114. vllm/core/scheduler.py +2028 -0
  115. vllm/device_allocator/__init__.py +0 -0
  116. vllm/device_allocator/cumem.py +286 -0
  117. vllm/distributed/__init__.py +6 -0
  118. vllm/distributed/communication_op.py +41 -0
  119. vllm/distributed/device_communicators/__init__.py +0 -0
  120. vllm/distributed/device_communicators/all2all.py +259 -0
  121. vllm/distributed/device_communicators/all_reduce_utils.py +292 -0
  122. vllm/distributed/device_communicators/base_device_communicator.py +277 -0
  123. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  124. vllm/distributed/device_communicators/cuda_communicator.py +294 -0
  125. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  126. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  127. vllm/distributed/device_communicators/pynccl.py +290 -0
  128. vllm/distributed/device_communicators/pynccl_wrapper.py +382 -0
  129. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  130. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  131. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  132. vllm/distributed/device_communicators/symm_mem.py +136 -0
  133. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  134. vllm/distributed/device_communicators/xpu_communicator.py +69 -0
  135. vllm/distributed/eplb/__init__.py +8 -0
  136. vllm/distributed/eplb/eplb_state.py +619 -0
  137. vllm/distributed/eplb/rebalance_algo.py +234 -0
  138. vllm/distributed/eplb/rebalance_execute.py +424 -0
  139. vllm/distributed/kv_events.py +362 -0
  140. vllm/distributed/kv_transfer/README.md +29 -0
  141. vllm/distributed/kv_transfer/__init__.py +13 -0
  142. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  143. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  145. vllm/distributed/kv_transfer/kv_connector/factory.py +108 -0
  146. vllm/distributed/kv_transfer/kv_connector/utils.py +246 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/base.py +356 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +266 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1319 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +484 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +542 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +266 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +414 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  158. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  159. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  160. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  161. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  162. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  163. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  164. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  165. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  166. vllm/distributed/parallel_state.py +1489 -0
  167. vllm/distributed/tpu_distributed_utils.py +178 -0
  168. vllm/distributed/utils.py +536 -0
  169. vllm/engine/__init__.py +0 -0
  170. vllm/engine/arg_utils.py +1857 -0
  171. vllm/engine/async_llm_engine.py +1044 -0
  172. vllm/engine/async_timeout.py +173 -0
  173. vllm/engine/llm_engine.py +1849 -0
  174. vllm/engine/metrics.py +577 -0
  175. vllm/engine/metrics_types.py +84 -0
  176. vllm/engine/multiprocessing/__init__.py +145 -0
  177. vllm/engine/multiprocessing/client.py +643 -0
  178. vllm/engine/multiprocessing/engine.py +470 -0
  179. vllm/engine/output_processor/__init__.py +0 -0
  180. vllm/engine/output_processor/interfaces.py +61 -0
  181. vllm/engine/output_processor/single_step.py +145 -0
  182. vllm/engine/output_processor/stop_checker.py +131 -0
  183. vllm/engine/output_processor/util.py +28 -0
  184. vllm/engine/protocol.py +343 -0
  185. vllm/entrypoints/__init__.py +0 -0
  186. vllm/entrypoints/api_server.py +178 -0
  187. vllm/entrypoints/chat_utils.py +1535 -0
  188. vllm/entrypoints/cli/__init__.py +12 -0
  189. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  190. vllm/entrypoints/cli/benchmark/base.py +25 -0
  191. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  192. vllm/entrypoints/cli/benchmark/main.py +58 -0
  193. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  194. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  195. vllm/entrypoints/cli/collect_env.py +36 -0
  196. vllm/entrypoints/cli/main.py +60 -0
  197. vllm/entrypoints/cli/openai.py +214 -0
  198. vllm/entrypoints/cli/run_batch.py +69 -0
  199. vllm/entrypoints/cli/serve.py +232 -0
  200. vllm/entrypoints/cli/types.py +29 -0
  201. vllm/entrypoints/constants.py +10 -0
  202. vllm/entrypoints/context.py +444 -0
  203. vllm/entrypoints/harmony_utils.py +431 -0
  204. vllm/entrypoints/launcher.py +168 -0
  205. vllm/entrypoints/llm.py +1579 -0
  206. vllm/entrypoints/logger.py +79 -0
  207. vllm/entrypoints/openai/__init__.py +0 -0
  208. vllm/entrypoints/openai/api_server.py +2011 -0
  209. vllm/entrypoints/openai/cli_args.py +281 -0
  210. vllm/entrypoints/openai/logits_processors.py +90 -0
  211. vllm/entrypoints/openai/protocol.py +2590 -0
  212. vllm/entrypoints/openai/run_batch.py +497 -0
  213. vllm/entrypoints/openai/serving_chat.py +1591 -0
  214. vllm/entrypoints/openai/serving_classification.py +176 -0
  215. vllm/entrypoints/openai/serving_completion.py +688 -0
  216. vllm/entrypoints/openai/serving_embedding.py +632 -0
  217. vllm/entrypoints/openai/serving_engine.py +996 -0
  218. vllm/entrypoints/openai/serving_models.py +288 -0
  219. vllm/entrypoints/openai/serving_pooling.py +277 -0
  220. vllm/entrypoints/openai/serving_responses.py +1690 -0
  221. vllm/entrypoints/openai/serving_score.py +479 -0
  222. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  223. vllm/entrypoints/openai/serving_transcription.py +136 -0
  224. vllm/entrypoints/openai/speech_to_text.py +388 -0
  225. vllm/entrypoints/openai/tool_parsers/__init__.py +51 -0
  226. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  227. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  228. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  229. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  230. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  231. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  232. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +418 -0
  233. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  234. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  235. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  236. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  237. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  238. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  239. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  240. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  241. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +73 -0
  242. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  243. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  244. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  245. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  246. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  247. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  248. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  249. vllm/entrypoints/renderer.py +395 -0
  250. vllm/entrypoints/score_utils.py +232 -0
  251. vllm/entrypoints/ssl.py +75 -0
  252. vllm/entrypoints/tool.py +139 -0
  253. vllm/entrypoints/tool_server.py +195 -0
  254. vllm/entrypoints/utils.py +328 -0
  255. vllm/env_override.py +23 -0
  256. vllm/envs.py +1354 -0
  257. vllm/executor/__init__.py +0 -0
  258. vllm/executor/executor_base.py +378 -0
  259. vllm/executor/mp_distributed_executor.py +244 -0
  260. vllm/executor/msgspec_utils.py +35 -0
  261. vllm/executor/multiproc_worker_utils.py +279 -0
  262. vllm/executor/ray_distributed_executor.py +699 -0
  263. vllm/executor/ray_utils.py +410 -0
  264. vllm/executor/uniproc_executor.py +152 -0
  265. vllm/forward_context.py +273 -0
  266. vllm/inputs/__init__.py +44 -0
  267. vllm/inputs/data.py +356 -0
  268. vllm/inputs/parse.py +151 -0
  269. vllm/inputs/preprocess.py +973 -0
  270. vllm/inputs/registry.py +251 -0
  271. vllm/logger.py +229 -0
  272. vllm/logging_utils/__init__.py +8 -0
  273. vllm/logging_utils/dump_input.py +81 -0
  274. vllm/logging_utils/formatter.py +79 -0
  275. vllm/logits_process.py +119 -0
  276. vllm/logprobs.py +28 -0
  277. vllm/lora/__init__.py +0 -0
  278. vllm/lora/layers/__init__.py +34 -0
  279. vllm/lora/layers/base.py +69 -0
  280. vllm/lora/layers/base_linear.py +184 -0
  281. vllm/lora/layers/column_parallel_linear.py +622 -0
  282. vllm/lora/layers/logits_processor.py +247 -0
  283. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  284. vllm/lora/layers/replicated_linear.py +61 -0
  285. vllm/lora/layers/row_parallel_linear.py +201 -0
  286. vllm/lora/layers/utils.py +60 -0
  287. vllm/lora/layers/vocal_parallel_embedding.py +172 -0
  288. vllm/lora/lora.py +199 -0
  289. vllm/lora/models.py +792 -0
  290. vllm/lora/ops/__init__.py +0 -0
  291. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  292. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  293. vllm/lora/ops/torch_ops/__init__.py +16 -0
  294. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  295. vllm/lora/ops/triton_ops/__init__.py +12 -0
  296. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  297. vllm/lora/ops/triton_ops/lora_expand_op.py +291 -0
  298. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  299. vllm/lora/ops/triton_ops/lora_shrink_op.py +245 -0
  300. vllm/lora/ops/triton_ops/utils.py +126 -0
  301. vllm/lora/ops/xla_ops/__init__.py +7 -0
  302. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  303. vllm/lora/peft_helper.py +127 -0
  304. vllm/lora/punica_wrapper/__init__.py +10 -0
  305. vllm/lora/punica_wrapper/punica_base.py +458 -0
  306. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  307. vllm/lora/punica_wrapper/punica_gpu.py +279 -0
  308. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  309. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  310. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  311. vllm/lora/punica_wrapper/utils.py +136 -0
  312. vllm/lora/request.py +99 -0
  313. vllm/lora/resolver.py +85 -0
  314. vllm/lora/utils.py +246 -0
  315. vllm/lora/worker_manager.py +256 -0
  316. vllm/model_executor/__init__.py +16 -0
  317. vllm/model_executor/custom_op.py +194 -0
  318. vllm/model_executor/layers/__init__.py +0 -0
  319. vllm/model_executor/layers/activation.py +575 -0
  320. vllm/model_executor/layers/attention_layer_base.py +23 -0
  321. vllm/model_executor/layers/fla/__init__.py +8 -0
  322. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  323. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  324. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  325. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  326. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  327. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  328. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  329. vllm/model_executor/layers/fla/ops/index.py +39 -0
  330. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  331. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  332. vllm/model_executor/layers/fla/ops/op.py +39 -0
  333. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  334. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  335. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  336. vllm/model_executor/layers/fused_moe/__init__.py +80 -0
  337. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +304 -0
  338. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +164 -0
  339. vllm/model_executor/layers/fused_moe/config.py +497 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  560. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +297 -0
  561. vllm/model_executor/layers/fused_moe/cutlass_moe.py +996 -0
  562. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +370 -0
  563. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  564. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +280 -0
  565. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +229 -0
  566. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +243 -0
  567. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +97 -0
  568. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1042 -0
  569. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +240 -0
  570. vllm/model_executor/layers/fused_moe/fused_moe.py +2081 -0
  571. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +247 -0
  572. vllm/model_executor/layers/fused_moe/layer.py +1951 -0
  573. vllm/model_executor/layers/fused_moe/modular_kernel.py +892 -0
  574. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  575. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  576. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  577. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  578. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +321 -0
  579. vllm/model_executor/layers/fused_moe/prepare_finalize.py +72 -0
  580. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +431 -0
  581. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  582. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  583. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +171 -0
  584. vllm/model_executor/layers/fused_moe/trtllm_moe.py +197 -0
  585. vllm/model_executor/layers/fused_moe/utils.py +270 -0
  586. vllm/model_executor/layers/layernorm.py +381 -0
  587. vllm/model_executor/layers/lightning_attn.py +661 -0
  588. vllm/model_executor/layers/linear.py +1567 -0
  589. vllm/model_executor/layers/logits_processor.py +199 -0
  590. vllm/model_executor/layers/mamba/__init__.py +0 -0
  591. vllm/model_executor/layers/mamba/abstract.py +45 -0
  592. vllm/model_executor/layers/mamba/linear_attn.py +432 -0
  593. vllm/model_executor/layers/mamba/mamba2_metadata.py +186 -0
  594. vllm/model_executor/layers/mamba/mamba_mixer.py +517 -0
  595. vllm/model_executor/layers/mamba/mamba_mixer2.py +803 -0
  596. vllm/model_executor/layers/mamba/mamba_utils.py +202 -0
  597. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  598. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +982 -0
  599. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  600. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  601. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  602. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +574 -0
  603. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  604. vllm/model_executor/layers/mamba/ops/ssd_combined.py +248 -0
  605. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +248 -0
  606. vllm/model_executor/layers/mamba/short_conv.py +270 -0
  607. vllm/model_executor/layers/mla.py +158 -0
  608. vllm/model_executor/layers/pooler.py +732 -0
  609. vllm/model_executor/layers/quantization/__init__.py +157 -0
  610. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  611. vllm/model_executor/layers/quantization/awq.py +228 -0
  612. vllm/model_executor/layers/quantization/awq_marlin.py +548 -0
  613. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  614. vllm/model_executor/layers/quantization/base_config.py +164 -0
  615. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  616. vllm/model_executor/layers/quantization/bitsandbytes.py +621 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +795 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1651 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  625. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +161 -0
  626. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  627. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  628. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  629. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +156 -0
  630. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  631. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  632. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +227 -0
  633. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +135 -0
  634. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +21 -0
  635. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  636. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  637. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  638. vllm/model_executor/layers/quantization/deepgemm.py +81 -0
  639. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  640. vllm/model_executor/layers/quantization/experts_int8.py +215 -0
  641. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  642. vllm/model_executor/layers/quantization/fp8.py +1179 -0
  643. vllm/model_executor/layers/quantization/gguf.py +597 -0
  644. vllm/model_executor/layers/quantization/gptq.py +300 -0
  645. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  646. vllm/model_executor/layers/quantization/gptq_marlin.py +700 -0
  647. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  648. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  649. vllm/model_executor/layers/quantization/inc.py +61 -0
  650. vllm/model_executor/layers/quantization/input_quant_fp8.py +103 -0
  651. vllm/model_executor/layers/quantization/ipex_quant.py +410 -0
  652. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  653. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  654. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  655. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  656. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  657. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  658. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  659. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  660. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  661. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  662. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  663. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  664. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  665. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +163 -0
  666. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  667. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  668. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  669. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  670. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  671. vllm/model_executor/layers/quantization/modelopt.py +1548 -0
  672. vllm/model_executor/layers/quantization/moe_wna16.py +473 -0
  673. vllm/model_executor/layers/quantization/mxfp4.py +951 -0
  674. vllm/model_executor/layers/quantization/petit.py +306 -0
  675. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  676. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  677. vllm/model_executor/layers/quantization/quark/quark.py +431 -0
  678. vllm/model_executor/layers/quantization/quark/quark_moe.py +434 -0
  679. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  680. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  681. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +112 -0
  682. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  683. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  684. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  685. vllm/model_executor/layers/quantization/rtn.py +456 -0
  686. vllm/model_executor/layers/quantization/schema.py +86 -0
  687. vllm/model_executor/layers/quantization/torchao.py +214 -0
  688. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  689. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  690. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  691. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  903. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +85 -0
  904. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +258 -0
  905. vllm/model_executor/layers/quantization/utils/fp8_utils.py +795 -0
  906. vllm/model_executor/layers/quantization/utils/gptq_utils.py +96 -0
  907. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  908. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  909. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  910. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  911. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  912. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  913. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  914. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  915. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +132 -0
  916. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  917. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  918. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  919. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  920. vllm/model_executor/layers/quantization/utils/quant_utils.py +627 -0
  921. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  922. vllm/model_executor/layers/resampler.py +270 -0
  923. vllm/model_executor/layers/rotary_embedding/__init__.py +190 -0
  924. vllm/model_executor/layers/rotary_embedding/base.py +156 -0
  925. vllm/model_executor/layers/rotary_embedding/common.py +105 -0
  926. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +140 -0
  927. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  928. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  929. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  930. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  931. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  932. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  933. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  934. vllm/model_executor/layers/rotary_embedding/mrope.py +1140 -0
  935. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  936. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  937. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  938. vllm/model_executor/layers/sampler.py +1198 -0
  939. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  940. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  941. vllm/model_executor/layers/utils.py +196 -0
  942. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  943. vllm/model_executor/model_loader/__init__.py +138 -0
  944. vllm/model_executor/model_loader/base_loader.py +52 -0
  945. vllm/model_executor/model_loader/bitsandbytes_loader.py +787 -0
  946. vllm/model_executor/model_loader/default_loader.py +278 -0
  947. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  948. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  949. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  950. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  951. vllm/model_executor/model_loader/tensorizer.py +743 -0
  952. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  953. vllm/model_executor/model_loader/tpu.py +114 -0
  954. vllm/model_executor/model_loader/utils.py +271 -0
  955. vllm/model_executor/model_loader/weight_utils.py +946 -0
  956. vllm/model_executor/models/__init__.py +30 -0
  957. vllm/model_executor/models/adapters.py +542 -0
  958. vllm/model_executor/models/aimv2.py +246 -0
  959. vllm/model_executor/models/apertus.py +582 -0
  960. vllm/model_executor/models/arcee.py +423 -0
  961. vllm/model_executor/models/arctic.py +560 -0
  962. vllm/model_executor/models/aria.py +662 -0
  963. vllm/model_executor/models/aya_vision.py +470 -0
  964. vllm/model_executor/models/baichuan.py +475 -0
  965. vllm/model_executor/models/bailing_moe.py +529 -0
  966. vllm/model_executor/models/bamba.py +582 -0
  967. vllm/model_executor/models/bart.py +1343 -0
  968. vllm/model_executor/models/bert.py +613 -0
  969. vllm/model_executor/models/bert_with_rope.py +687 -0
  970. vllm/model_executor/models/blip.py +339 -0
  971. vllm/model_executor/models/blip2.py +716 -0
  972. vllm/model_executor/models/bloom.py +374 -0
  973. vllm/model_executor/models/chameleon.py +1141 -0
  974. vllm/model_executor/models/chatglm.py +479 -0
  975. vllm/model_executor/models/clip.py +407 -0
  976. vllm/model_executor/models/cohere2_vision.py +484 -0
  977. vllm/model_executor/models/commandr.py +467 -0
  978. vllm/model_executor/models/config.py +434 -0
  979. vllm/model_executor/models/constant_size_cache.py +137 -0
  980. vllm/model_executor/models/dbrx.py +473 -0
  981. vllm/model_executor/models/deepseek.py +491 -0
  982. vllm/model_executor/models/deepseek_eagle.py +241 -0
  983. vllm/model_executor/models/deepseek_mtp.py +282 -0
  984. vllm/model_executor/models/deepseek_v2.py +1058 -0
  985. vllm/model_executor/models/deepseek_vl2.py +661 -0
  986. vllm/model_executor/models/donut.py +387 -0
  987. vllm/model_executor/models/dots1.py +547 -0
  988. vllm/model_executor/models/ernie45.py +43 -0
  989. vllm/model_executor/models/ernie45_moe.py +608 -0
  990. vllm/model_executor/models/ernie45_vl.py +1510 -0
  991. vllm/model_executor/models/ernie45_vl_moe.py +728 -0
  992. vllm/model_executor/models/ernie_mtp.py +287 -0
  993. vllm/model_executor/models/exaone.py +552 -0
  994. vllm/model_executor/models/exaone4.py +535 -0
  995. vllm/model_executor/models/fairseq2_llama.py +154 -0
  996. vllm/model_executor/models/falcon.py +511 -0
  997. vllm/model_executor/models/falcon_h1.py +739 -0
  998. vllm/model_executor/models/florence2.py +1107 -0
  999. vllm/model_executor/models/fuyu.py +401 -0
  1000. vllm/model_executor/models/gemma.py +428 -0
  1001. vllm/model_executor/models/gemma2.py +425 -0
  1002. vllm/model_executor/models/gemma3.py +542 -0
  1003. vllm/model_executor/models/gemma3_mm.py +723 -0
  1004. vllm/model_executor/models/gemma3n.py +830 -0
  1005. vllm/model_executor/models/gemma3n_mm.py +767 -0
  1006. vllm/model_executor/models/glm.py +23 -0
  1007. vllm/model_executor/models/glm4.py +305 -0
  1008. vllm/model_executor/models/glm4_1v.py +1669 -0
  1009. vllm/model_executor/models/glm4_moe.py +703 -0
  1010. vllm/model_executor/models/glm4_moe_mtp.py +306 -0
  1011. vllm/model_executor/models/glm4v.py +654 -0
  1012. vllm/model_executor/models/gpt2.py +383 -0
  1013. vllm/model_executor/models/gpt_bigcode.py +346 -0
  1014. vllm/model_executor/models/gpt_j.py +340 -0
  1015. vllm/model_executor/models/gpt_neox.py +333 -0
  1016. vllm/model_executor/models/gpt_oss.py +687 -0
  1017. vllm/model_executor/models/granite.py +498 -0
  1018. vllm/model_executor/models/granite_speech.py +799 -0
  1019. vllm/model_executor/models/granitemoe.py +541 -0
  1020. vllm/model_executor/models/granitemoehybrid.py +684 -0
  1021. vllm/model_executor/models/granitemoeshared.py +342 -0
  1022. vllm/model_executor/models/gritlm.py +262 -0
  1023. vllm/model_executor/models/grok1.py +550 -0
  1024. vllm/model_executor/models/h2ovl.py +536 -0
  1025. vllm/model_executor/models/hunyuan_v1.py +937 -0
  1026. vllm/model_executor/models/hyperclovax_vision.py +1206 -0
  1027. vllm/model_executor/models/idefics2_vision_model.py +416 -0
  1028. vllm/model_executor/models/idefics3.py +758 -0
  1029. vllm/model_executor/models/interfaces.py +854 -0
  1030. vllm/model_executor/models/interfaces_base.py +195 -0
  1031. vllm/model_executor/models/intern_vit.py +481 -0
  1032. vllm/model_executor/models/internlm2.py +453 -0
  1033. vllm/model_executor/models/internlm2_ve.py +148 -0
  1034. vllm/model_executor/models/interns1.py +832 -0
  1035. vllm/model_executor/models/interns1_vit.py +418 -0
  1036. vllm/model_executor/models/internvl.py +1423 -0
  1037. vllm/model_executor/models/jais.py +374 -0
  1038. vllm/model_executor/models/jamba.py +630 -0
  1039. vllm/model_executor/models/jina_vl.py +144 -0
  1040. vllm/model_executor/models/keye.py +1684 -0
  1041. vllm/model_executor/models/keye_vl1_5.py +601 -0
  1042. vllm/model_executor/models/kimi_vl.py +620 -0
  1043. vllm/model_executor/models/lfm2.py +558 -0
  1044. vllm/model_executor/models/llama.py +671 -0
  1045. vllm/model_executor/models/llama4.py +732 -0
  1046. vllm/model_executor/models/llama4_eagle.py +241 -0
  1047. vllm/model_executor/models/llama_eagle.py +171 -0
  1048. vllm/model_executor/models/llama_eagle3.py +292 -0
  1049. vllm/model_executor/models/llava.py +872 -0
  1050. vllm/model_executor/models/llava_next.py +572 -0
  1051. vllm/model_executor/models/llava_next_video.py +479 -0
  1052. vllm/model_executor/models/llava_onevision.py +945 -0
  1053. vllm/model_executor/models/mamba.py +310 -0
  1054. vllm/model_executor/models/mamba2.py +346 -0
  1055. vllm/model_executor/models/mamba_cache.py +83 -0
  1056. vllm/model_executor/models/medusa.py +219 -0
  1057. vllm/model_executor/models/midashenglm.py +788 -0
  1058. vllm/model_executor/models/mimo.py +191 -0
  1059. vllm/model_executor/models/mimo_mtp.py +273 -0
  1060. vllm/model_executor/models/minicpm.py +593 -0
  1061. vllm/model_executor/models/minicpm3.py +230 -0
  1062. vllm/model_executor/models/minicpm_eagle.py +391 -0
  1063. vllm/model_executor/models/minicpmo.py +804 -0
  1064. vllm/model_executor/models/minicpmv.py +1786 -0
  1065. vllm/model_executor/models/minimax_cache.py +36 -0
  1066. vllm/model_executor/models/minimax_text_01.py +1027 -0
  1067. vllm/model_executor/models/minimax_vl_01.py +431 -0
  1068. vllm/model_executor/models/mistral3.py +628 -0
  1069. vllm/model_executor/models/mixtral.py +494 -0
  1070. vllm/model_executor/models/mllama.py +1697 -0
  1071. vllm/model_executor/models/mllama4.py +1079 -0
  1072. vllm/model_executor/models/mlp_speculator.py +206 -0
  1073. vllm/model_executor/models/modernbert.py +374 -0
  1074. vllm/model_executor/models/module_mapping.py +72 -0
  1075. vllm/model_executor/models/molmo.py +1569 -0
  1076. vllm/model_executor/models/moonvit.py +663 -0
  1077. vllm/model_executor/models/motif.py +345 -0
  1078. vllm/model_executor/models/mpt.py +332 -0
  1079. vllm/model_executor/models/nano_nemotron_vl.py +1395 -0
  1080. vllm/model_executor/models/nemotron.py +509 -0
  1081. vllm/model_executor/models/nemotron_h.py +633 -0
  1082. vllm/model_executor/models/nemotron_nas.py +484 -0
  1083. vllm/model_executor/models/nemotron_vl.py +655 -0
  1084. vllm/model_executor/models/nvlm_d.py +203 -0
  1085. vllm/model_executor/models/olmo.py +406 -0
  1086. vllm/model_executor/models/olmo2.py +428 -0
  1087. vllm/model_executor/models/olmoe.py +485 -0
  1088. vllm/model_executor/models/opt.py +413 -0
  1089. vllm/model_executor/models/orion.py +350 -0
  1090. vllm/model_executor/models/ovis.py +572 -0
  1091. vllm/model_executor/models/ovis2_5.py +644 -0
  1092. vllm/model_executor/models/paligemma.py +414 -0
  1093. vllm/model_executor/models/persimmon.py +345 -0
  1094. vllm/model_executor/models/phi.py +357 -0
  1095. vllm/model_executor/models/phi3.py +19 -0
  1096. vllm/model_executor/models/phi3v.py +701 -0
  1097. vllm/model_executor/models/phi4_multimodal.py +1478 -0
  1098. vllm/model_executor/models/phi4flash.py +737 -0
  1099. vllm/model_executor/models/phi4mm.py +1281 -0
  1100. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1101. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1102. vllm/model_executor/models/phimoe.py +681 -0
  1103. vllm/model_executor/models/pixtral.py +1348 -0
  1104. vllm/model_executor/models/plamo2.py +1126 -0
  1105. vllm/model_executor/models/qwen.py +363 -0
  1106. vllm/model_executor/models/qwen2.py +526 -0
  1107. vllm/model_executor/models/qwen2_5_omni_thinker.py +985 -0
  1108. vllm/model_executor/models/qwen2_5_vl.py +1256 -0
  1109. vllm/model_executor/models/qwen2_audio.py +492 -0
  1110. vllm/model_executor/models/qwen2_moe.py +558 -0
  1111. vllm/model_executor/models/qwen2_rm.py +122 -0
  1112. vllm/model_executor/models/qwen2_vl.py +1512 -0
  1113. vllm/model_executor/models/qwen3.py +344 -0
  1114. vllm/model_executor/models/qwen3_moe.py +704 -0
  1115. vllm/model_executor/models/qwen3_next.py +1298 -0
  1116. vllm/model_executor/models/qwen3_next_mtp.py +285 -0
  1117. vllm/model_executor/models/qwen_vl.py +795 -0
  1118. vllm/model_executor/models/registry.py +891 -0
  1119. vllm/model_executor/models/roberta.py +252 -0
  1120. vllm/model_executor/models/rvl.py +103 -0
  1121. vllm/model_executor/models/seed_oss.py +488 -0
  1122. vllm/model_executor/models/siglip.py +524 -0
  1123. vllm/model_executor/models/siglip2navit.py +688 -0
  1124. vllm/model_executor/models/skyworkr1v.py +914 -0
  1125. vllm/model_executor/models/smolvlm.py +44 -0
  1126. vllm/model_executor/models/solar.py +506 -0
  1127. vllm/model_executor/models/stablelm.py +344 -0
  1128. vllm/model_executor/models/starcoder2.py +357 -0
  1129. vllm/model_executor/models/step3_text.py +521 -0
  1130. vllm/model_executor/models/step3_vl.py +1091 -0
  1131. vllm/model_executor/models/swin.py +475 -0
  1132. vllm/model_executor/models/tarsier.py +649 -0
  1133. vllm/model_executor/models/telechat2.py +151 -0
  1134. vllm/model_executor/models/teleflm.py +79 -0
  1135. vllm/model_executor/models/terratorch.py +294 -0
  1136. vllm/model_executor/models/transformers.py +883 -0
  1137. vllm/model_executor/models/ultravox.py +667 -0
  1138. vllm/model_executor/models/utils.py +770 -0
  1139. vllm/model_executor/models/vision.py +125 -0
  1140. vllm/model_executor/models/voxtral.py +789 -0
  1141. vllm/model_executor/models/whisper.py +966 -0
  1142. vllm/model_executor/models/zamba2.py +1056 -0
  1143. vllm/model_executor/parameter.py +599 -0
  1144. vllm/model_executor/sampling_metadata.py +597 -0
  1145. vllm/model_executor/utils.py +97 -0
  1146. vllm/model_executor/warmup/__init__.py +0 -0
  1147. vllm/model_executor/warmup/deep_gemm_warmup.py +223 -0
  1148. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1149. vllm/multimodal/__init__.py +35 -0
  1150. vllm/multimodal/audio.py +116 -0
  1151. vllm/multimodal/base.py +219 -0
  1152. vllm/multimodal/cache.py +507 -0
  1153. vllm/multimodal/hasher.py +110 -0
  1154. vllm/multimodal/image.py +130 -0
  1155. vllm/multimodal/inputs.py +979 -0
  1156. vllm/multimodal/parse.py +496 -0
  1157. vllm/multimodal/processing.py +1921 -0
  1158. vllm/multimodal/profiling.py +313 -0
  1159. vllm/multimodal/registry.py +375 -0
  1160. vllm/multimodal/utils.py +754 -0
  1161. vllm/multimodal/video.py +312 -0
  1162. vllm/outputs.py +517 -0
  1163. vllm/platforms/__init__.py +263 -0
  1164. vllm/platforms/cpu.py +353 -0
  1165. vllm/platforms/cuda.py +731 -0
  1166. vllm/platforms/interface.py +599 -0
  1167. vllm/platforms/rocm.py +504 -0
  1168. vllm/platforms/tpu.py +236 -0
  1169. vllm/platforms/xpu.py +243 -0
  1170. vllm/plugins/__init__.py +72 -0
  1171. vllm/plugins/io_processors/__init__.py +68 -0
  1172. vllm/plugins/io_processors/interface.py +67 -0
  1173. vllm/plugins/lora_resolvers/README.md +16 -0
  1174. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1175. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1176. vllm/pooling_params.py +183 -0
  1177. vllm/profiler/__init__.py +0 -0
  1178. vllm/profiler/layerwise_profile.py +375 -0
  1179. vllm/profiler/utils.py +148 -0
  1180. vllm/py.typed +2 -0
  1181. vllm/ray/__init__.py +0 -0
  1182. vllm/ray/lazy_utils.py +22 -0
  1183. vllm/ray/ray_env.py +72 -0
  1184. vllm/reasoning/__init__.py +25 -0
  1185. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1186. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1187. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1188. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1189. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1190. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1191. vllm/reasoning/mistral_reasoning_parser.py +47 -0
  1192. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1193. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1194. vllm/sampling_params.py +577 -0
  1195. vllm/scalar_type.py +349 -0
  1196. vllm/scripts.py +15 -0
  1197. vllm/sequence.py +1465 -0
  1198. vllm/tasks.py +11 -0
  1199. vllm/test_utils.py +130 -0
  1200. vllm/third_party/__init__.py +0 -0
  1201. vllm/third_party/pynvml.py +6140 -0
  1202. vllm/tracing.py +136 -0
  1203. vllm/transformers_utils/__init__.py +24 -0
  1204. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1205. vllm/transformers_utils/chat_templates/registry.py +71 -0
  1206. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1207. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1208. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1209. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1210. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1211. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1212. vllm/transformers_utils/config.py +1043 -0
  1213. vllm/transformers_utils/config_parser_base.py +20 -0
  1214. vllm/transformers_utils/configs/__init__.py +55 -0
  1215. vllm/transformers_utils/configs/arctic.py +207 -0
  1216. vllm/transformers_utils/configs/chatglm.py +72 -0
  1217. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1218. vllm/transformers_utils/configs/eagle.py +84 -0
  1219. vllm/transformers_utils/configs/falcon.py +90 -0
  1220. vllm/transformers_utils/configs/jais.py +238 -0
  1221. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1222. vllm/transformers_utils/configs/medusa.py +63 -0
  1223. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1224. vllm/transformers_utils/configs/mistral.py +165 -0
  1225. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1226. vllm/transformers_utils/configs/moonvit.py +33 -0
  1227. vllm/transformers_utils/configs/nemotron.py +205 -0
  1228. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1229. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1230. vllm/transformers_utils/configs/ovis.py +176 -0
  1231. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1232. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1233. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1234. vllm/transformers_utils/configs/speculators/base.py +91 -0
  1235. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1236. vllm/transformers_utils/configs/ultravox.py +120 -0
  1237. vllm/transformers_utils/detokenizer.py +169 -0
  1238. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1239. vllm/transformers_utils/dynamic_module.py +60 -0
  1240. vllm/transformers_utils/processor.py +245 -0
  1241. vllm/transformers_utils/processors/__init__.py +16 -0
  1242. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1243. vllm/transformers_utils/processors/ovis.py +420 -0
  1244. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1245. vllm/transformers_utils/runai_utils.py +99 -0
  1246. vllm/transformers_utils/s3_utils.py +90 -0
  1247. vllm/transformers_utils/tokenizer.py +293 -0
  1248. vllm/transformers_utils/tokenizer_base.py +149 -0
  1249. vllm/transformers_utils/tokenizer_group.py +132 -0
  1250. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1251. vllm/transformers_utils/tokenizers/mistral.py +520 -0
  1252. vllm/transformers_utils/utils.py +99 -0
  1253. vllm/triton_utils/__init__.py +16 -0
  1254. vllm/triton_utils/importing.py +95 -0
  1255. vllm/usage/__init__.py +0 -0
  1256. vllm/usage/usage_lib.py +259 -0
  1257. vllm/utils/__init__.py +3438 -0
  1258. vllm/utils/deep_gemm.py +212 -0
  1259. vllm/utils/flashinfer.py +372 -0
  1260. vllm/utils/jsontree.py +90 -0
  1261. vllm/utils/tensor_schema.py +236 -0
  1262. vllm/v1/__init__.py +0 -0
  1263. vllm/v1/attention/__init__.py +0 -0
  1264. vllm/v1/attention/backends/__init__.py +0 -0
  1265. vllm/v1/attention/backends/cpu_attn.py +922 -0
  1266. vllm/v1/attention/backends/flash_attn.py +800 -0
  1267. vllm/v1/attention/backends/flashinfer.py +1128 -0
  1268. vllm/v1/attention/backends/flex_attention.py +796 -0
  1269. vllm/v1/attention/backends/gdn_attn.py +320 -0
  1270. vllm/v1/attention/backends/linear_attn.py +68 -0
  1271. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1272. vllm/v1/attention/backends/mamba2_attn.py +224 -0
  1273. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1274. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1275. vllm/v1/attention/backends/mla/common.py +1608 -0
  1276. vllm/v1/attention/backends/mla/cutlass_mla.py +301 -0
  1277. vllm/v1/attention/backends/mla/flashattn_mla.py +273 -0
  1278. vllm/v1/attention/backends/mla/flashinfer_mla.py +110 -0
  1279. vllm/v1/attention/backends/mla/flashmla.py +213 -0
  1280. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1281. vllm/v1/attention/backends/mla/triton_mla.py +175 -0
  1282. vllm/v1/attention/backends/pallas.py +413 -0
  1283. vllm/v1/attention/backends/rocm_aiter_fa.py +548 -0
  1284. vllm/v1/attention/backends/short_conv_attn.py +82 -0
  1285. vllm/v1/attention/backends/tree_attn.py +450 -0
  1286. vllm/v1/attention/backends/triton_attn.py +430 -0
  1287. vllm/v1/attention/backends/utils.py +834 -0
  1288. vllm/v1/attention/backends/xformers.py +437 -0
  1289. vllm/v1/core/__init__.py +0 -0
  1290. vllm/v1/core/block_pool.py +330 -0
  1291. vllm/v1/core/encoder_cache_manager.py +333 -0
  1292. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1293. vllm/v1/core/kv_cache_manager.py +398 -0
  1294. vllm/v1/core/kv_cache_utils.py +1169 -0
  1295. vllm/v1/core/sched/__init__.py +0 -0
  1296. vllm/v1/core/sched/async_scheduler.py +47 -0
  1297. vllm/v1/core/sched/interface.py +158 -0
  1298. vllm/v1/core/sched/output.py +162 -0
  1299. vllm/v1/core/sched/request_queue.py +224 -0
  1300. vllm/v1/core/sched/scheduler.py +1287 -0
  1301. vllm/v1/core/sched/utils.py +69 -0
  1302. vllm/v1/core/single_type_kv_cache_manager.py +670 -0
  1303. vllm/v1/cudagraph_dispatcher.py +121 -0
  1304. vllm/v1/engine/__init__.py +202 -0
  1305. vllm/v1/engine/async_llm.py +757 -0
  1306. vllm/v1/engine/coordinator.py +357 -0
  1307. vllm/v1/engine/core.py +1245 -0
  1308. vllm/v1/engine/core_client.py +1333 -0
  1309. vllm/v1/engine/detokenizer.py +300 -0
  1310. vllm/v1/engine/exceptions.py +17 -0
  1311. vllm/v1/engine/llm_engine.py +332 -0
  1312. vllm/v1/engine/logprobs.py +201 -0
  1313. vllm/v1/engine/output_processor.py +558 -0
  1314. vllm/v1/engine/parallel_sampling.py +133 -0
  1315. vllm/v1/engine/processor.py +524 -0
  1316. vllm/v1/engine/utils.py +857 -0
  1317. vllm/v1/executor/__init__.py +0 -0
  1318. vllm/v1/executor/abstract.py +126 -0
  1319. vllm/v1/executor/multiproc_executor.py +683 -0
  1320. vllm/v1/executor/ray_distributed_executor.py +109 -0
  1321. vllm/v1/kv_cache_interface.py +275 -0
  1322. vllm/v1/metrics/__init__.py +0 -0
  1323. vllm/v1/metrics/loggers.py +717 -0
  1324. vllm/v1/metrics/prometheus.py +82 -0
  1325. vllm/v1/metrics/ray_wrappers.py +133 -0
  1326. vllm/v1/metrics/reader.py +246 -0
  1327. vllm/v1/metrics/stats.py +248 -0
  1328. vllm/v1/outputs.py +147 -0
  1329. vllm/v1/pool/__init__.py +0 -0
  1330. vllm/v1/pool/metadata.py +77 -0
  1331. vllm/v1/request.py +237 -0
  1332. vllm/v1/sample/__init__.py +0 -0
  1333. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1334. vllm/v1/sample/logits_processor/builtin.py +273 -0
  1335. vllm/v1/sample/logits_processor/interface.py +97 -0
  1336. vllm/v1/sample/logits_processor/state.py +161 -0
  1337. vllm/v1/sample/metadata.py +43 -0
  1338. vllm/v1/sample/ops/__init__.py +0 -0
  1339. vllm/v1/sample/ops/bad_words.py +39 -0
  1340. vllm/v1/sample/ops/logprobs.py +26 -0
  1341. vllm/v1/sample/ops/penalties.py +43 -0
  1342. vllm/v1/sample/ops/topk_topp_sampler.py +254 -0
  1343. vllm/v1/sample/rejection_sampler.py +623 -0
  1344. vllm/v1/sample/sampler.py +281 -0
  1345. vllm/v1/sample/tpu/__init__.py +0 -0
  1346. vllm/v1/sample/tpu/metadata.py +124 -0
  1347. vllm/v1/sample/tpu/sampler.py +213 -0
  1348. vllm/v1/serial_utils.py +395 -0
  1349. vllm/v1/spec_decode/__init__.py +0 -0
  1350. vllm/v1/spec_decode/eagle.py +740 -0
  1351. vllm/v1/spec_decode/medusa.py +66 -0
  1352. vllm/v1/spec_decode/metadata.py +62 -0
  1353. vllm/v1/spec_decode/metrics.py +191 -0
  1354. vllm/v1/spec_decode/ngram_proposer.py +157 -0
  1355. vllm/v1/spec_decode/utils.py +14 -0
  1356. vllm/v1/structured_output/__init__.py +297 -0
  1357. vllm/v1/structured_output/backend_guidance.py +245 -0
  1358. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1359. vllm/v1/structured_output/backend_outlines.py +320 -0
  1360. vllm/v1/structured_output/backend_types.py +134 -0
  1361. vllm/v1/structured_output/backend_xgrammar.py +323 -0
  1362. vllm/v1/structured_output/request.py +86 -0
  1363. vllm/v1/structured_output/utils.py +373 -0
  1364. vllm/v1/utils.py +382 -0
  1365. vllm/v1/worker/__init__.py +0 -0
  1366. vllm/v1/worker/block_table.py +221 -0
  1367. vllm/v1/worker/cpu_model_runner.py +163 -0
  1368. vllm/v1/worker/cpu_worker.py +183 -0
  1369. vllm/v1/worker/gpu_input_batch.py +821 -0
  1370. vllm/v1/worker/gpu_model_runner.py +3743 -0
  1371. vllm/v1/worker/gpu_worker.py +697 -0
  1372. vllm/v1/worker/kv_connector_model_runner_mixin.py +122 -0
  1373. vllm/v1/worker/lora_model_runner_mixin.py +192 -0
  1374. vllm/v1/worker/tpu_input_batch.py +585 -0
  1375. vllm/v1/worker/tpu_model_runner.py +1947 -0
  1376. vllm/v1/worker/tpu_worker.py +340 -0
  1377. vllm/v1/worker/utils.py +290 -0
  1378. vllm/v1/worker/worker_base.py +65 -0
  1379. vllm/v1/worker/xpu_model_runner.py +53 -0
  1380. vllm/v1/worker/xpu_worker.py +179 -0
  1381. vllm/version.py +41 -0
  1382. vllm/vllm_flash_attn/.gitkeep +0 -0
  1383. vllm/worker/__init__.py +0 -0
  1384. vllm/worker/cache_engine.py +145 -0
  1385. vllm/worker/enc_dec_model_runner.py +553 -0
  1386. vllm/worker/model_runner.py +2016 -0
  1387. vllm/worker/model_runner_base.py +307 -0
  1388. vllm/worker/utils.py +49 -0
  1389. vllm/worker/worker.py +670 -0
  1390. vllm/worker/worker_base.py +651 -0
  1391. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/METADATA +326 -0
  1392. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/RECORD +1395 -0
  1393. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/WHEEL +5 -0
  1394. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/entry_points.txt +5 -0
  1395. vllm_cpu_avx512vnni-0.10.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1669 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Adapted from
5
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/Glm4v/modeling_Glm4v.py
6
+ # Copyright 2025 The vLLM team.
7
+ # Copyright 2025 The ZhipuAI Team.
8
+ # Copyright 2025 The HuggingFace Inc. team.
9
+ # All rights reserved.
10
+ #
11
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
12
+ # and OPT implementations in this library. It has been modified from its
13
+ # original forms to accommodate minor architectural differences compared
14
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
15
+ #
16
+ # Licensed under the Apache License, Version 2.0 (the "License");
17
+ # you may not use this file except in compliance with the License.
18
+ # You may obtain a copy of the License at
19
+ #
20
+ # http://www.apache.org/licenses/LICENSE-2.0
21
+ #
22
+ # Unless required by applicable law or agreed to in writing, software
23
+ # distributed under the License is distributed on an "AS IS" BASIS,
24
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
+ # See the License for the specific language governing permissions and
26
+ # limitations under the License.
27
+ """Inference-only GLM-4V model compatible with HuggingFace weights."""
28
+
29
+ import math
30
+ from collections.abc import Iterable, Mapping, Sequence
31
+ from functools import partial
32
+ from typing import Annotated, Any, Callable, Literal, Optional, Union
33
+
34
+ import numpy as np
35
+ import torch
36
+ import torch.nn as nn
37
+ import torch.nn.functional as F
38
+ from einops import rearrange
39
+ from transformers import BatchFeature
40
+ from transformers.models.glm4v.configuration_glm4v import Glm4vVisionConfig
41
+ from transformers.models.glm4v.image_processing_glm4v import (
42
+ Glm4vImageProcessor, smart_resize)
43
+ from transformers.models.glm4v.video_processing_glm4v import (
44
+ Glm4vVideoProcessor)
45
+ from transformers.video_utils import VideoMetadata
46
+
47
+ from vllm.config import VllmConfig
48
+ from vllm.distributed import (get_tensor_model_parallel_world_size,
49
+ parallel_state)
50
+ from vllm.distributed import utils as dist_utils
51
+ from vllm.logger import init_logger
52
+ from vllm.model_executor import SamplingMetadata
53
+ from vllm.model_executor.layers.layernorm import RMSNorm
54
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
55
+ MergedColumnParallelLinear,
56
+ QKVParallelLinear,
57
+ RowParallelLinear)
58
+ from vllm.model_executor.layers.quantization import QuantizationConfig
59
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
60
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
61
+ from vllm.multimodal import MULTIMODAL_REGISTRY
62
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
63
+ MultiModalKwargsItems, VideoItem)
64
+ from vllm.multimodal.parse import (ImageSize, MultiModalDataItems,
65
+ MultiModalDataParser)
66
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
67
+ BaseProcessingInfo, PromptReplacement,
68
+ PromptUpdate, PromptUpdateDetails)
69
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
70
+ from vllm.multimodal.utils import run_dp_sharded_mrope_vision_model
71
+ from vllm.platforms import _Backend
72
+ from vllm.sequence import IntermediateTensors
73
+ from vllm.transformers_utils.config import uses_mrope
74
+ from vllm.utils.tensor_schema import TensorSchema, TensorShape
75
+
76
+ from ..layers.activation import SiluAndMul
77
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
78
+ SupportsMultiModal, SupportsPP)
79
+ from .qwen2_vl import (_create_qwen2vl_field_factory,
80
+ apply_rotary_pos_emb_vision)
81
+ from .utils import (AutoWeightsLoader, WeightsMapper,
82
+ init_vllm_registered_model, maybe_prefix,
83
+ merge_multimodal_embeddings)
84
+ from .vision import get_vit_attn_backend
85
+
86
+ logger = init_logger(__name__)
87
+
88
+ # For profile run
89
+ _MAX_FRAMES_PER_VIDEO = 600
90
+
91
+ # === Vision Inputs === #
92
+
93
+
94
+ class Glm4vImagePixelInputs(TensorSchema):
95
+ """
96
+ Dimensions:
97
+ - np: Number of patches
98
+ - cpp: Number of channels * patch_size * patch_size
99
+ - ni: Number of images
100
+ - g: Grid dimensions (3 for grid_t, grid_h, grid_w)
101
+ """
102
+ type: Literal["pixel_values"] = "pixel_values"
103
+
104
+ pixel_values: Annotated[torch.Tensor, TensorShape("np", "cpp")]
105
+ image_grid_thw: Annotated[torch.Tensor, TensorShape("ni", 3)]
106
+
107
+
108
+ class Glm4vImageEmbeddingInputs(TensorSchema):
109
+ """
110
+ Dimensions:
111
+ - f: Number of image features (varies based on image resolution)
112
+ - h: Hidden size (must match language model backbone)
113
+ - n: Number of images
114
+ - g: Grid dimensions (3 for grid_t, grid_h, grid_w)
115
+ """
116
+ type: Literal["image_embeds"] = "image_embeds"
117
+
118
+ image_embeds: Annotated[torch.Tensor, TensorShape("f", "h")]
119
+ image_grid_thw: Annotated[torch.Tensor, TensorShape("n", 3)]
120
+
121
+
122
+ Glm4vImageInputs = Union[Glm4vImagePixelInputs, Glm4vImageEmbeddingInputs]
123
+
124
+
125
+ class Glm4vVideoPixelInputs(TensorSchema):
126
+ """
127
+ Dimensions:
128
+ - np: Number of patches
129
+ - ctpp: Number of channels * temporal_patch_size *
130
+ patch_size * patch_size
131
+ - f: Number of frames
132
+ - g: Grid dimensions (3 for grid_t which is usually 1 for processed
133
+ video, grid_h, grid_w)
134
+ """
135
+ type: Literal["pixel_values_videos"] = "pixel_values_videos"
136
+
137
+ pixel_values_videos: Annotated[torch.Tensor, TensorShape("np", "ctpp")]
138
+ video_grid_thw: Annotated[torch.Tensor, TensorShape("f", 3)]
139
+
140
+
141
+ class Glm4vVideoEmbeddingInputs(TensorSchema):
142
+ """
143
+ Dimensions:
144
+ - p: Number of video patches across all frames
145
+ - h: Hidden size (must match language model backbone)
146
+ - f: Number of frames
147
+ - g: Grid dimensions (3 for grid_t which is usually 1 for processed
148
+ video, grid_h, grid_w)
149
+ """
150
+ type: Literal["video_embeds"] = "video_embeds"
151
+
152
+ video_embeds: Annotated[torch.Tensor, TensorShape("p", "h")]
153
+ video_grid_thw: Annotated[torch.Tensor, TensorShape("f", 3)]
154
+
155
+
156
+ Glm4vVideoInputs = Union[Glm4vVideoPixelInputs, Glm4vVideoEmbeddingInputs]
157
+
158
+ # ==== Vision Encoder ==== #
159
+
160
+
161
+ class Glm4vVisionMLP(nn.Module):
162
+
163
+ def __init__(
164
+ self,
165
+ in_features: int,
166
+ hidden_features: int,
167
+ bias: bool = False,
168
+ quant_config: Optional[QuantizationConfig] = None,
169
+ prefix: str = "",
170
+ use_data_parallel: bool = False,
171
+ ):
172
+ super().__init__()
173
+ self.gate_up_proj = MergedColumnParallelLinear(
174
+ input_size=in_features,
175
+ output_sizes=[hidden_features] * 2,
176
+ bias=bias,
177
+ quant_config=quant_config,
178
+ prefix=f"{prefix}.gate_up_proj",
179
+ disable_tp=use_data_parallel,
180
+ )
181
+ self.down_proj = RowParallelLinear(
182
+ hidden_features,
183
+ in_features,
184
+ bias=bias,
185
+ quant_config=quant_config,
186
+ prefix=f"{prefix}.down_proj",
187
+ disable_tp=use_data_parallel,
188
+ )
189
+ self.act_fn = SiluAndMul()
190
+
191
+ def forward(self, x: torch.Tensor):
192
+ x, _ = self.gate_up_proj(x)
193
+ x = self.act_fn(x)
194
+ x, _ = self.down_proj(x)
195
+ return x
196
+
197
+
198
+ def all_gather_interleave(local_tensor, hidden_size: int, tp_size: int):
199
+ """All-gather the input tensor interleavely across model parallel group."""
200
+ import torch.distributed as dist
201
+
202
+ gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
203
+ dist.all_gather(
204
+ gathered_tensors,
205
+ local_tensor,
206
+ group=parallel_state.get_tp_group().device_group,
207
+ )
208
+
209
+ gathered_tensors_split = [
210
+ torch.split(tensor, hidden_size // tp_size, -1)
211
+ for tensor in gathered_tensors
212
+ ]
213
+ ordered_tensors = [
214
+ tensor for pair in zip(*gathered_tensors_split) for tensor in pair
215
+ ]
216
+ result_tensor = torch.cat(ordered_tensors, dim=-1)
217
+ return result_tensor
218
+
219
+
220
+ class Glm4vVisionAttention(nn.Module):
221
+
222
+ def __init__(
223
+ self,
224
+ embed_dim: int,
225
+ num_heads: int,
226
+ projection_size: int,
227
+ quant_config: Optional[QuantizationConfig] = None,
228
+ prefix: str = "",
229
+ use_data_parallel: bool = False,
230
+ ) -> None:
231
+ super().__init__()
232
+ # Per attention head and per partition values.
233
+ self.tp_size = (1 if use_data_parallel else
234
+ get_tensor_model_parallel_world_size())
235
+ self.tp_rank = (0 if use_data_parallel else
236
+ parallel_state.get_tensor_model_parallel_rank())
237
+ self.hidden_size_per_attention_head = dist_utils.divide(
238
+ projection_size, num_heads)
239
+ self.num_attention_heads_per_partition = dist_utils.divide(
240
+ num_heads, self.tp_size)
241
+
242
+ self.qkv = QKVParallelLinear(
243
+ hidden_size=embed_dim,
244
+ head_size=self.hidden_size_per_attention_head,
245
+ total_num_heads=num_heads,
246
+ total_num_kv_heads=num_heads,
247
+ bias=False,
248
+ quant_config=quant_config,
249
+ # Change qkv prefix to align with GLM-4.5V-FP8 quantization cfg
250
+ prefix=f"{prefix}.qkv_proj" if quant_config else f"{prefix}.qkv",
251
+ disable_tp=use_data_parallel,
252
+ )
253
+ self.proj = RowParallelLinear(
254
+ input_size=projection_size,
255
+ output_size=embed_dim,
256
+ quant_config=quant_config,
257
+ prefix=f"{prefix}.proj",
258
+ bias=False,
259
+ disable_tp=use_data_parallel,
260
+ )
261
+
262
+ # Detect attention implementation.
263
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
264
+ if self.attn_backend not in {
265
+ _Backend.FLASH_ATTN,
266
+ _Backend.TORCH_SDPA,
267
+ _Backend.XFORMERS,
268
+ }:
269
+ raise RuntimeError(
270
+ f"GLM-4V does not support {self.attn_backend} backend now.")
271
+
272
+ def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
273
+ # [s, b, 3 * head * head_dim]
274
+ seq_len, bs, _ = qkv.shape
275
+
276
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
277
+ q, k, v = qkv.chunk(3, dim=2)
278
+
279
+ # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
280
+ new_shape = (
281
+ seq_len,
282
+ bs,
283
+ self.num_attention_heads_per_partition,
284
+ self.hidden_size_per_attention_head,
285
+ )
286
+ q, k, v = (x.view(*new_shape) for x in (q, k, v))
287
+ return q, k, v
288
+
289
+ def forward(
290
+ self,
291
+ x: torch.Tensor,
292
+ cu_seqlens: torch.Tensor,
293
+ rotary_pos_emb: torch.Tensor,
294
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
295
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
296
+ ) -> torch.Tensor:
297
+ # [s, b, c] --> [s, b, head * 3 * head_dim]
298
+ x, _ = self.qkv(x)
299
+
300
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
301
+ q, k, v = self.split_qkv(x)
302
+ batch_size = q.shape[1]
303
+
304
+ q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
305
+ for x in (q, k, v))
306
+ if rotary_pos_emb is not None:
307
+ q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
308
+ k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
309
+
310
+ if self.attn_backend == _Backend.FLASH_ATTN:
311
+ # from vllm_flash_attn.flash_attn_interface import (
312
+ # flash_attn_varlen_func)
313
+ from flash_attn import flash_attn_varlen_func
314
+
315
+ q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
316
+
317
+ output = flash_attn_varlen_func(
318
+ q,
319
+ k,
320
+ v,
321
+ cu_seqlens_q=cu_seqlens,
322
+ cu_seqlens_k=cu_seqlens,
323
+ max_seqlen_q=max_seqlen,
324
+ max_seqlen_k=max_seqlen,
325
+ dropout_p=0,
326
+ causal=False,
327
+ )
328
+
329
+ context_layer = rearrange(output,
330
+ "(b s) ... -> b s ...",
331
+ b=batch_size)
332
+ elif self.attn_backend == _Backend.TORCH_SDPA:
333
+ # Execute attention entry by entry for speed & less VRAM.
334
+ outputs = []
335
+ for i in range(1, len(cu_seqlens)):
336
+ start_idx = cu_seqlens[i - 1]
337
+ end_idx = cu_seqlens[i]
338
+ q_i = q[:, start_idx:end_idx]
339
+ k_i = k[:, start_idx:end_idx]
340
+ v_i = v[:, start_idx:end_idx]
341
+ q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
342
+ for x in [q_i, k_i, v_i])
343
+ output_i = F.scaled_dot_product_attention(q_i,
344
+ k_i,
345
+ v_i,
346
+ dropout_p=0.0)
347
+ output_i = rearrange(output_i, "b h s d -> b s h d ")
348
+ outputs.append(output_i)
349
+ context_layer = torch.cat(outputs, dim=1)
350
+ elif self.attn_backend == _Backend.XFORMERS:
351
+ from xformers import ops as xops
352
+ from xformers.ops.fmha.attn_bias import BlockDiagonalMask
353
+
354
+ attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
355
+ kv_seqlen=None,
356
+ device=q.device)
357
+
358
+ context_layer = xops.memory_efficient_attention_forward(
359
+ q, k, v, attn_bias=attn_bias, p=0, scale=None)
360
+
361
+ context_layer = rearrange(context_layer,
362
+ "b s h d -> s b (h d)").contiguous()
363
+
364
+ output, _ = self.proj(context_layer)
365
+ return output
366
+
367
+
368
+ class Glm4vVisionBlock(nn.Module):
369
+
370
+ def __init__(
371
+ self,
372
+ dim: int,
373
+ num_heads: int,
374
+ mlp_hidden_dim: int,
375
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
376
+ quant_config: Optional[QuantizationConfig] = None,
377
+ prefix: str = "",
378
+ use_data_parallel: bool = False,
379
+ ) -> None:
380
+ super().__init__()
381
+ if norm_layer is None:
382
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
383
+ self.norm1 = norm_layer(dim)
384
+ self.norm2 = norm_layer(dim)
385
+ self.attn = Glm4vVisionAttention(
386
+ embed_dim=dim,
387
+ num_heads=num_heads,
388
+ projection_size=dim,
389
+ quant_config=quant_config,
390
+ prefix=f"{prefix}.attn",
391
+ use_data_parallel=use_data_parallel,
392
+ )
393
+ self.mlp = Glm4vVisionMLP(
394
+ dim,
395
+ mlp_hidden_dim,
396
+ bias=False,
397
+ quant_config=quant_config,
398
+ prefix=f"{prefix}.mlp",
399
+ use_data_parallel=use_data_parallel,
400
+ )
401
+
402
+ def forward(
403
+ self,
404
+ x: torch.Tensor,
405
+ cu_seqlens: torch.Tensor,
406
+ rotary_pos_emb: torch.Tensor,
407
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
408
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
409
+ ) -> torch.Tensor:
410
+ x = x + self.attn(
411
+ self.norm1(x),
412
+ cu_seqlens=cu_seqlens,
413
+ rotary_pos_emb=rotary_pos_emb,
414
+ max_seqlen=max_seqlen,
415
+ seqlens=seqlens,
416
+ )
417
+
418
+ x = x + self.mlp(self.norm2(x))
419
+ return x
420
+
421
+
422
+ class Glm4vVisionPatchEmbed(nn.Module):
423
+
424
+ def __init__(
425
+ self,
426
+ patch_size: int = 14,
427
+ temporal_patch_size: int = 1,
428
+ in_channels: int = 3,
429
+ hidden_size: int = 1536,
430
+ ) -> None:
431
+ super().__init__()
432
+ self.patch_size = patch_size
433
+ self.temporal_patch_size = temporal_patch_size
434
+ self.hidden_size = hidden_size
435
+
436
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
437
+ self.proj = nn.Conv3d(
438
+ in_channels,
439
+ hidden_size,
440
+ kernel_size=kernel_size,
441
+ stride=kernel_size,
442
+ bias=True,
443
+ )
444
+
445
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
446
+ L, C = x.shape
447
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
448
+ self.patch_size)
449
+ x = self.proj(x).view(L, self.hidden_size)
450
+ return x
451
+
452
+
453
+ class Glm4vPatchMerger(nn.Module):
454
+
455
+ def __init__(
456
+ self,
457
+ d_model: int,
458
+ context_dim: int,
459
+ quant_config: Optional[QuantizationConfig] = None,
460
+ bias: bool = False,
461
+ prefix: str = "",
462
+ use_data_parallel: bool = False,
463
+ ) -> None:
464
+ super().__init__()
465
+ self.hidden_size = d_model
466
+ self.proj = ColumnParallelLinear(
467
+ self.hidden_size,
468
+ self.hidden_size,
469
+ bias=bias,
470
+ gather_output=True,
471
+ quant_config=quant_config,
472
+ prefix=f"{prefix}.proj",
473
+ disable_tp=use_data_parallel,
474
+ )
475
+ self.post_projection_norm = nn.LayerNorm(self.hidden_size)
476
+ self.gate_up_proj = MergedColumnParallelLinear(
477
+ input_size=self.hidden_size,
478
+ output_sizes=[context_dim] * 2,
479
+ bias=bias,
480
+ quant_config=quant_config,
481
+ prefix=f"{prefix}.gate_up_proj",
482
+ disable_tp=use_data_parallel,
483
+ )
484
+ self.down_proj = RowParallelLinear(
485
+ context_dim,
486
+ self.hidden_size,
487
+ bias=bias,
488
+ quant_config=quant_config,
489
+ prefix=f"{prefix}.down_proj",
490
+ disable_tp=use_data_parallel,
491
+ )
492
+ self.act_fn = SiluAndMul()
493
+ self.extra_activation_func = nn.GELU()
494
+
495
+ def forward(self, x: torch.Tensor):
496
+ x, _ = self.proj(x)
497
+ x = self.extra_activation_func(self.post_projection_norm(x))
498
+ gate_up, _ = self.gate_up_proj(x)
499
+ x = self.act_fn(gate_up)
500
+ x, _ = self.down_proj(x)
501
+ return x
502
+
503
+
504
+ class Glm4vVisionEmbeddings(nn.Module):
505
+
506
+ def __init__(self, config: Glm4vVisionConfig):
507
+ super().__init__()
508
+ self.config = config
509
+ self.embed_dim = config.hidden_size
510
+ self.image_size = config.image_size
511
+ self.patch_size = config.patch_size
512
+
513
+ self.num_patches = (self.image_size // self.patch_size)**2
514
+ self.num_positions = self.num_patches
515
+ self.position_embedding = nn.Embedding(self.num_positions,
516
+ self.embed_dim)
517
+ self.register_buffer(
518
+ "position_ids",
519
+ torch.arange(self.num_positions).expand((1, -1)),
520
+ persistent=False,
521
+ )
522
+
523
+ def forward(self, embeddings, lengths, image_shapes, h_coords,
524
+ w_coords) -> torch.Tensor:
525
+ pos_embed_weight = self.position_embedding.weight
526
+ hidden_size = pos_embed_weight.shape[1]
527
+ total_seq = h_coords.shape[0]
528
+ device = pos_embed_weight.device
529
+
530
+ # Move coordinates to correct device
531
+ h_coords, w_coords = h_coords.to(device), w_coords.to(device)
532
+
533
+ # Handle empty sequence case
534
+ if total_seq == 0:
535
+ adapted_pos_embed = torch.empty(0,
536
+ hidden_size,
537
+ device=device,
538
+ dtype=pos_embed_weight.dtype)
539
+ else:
540
+ # Convert inputs to tensors if needed
541
+ if isinstance(lengths, list):
542
+ lengths = torch.tensor(lengths,
543
+ device=device,
544
+ dtype=torch.long)
545
+ if not isinstance(image_shapes, torch.Tensor):
546
+ image_shapes = torch.tensor(image_shapes,
547
+ device=device,
548
+ dtype=torch.long)
549
+
550
+ # Prepare 2D position embedding
551
+ orig_size_sq = pos_embed_weight.shape[0]
552
+ orig_size = int(orig_size_sq**0.5)
553
+ pos_embed_2d = (pos_embed_weight.view(
554
+ orig_size, orig_size,
555
+ hidden_size).permute(2, 0,
556
+ 1).unsqueeze(0).to(device=device,
557
+ dtype=torch.float32))
558
+
559
+ # Calculate target dimensions for each patch
560
+ # Add bounds checking for data parallel mode
561
+ if len(lengths) > image_shapes.shape[0]:
562
+ # In data parallel mode, some GPUs might not have all
563
+ # image shapes
564
+ # Use available image shapes, cycling if necessary
565
+ target_h_list = []
566
+ target_w_list = []
567
+ for i in range(len(lengths)):
568
+ # Cycle through available shapes
569
+ shape_idx = i % image_shapes.shape[0]
570
+ target_h_list.append(image_shapes[shape_idx,
571
+ 1].repeat(lengths[i]))
572
+ target_w_list.append(image_shapes[shape_idx,
573
+ 2].repeat(lengths[i]))
574
+ target_h = torch.cat(target_h_list).to(device=device,
575
+ dtype=torch.float32)
576
+ target_w = torch.cat(target_w_list).to(device=device,
577
+ dtype=torch.float32)
578
+ else:
579
+ target_h = torch.cat([
580
+ image_shapes[i, 1].repeat(lengths[i])
581
+ for i in range(len(lengths))
582
+ ]).to(device=device, dtype=torch.float32)
583
+ target_w = torch.cat([
584
+ image_shapes[i, 2].repeat(lengths[i])
585
+ for i in range(len(lengths))
586
+ ]).to(device=device, dtype=torch.float32)
587
+
588
+ # Normalize coordinates to [-1, 1] range for grid_sample
589
+ h_coords = h_coords.to(device=device, dtype=torch.float32)
590
+ w_coords = w_coords.to(device=device, dtype=torch.float32)
591
+ norm_w = ((w_coords + 0.5) / target_w) * 2 - 1
592
+ norm_h = ((h_coords + 0.5) / target_h) * 2 - 1
593
+
594
+ # Create sampling grid
595
+ grid = (torch.stack((norm_w, norm_h),
596
+ dim=-1).unsqueeze(0).unsqueeze(2))
597
+
598
+ # Perform bicubic interpolation
599
+ interpolated_embed_fp32 = F.grid_sample(
600
+ pos_embed_2d,
601
+ grid,
602
+ mode="bicubic",
603
+ align_corners=False,
604
+ padding_mode="border",
605
+ )
606
+
607
+ # Reshape and convert back to original dtype
608
+ adapted_pos_embed_fp32 = (
609
+ interpolated_embed_fp32.squeeze(0).squeeze(-1).permute(1, 0))
610
+ adapted_pos_embed = adapted_pos_embed_fp32.to(
611
+ pos_embed_weight.dtype).to(embeddings.device)
612
+
613
+ # Add adapted position encoding to embeddings
614
+ embeddings = embeddings + adapted_pos_embed
615
+ return embeddings
616
+
617
+
618
+ class Glm4vVisionRotaryEmbedding(nn.Module):
619
+
620
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
621
+ super().__init__()
622
+ self.dim = dim
623
+ self.theta = theta
624
+ inv_freq = 1.0 / (theta
625
+ **(torch.arange(0, dim, 2, dtype=torch.float) / dim))
626
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
627
+ self._seq_len_cached = 0
628
+ self._freqs_cached = None
629
+
630
+ def update_freqs_cache(self, seqlen: int) -> None:
631
+ if seqlen > self._seq_len_cached:
632
+ seqlen *= 2
633
+ self._seq_len_cached = seqlen
634
+ self.inv_freq = 1.0 / (self.theta**(torch.arange(
635
+ 0,
636
+ self.dim,
637
+ 2,
638
+ dtype=torch.float,
639
+ device=self.inv_freq.device,
640
+ ) / self.dim))
641
+ seq = torch.arange(seqlen,
642
+ device=self.inv_freq.device,
643
+ dtype=self.inv_freq.dtype)
644
+ freqs = torch.outer(seq, self.inv_freq)
645
+ self._freqs_cached = freqs
646
+
647
+ def forward(self, seqlen: int) -> torch.Tensor:
648
+ self.update_freqs_cache(seqlen)
649
+ return self._freqs_cached[:seqlen]
650
+
651
+
652
+ class Glm4vVisionTransformer(nn.Module):
653
+
654
+ def __init__(
655
+ self,
656
+ vision_config: Glm4vVisionConfig,
657
+ norm_eps: float = 1e-6,
658
+ quant_config: Optional[QuantizationConfig] = None,
659
+ prefix: str = "",
660
+ use_data_parallel: bool = False,
661
+ ) -> None:
662
+ super().__init__()
663
+
664
+ patch_size = vision_config.patch_size
665
+ temporal_patch_size = vision_config.temporal_patch_size
666
+ in_channels = vision_config.in_channels
667
+ depth = vision_config.depth
668
+ self.hidden_size = vision_config.hidden_size
669
+ self.num_heads = vision_config.num_heads
670
+ self.use_data_parallel = use_data_parallel
671
+
672
+ self.patch_size = vision_config.patch_size
673
+ self.spatial_merge_size = vision_config.spatial_merge_size
674
+ self.out_hidden_size = vision_config.out_hidden_size
675
+
676
+ self.patch_embed = Glm4vVisionPatchEmbed(
677
+ patch_size=patch_size,
678
+ temporal_patch_size=temporal_patch_size,
679
+ in_channels=in_channels,
680
+ hidden_size=self.hidden_size,
681
+ )
682
+
683
+ norm_layer = partial(RMSNorm, eps=norm_eps)
684
+ head_dim = self.hidden_size // self.num_heads
685
+ self.rotary_pos_emb = Glm4vVisionRotaryEmbedding(head_dim // 2)
686
+ self.blocks = nn.ModuleList([
687
+ Glm4vVisionBlock(
688
+ dim=self.hidden_size,
689
+ num_heads=self.num_heads,
690
+ mlp_hidden_dim=vision_config.out_hidden_size,
691
+ norm_layer=norm_layer,
692
+ quant_config=quant_config,
693
+ prefix=f"{prefix}.blocks.{layer_idx}",
694
+ use_data_parallel=self.use_data_parallel,
695
+ ) for layer_idx in range(depth)
696
+ ])
697
+ self.merger = Glm4vPatchMerger(
698
+ d_model=vision_config.out_hidden_size,
699
+ context_dim=vision_config.intermediate_size,
700
+ quant_config=quant_config,
701
+ bias=False,
702
+ prefix=f"{prefix}.merger",
703
+ use_data_parallel=self.use_data_parallel,
704
+ )
705
+ self.embeddings = Glm4vVisionEmbeddings(vision_config)
706
+
707
+ self.post_conv_layernorm = RMSNorm(vision_config.hidden_size,
708
+ eps=vision_config.rms_norm_eps)
709
+ self.downsample = nn.Conv2d(
710
+ in_channels=vision_config.hidden_size,
711
+ out_channels=vision_config.out_hidden_size,
712
+ kernel_size=vision_config.spatial_merge_size,
713
+ stride=vision_config.spatial_merge_size,
714
+ )
715
+ self.post_layernorm = RMSNorm(vision_config.hidden_size,
716
+ eps=vision_config.rms_norm_eps)
717
+
718
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
719
+
720
+ @property
721
+ def dtype(self) -> torch.dtype:
722
+ return self.patch_embed.proj.weight.dtype
723
+
724
+ @property
725
+ def device(self) -> torch.device:
726
+ return self.patch_embed.proj.weight.device
727
+
728
+ def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
729
+ pos_ids = []
730
+ for t, h, w in grid_thw:
731
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
732
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
733
+ hpos_ids = (hpos_ids.reshape(
734
+ h // self.spatial_merge_size,
735
+ self.spatial_merge_size,
736
+ w // self.spatial_merge_size,
737
+ self.spatial_merge_size,
738
+ ).permute(0, 2, 1, 3).flatten())
739
+ wpos_ids = (wpos_ids.reshape(
740
+ h // self.spatial_merge_size,
741
+ self.spatial_merge_size,
742
+ w // self.spatial_merge_size,
743
+ self.spatial_merge_size,
744
+ ).permute(0, 2, 1, 3).flatten())
745
+ pos_ids.append(
746
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
747
+ pos_ids = torch.cat(pos_ids, dim=0)
748
+ max_grid_size = grid_thw[:, 1:].max()
749
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
750
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
751
+ return rotary_pos_emb, pos_ids
752
+
753
+ def compute_attn_mask_seqlen(
754
+ self,
755
+ cu_seqlens: torch.Tensor,
756
+ ) -> tuple[Optional[int], Optional[list[int]]]:
757
+ max_seqlen, seqlens = None, None
758
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
759
+ if self.attn_backend == _Backend.FLASH_ATTN:
760
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
761
+ return max_seqlen, seqlens
762
+
763
+ def forward(
764
+ self,
765
+ x: torch.Tensor,
766
+ grid_thw: list[list[int]],
767
+ ) -> torch.Tensor:
768
+ # Convert grid_thw to tensor (always expecting list format now)
769
+ grid_thw = torch.tensor(grid_thw, device=x.device, dtype=torch.long)
770
+
771
+ # patchify
772
+ x = x.to(device=self.device, dtype=self.dtype)
773
+ x = self.patch_embed(x)
774
+ x = self.post_conv_layernorm(x)
775
+
776
+ # compute position embedding
777
+ rotary_pos_emb, image_type_ids = self.rot_pos_emb(grid_thw)
778
+ # compute cu_seqlens
779
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
780
+ grid_thw[:, 0]).cumsum(
781
+ dim=0, dtype=torch.int32)
782
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
783
+
784
+ # pre-compute seqlens for attn mask to reduce cuMemcpy operations
785
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
786
+ x = self.embeddings(x, seqlens, grid_thw, image_type_ids[:, 0],
787
+ image_type_ids[:, 1])
788
+
789
+ # transformers
790
+ x = x.unsqueeze(1)
791
+ for blk in self.blocks:
792
+ x = blk(
793
+ x,
794
+ cu_seqlens=cu_seqlens,
795
+ rotary_pos_emb=rotary_pos_emb,
796
+ max_seqlen=max_seqlen,
797
+ seqlens=seqlens,
798
+ )
799
+
800
+ # adapter
801
+ x = self.post_layernorm(x)
802
+
803
+ x = x.view(-1, self.spatial_merge_size, self.spatial_merge_size,
804
+ x.shape[-1])
805
+ x = x.permute(0, 3, 1, 2)
806
+ x = self.downsample(x).view(-1, self.out_hidden_size)
807
+ x = self.merger(x)
808
+
809
+ return x
810
+
811
+ def load_weights(self, weights: Iterable[tuple[str,
812
+ torch.Tensor]]) -> set[str]:
813
+ stacked_params_mapping = [
814
+ # (param_name, shard_name, shard_id)
815
+ ("attn.qkv.", "attn.q.", "q"),
816
+ ("attn.qkv.", "attn.k.", "k"),
817
+ ("attn.qkv.", "attn.v.", "v"),
818
+ ("gate_up_proj", "gate_proj", 0),
819
+ ("gate_up_proj", "up_proj", 1),
820
+ ]
821
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
822
+ loaded_params: set[str] = set()
823
+
824
+ for name, loaded_weight in weights:
825
+ for param_name, weight_name, shard_id in stacked_params_mapping:
826
+ if weight_name not in name:
827
+ continue
828
+ name = name.replace(weight_name, param_name)
829
+
830
+ param = params_dict[name]
831
+ weight_loader = param.weight_loader
832
+ weight_loader(param, loaded_weight, shard_id)
833
+ break
834
+ else:
835
+ param = params_dict[name]
836
+ weight_loader = getattr(param, "weight_loader",
837
+ default_weight_loader)
838
+ weight_loader(param, loaded_weight)
839
+ loaded_params.add(name)
840
+ return loaded_params
841
+
842
+
843
+ class Glm4vProcessingInfo(BaseProcessingInfo):
844
+
845
+ def get_hf_config(self):
846
+ return self.ctx.get_hf_config()
847
+
848
+ def get_tokenizer(self):
849
+ return self.ctx.tokenizer
850
+
851
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
852
+ return {"image": None, "video": 1}
853
+
854
+ def get_image_processor(self, **kwargs: object) -> Glm4vImageProcessor:
855
+ return self.get_hf_processor(**kwargs).image_processor
856
+
857
+ def get_video_processor(self, **kwargs: object) -> Glm4vVideoProcessor:
858
+ return self.get_hf_processor(**kwargs).video_processor
859
+
860
+ def _get_vision_info(
861
+ self,
862
+ *,
863
+ image_width: int,
864
+ image_height: int,
865
+ num_frames: int = 16,
866
+ do_resize: bool = True,
867
+ max_image_pixels: int = 28 * 28 * 2 * 30000,
868
+ ) -> tuple[ImageSize, int]:
869
+ hf_config = self.get_hf_config()
870
+ vision_config = hf_config.vision_config
871
+ patch_size = vision_config.patch_size
872
+ merge_size = vision_config.spatial_merge_size
873
+ temporal_patch_size = vision_config.temporal_patch_size
874
+ if do_resize:
875
+ resized_height, resized_width = smart_resize(
876
+ num_frames=num_frames
877
+ if num_frames > temporal_patch_size else temporal_patch_size,
878
+ height=image_height,
879
+ width=image_width,
880
+ factor=patch_size * merge_size,
881
+ max_pixels=max_image_pixels,
882
+ )
883
+ preprocessed_size = ImageSize(width=resized_width,
884
+ height=resized_height)
885
+ else:
886
+ preprocessed_size = ImageSize(width=image_width,
887
+ height=image_height)
888
+
889
+ # NOTE: Frames are padded to be divisible by `temporal_patch_size`
890
+ # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
891
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
892
+
893
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
894
+ grid_h = preprocessed_size.height // patch_size
895
+ grid_w = preprocessed_size.width // patch_size
896
+
897
+ num_patches = grid_t * grid_h * grid_w
898
+ num_vision_tokens = num_patches // (merge_size**2)
899
+
900
+ return preprocessed_size, num_vision_tokens
901
+
902
+ def get_image_size_with_most_features(self) -> ImageSize:
903
+ max_image_size, _ = self._get_vision_info(image_width=9999999,
904
+ image_height=9999999)
905
+ return max_image_size
906
+
907
+ def get_num_image_tokens(
908
+ self,
909
+ *,
910
+ image_width: int,
911
+ image_height: int,
912
+ ) -> int:
913
+ _, num_image_tokens = self._get_vision_info(
914
+ image_width=image_width,
915
+ image_height=image_height,
916
+ max_image_pixels=28 * 28 * 2 * 6144,
917
+ )
918
+ return num_image_tokens
919
+
920
+ def get_max_image_tokens(self) -> int:
921
+ target_width, target_height = self.get_image_size_with_most_features()
922
+
923
+ return self.get_num_image_tokens(
924
+ image_width=target_width,
925
+ image_height=target_height,
926
+ )
927
+
928
+ def get_num_video_tokens(
929
+ self,
930
+ *,
931
+ image_width: int,
932
+ image_height: int,
933
+ num_frames: int,
934
+ ) -> int:
935
+ _, num_video_tokens = self._get_vision_info(
936
+ image_width=image_width,
937
+ image_height=image_height,
938
+ num_frames=num_frames,
939
+ max_image_pixels=28 * 28 * 2 * 30000,
940
+ )
941
+ return num_video_tokens
942
+
943
+ def _get_max_video_frames(self, max_tokens: int) -> int:
944
+ target_width, target_height = self.get_image_size_with_most_features()
945
+
946
+ num_frames = 0
947
+
948
+ while True:
949
+ next_num_frames = num_frames + 1
950
+ next_max_tokens = self.get_num_video_tokens(
951
+ image_width=target_width,
952
+ image_height=target_height,
953
+ num_frames=next_num_frames,
954
+ )
955
+ if next_max_tokens > max_tokens or next_max_tokens == 0:
956
+ break
957
+
958
+ num_frames = next_num_frames
959
+
960
+ return num_frames
961
+
962
+ def get_num_frames_with_most_features(
963
+ self,
964
+ seq_len: int,
965
+ mm_counts: Mapping[str, int],
966
+ ) -> int:
967
+ max_images = mm_counts.get("image", 0)
968
+ max_videos = mm_counts.get("video", 0)
969
+
970
+ max_image_tokens = self.get_max_image_tokens() * max_images
971
+ max_total_frames = self._get_max_video_frames(seq_len -
972
+ max_image_tokens)
973
+ max_frames_per_video = min(max_total_frames // max(max_videos, 1),
974
+ _MAX_FRAMES_PER_VIDEO)
975
+
976
+ return max(max_frames_per_video, 1)
977
+
978
+ def _get_video_second_idx(self, metadata: dict[str, Any],
979
+ total_frames: int) -> list[int]:
980
+ video_processor = self.get_video_processor()
981
+
982
+ video_fps = metadata.get("fps", video_processor.fps)
983
+ meta_frames = metadata.get("total_num_frames", total_frames)
984
+ max_frame_idx = meta_frames - 1
985
+ duration = metadata.get("duration",
986
+ round(max_frame_idx / video_fps) + 1)
987
+ if duration <= video_processor.max_duration:
988
+ n = int(math.floor(duration * video_processor.fps))
989
+ frame_indices = [
990
+ min(
991
+ max_frame_idx,
992
+ int(math.ceil(i * video_fps / video_processor.fps)),
993
+ ) for i in range(n)
994
+ ]
995
+ else:
996
+ num_samples = int(video_processor.max_duration *
997
+ video_processor.fps)
998
+ if num_samples >= meta_frames:
999
+ frame_indices = list(range(meta_frames))
1000
+ else:
1001
+ target_seconds = np.linspace(0,
1002
+ duration,
1003
+ num_samples,
1004
+ endpoint=True)
1005
+ frame_indices = [
1006
+ min(max_frame_idx, int(math.ceil(t * video_fps)))
1007
+ for t in target_seconds
1008
+ ]
1009
+
1010
+ seen, uniq = set(), []
1011
+ for idx in frame_indices:
1012
+ if idx not in seen:
1013
+ seen.add(idx)
1014
+ uniq.append(idx)
1015
+ if len(uniq) & 1:
1016
+ uniq.append(uniq[-1])
1017
+ frame_indices = uniq
1018
+
1019
+ full_second_idxs = [int(idx / video_fps) for idx in frame_indices]
1020
+ timestamps_list = full_second_idxs[::2]
1021
+ selected_timestamps = []
1022
+ for idx in range(0, len(timestamps_list)):
1023
+ selected_timestamps.append(timestamps_list[idx])
1024
+ return selected_timestamps
1025
+
1026
+ def _construct_video_placeholder(
1027
+ self,
1028
+ video_array: np.ndarray,
1029
+ metadata: dict[str, Any],
1030
+ grid_thw: torch.Tensor,
1031
+ ) -> str:
1032
+ hf_processor = self.get_hf_processor()
1033
+ tokenizer = self.get_tokenizer()
1034
+ image_processor = hf_processor.image_processor
1035
+
1036
+ hf_config = self.get_hf_config()
1037
+ boi_token_id = hf_config.image_start_token_id
1038
+ eoi_token_id = hf_config.image_end_token_id
1039
+ bov_token_id = hf_config.video_start_token_id
1040
+ eov_token_id = hf_config.video_end_token_id
1041
+ merge_length = image_processor.merge_size**2
1042
+
1043
+ assert isinstance(grid_thw, torch.Tensor)
1044
+ timestamps = self._get_video_second_idx(metadata, len(video_array))
1045
+ frames_idx_token = [
1046
+ tokenizer.encode(str(i), add_special_tokens=False)
1047
+ for i in timestamps
1048
+ ]
1049
+ T, H, W = grid_thw
1050
+ num_tokens_per_frame = int(H * W) // merge_length
1051
+ placeholder = []
1052
+ placeholder.append(bov_token_id)
1053
+ for frame_idx in frames_idx_token:
1054
+ placeholder.append(boi_token_id)
1055
+ placeholder.extend([hf_processor.video_token_id] *
1056
+ num_tokens_per_frame)
1057
+ placeholder.append(eoi_token_id)
1058
+ placeholder.extend(frame_idx)
1059
+ placeholder.append(eov_token_id)
1060
+
1061
+ return placeholder
1062
+
1063
+
1064
+ class Glm4vDummyInputsBuilder(BaseDummyInputsBuilder[Glm4vProcessingInfo]):
1065
+
1066
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1067
+ num_images = mm_counts.get("image", 0)
1068
+ num_videos = mm_counts.get("video", 0)
1069
+
1070
+ hf_config = self.info.get_hf_config()
1071
+ hf_processor = self.info.get_hf_processor()
1072
+ tokenizer = self.info.get_tokenizer()
1073
+
1074
+ image_token: str = hf_processor.image_token
1075
+ video_token_ids = [
1076
+ hf_config.video_start_token_id,
1077
+ hf_processor.video_token_id,
1078
+ hf_config.video_end_token_id,
1079
+ ]
1080
+ video_token = tokenizer.decode(video_token_ids)
1081
+
1082
+ return image_token * num_images + video_token * num_videos
1083
+
1084
+ def get_dummy_mm_data(
1085
+ self,
1086
+ seq_len: int,
1087
+ mm_counts: Mapping[str, int],
1088
+ ) -> MultiModalDataDict:
1089
+ num_images = mm_counts.get("image", 0)
1090
+ num_videos = mm_counts.get("video", 0)
1091
+
1092
+ target_width, target_height = (
1093
+ self.info.get_image_size_with_most_features())
1094
+ target_num_frames = self.info.get_num_frames_with_most_features(
1095
+ seq_len, mm_counts)
1096
+ return {
1097
+ "image":
1098
+ self._get_dummy_images(width=target_width,
1099
+ height=target_height,
1100
+ num_images=num_images),
1101
+ "video":
1102
+ self._get_dummy_videos(
1103
+ width=target_width,
1104
+ height=target_height,
1105
+ num_frames=target_num_frames,
1106
+ num_videos=num_videos,
1107
+ ),
1108
+ }
1109
+
1110
+ def _get_dummy_videos(
1111
+ self,
1112
+ *,
1113
+ width: int,
1114
+ height: int,
1115
+ num_frames: int,
1116
+ num_videos: int,
1117
+ ) -> list[VideoItem]:
1118
+ video = np.full((num_frames, width, height, 3), 255, dtype=np.uint8)
1119
+ video_items = []
1120
+ for i in range(num_videos):
1121
+ video_metadata = {
1122
+ "fps": 2.0,
1123
+ "duration": num_frames / 2.0,
1124
+ "total_num_frames": num_frames,
1125
+ "video_backend": "opencv",
1126
+ }
1127
+ video_item = (video.copy(), video_metadata)
1128
+ video_items.append(video_item)
1129
+
1130
+ return video_items
1131
+
1132
+
1133
+ class Glm4vMultiModalProcessor(BaseMultiModalProcessor[Glm4vProcessingInfo]):
1134
+
1135
+ def _get_data_parser(self) -> MultiModalDataParser:
1136
+ return MultiModalDataParser(video_needs_metadata=True)
1137
+
1138
+ def _call_hf_processor(
1139
+ self,
1140
+ prompt: str,
1141
+ mm_data: Mapping[str, object],
1142
+ mm_kwargs: Mapping[str, object],
1143
+ tok_kwargs: Mapping[str, object],
1144
+ ) -> BatchFeature:
1145
+ mm_data = dict(mm_data)
1146
+ processor = self.info.get_hf_processor(**mm_kwargs)
1147
+
1148
+ # GLM-4.1V use `image_token_id` as video placeholder, we need to
1149
+ # replace it with `video_token_id` for video processing. So we
1150
+ # separate video processing from image processing.
1151
+ if ("videos" in mm_data and isinstance(mm_data["videos"], list)
1152
+ and len(mm_data["videos"]) > 0):
1153
+ video_grid_thw_lst = []
1154
+ pixel_values_videos_lst = []
1155
+ for item in mm_data.pop("videos", []):
1156
+ video_array, metadata = item
1157
+
1158
+ if metadata["video_backend"] == "opencv_dynamic":
1159
+ mm_kwargs["do_sample_frames"] = False
1160
+
1161
+ elif metadata["total_num_frames"] != len(video_array):
1162
+ logger.warning(
1163
+ "Total frames in metadata "
1164
+ "(%s) does not match the length of "
1165
+ "video array %s. This can "
1166
+ "be because the video is resampled "
1167
+ "in advance. This may cause "
1168
+ "a divergence with HF implementation.",
1169
+ metadata["total_num_frames"],
1170
+ len(video_array),
1171
+ )
1172
+ metadata["total_num_frames"] = len(video_array)
1173
+
1174
+ video_mm_data = dict()
1175
+ video_mm_data["videos"] = [[video_array]]
1176
+ video_mm_data["video_metadata"] = [[VideoMetadata(**metadata)]]
1177
+
1178
+ video_outputs = super()._call_hf_processor(
1179
+ prompt="<|begin_of_video|><|video|><|end_of_video|>",
1180
+ mm_data=video_mm_data,
1181
+ mm_kwargs=mm_kwargs,
1182
+ tok_kwargs=tok_kwargs,
1183
+ )
1184
+ if "do_sample_frames" in mm_kwargs and not mm_kwargs[
1185
+ "do_sample_frames"]:
1186
+ # Transformers v4.55 has incorrect timestamps issue for
1187
+ # skip sampling. We construct the placeholder manually to
1188
+ # get placeholders with correct timestamps.
1189
+ placeholder = self.info._construct_video_placeholder(
1190
+ video_array,
1191
+ metadata,
1192
+ video_outputs["video_grid_thw"].squeeze(0),
1193
+ )
1194
+ video_placeholder = processor.tokenizer.decode(placeholder)
1195
+ else:
1196
+ input_ids = video_outputs.pop("input_ids")
1197
+ input_ids[input_ids == processor.image_token_id] = (
1198
+ processor.video_token_id)
1199
+ video_placeholder = processor.tokenizer.batch_decode(
1200
+ input_ids)[0]
1201
+ prompt = prompt.replace(
1202
+ "<|begin_of_video|><|video|><|end_of_video|>",
1203
+ video_placeholder,
1204
+ )
1205
+
1206
+ video_grid_thw_lst.append(video_outputs["video_grid_thw"])
1207
+ pixel_values_videos_lst.append(
1208
+ video_outputs["pixel_values_videos"])
1209
+ video_outputs = dict(
1210
+ pixel_values_videos=torch.cat(pixel_values_videos_lst),
1211
+ video_grid_thw=torch.cat(video_grid_thw_lst),
1212
+ )
1213
+ else:
1214
+ video_outputs = dict()
1215
+
1216
+ processed_outputs = super()._call_hf_processor(
1217
+ prompt=prompt,
1218
+ mm_data=mm_data,
1219
+ mm_kwargs=mm_kwargs,
1220
+ tok_kwargs=tok_kwargs,
1221
+ )
1222
+ combined_outputs = dict(
1223
+ processed_outputs,
1224
+ **video_outputs,
1225
+ )
1226
+ return BatchFeature(combined_outputs)
1227
+
1228
+ def _get_mm_fields_config(
1229
+ self,
1230
+ hf_inputs: BatchFeature,
1231
+ hf_processor_mm_kwargs: Mapping[str, object],
1232
+ ) -> Mapping[str, MultiModalFieldConfig]:
1233
+ return _create_qwen2vl_field_factory(
1234
+ self.info.get_hf_config().vision_config.spatial_merge_size)(
1235
+ hf_inputs)
1236
+
1237
+ def _get_prompt_updates(
1238
+ self,
1239
+ mm_items: MultiModalDataItems,
1240
+ hf_processor_mm_kwargs: Mapping[str, Any],
1241
+ out_mm_kwargs: MultiModalKwargsItems,
1242
+ ) -> Sequence[PromptUpdate]:
1243
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1244
+ image_processor = self.info.get_image_processor(
1245
+ **hf_processor_mm_kwargs)
1246
+
1247
+ merge_length = image_processor.merge_size**2
1248
+
1249
+ def get_image_replacement_glm4v(item_idx: int):
1250
+ out_item = out_mm_kwargs["image"][item_idx]
1251
+ grid_thw = out_item["image_grid_thw"].data
1252
+ assert isinstance(grid_thw, torch.Tensor)
1253
+
1254
+ num_tokens = int(grid_thw.prod()) // merge_length
1255
+ return [hf_processor.image_token_id] * num_tokens
1256
+
1257
+ def get_video_replacement_glm4v(item_idx: int):
1258
+ out_item = out_mm_kwargs["video"][item_idx]
1259
+ grid_thw = out_item["video_grid_thw"].data
1260
+ assert isinstance(grid_thw, torch.Tensor)
1261
+
1262
+ video, metadata = mm_items["video"][item_idx]
1263
+ placeholder = self.info._construct_video_placeholder(
1264
+ video, metadata, grid_thw)
1265
+ return PromptUpdateDetails.select_token_id(
1266
+ placeholder,
1267
+ embed_token_id=hf_processor.video_token_id,
1268
+ )
1269
+
1270
+ return [
1271
+ PromptReplacement(
1272
+ modality="image",
1273
+ target=hf_processor.image_token,
1274
+ replacement=get_image_replacement_glm4v,
1275
+ ),
1276
+ PromptReplacement(
1277
+ modality="video",
1278
+ target="<|begin_of_video|><|video|><|end_of_video|>",
1279
+ replacement=get_video_replacement_glm4v,
1280
+ ),
1281
+ ]
1282
+
1283
+
1284
+ @MULTIMODAL_REGISTRY.register_processor(
1285
+ Glm4vMultiModalProcessor,
1286
+ info=Glm4vProcessingInfo,
1287
+ dummy_inputs=Glm4vDummyInputsBuilder,
1288
+ )
1289
+ class Glm4vForConditionalGeneration(nn.Module, SupportsMultiModal,
1290
+ SupportsLoRA, SupportsPP):
1291
+ packed_modules_mapping = {
1292
+ "qkv_proj": [
1293
+ "q_proj",
1294
+ "k_proj",
1295
+ "v_proj",
1296
+ ],
1297
+ "gate_up_proj": ["gate_up_proj"]
1298
+ }
1299
+
1300
+ # To ensure correct weight loading and mapping.
1301
+ hf_to_vllm_mapper = WeightsMapper(
1302
+ orig_to_new_prefix={
1303
+ "lm_head.": "language_model.lm_head.",
1304
+ "model.language_model.": "language_model.model.",
1305
+ "model.visual.": "visual.",
1306
+ })
1307
+
1308
+ supports_encoder_tp_data = True
1309
+
1310
+ @classmethod
1311
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
1312
+ if modality.startswith("image"):
1313
+ return "<|begin_of_image|><|image|><|end_of_image|>"
1314
+ if modality.startswith("video"):
1315
+ return "<|begin_of_video|><|video|><|end_of_video|>"
1316
+
1317
+ raise ValueError("Only image or video modality is supported")
1318
+
1319
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1320
+ super().__init__()
1321
+ config = vllm_config.model_config.hf_config
1322
+ quant_config = vllm_config.quant_config
1323
+ multimodal_config = vllm_config.model_config.multimodal_config
1324
+
1325
+ self.config = config
1326
+ self.multimodal_config = multimodal_config
1327
+ self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
1328
+
1329
+ self.visual = Glm4vVisionTransformer(
1330
+ config.vision_config,
1331
+ norm_eps=getattr(config, "rms_norm_eps", 1e-5),
1332
+ quant_config=quant_config,
1333
+ prefix=maybe_prefix(prefix, "visual"),
1334
+ use_data_parallel=self.use_data_parallel,
1335
+ )
1336
+
1337
+ if config.model_type == "glm4v":
1338
+ architectures = ["Glm4ForCausalLM"]
1339
+ elif config.model_type == "glm4v_moe":
1340
+ architectures = ["Glm4MoeForCausalLM"]
1341
+ else:
1342
+ architectures = None
1343
+
1344
+ self.language_model = init_vllm_registered_model(
1345
+ vllm_config=vllm_config,
1346
+ hf_config=config.text_config,
1347
+ prefix=maybe_prefix(prefix, "language_model"),
1348
+ architectures=architectures)
1349
+
1350
+ self.make_empty_intermediate_tensors = (
1351
+ self.language_model.make_empty_intermediate_tensors)
1352
+
1353
+ def _validate_and_reshape_mm_tensor(self, mm_input: object,
1354
+ name: str) -> torch.Tensor:
1355
+ if not isinstance(mm_input, (torch.Tensor, list)):
1356
+ raise ValueError(
1357
+ f"Incorrect type of {name}. Got type: {type(mm_input)}")
1358
+ if isinstance(mm_input, torch.Tensor):
1359
+ if mm_input.ndim == 2:
1360
+ return mm_input
1361
+ if mm_input.ndim != 3:
1362
+ raise ValueError(f"{name} should be 2D or batched 3D tensor. "
1363
+ f"Got ndim: {mm_input.ndim} "
1364
+ f"(shape={mm_input.shape})")
1365
+ return torch.concat(list(mm_input))
1366
+ else:
1367
+ return torch.concat(mm_input)
1368
+
1369
+ def _parse_and_validate_image_input(
1370
+ self, **kwargs: object) -> Optional[Glm4vImageInputs]:
1371
+ pixel_values = kwargs.pop("pixel_values", None)
1372
+ image_embeds = kwargs.pop("image_embeds", None)
1373
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1374
+
1375
+ if pixel_values is None and image_embeds is None:
1376
+ return None
1377
+
1378
+ if pixel_values is not None:
1379
+ pixel_values = self._validate_and_reshape_mm_tensor(
1380
+ pixel_values, "image pixel values")
1381
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1382
+ image_grid_thw, "image grid_thw")
1383
+
1384
+ return Glm4vImagePixelInputs(
1385
+ type="pixel_values",
1386
+ pixel_values=pixel_values,
1387
+ image_grid_thw=image_grid_thw,
1388
+ )
1389
+
1390
+ if image_embeds is not None:
1391
+ image_embeds = self._validate_and_reshape_mm_tensor(
1392
+ image_embeds, "image embeds")
1393
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1394
+ image_grid_thw, "image grid_thw")
1395
+
1396
+ return Glm4vImageEmbeddingInputs(
1397
+ type="image_embeds",
1398
+ image_embeds=image_embeds,
1399
+ image_grid_thw=image_grid_thw,
1400
+ )
1401
+
1402
+ def _parse_and_validate_video_input(
1403
+ self, **kwargs: object) -> Optional[Glm4vVideoInputs]:
1404
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1405
+ video_embeds = kwargs.pop("video_embeds", None)
1406
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1407
+
1408
+ if pixel_values_videos is None and video_embeds is None:
1409
+ return None
1410
+
1411
+ if pixel_values_videos is not None:
1412
+ pixel_values_videos = self._validate_and_reshape_mm_tensor(
1413
+ pixel_values_videos, "video pixel values")
1414
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1415
+ video_grid_thw, "video grid_thw")
1416
+
1417
+ return Glm4vVideoPixelInputs(
1418
+ type="pixel_values_videos",
1419
+ pixel_values_videos=pixel_values_videos,
1420
+ video_grid_thw=video_grid_thw,
1421
+ )
1422
+
1423
+ if video_embeds is not None:
1424
+ video_embeds = self._validate_and_reshape_mm_tensor(
1425
+ video_embeds, "video embeds")
1426
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1427
+ video_grid_thw, "video grid_thw")
1428
+
1429
+ return Glm4vVideoEmbeddingInputs(
1430
+ type="video_embeds",
1431
+ video_embeds=video_embeds,
1432
+ video_grid_thw=video_grid_thw,
1433
+ )
1434
+
1435
+ def _process_image_input(
1436
+ self, image_input: Glm4vImageInputs) -> tuple[torch.Tensor, ...]:
1437
+ grid_thw = image_input["image_grid_thw"]
1438
+ assert grid_thw.ndim == 2
1439
+ grid_thw_list = grid_thw.tolist()
1440
+
1441
+ if image_input["type"] == "image_embeds":
1442
+ image_embeds = image_input["image_embeds"].type(self.visual.dtype)
1443
+ else:
1444
+ pixel_values = image_input["pixel_values"].type(self.visual.dtype)
1445
+ if self.use_data_parallel:
1446
+ return run_dp_sharded_mrope_vision_model(self.visual,
1447
+ pixel_values,
1448
+ grid_thw.tolist(),
1449
+ rope_type="rope_3d")
1450
+ else:
1451
+ image_embeds = self.visual(pixel_values,
1452
+ grid_thw=grid_thw.tolist())
1453
+ merge_size = self.visual.spatial_merge_size
1454
+ sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
1455
+ (merge_size * merge_size)).tolist()
1456
+ return image_embeds.split(sizes)
1457
+
1458
+ def _process_video_input(
1459
+ self, video_input: Glm4vVideoInputs) -> tuple[torch.Tensor, ...]:
1460
+ grid_thw = video_input["video_grid_thw"]
1461
+ assert grid_thw.ndim == 2
1462
+ grid_thw_list = grid_thw.tolist()
1463
+
1464
+ if video_input["type"] == "video_embeds":
1465
+ video_embeds = video_input["video_embeds"].type(self.visual.dtype)
1466
+ else:
1467
+ pixel_values_videos = video_input["pixel_values_videos"].type(
1468
+ self.visual.dtype)
1469
+ if self.use_data_parallel:
1470
+ return run_dp_sharded_mrope_vision_model(self.visual,
1471
+ pixel_values_videos,
1472
+ grid_thw.tolist(),
1473
+ rope_type="rope_3d")
1474
+ else:
1475
+ video_embeds = self.visual(pixel_values_videos,
1476
+ grid_thw=grid_thw.tolist())
1477
+ # Split concatenated embeddings for each video item.
1478
+ merge_size = self.visual.spatial_merge_size
1479
+ sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
1480
+ (merge_size * merge_size)).tolist()
1481
+ return video_embeds.split(sizes)
1482
+
1483
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1484
+ mm_input_by_modality = {}
1485
+
1486
+ # Preserve the order of modalities if there are multiple of them
1487
+ # from the order of kwargs.
1488
+ for input_key in kwargs:
1489
+ if (input_key in ("pixel_values", "image_embeds")
1490
+ and "image" not in mm_input_by_modality):
1491
+ mm_input_by_modality["image"] = (
1492
+ self._parse_and_validate_image_input(**kwargs))
1493
+ if (input_key in ("pixel_values_videos", "video_embeds")
1494
+ and "video" not in mm_input_by_modality):
1495
+ mm_input_by_modality["video"] = (
1496
+ self._parse_and_validate_video_input(**kwargs))
1497
+ return mm_input_by_modality
1498
+
1499
+ def get_language_model(self) -> torch.nn.Module:
1500
+ return self.language_model
1501
+
1502
+ def get_multimodal_embeddings(
1503
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1504
+ mm_input_by_modality = self._parse_and_validate_multimodal_inputs(
1505
+ **kwargs)
1506
+ if not mm_input_by_modality:
1507
+ return None
1508
+
1509
+ # The result multimodal_embeddings is tuple of tensors, with each
1510
+ # tensor correspoending to a multimodal data item (image or video).
1511
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1512
+
1513
+ # NOTE: It is important to iterate over the keys in this dictionary
1514
+ # to preserve the order of the modalities.
1515
+ for modality in mm_input_by_modality:
1516
+ multimodal_input = mm_input_by_modality[modality]
1517
+ if modality == "image":
1518
+ vision_embeddings = self._process_image_input(multimodal_input)
1519
+ multimodal_embeddings += vision_embeddings
1520
+ if modality == "video":
1521
+ video_embeddings = self._process_video_input(multimodal_input)
1522
+ multimodal_embeddings += video_embeddings
1523
+ return multimodal_embeddings
1524
+
1525
+ def get_input_embeddings(
1526
+ self,
1527
+ input_ids: torch.Tensor,
1528
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1529
+ ) -> torch.Tensor:
1530
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
1531
+ if (multimodal_embeddings is not None
1532
+ and len(multimodal_embeddings) != 0
1533
+ and all(embed.numel() > 0 for embed in multimodal_embeddings)):
1534
+ inputs_embeds = merge_multimodal_embeddings(
1535
+ input_ids,
1536
+ inputs_embeds,
1537
+ multimodal_embeddings,
1538
+ [self.config.image_token_id, self.config.video_token_id],
1539
+ )
1540
+ return inputs_embeds
1541
+
1542
+ def get_input_embeddings_v0(
1543
+ self,
1544
+ input_ids: torch.Tensor,
1545
+ image_input: Optional[Glm4vImageInputs] = None,
1546
+ video_input: Optional[Glm4vVideoInputs] = None,
1547
+ ) -> torch.Tensor:
1548
+ inputs_embeds = self.get_input_embeddings(input_ids)
1549
+ if image_input is not None:
1550
+ image_embeds = self._process_image_input(image_input)
1551
+ inputs_embeds = merge_multimodal_embeddings(
1552
+ input_ids,
1553
+ inputs_embeds,
1554
+ image_embeds,
1555
+ placeholder_token_id=self.config.image_token_id,
1556
+ )
1557
+
1558
+ if video_input is not None:
1559
+ video_embeds = self._process_video_input(video_input)
1560
+ inputs_embeds = merge_multimodal_embeddings(
1561
+ input_ids,
1562
+ inputs_embeds,
1563
+ video_embeds,
1564
+ placeholder_token_id=self.config.video_token_id,
1565
+ )
1566
+ return inputs_embeds
1567
+
1568
+ def forward(
1569
+ self,
1570
+ input_ids: torch.Tensor,
1571
+ positions: torch.Tensor,
1572
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1573
+ inputs_embeds: Optional[torch.Tensor] = None,
1574
+ **kwargs: object,
1575
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1576
+ """Run forward pass for GLM-4V.
1577
+
1578
+ Args:
1579
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1580
+ batch.
1581
+ positions: Flattened (concatenated) position ids corresponding to a
1582
+ batch.
1583
+ **NOTE**: If mrope is enabled (default setting for GLM-4V
1584
+ opensource models), the shape will be `(3, seq_len)`,
1585
+ otherwise it will be `(seq_len,).
1586
+ pixel_values: Pixel values to be fed to a model.
1587
+ `None` if no images are passed.
1588
+ image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
1589
+ `None` if no images are passed.
1590
+ pixel_values_videos: Pixel values of videos to be fed to a model.
1591
+ `None` if no videos are passed.
1592
+ video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
1593
+ `None` if no videos are passed.
1594
+ second_per_grid_ts: Tensor `(num_videos)` of video time interval (
1595
+ in seconds) for each grid along the temporal dimension in the
1596
+ 3D position IDs. `None` if no videos are passed.
1597
+ """
1598
+ if intermediate_tensors is not None:
1599
+ inputs_embeds = None
1600
+
1601
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1602
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1603
+ # condition is only for v0 compatibility.
1604
+ elif inputs_embeds is None:
1605
+ image_input = self._parse_and_validate_image_input(**kwargs)
1606
+ video_input = self._parse_and_validate_video_input(**kwargs)
1607
+
1608
+ if image_input is None and video_input is None:
1609
+ inputs_embeds = None
1610
+ else:
1611
+ if uses_mrope(self.config):
1612
+ assert positions.ndim == 2 and positions.size(0) == 3, (
1613
+ "multimodal section rotary embedding requires "
1614
+ f"(3, seq_len) positions, but got {positions.size()}")
1615
+ inputs_embeds = self.get_input_embeddings_v0(
1616
+ input_ids,
1617
+ image_input=image_input,
1618
+ video_input=video_input)
1619
+ input_ids = None
1620
+
1621
+ hidden_states = self.language_model.model(
1622
+ input_ids=input_ids,
1623
+ positions=positions,
1624
+ intermediate_tensors=intermediate_tensors,
1625
+ inputs_embeds=inputs_embeds,
1626
+ )
1627
+ return hidden_states
1628
+
1629
+ def compute_logits(
1630
+ self,
1631
+ hidden_states: torch.Tensor,
1632
+ sampling_metadata: SamplingMetadata,
1633
+ ) -> Optional[torch.Tensor]:
1634
+ return self.language_model.compute_logits(hidden_states,
1635
+ sampling_metadata)
1636
+
1637
+ def load_weights(self, weights: Iterable[tuple[str,
1638
+ torch.Tensor]]) -> set[str]:
1639
+ loader = AutoWeightsLoader(self)
1640
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1641
+
1642
+ def get_mm_mapping(self) -> MultiModelKeys:
1643
+ """
1644
+ Get the module prefix in multimodal models
1645
+ """
1646
+ return MultiModelKeys.from_string_field(
1647
+ language_model="language_model.model",
1648
+ connector="visual.merger.",
1649
+ tower_model="visual.",
1650
+ )
1651
+
1652
+
1653
+ @MULTIMODAL_REGISTRY.register_processor(
1654
+ Glm4vMultiModalProcessor,
1655
+ info=Glm4vProcessingInfo,
1656
+ dummy_inputs=Glm4vDummyInputsBuilder,
1657
+ )
1658
+ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration):
1659
+ packed_modules_mapping = {
1660
+ "qkv_proj": [
1661
+ "q_proj",
1662
+ "k_proj",
1663
+ "v_proj",
1664
+ ],
1665
+ "gate_up_proj": [
1666
+ "gate_proj",
1667
+ "up_proj",
1668
+ ],
1669
+ }