vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1742 -0
- vllm/_ipex_ops.py +243 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +15 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +44 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +33 -0
- vllm/assets/video.py +114 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +305 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1100 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +309 -0
- vllm/attention/backends/ipex_attn.py +394 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1381 -0
- vllm/attention/backends/pallas.py +347 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +970 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +452 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +245 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +87 -0
- vllm/attention/ops/ipex_attn.py +194 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +901 -0
- vllm/attention/ops/rocm_aiter_mla.py +99 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +673 -0
- vllm/attention/ops/triton_flash_attention.py +1374 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/ops/triton_unified_attention.py +337 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +921 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +184 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +818 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +88 -0
- vllm/compilation/backends.py +560 -0
- vllm/compilation/base_piecewise_backend.py +71 -0
- vllm/compilation/collective_fusion.py +126 -0
- vllm/compilation/compiler_interface.py +533 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/cuda_piecewise_backend.py +213 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +190 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +61 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +136 -0
- vllm/compilation/pass_manager.py +77 -0
- vllm/compilation/sequence_parallelism.py +267 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +66 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4600 -0
- vllm/connections.py +173 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2092 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +126 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +144 -0
- vllm/distributed/device_communicators/cuda_communicator.py +167 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +541 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_events.py +296 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1294 -0
- vllm/distributed/utils.py +520 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1649 -0
- vllm/engine/async_llm_engine.py +1274 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2153 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +188 -0
- vllm/engine/multiprocessing/client.py +755 -0
- vllm/engine/multiprocessing/engine.py +459 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +215 -0
- vllm/engine/output_processor/single_step.py +144 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +310 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1298 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +34 -0
- vllm/entrypoints/cli/main.py +62 -0
- vllm/entrypoints/cli/openai.py +204 -0
- vllm/entrypoints/cli/serve.py +141 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1503 -0
- vllm/entrypoints/logger.py +49 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1376 -0
- vllm/entrypoints/openai/cli_args.py +306 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1890 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1192 -0
- vllm/entrypoints/openai/serving_classification.py +159 -0
- vllm/entrypoints/openai/serving_completion.py +590 -0
- vllm/entrypoints/openai/serving_embedding.py +200 -0
- vllm/entrypoints/openai/serving_engine.py +985 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +231 -0
- vllm/entrypoints/openai/serving_score.py +432 -0
- vllm/entrypoints/openai/serving_tokenization.py +151 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +219 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +896 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +398 -0
- vllm/executor/uniproc_executor.py +138 -0
- vllm/forward_context.py +147 -0
- vllm/inputs/__init__.py +40 -0
- vllm/inputs/data.py +330 -0
- vllm/inputs/parse.py +150 -0
- vllm/inputs/preprocess.py +908 -0
- vllm/inputs/registry.py +214 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +211 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/dump_input.py +84 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +118 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +354 -0
- vllm/lora/layers.py +1284 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +817 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
- vllm/lora/ops/triton_ops/utils.py +119 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +106 -0
- vllm/lora/ops/xla_ops/pallas.py +133 -0
- vllm/lora/peft_helper.py +135 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +484 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +19 -0
- vllm/lora/punica_wrapper/punica_tpu.py +325 -0
- vllm/lora/punica_wrapper/utils.py +163 -0
- vllm/lora/request.py +98 -0
- vllm/lora/resolver.py +84 -0
- vllm/lora/utils.py +239 -0
- vllm/lora/worker_manager.py +253 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +151 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +53 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
- vllm/model_executor/layers/fused_moe/layer.py +1366 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
- vllm/model_executor/layers/fused_moe/utils.py +97 -0
- vllm/model_executor/layers/layernorm.py +287 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1523 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +343 -0
- vllm/model_executor/layers/quantization/__init__.py +156 -0
- vllm/model_executor/layers/quantization/aqlm.py +375 -0
- vllm/model_executor/layers/quantization/auto_round.py +308 -0
- vllm/model_executor/layers/quantization/awq.py +185 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +150 -0
- vllm/model_executor/layers/quantization/bitblas.py +460 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
- vllm/model_executor/layers/quantization/experts_int8.py +195 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
- vllm/model_executor/layers/quantization/fp8.py +876 -0
- vllm/model_executor/layers/quantization/gguf.py +564 -0
- vllm/model_executor/layers/quantization/gptq.py +277 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +138 -0
- vllm/model_executor/layers/quantization/marlin.py +260 -0
- vllm/model_executor/layers/quantization/modelopt.py +734 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
- vllm/model_executor/layers/quantization/qqq.py +274 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +440 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +104 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +143 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1861 -0
- vllm/model_executor/layers/sampler.py +1203 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
- vllm/model_executor/model_loader/__init__.py +75 -0
- vllm/model_executor/model_loader/base_loader.py +24 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
- vllm/model_executor/model_loader/default_loader.py +295 -0
- vllm/model_executor/model_loader/dummy_loader.py +37 -0
- vllm/model_executor/model_loader/gguf_loader.py +113 -0
- vllm/model_executor/model_loader/neuron.py +475 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
- vllm/model_executor/model_loader/tensorizer.py +632 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
- vllm/model_executor/model_loader/utils.py +301 -0
- vllm/model_executor/model_loader/weight_utils.py +781 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/aimv2.py +199 -0
- vllm/model_executor/models/arctic.py +558 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +473 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +937 -0
- vllm/model_executor/models/bert.py +517 -0
- vllm/model_executor/models/bert_with_rope.py +714 -0
- vllm/model_executor/models/blip.py +338 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +372 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +477 -0
- vllm/model_executor/models/clip.py +411 -0
- vllm/model_executor/models/commandr.py +471 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +471 -0
- vllm/model_executor/models/deepseek.py +485 -0
- vllm/model_executor/models/deepseek_mtp.py +268 -0
- vllm/model_executor/models/deepseek_v2.py +842 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +259 -0
- vllm/model_executor/models/exaone.py +550 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +509 -0
- vllm/model_executor/models/falcon_h1.py +684 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +424 -0
- vllm/model_executor/models/gemma2.py +424 -0
- vllm/model_executor/models/gemma3.py +532 -0
- vllm/model_executor/models/gemma3_mm.py +708 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +304 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +327 -0
- vllm/model_executor/models/gpt_bigcode.py +334 -0
- vllm/model_executor/models/gpt_j.py +338 -0
- vllm/model_executor/models/gpt_neox.py +331 -0
- vllm/model_executor/models/granite.py +492 -0
- vllm/model_executor/models/granite_speech.py +778 -0
- vllm/model_executor/models/granitemoe.py +436 -0
- vllm/model_executor/models/granitemoehybrid.py +585 -0
- vllm/model_executor/models/granitemoeshared.py +340 -0
- vllm/model_executor/models/gritlm.py +223 -0
- vllm/model_executor/models/grok1.py +545 -0
- vllm/model_executor/models/h2ovl.py +545 -0
- vllm/model_executor/models/idefics2_vision_model.py +388 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +571 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +475 -0
- vllm/model_executor/models/internlm2.py +454 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +1405 -0
- vllm/model_executor/models/jais.py +372 -0
- vllm/model_executor/models/jamba.py +591 -0
- vllm/model_executor/models/kimi_vl.py +576 -0
- vllm/model_executor/models/llama.py +643 -0
- vllm/model_executor/models/llama4.py +531 -0
- vllm/model_executor/models/llama_eagle.py +166 -0
- vllm/model_executor/models/llama_eagle3.py +257 -0
- vllm/model_executor/models/llava.py +865 -0
- vllm/model_executor/models/llava_next.py +585 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +955 -0
- vllm/model_executor/models/mamba.py +272 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +75 -0
- vllm/model_executor/models/medusa.py +218 -0
- vllm/model_executor/models/mimo.py +191 -0
- vllm/model_executor/models/mimo_mtp.py +284 -0
- vllm/model_executor/models/minicpm.py +590 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +758 -0
- vllm/model_executor/models/minicpmv.py +1286 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1303 -0
- vllm/model_executor/models/minimax_vl_01.py +363 -0
- vllm/model_executor/models/mistral3.py +603 -0
- vllm/model_executor/models/mixtral.py +487 -0
- vllm/model_executor/models/mixtral_quant.py +452 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +329 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +629 -0
- vllm/model_executor/models/mpt.py +330 -0
- vllm/model_executor/models/nemotron.py +507 -0
- vllm/model_executor/models/nemotron_nas.py +483 -0
- vllm/model_executor/models/nvlm_d.py +215 -0
- vllm/model_executor/models/olmo.py +388 -0
- vllm/model_executor/models/olmo2.py +413 -0
- vllm/model_executor/models/olmoe.py +446 -0
- vllm/model_executor/models/opt.py +411 -0
- vllm/model_executor/models/orion.py +348 -0
- vllm/model_executor/models/ovis.py +554 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +343 -0
- vllm/model_executor/models/phi.py +355 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +464 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1245 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +664 -0
- vllm/model_executor/models/pixtral.py +1315 -0
- vllm/model_executor/models/plamo2.py +737 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +361 -0
- vllm/model_executor/models/qwen2.py +567 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
- vllm/model_executor/models/qwen2_5_vl.py +1171 -0
- vllm/model_executor/models/qwen2_audio.py +409 -0
- vllm/model_executor/models/qwen2_moe.py +539 -0
- vllm/model_executor/models/qwen2_rm.py +131 -0
- vllm/model_executor/models/qwen2_vl.py +1410 -0
- vllm/model_executor/models/qwen3.py +320 -0
- vllm/model_executor/models/qwen3_moe.py +534 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +618 -0
- vllm/model_executor/models/roberta.py +273 -0
- vllm/model_executor/models/siglip.py +523 -0
- vllm/model_executor/models/skyworkr1v.py +950 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +505 -0
- vllm/model_executor/models/stablelm.py +342 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +507 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +730 -0
- vllm/model_executor/models/vision.py +146 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +32 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +117 -0
- vllm/multimodal/image.py +96 -0
- vllm/multimodal/inputs.py +872 -0
- vllm/multimodal/parse.py +460 -0
- vllm/multimodal/processing.py +1894 -0
- vllm/multimodal/profiling.py +273 -0
- vllm/multimodal/registry.py +330 -0
- vllm/multimodal/utils.py +392 -0
- vllm/multimodal/video.py +197 -0
- vllm/outputs.py +525 -0
- vllm/platforms/__init__.py +290 -0
- vllm/platforms/cpu.py +205 -0
- vllm/platforms/cuda.py +461 -0
- vllm/platforms/hpu.py +105 -0
- vllm/platforms/interface.py +492 -0
- vllm/platforms/neuron.py +152 -0
- vllm/platforms/rocm.py +388 -0
- vllm/platforms/tpu.py +215 -0
- vllm/platforms/xpu.py +155 -0
- vllm/plugins/__init__.py +86 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +14 -0
- vllm/reasoning/abs_reasoning_parsers.py +191 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/reasoning/qwen3_reasoning_parser.py +150 -0
- vllm/sampling_params.py +590 -0
- vllm/scalar_type.py +346 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1567 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +422 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
- vllm/spec_decode/spec_decode_worker.py +1325 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +23 -0
- vllm/transformers_utils/chat_templates/__init__.py +4 -0
- vllm/transformers_utils/chat_templates/registry.py +59 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +835 -0
- vllm/transformers_utils/configs/__init__.py +58 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +279 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/exaone.py +189 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/minimax_text_01.py +69 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/ovis.py +183 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +220 -0
- vllm/transformers_utils/processors/__init__.py +7 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
- vllm/transformers_utils/processors/ovis.py +419 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +301 -0
- vllm/transformers_utils/tokenizer_base.py +148 -0
- vllm/transformers_utils/tokenizer_group.py +119 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +490 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +13 -0
- vllm/triton_utils/importing.py +49 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2844 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +833 -0
- vllm/v1/attention/backends/flashinfer.py +639 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +926 -0
- vllm/v1/attention/backends/mla/flashmla.py +150 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +235 -0
- vllm/v1/attention/backends/triton_attn.py +279 -0
- vllm/v1/attention/backends/utils.py +18 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +328 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +372 -0
- vllm/v1/core/kv_cache_utils.py +748 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +143 -0
- vllm/v1/core/sched/output.py +153 -0
- vllm/v1/core/sched/scheduler.py +1015 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/single_type_kv_cache_manager.py +358 -0
- vllm/v1/engine/__init__.py +171 -0
- vllm/v1/engine/async_llm.py +546 -0
- vllm/v1/engine/core.py +801 -0
- vllm/v1/engine/core_client.py +1020 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +316 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +90 -0
- vllm/v1/engine/output_processor.py +427 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +398 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +532 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +208 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +511 -0
- vllm/v1/metrics/ray_wrappers.py +120 -0
- vllm/v1/metrics/reader.py +245 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +115 -0
- vllm/v1/request.py +191 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
- vllm/v1/sample/rejection_sampler.py +630 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +123 -0
- vllm/v1/sample/tpu/sampler.py +144 -0
- vllm/v1/serial_utils.py +313 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +424 -0
- vllm/v1/spec_decode/medusa.py +61 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +177 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +45 -0
- vllm/v1/structured_output/__init__.py +215 -0
- vllm/v1/structured_output/backend_guidance.py +244 -0
- vllm/v1/structured_output/backend_types.py +133 -0
- vllm/v1/structured_output/backend_xgrammar.py +317 -0
- vllm/v1/structured_output/request.py +85 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +294 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +139 -0
- vllm/v1/worker/gpu_input_batch.py +680 -0
- vllm/v1/worker/gpu_model_runner.py +2084 -0
- vllm/v1/worker/gpu_worker.py +373 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1510 -0
- vllm/v1/worker/tpu_worker.py +276 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2319 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +910 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +418 -0
- vllm/worker/neuron_worker.py +158 -0
- vllm/worker/neuronx_distributed_model_runner.py +136 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +336 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +574 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,851 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
import contextlib
|
|
3
|
+
import math
|
|
4
|
+
import threading
|
|
5
|
+
import time
|
|
6
|
+
import uuid
|
|
7
|
+
from collections import defaultdict
|
|
8
|
+
from collections.abc import Iterator
|
|
9
|
+
from dataclasses import dataclass
|
|
10
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
11
|
+
|
|
12
|
+
import msgspec
|
|
13
|
+
import torch
|
|
14
|
+
import zmq
|
|
15
|
+
|
|
16
|
+
from vllm import envs
|
|
17
|
+
from vllm.config import VllmConfig
|
|
18
|
+
from vllm.distributed.kv_transfer.kv_connector.v1.base import (
|
|
19
|
+
KVConnectorBase_V1, KVConnectorMetadata, KVConnectorRole)
|
|
20
|
+
from vllm.distributed.parallel_state import (
|
|
21
|
+
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size,
|
|
22
|
+
get_tp_group)
|
|
23
|
+
from vllm.logger import init_logger
|
|
24
|
+
from vllm.utils import make_zmq_path, make_zmq_socket, round_down
|
|
25
|
+
from vllm.v1.core.sched.output import SchedulerOutput
|
|
26
|
+
from vllm.v1.request import RequestStatus
|
|
27
|
+
|
|
28
|
+
if TYPE_CHECKING:
|
|
29
|
+
from vllm.attention.backends.abstract import AttentionMetadata
|
|
30
|
+
from vllm.forward_context import ForwardContext
|
|
31
|
+
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
|
|
32
|
+
from vllm.v1.request import Request
|
|
33
|
+
|
|
34
|
+
GET_META_MSG = b"get_meta_msg"
|
|
35
|
+
|
|
36
|
+
logger = init_logger(__name__)
|
|
37
|
+
|
|
38
|
+
# Lazy import nixl_wrapper to avoid loading nixl_bindings if nixl is not used
|
|
39
|
+
try:
|
|
40
|
+
from nixl._api import nixl_agent as NixlWrapper
|
|
41
|
+
logger.info("NIXL is available")
|
|
42
|
+
except ImportError:
|
|
43
|
+
logger.warning("NIXL is not available")
|
|
44
|
+
NixlWrapper = None
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class NixlAgentMetadata(
|
|
48
|
+
msgspec.Struct,
|
|
49
|
+
omit_defaults=True, # type: ignore[call-arg]
|
|
50
|
+
# required for @cached_property.
|
|
51
|
+
dict=True):
|
|
52
|
+
engine_id: str
|
|
53
|
+
agent_metadata: bytes
|
|
54
|
+
kv_caches_base_addr: list[int]
|
|
55
|
+
num_blocks: int
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
@dataclass
|
|
59
|
+
class ReqMeta:
|
|
60
|
+
local_block_ids: list[int]
|
|
61
|
+
remote_block_ids: list[int]
|
|
62
|
+
remote_host: str
|
|
63
|
+
remote_port: int
|
|
64
|
+
remote_engine_id: str
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class NixlConnectorMetadata(KVConnectorMetadata):
|
|
68
|
+
|
|
69
|
+
def __init__(self):
|
|
70
|
+
self.requests: dict[str, ReqMeta] = {}
|
|
71
|
+
|
|
72
|
+
def add_new_req(
|
|
73
|
+
self,
|
|
74
|
+
request_id: str,
|
|
75
|
+
local_block_ids: list[int],
|
|
76
|
+
kv_transfer_params: dict[str, Any],
|
|
77
|
+
):
|
|
78
|
+
self.requests[request_id] = ReqMeta(
|
|
79
|
+
local_block_ids=local_block_ids,
|
|
80
|
+
remote_block_ids=kv_transfer_params["remote_block_ids"],
|
|
81
|
+
remote_engine_id=kv_transfer_params["remote_engine_id"],
|
|
82
|
+
remote_host=kv_transfer_params["remote_host"],
|
|
83
|
+
remote_port=kv_transfer_params["remote_port"],
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class NixlConnector(KVConnectorBase_V1):
|
|
88
|
+
|
|
89
|
+
def __init__(self, vllm_config: VllmConfig, role: KVConnectorRole):
|
|
90
|
+
assert vllm_config.kv_transfer_config is not None
|
|
91
|
+
self.engine_id = vllm_config.kv_transfer_config.engine_id
|
|
92
|
+
|
|
93
|
+
if role == KVConnectorRole.SCHEDULER:
|
|
94
|
+
self.connector_scheduler : Optional[NixlConnectorScheduler] = \
|
|
95
|
+
NixlConnectorScheduler(vllm_config, str(self.engine_id))
|
|
96
|
+
self.connector_worker: Optional[NixlConnectorWorker] = None
|
|
97
|
+
elif role == KVConnectorRole.WORKER:
|
|
98
|
+
self.connector_scheduler = None
|
|
99
|
+
self.connector_worker = NixlConnectorWorker(
|
|
100
|
+
vllm_config, str(self.engine_id))
|
|
101
|
+
|
|
102
|
+
############################################################
|
|
103
|
+
# Scheduler Side Methods
|
|
104
|
+
############################################################
|
|
105
|
+
|
|
106
|
+
def get_num_new_matched_tokens(
|
|
107
|
+
self, request: "Request",
|
|
108
|
+
num_computed_tokens: int) -> tuple[int, bool]:
|
|
109
|
+
assert self.connector_scheduler is not None
|
|
110
|
+
return self.connector_scheduler.get_num_new_matched_tokens(
|
|
111
|
+
request, num_computed_tokens)
|
|
112
|
+
|
|
113
|
+
def update_state_after_alloc(self, request: "Request",
|
|
114
|
+
blocks: "KVCacheBlocks",
|
|
115
|
+
num_external_tokens: int):
|
|
116
|
+
assert self.connector_scheduler is not None
|
|
117
|
+
return self.connector_scheduler.update_state_after_alloc(
|
|
118
|
+
request, blocks, num_external_tokens)
|
|
119
|
+
|
|
120
|
+
def build_connector_meta(
|
|
121
|
+
self,
|
|
122
|
+
scheduler_output: SchedulerOutput,
|
|
123
|
+
) -> KVConnectorMetadata:
|
|
124
|
+
assert self.connector_scheduler is not None
|
|
125
|
+
return self.connector_scheduler.build_connector_meta(scheduler_output)
|
|
126
|
+
|
|
127
|
+
def request_finished(
|
|
128
|
+
self,
|
|
129
|
+
request: "Request",
|
|
130
|
+
block_ids: list[int],
|
|
131
|
+
) -> tuple[bool, Optional[dict[str, Any]]]:
|
|
132
|
+
assert self.connector_scheduler is not None
|
|
133
|
+
return self.connector_scheduler.request_finished(request, block_ids)
|
|
134
|
+
|
|
135
|
+
############################################################
|
|
136
|
+
# Worker Side Methods
|
|
137
|
+
############################################################
|
|
138
|
+
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
|
|
139
|
+
assert self.connector_worker is not None
|
|
140
|
+
self.connector_worker.register_kv_caches(kv_caches)
|
|
141
|
+
|
|
142
|
+
def get_finished(self,
|
|
143
|
+
finished_req_ids: set[str]) -> tuple[set[str], set[str]]:
|
|
144
|
+
"""Get the finished recving and sending requests."""
|
|
145
|
+
assert self.connector_worker is not None
|
|
146
|
+
return self.connector_worker.get_finished()
|
|
147
|
+
|
|
148
|
+
def start_load_kv(self, forward_context: "ForwardContext",
|
|
149
|
+
**kwargs) -> None:
|
|
150
|
+
assert self.connector_worker is not None
|
|
151
|
+
assert isinstance(self._connector_metadata, NixlConnectorMetadata)
|
|
152
|
+
self.connector_worker.start_load_kv(self._connector_metadata)
|
|
153
|
+
|
|
154
|
+
def wait_for_layer_load(self, layer_name: str) -> None:
|
|
155
|
+
"""NixlConnector does not do layerwise saving."""
|
|
156
|
+
pass
|
|
157
|
+
|
|
158
|
+
def save_kv_layer(self, layer_name: str, kv_layer: torch.Tensor,
|
|
159
|
+
attn_metadata: "AttentionMetadata", **kwargs) -> None:
|
|
160
|
+
"""NixlConnector does not save explicitly."""
|
|
161
|
+
pass
|
|
162
|
+
|
|
163
|
+
def wait_for_save(self):
|
|
164
|
+
"""NixlConnector does not save explicitly."""
|
|
165
|
+
pass
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
class NixlConnectorScheduler:
|
|
169
|
+
"""Implementation of Scheduler side methods"""
|
|
170
|
+
|
|
171
|
+
def __init__(self, vllm_config: VllmConfig, engine_id: str):
|
|
172
|
+
self.vllm_config = vllm_config
|
|
173
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
174
|
+
self.engine_id = engine_id
|
|
175
|
+
logger.info("Initializing NIXL Scheduler %s", engine_id)
|
|
176
|
+
|
|
177
|
+
# Requests that need to start recv.
|
|
178
|
+
# New requests are added by update_state_after_alloc in
|
|
179
|
+
# the scheduler. Used to make metadata passed to Worker.
|
|
180
|
+
self._reqs_need_recv: dict[str, tuple[Request, list[int]]] = {}
|
|
181
|
+
|
|
182
|
+
def get_num_new_matched_tokens(
|
|
183
|
+
self, request: "Request",
|
|
184
|
+
num_computed_tokens: int) -> tuple[int, bool]:
|
|
185
|
+
"""
|
|
186
|
+
For remote prefill, pull all prompt blocks from remote
|
|
187
|
+
asynchronously relative to engine execution.
|
|
188
|
+
|
|
189
|
+
Args:
|
|
190
|
+
request (Request): the request object.
|
|
191
|
+
num_computed_tokens (int): the number of locally
|
|
192
|
+
computed tokens for this request
|
|
193
|
+
Returns:
|
|
194
|
+
* the number of tokens that can be loaded from the
|
|
195
|
+
external KV cache beyond what is already computed.
|
|
196
|
+
* true if the external KV cache tokens will be loaded
|
|
197
|
+
asynchronously (between scheduler steps).
|
|
198
|
+
"""
|
|
199
|
+
|
|
200
|
+
params = request.kv_transfer_params
|
|
201
|
+
logger.debug(
|
|
202
|
+
"NIXLConnector get_num_new_matched_tokens: "
|
|
203
|
+
"num_computed_tokens=%s, kv_transfer_params=%s",
|
|
204
|
+
num_computed_tokens, params)
|
|
205
|
+
|
|
206
|
+
if params is not None and params.get("do_remote_prefill"):
|
|
207
|
+
# Remote prefill: get all prompt blocks from remote.
|
|
208
|
+
assert num_computed_tokens % self.block_size == 0
|
|
209
|
+
rounded_num_prompt_tokens = round_down(
|
|
210
|
+
len(request.prompt_token_ids), self.block_size)
|
|
211
|
+
count = max(rounded_num_prompt_tokens - num_computed_tokens, 0)
|
|
212
|
+
if count > 0:
|
|
213
|
+
return count, True
|
|
214
|
+
|
|
215
|
+
# NOTE: if count is 0 here, we have less than block_size
|
|
216
|
+
# tokens to pull after subtracting the local prefix cache hit.
|
|
217
|
+
# The remote only sends fully computed blocks, so there is
|
|
218
|
+
# nothing to transfer but we still need to notify the
|
|
219
|
+
# prefill worker so that the remote blocks are freed.
|
|
220
|
+
if all(p in params for p in ("remote_engine_id", "remote_host",
|
|
221
|
+
"remote_port")):
|
|
222
|
+
self._reqs_need_recv[request.request_id] = (request, [])
|
|
223
|
+
|
|
224
|
+
# No remote prefill for this request.
|
|
225
|
+
return 0, False
|
|
226
|
+
|
|
227
|
+
def update_state_after_alloc(self, request: "Request",
|
|
228
|
+
blocks: "KVCacheBlocks",
|
|
229
|
+
num_external_tokens: int):
|
|
230
|
+
|
|
231
|
+
params = request.kv_transfer_params
|
|
232
|
+
logger.debug(
|
|
233
|
+
"NIXLConnector update_state_after_alloc: "
|
|
234
|
+
"num_external_tokens=%s, kv_transfer_params=%s",
|
|
235
|
+
num_external_tokens, params)
|
|
236
|
+
|
|
237
|
+
if params is not None and params.get("do_remote_prefill"):
|
|
238
|
+
if params.get("remote_block_ids"):
|
|
239
|
+
if all(p in params for p in ("remote_engine_id", "remote_host",
|
|
240
|
+
"remote_port")):
|
|
241
|
+
# Get unhashed blocks to pull from remote.
|
|
242
|
+
self._reqs_need_recv[request.request_id] = (
|
|
243
|
+
request, blocks.get_unhashed_block_ids())
|
|
244
|
+
else:
|
|
245
|
+
logger.warning(
|
|
246
|
+
"Got invalid KVTransferParams: %s. This "
|
|
247
|
+
"request will not utilize KVTransfer", params)
|
|
248
|
+
else:
|
|
249
|
+
assert num_external_tokens == 0
|
|
250
|
+
# Only trigger 1 KV transfer per request.
|
|
251
|
+
params["do_remote_prefill"] = False
|
|
252
|
+
|
|
253
|
+
def build_connector_meta(
|
|
254
|
+
self,
|
|
255
|
+
scheduler_output: SchedulerOutput,
|
|
256
|
+
) -> KVConnectorMetadata:
|
|
257
|
+
meta = NixlConnectorMetadata()
|
|
258
|
+
|
|
259
|
+
# Loop through scheduled reqs and convert to ReqMeta.
|
|
260
|
+
for req_id, (req, block_ids) in self._reqs_need_recv.items():
|
|
261
|
+
assert req.kv_transfer_params is not None
|
|
262
|
+
# For the case where there are no remote blocks to pull
|
|
263
|
+
# (block_ids is empty), we don't need to schedule
|
|
264
|
+
# an async read on the worker side.
|
|
265
|
+
if not block_ids:
|
|
266
|
+
logger.debug(
|
|
267
|
+
"Skipping adding request %s to NixlConnectorMetadata, "
|
|
268
|
+
"as there are no remote blocks to pull", req_id)
|
|
269
|
+
continue
|
|
270
|
+
|
|
271
|
+
meta.add_new_req(
|
|
272
|
+
request_id=req_id,
|
|
273
|
+
local_block_ids=block_ids,
|
|
274
|
+
kv_transfer_params=req.kv_transfer_params,
|
|
275
|
+
)
|
|
276
|
+
|
|
277
|
+
# Clear the list once workers start the transfers
|
|
278
|
+
self._reqs_need_recv.clear()
|
|
279
|
+
|
|
280
|
+
return meta
|
|
281
|
+
|
|
282
|
+
def request_finished(
|
|
283
|
+
self,
|
|
284
|
+
request: "Request",
|
|
285
|
+
block_ids: list[int],
|
|
286
|
+
) -> tuple[bool, Optional[dict[str, Any]]]:
|
|
287
|
+
"""
|
|
288
|
+
Once a request is finished, determine whether request blocks
|
|
289
|
+
should be freed now or will be sent asynchronously and freed later.
|
|
290
|
+
"""
|
|
291
|
+
|
|
292
|
+
params = request.kv_transfer_params
|
|
293
|
+
logger.debug(
|
|
294
|
+
"NIXLConnector request_finished, request_status=%s, "
|
|
295
|
+
"kv_transfer_params=%s", request.status, params)
|
|
296
|
+
|
|
297
|
+
if (params is None or not params.get("do_remote_decode")
|
|
298
|
+
or request.status != RequestStatus.FINISHED_LENGTH_CAPPED):
|
|
299
|
+
return False, None
|
|
300
|
+
|
|
301
|
+
# Get computed blocks.
|
|
302
|
+
all_full = request.num_computed_tokens % self.block_size == 0
|
|
303
|
+
computed_block_ids = block_ids if all_full else block_ids[:-1]
|
|
304
|
+
|
|
305
|
+
# If prompt < block_size, no xfer so free blocks immediately.
|
|
306
|
+
delay_free_blocks = len(computed_block_ids) > 0
|
|
307
|
+
|
|
308
|
+
return delay_free_blocks, dict(
|
|
309
|
+
do_remote_prefill=True,
|
|
310
|
+
do_remote_decode=False,
|
|
311
|
+
remote_block_ids=computed_block_ids,
|
|
312
|
+
remote_engine_id=self.engine_id,
|
|
313
|
+
remote_host=envs.VLLM_NIXL_SIDE_CHANNEL_HOST,
|
|
314
|
+
remote_port=envs.VLLM_NIXL_SIDE_CHANNEL_PORT,
|
|
315
|
+
)
|
|
316
|
+
|
|
317
|
+
|
|
318
|
+
class NixlConnectorWorker:
|
|
319
|
+
"""Implementation of Worker side methods"""
|
|
320
|
+
|
|
321
|
+
def __init__(self, vllm_config: VllmConfig, engine_id: str):
|
|
322
|
+
if NixlWrapper is None:
|
|
323
|
+
logger.error("NIXL is not available")
|
|
324
|
+
raise RuntimeError("NIXL is not available")
|
|
325
|
+
logger.info("Initializing NIXL wrapper")
|
|
326
|
+
logger.info("Initializing NIXL worker %s", engine_id)
|
|
327
|
+
|
|
328
|
+
# Agent.
|
|
329
|
+
self.nixl_wrapper = NixlWrapper(str(uuid.uuid4()), None)
|
|
330
|
+
# Map of engine_id -> agent_name.
|
|
331
|
+
self._remote_agents: dict[str, str] = {}
|
|
332
|
+
|
|
333
|
+
# Metadata.
|
|
334
|
+
self.engine_id = engine_id
|
|
335
|
+
self.rank = get_tensor_model_parallel_rank()
|
|
336
|
+
self.world_size = get_tensor_model_parallel_world_size()
|
|
337
|
+
self.tp_group = get_tp_group()
|
|
338
|
+
|
|
339
|
+
# KV Caches and nixl tracking data.
|
|
340
|
+
self.kv_caches: dict[str, torch.Tensor] = {}
|
|
341
|
+
|
|
342
|
+
# Map of engine_id -> kv_caches_base_addr
|
|
343
|
+
self.kv_caches_base_addr: dict[str, list[int]] = {}
|
|
344
|
+
|
|
345
|
+
# Number of NIXL regions. Currently one region per cache
|
|
346
|
+
# (so 1 per layer for MLA, otherwise 2 per layer)
|
|
347
|
+
self.num_regions = 0
|
|
348
|
+
self.num_layers = 0
|
|
349
|
+
|
|
350
|
+
# nixl_prepped_dlist_handle (int).
|
|
351
|
+
self.src_xfer_side_handle: int = 0
|
|
352
|
+
# Map of engine_id -> nixl_prepped_dlist_handle (int)].
|
|
353
|
+
self.dst_xfer_side_handles: dict[str, int] = {}
|
|
354
|
+
|
|
355
|
+
# Map of engine_id -> num_blocks.
|
|
356
|
+
self.dst_num_blocks: dict[str, int] = {}
|
|
357
|
+
self._registered_descs: list[Any] = []
|
|
358
|
+
|
|
359
|
+
# In progress transfers.
|
|
360
|
+
# [req_id -> list[handle]]
|
|
361
|
+
self._recving_transfers: defaultdict[str, list[Any]] = defaultdict(
|
|
362
|
+
list[Any])
|
|
363
|
+
|
|
364
|
+
# Complete transfer tracker. Used by the rank 0 to track finished
|
|
365
|
+
# transactions on ranks 1 to N-1.
|
|
366
|
+
# [req_id -> count]
|
|
367
|
+
self._done_recving_count: defaultdict[str,
|
|
368
|
+
int] = defaultdict(lambda: 0)
|
|
369
|
+
self._done_sending_count: defaultdict[str,
|
|
370
|
+
int] = defaultdict(lambda: 0)
|
|
371
|
+
|
|
372
|
+
# Background thread for establishing new connections.
|
|
373
|
+
self._nixl_handshake_listener_t: Optional[threading.Thread] = None
|
|
374
|
+
|
|
375
|
+
self.vllm_config = vllm_config
|
|
376
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
377
|
+
|
|
378
|
+
# TODO(mgoin): remove this once we have hybrid memory allocator
|
|
379
|
+
# Optimization for models with local attention (Llama 4)
|
|
380
|
+
# List of block window sizes for each layer for local attention
|
|
381
|
+
self.block_window_per_layer: list[Optional[int]] = []
|
|
382
|
+
|
|
383
|
+
@staticmethod
|
|
384
|
+
def _nixl_handshake_listener(metadata: NixlAgentMetadata,
|
|
385
|
+
ready_event: threading.Event, rank: int):
|
|
386
|
+
"""Background thread for getting new NIXL handshakes."""
|
|
387
|
+
# NOTE(rob): this is a simple implementation. We will move
|
|
388
|
+
# to a better approach like an ETCD server in the future.
|
|
389
|
+
|
|
390
|
+
# NOTE(rob): to support heterogeneous TP, we will have to
|
|
391
|
+
# move this into the scheduler rather than worker, since
|
|
392
|
+
# each rank needs the metadata of all other ranks (whereas
|
|
393
|
+
# in this setup, each rank only gets one other rank's meta.
|
|
394
|
+
|
|
395
|
+
encoder = msgspec.msgpack.Encoder()
|
|
396
|
+
encoded_data = encoder.encode(metadata)
|
|
397
|
+
size_in_bytes = len(encoded_data)
|
|
398
|
+
logger.debug("Size of encoded NixlAgentMetadata: %s bytes",
|
|
399
|
+
str(size_in_bytes))
|
|
400
|
+
|
|
401
|
+
# Listen for new requests for metadata.
|
|
402
|
+
host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
|
|
403
|
+
# NOTE(rob): we need each rank to have a unique port. This
|
|
404
|
+
# hack to keeps us moving. We will switch when moving to etcd
|
|
405
|
+
# or where we have a single ZMQ socket in the scheduler.
|
|
406
|
+
port = envs.VLLM_NIXL_SIDE_CHANNEL_PORT + rank
|
|
407
|
+
path = make_zmq_path("tcp", host, port)
|
|
408
|
+
logger.debug("Starting listening on path: %s", path)
|
|
409
|
+
with zmq_ctx(zmq.ROUTER, path) as sock:
|
|
410
|
+
ready_event.set()
|
|
411
|
+
while True:
|
|
412
|
+
identity, _, msg = sock.recv_multipart()
|
|
413
|
+
if msg != GET_META_MSG:
|
|
414
|
+
logger.warning(
|
|
415
|
+
"Connection listener got unexpected message %s", msg)
|
|
416
|
+
sock.send_multipart((identity, b"", encoded_data))
|
|
417
|
+
|
|
418
|
+
def _nixl_handshake(self, host: str, port: int):
|
|
419
|
+
"""Do a NIXL handshake with a remote instance."""
|
|
420
|
+
|
|
421
|
+
start_time = time.perf_counter()
|
|
422
|
+
# NOTE(rob): we need each rank to have a unique port. This is
|
|
423
|
+
# a hack to keep us moving. We will switch when moving to etcd
|
|
424
|
+
# or where we have a single ZMQ socket in the scheduler.
|
|
425
|
+
path = make_zmq_path("tcp", host, port + self.rank)
|
|
426
|
+
logger.debug("Querying metadata on path: %s", path)
|
|
427
|
+
with zmq_ctx(zmq.REQ, path) as sock:
|
|
428
|
+
# Send query for the request.
|
|
429
|
+
sock.send(GET_META_MSG)
|
|
430
|
+
metadata_bytes = sock.recv()
|
|
431
|
+
decoder = msgspec.msgpack.Decoder(NixlAgentMetadata)
|
|
432
|
+
metadata = decoder.decode(metadata_bytes)
|
|
433
|
+
got_metadata_time = time.perf_counter()
|
|
434
|
+
|
|
435
|
+
# Register Remote agent.
|
|
436
|
+
self.add_remote_agent(metadata)
|
|
437
|
+
setup_agent_time = time.perf_counter()
|
|
438
|
+
|
|
439
|
+
logger.debug("NIXL handshake: get metadata took: %s",
|
|
440
|
+
got_metadata_time - start_time)
|
|
441
|
+
logger.debug("NIXL handshake: add agent took: %s",
|
|
442
|
+
setup_agent_time - got_metadata_time)
|
|
443
|
+
|
|
444
|
+
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
|
|
445
|
+
"""Register the KV Cache data in nixl."""
|
|
446
|
+
|
|
447
|
+
_, first_kv_cache = next(iter(kv_caches.items()))
|
|
448
|
+
kv_elem_size = first_kv_cache.element_size()
|
|
449
|
+
|
|
450
|
+
# TODO(tms): Find a more robust way to detect and handle MLA
|
|
451
|
+
use_mla = len(first_kv_cache.shape) == 3
|
|
452
|
+
if use_mla:
|
|
453
|
+
# MLA case.
|
|
454
|
+
self.num_blocks = first_kv_cache.shape[0]
|
|
455
|
+
block_rank = 2 # [block_size, latent_dim]
|
|
456
|
+
block_shape = first_kv_cache.shape[-block_rank:]
|
|
457
|
+
else:
|
|
458
|
+
# [2 (k and v), num_blocks, ...]
|
|
459
|
+
self.num_blocks = first_kv_cache.shape[1]
|
|
460
|
+
block_rank = 3 # [block_size, kv_heads, head_dim]
|
|
461
|
+
block_shape = first_kv_cache.shape[-block_rank:]
|
|
462
|
+
|
|
463
|
+
# TODO(tms): self.block_len needs to be per-layer for sliding window,
|
|
464
|
+
# hybrid attn, etc
|
|
465
|
+
self.block_len = kv_elem_size * math.prod(block_shape)
|
|
466
|
+
|
|
467
|
+
logger.debug("Registering KV_Caches. use_mla: %s, shape %s", use_mla,
|
|
468
|
+
first_kv_cache.shape)
|
|
469
|
+
logger.debug("num_blocks: %s, block_shape: %s", self.num_blocks,
|
|
470
|
+
block_shape)
|
|
471
|
+
logger.debug("Per layer kv cache size: %s", first_kv_cache.shape)
|
|
472
|
+
self.dst_num_blocks[self.engine_id] = self.num_blocks
|
|
473
|
+
self.kv_caches = kv_caches
|
|
474
|
+
kv_caches_base_addr = []
|
|
475
|
+
caches_data = []
|
|
476
|
+
|
|
477
|
+
# Note(tms): I modified this from the original region setup code.
|
|
478
|
+
# K and V are now in different regions. Advantage is that we can
|
|
479
|
+
# elegantly support MLA and any cases where the K and V tensors
|
|
480
|
+
# are non-contiguous (it's not locally guaranteed that they will be)
|
|
481
|
+
# Disadvantage is that the encoded NixlAgentMetadata is now larger
|
|
482
|
+
# (roughly 8KB vs 5KB).
|
|
483
|
+
for cache_or_caches in kv_caches.values():
|
|
484
|
+
# Normalize to always be a list of caches
|
|
485
|
+
cache_list = [cache_or_caches] if use_mla else cache_or_caches
|
|
486
|
+
for cache in cache_list:
|
|
487
|
+
base_addr = cache.data_ptr()
|
|
488
|
+
region_len = self.num_blocks * self.block_len
|
|
489
|
+
caches_data.append((base_addr, region_len, self.rank, ""))
|
|
490
|
+
kv_caches_base_addr.append(base_addr)
|
|
491
|
+
self.kv_caches_base_addr[self.engine_id] = kv_caches_base_addr
|
|
492
|
+
self.num_regions = len(caches_data)
|
|
493
|
+
self.num_layers = len(self.kv_caches.keys())
|
|
494
|
+
|
|
495
|
+
# TODO(mgoin): remove this once we have hybrid memory allocator
|
|
496
|
+
# Optimization for models with local attention (Llama 4)
|
|
497
|
+
if self.vllm_config.model_config.hf_config.model_type == "llama4":
|
|
498
|
+
from transformers import Llama4TextConfig
|
|
499
|
+
assert isinstance(self.vllm_config.model_config.hf_text_config,
|
|
500
|
+
Llama4TextConfig)
|
|
501
|
+
llama4_config = self.vllm_config.model_config.hf_text_config
|
|
502
|
+
no_rope_layers = llama4_config.no_rope_layers
|
|
503
|
+
chunk_size = llama4_config.attention_chunk_size
|
|
504
|
+
chunk_block_size = math.ceil(chunk_size / self.block_size)
|
|
505
|
+
for layer_idx in range(self.num_layers):
|
|
506
|
+
# no_rope_layers[layer_idx] == 0 means NoPE (global)
|
|
507
|
+
# Any other value means RoPE (local chunked)
|
|
508
|
+
is_local_attention = no_rope_layers[layer_idx] != 0
|
|
509
|
+
block_window = chunk_block_size if is_local_attention else None
|
|
510
|
+
self.block_window_per_layer.append(block_window)
|
|
511
|
+
logger.debug("Llama 4 block window per layer mapping: %s",
|
|
512
|
+
self.block_window_per_layer)
|
|
513
|
+
assert len(self.block_window_per_layer) == self.num_layers
|
|
514
|
+
|
|
515
|
+
descs = self.nixl_wrapper.get_reg_descs(caches_data, "VRAM")
|
|
516
|
+
logger.debug("Registering descs: %s", caches_data)
|
|
517
|
+
self.nixl_wrapper.register_memory(descs)
|
|
518
|
+
logger.debug("Done registering descs")
|
|
519
|
+
|
|
520
|
+
self._registered_descs.append(descs)
|
|
521
|
+
|
|
522
|
+
# After KV Caches registered, listen for new connections.
|
|
523
|
+
metadata = NixlAgentMetadata(
|
|
524
|
+
engine_id=self.engine_id,
|
|
525
|
+
agent_metadata=self.nixl_wrapper.get_agent_metadata(),
|
|
526
|
+
kv_caches_base_addr=self.kv_caches_base_addr[self.engine_id],
|
|
527
|
+
num_blocks=self.num_blocks,
|
|
528
|
+
)
|
|
529
|
+
ready_event = threading.Event()
|
|
530
|
+
self._nixl_handshake_listener_t = threading.Thread(
|
|
531
|
+
target=self._nixl_handshake_listener,
|
|
532
|
+
args=(metadata, ready_event, self.rank),
|
|
533
|
+
daemon=True,
|
|
534
|
+
name="nixl_handshake_listener")
|
|
535
|
+
self._nixl_handshake_listener_t.start()
|
|
536
|
+
ready_event.wait()
|
|
537
|
+
|
|
538
|
+
def add_remote_agent(self, nixl_agent_meta: NixlAgentMetadata):
|
|
539
|
+
engine_id = nixl_agent_meta.engine_id
|
|
540
|
+
assert engine_id != self.engine_id, "Conflict engine id found!"
|
|
541
|
+
if engine_id in self._remote_agents:
|
|
542
|
+
return
|
|
543
|
+
|
|
544
|
+
self._remote_agents[engine_id] = self.nixl_wrapper.add_remote_agent(
|
|
545
|
+
nixl_agent_meta.agent_metadata)
|
|
546
|
+
self.kv_caches_base_addr[
|
|
547
|
+
engine_id] = nixl_agent_meta.kv_caches_base_addr
|
|
548
|
+
|
|
549
|
+
# Create src descs and xfer side handles.
|
|
550
|
+
blocks_data = []
|
|
551
|
+
for base_addr in self.kv_caches_base_addr[self.engine_id]:
|
|
552
|
+
for block_id in range(self.num_blocks):
|
|
553
|
+
block_offset = block_id * self.block_len
|
|
554
|
+
# (addr, len, device id)
|
|
555
|
+
blocks_data.append(
|
|
556
|
+
(base_addr + block_offset, self.block_len, self.rank))
|
|
557
|
+
logger.debug("Created %s blocks for src engine %s and rank %s",
|
|
558
|
+
len(blocks_data), self.engine_id, self.rank)
|
|
559
|
+
|
|
560
|
+
# Register with NIXL.
|
|
561
|
+
descs = self.nixl_wrapper.get_xfer_descs(blocks_data, "VRAM")
|
|
562
|
+
self.src_xfer_side_handle = self.nixl_wrapper.prep_xfer_dlist(
|
|
563
|
+
"NIXL_INIT_AGENT", descs)
|
|
564
|
+
|
|
565
|
+
# Create dst descs and xfer side handles.
|
|
566
|
+
self.dst_num_blocks[engine_id] = nixl_agent_meta.num_blocks
|
|
567
|
+
blocks_data = []
|
|
568
|
+
for base_addr in self.kv_caches_base_addr[engine_id]:
|
|
569
|
+
for block_id in range(nixl_agent_meta.num_blocks):
|
|
570
|
+
block_offset = block_id * self.block_len
|
|
571
|
+
# (addr, len, device id)
|
|
572
|
+
blocks_data.append(
|
|
573
|
+
(base_addr + block_offset, self.block_len, self.rank))
|
|
574
|
+
logger.debug("Created %s blocks for dst engine %s and rank %s",
|
|
575
|
+
len(blocks_data), engine_id, self.rank)
|
|
576
|
+
|
|
577
|
+
# Register with NIXL.
|
|
578
|
+
descs = self.nixl_wrapper.get_xfer_descs(blocks_data, "VRAM")
|
|
579
|
+
self.dst_xfer_side_handles[
|
|
580
|
+
engine_id] = self.nixl_wrapper.prep_xfer_dlist(
|
|
581
|
+
self._remote_agents[engine_id], descs)
|
|
582
|
+
|
|
583
|
+
def get_finished(self) -> tuple[set[str], set[str]]:
|
|
584
|
+
"""
|
|
585
|
+
Get requests that are done sending or recving.
|
|
586
|
+
|
|
587
|
+
In TP>1 setup, each rank exchanges KVs with its counterpart
|
|
588
|
+
ranks independently. get_finished() runs in a worker creates
|
|
589
|
+
the done_sending and done_recving sets that are sent to the
|
|
590
|
+
scheduler via ModelRunnerOutput by Rank 0. To ensure trnxs
|
|
591
|
+
are done before adding to finished, Ranks 1 to N-1 communicate
|
|
592
|
+
to Rank 0 once their transaction is done + Rank 0 returns
|
|
593
|
+
finished sets to Scheduler only once all ranks are done.
|
|
594
|
+
"""
|
|
595
|
+
done_sending = self._get_new_notifs()
|
|
596
|
+
done_recving = self._pop_done_transfers(self._recving_transfers)
|
|
597
|
+
if len(done_sending) > 0 or len(done_recving) > 0:
|
|
598
|
+
logger.debug(
|
|
599
|
+
"Rank %s, get_finished: %s requests done sending "
|
|
600
|
+
"and %s requests done recving", self.rank, len(done_sending),
|
|
601
|
+
len(done_recving))
|
|
602
|
+
|
|
603
|
+
if self.world_size == 1:
|
|
604
|
+
return done_sending, done_recving
|
|
605
|
+
|
|
606
|
+
# Rank 0: get finished from all other ranks.
|
|
607
|
+
if self.rank == 0:
|
|
608
|
+
for req_id in done_sending:
|
|
609
|
+
self._done_sending_count[req_id] += 1
|
|
610
|
+
for req_id in done_recving:
|
|
611
|
+
self._done_recving_count[req_id] += 1
|
|
612
|
+
|
|
613
|
+
# Keep track of how many other ranks have finished.
|
|
614
|
+
other_ranks_finished_ids: list[str] = []
|
|
615
|
+
for i in range(1, self.world_size):
|
|
616
|
+
other_ranks_finished_ids.extend(
|
|
617
|
+
self.tp_group.recv_object(src=i))
|
|
618
|
+
for req_id in other_ranks_finished_ids:
|
|
619
|
+
if (req_id in self._done_recving_count
|
|
620
|
+
or req_id in self._recving_transfers):
|
|
621
|
+
self._done_recving_count[req_id] += 1
|
|
622
|
+
else:
|
|
623
|
+
self._done_sending_count[req_id] += 1
|
|
624
|
+
|
|
625
|
+
# Return ids that finished on all ranks to the scheduler.
|
|
626
|
+
all_done_recving: set[str] = set()
|
|
627
|
+
for req_id in list(self._done_recving_count.keys()):
|
|
628
|
+
if self._done_recving_count[req_id] == self.world_size:
|
|
629
|
+
del self._done_recving_count[req_id]
|
|
630
|
+
all_done_recving.add(req_id)
|
|
631
|
+
|
|
632
|
+
all_done_sending: set[str] = set()
|
|
633
|
+
for req_id in list(self._done_sending_count.keys()):
|
|
634
|
+
if self._done_sending_count[req_id] == self.world_size:
|
|
635
|
+
del self._done_sending_count[req_id]
|
|
636
|
+
all_done_sending.add(req_id)
|
|
637
|
+
|
|
638
|
+
return all_done_sending, all_done_recving
|
|
639
|
+
|
|
640
|
+
# Ranks 1 to N-1: send finished ids to Rank 0.
|
|
641
|
+
else:
|
|
642
|
+
finished_req_ids = list(done_recving.union(done_sending))
|
|
643
|
+
self.tp_group.send_object(finished_req_ids, dst=0)
|
|
644
|
+
|
|
645
|
+
# Unused as only Rank 0 results are sent to scheduler.
|
|
646
|
+
return done_sending, done_recving
|
|
647
|
+
|
|
648
|
+
def _get_new_notifs(self) -> set[str]:
|
|
649
|
+
"""Get req_ids which got a remote xfer message."""
|
|
650
|
+
|
|
651
|
+
notified_req_ids: set[str] = set()
|
|
652
|
+
for req_ids in self.nixl_wrapper.get_new_notifs().values():
|
|
653
|
+
for req_id in req_ids:
|
|
654
|
+
assert req_id not in notified_req_ids
|
|
655
|
+
notified_req_ids.add(req_id.decode("utf-8"))
|
|
656
|
+
return notified_req_ids
|
|
657
|
+
|
|
658
|
+
def _pop_done_transfers(self, transfers: dict[str, list[int]]) -> set[str]:
|
|
659
|
+
"""
|
|
660
|
+
Pop completed xfers by checking for DONE state.
|
|
661
|
+
Args:
|
|
662
|
+
transfers: dict of req_id -> list[running_xfer]
|
|
663
|
+
Returns:
|
|
664
|
+
set of req_ids that have all done xfers
|
|
665
|
+
"""
|
|
666
|
+
done_req_ids: set[str] = set()
|
|
667
|
+
for req_id, handles in list(transfers.items()):
|
|
668
|
+
running_reqs = []
|
|
669
|
+
for handle in handles:
|
|
670
|
+
xfer_state = self.nixl_wrapper.check_xfer_state(handle)
|
|
671
|
+
if xfer_state == "DONE":
|
|
672
|
+
# TODO ptarasiewicz: why abort is throwing errors?
|
|
673
|
+
# self.nixl_wrapper.release_xfer_handle(handle)
|
|
674
|
+
continue
|
|
675
|
+
if xfer_state == "PROC":
|
|
676
|
+
running_reqs.append(handle)
|
|
677
|
+
else:
|
|
678
|
+
raise RuntimeError("Transfer failed with state %s",
|
|
679
|
+
xfer_state)
|
|
680
|
+
if len(running_reqs) == 0:
|
|
681
|
+
done_req_ids.add(req_id)
|
|
682
|
+
del transfers[req_id]
|
|
683
|
+
else:
|
|
684
|
+
transfers[req_id] = running_reqs
|
|
685
|
+
return done_req_ids
|
|
686
|
+
|
|
687
|
+
def start_load_kv(self, metadata: NixlConnectorMetadata):
|
|
688
|
+
"""
|
|
689
|
+
Start loading by triggering non-blocking nixl_xfer.
|
|
690
|
+
We check for these trnxs to complete in each step().
|
|
691
|
+
"""
|
|
692
|
+
for req_id, meta in metadata.requests.items():
|
|
693
|
+
logger.debug(
|
|
694
|
+
"start_load_kv for request %s from remote engine %s. "
|
|
695
|
+
"Num local_block_ids: %s. Num remote_block_ids: %s. ", req_id,
|
|
696
|
+
meta.remote_engine_id, len(meta.local_block_ids),
|
|
697
|
+
len(meta.remote_block_ids))
|
|
698
|
+
self._read_blocks(
|
|
699
|
+
request_id=req_id,
|
|
700
|
+
dst_engine_id=meta.remote_engine_id,
|
|
701
|
+
local_block_ids=meta.local_block_ids,
|
|
702
|
+
remote_block_ids=meta.remote_block_ids,
|
|
703
|
+
remote_host=meta.remote_host,
|
|
704
|
+
remote_port=meta.remote_port,
|
|
705
|
+
)
|
|
706
|
+
|
|
707
|
+
def _read_blocks(
|
|
708
|
+
self,
|
|
709
|
+
local_block_ids: list[int],
|
|
710
|
+
remote_block_ids: list[int],
|
|
711
|
+
remote_host: str,
|
|
712
|
+
remote_port: int,
|
|
713
|
+
dst_engine_id: str,
|
|
714
|
+
request_id: str,
|
|
715
|
+
):
|
|
716
|
+
# NOTE(rob): this takes ~2s. We need to get this off the hotpath.
|
|
717
|
+
if dst_engine_id not in self._remote_agents:
|
|
718
|
+
self._nixl_handshake(remote_host, remote_port)
|
|
719
|
+
|
|
720
|
+
# NOTE(rob): having the staging blocks be on the READER side is
|
|
721
|
+
# not going to work well (since we will have to call rearrange tensors).
|
|
722
|
+
# after we detect the txn is complete (which means we cannot make the
|
|
723
|
+
# read trxn async easily). If we want to make "READ" happen cleanly,
|
|
724
|
+
# then we will need to have the staging blocks on the remote side.
|
|
725
|
+
|
|
726
|
+
# NOTE(rob): according to nvidia the staging blocks are used to
|
|
727
|
+
# saturate IB with heterogeneous TP sizes. We should remove the staging
|
|
728
|
+
# blocks until we are ready.
|
|
729
|
+
|
|
730
|
+
# Full prefix cache hit: do not need to read remote blocks,
|
|
731
|
+
# just notify P worker that we have the blocks we need.
|
|
732
|
+
num_local_blocks = len(local_block_ids)
|
|
733
|
+
if num_local_blocks == 0:
|
|
734
|
+
self.nixl_wrapper.send_notif(dst_engine_id,
|
|
735
|
+
notif_msg=request_id.encode("utf-8"))
|
|
736
|
+
return
|
|
737
|
+
|
|
738
|
+
# Partial prefix cache hit: just read uncomputed blocks.
|
|
739
|
+
num_remote_blocks = len(remote_block_ids)
|
|
740
|
+
assert num_local_blocks <= num_remote_blocks
|
|
741
|
+
if num_local_blocks < num_remote_blocks:
|
|
742
|
+
remote_block_ids = remote_block_ids[-num_local_blocks:]
|
|
743
|
+
|
|
744
|
+
# Get side handles.
|
|
745
|
+
local_xfer_side_handle = self.src_xfer_side_handle
|
|
746
|
+
remote_xfer_side_handle = self.dst_xfer_side_handles[dst_engine_id]
|
|
747
|
+
|
|
748
|
+
# Get descs ids.
|
|
749
|
+
local_block_descs_ids: list[int] = []
|
|
750
|
+
remote_block_descs_ids: list[int] = []
|
|
751
|
+
if not self.block_window_per_layer:
|
|
752
|
+
# Default case: assume global attention
|
|
753
|
+
remote_block_descs_ids = self._get_block_descs_ids(
|
|
754
|
+
dst_engine_id, remote_block_ids)
|
|
755
|
+
local_block_descs_ids = self._get_block_descs_ids(
|
|
756
|
+
self.engine_id, local_block_ids)
|
|
757
|
+
else:
|
|
758
|
+
# TODO(mgoin): remove this once we have hybrid memory allocator
|
|
759
|
+
# Optimization for models with local attention (Llama 4)
|
|
760
|
+
for layer_idx, block_window in enumerate(
|
|
761
|
+
self.block_window_per_layer):
|
|
762
|
+
# For each layer:
|
|
763
|
+
if block_window is None:
|
|
764
|
+
# If not chunked, we just use the
|
|
765
|
+
# full block lists (global attention)
|
|
766
|
+
layer_local_block_ids = local_block_ids
|
|
767
|
+
layer_remote_block_ids = remote_block_ids
|
|
768
|
+
else:
|
|
769
|
+
# If chunked, get the last block_window blocks
|
|
770
|
+
layer_local_block_ids = local_block_ids[-block_window:]
|
|
771
|
+
layer_remote_block_ids = remote_block_ids[-block_window:]
|
|
772
|
+
|
|
773
|
+
# Get descs ids for the layer.
|
|
774
|
+
layer_local_desc_ids = self._get_block_descs_ids(
|
|
775
|
+
self.engine_id, layer_local_block_ids, layer_idx)
|
|
776
|
+
layer_remote_desc_ids = self._get_block_descs_ids(
|
|
777
|
+
dst_engine_id, layer_remote_block_ids, layer_idx)
|
|
778
|
+
|
|
779
|
+
local_block_descs_ids.extend(layer_local_desc_ids)
|
|
780
|
+
remote_block_descs_ids.extend(layer_remote_desc_ids)
|
|
781
|
+
|
|
782
|
+
assert len(local_block_descs_ids) == len(remote_block_descs_ids)
|
|
783
|
+
|
|
784
|
+
# Prepare transfer with Nixl.
|
|
785
|
+
handle = self.nixl_wrapper.make_prepped_xfer(
|
|
786
|
+
"READ",
|
|
787
|
+
local_xfer_side_handle,
|
|
788
|
+
local_block_descs_ids,
|
|
789
|
+
remote_xfer_side_handle,
|
|
790
|
+
remote_block_descs_ids,
|
|
791
|
+
notif_msg=request_id.encode("utf-8"),
|
|
792
|
+
)
|
|
793
|
+
|
|
794
|
+
# Begin async xfer.
|
|
795
|
+
self.nixl_wrapper.transfer(handle)
|
|
796
|
+
|
|
797
|
+
# Use handle to check completion in future step().
|
|
798
|
+
self._recving_transfers[request_id].append(handle)
|
|
799
|
+
|
|
800
|
+
def _get_block_descs_ids(self,
|
|
801
|
+
engine_id: str,
|
|
802
|
+
block_ids: list[int],
|
|
803
|
+
layer_idx: Optional[int] = None) -> list[int]:
|
|
804
|
+
"""
|
|
805
|
+
Get the descs ids for a set of block ids.
|
|
806
|
+
If layer_idx is provided, we use the region_ids for the given layer.
|
|
807
|
+
Otherwise, we use all regions.
|
|
808
|
+
"""
|
|
809
|
+
|
|
810
|
+
if layer_idx is None:
|
|
811
|
+
region_ids = range(self.num_regions)
|
|
812
|
+
else:
|
|
813
|
+
assert layer_idx < self.num_layers
|
|
814
|
+
if self.num_layers < self.num_regions:
|
|
815
|
+
# If we have more regions than layers, we assume that
|
|
816
|
+
# the regions are organized as [K0, V0, K1, V1, ...]
|
|
817
|
+
# and we select K_i and V_i
|
|
818
|
+
assert 2 * self.num_layers == self.num_regions
|
|
819
|
+
region_ids = range(2 * layer_idx, 2 * layer_idx + 2)
|
|
820
|
+
else:
|
|
821
|
+
# Otherwise, we assume we have MLA and select i-th layer
|
|
822
|
+
assert self.num_layers == self.num_regions
|
|
823
|
+
region_ids = range(layer_idx, layer_idx + 1)
|
|
824
|
+
|
|
825
|
+
num_blocks = self.dst_num_blocks[engine_id]
|
|
826
|
+
|
|
827
|
+
# Compute the desc ids for each block.
|
|
828
|
+
descs_ids: list[int] = []
|
|
829
|
+
for reg_id in region_ids:
|
|
830
|
+
for block_id in block_ids:
|
|
831
|
+
descs_ids.append(reg_id * num_blocks + block_id)
|
|
832
|
+
return descs_ids
|
|
833
|
+
|
|
834
|
+
|
|
835
|
+
@contextlib.contextmanager
|
|
836
|
+
def zmq_ctx(socket_type: Any, addr: str) -> Iterator[zmq.Socket]:
|
|
837
|
+
"""Context manager for a ZMQ socket"""
|
|
838
|
+
|
|
839
|
+
if socket_type not in (zmq.ROUTER, zmq.REQ):
|
|
840
|
+
raise ValueError(f"Unexpected socket type: {socket_type}")
|
|
841
|
+
|
|
842
|
+
ctx: Optional[zmq.Context] = None
|
|
843
|
+
try:
|
|
844
|
+
ctx = zmq.Context() # type: ignore[attr-defined]
|
|
845
|
+
yield make_zmq_socket(ctx=ctx,
|
|
846
|
+
path=addr,
|
|
847
|
+
socket_type=socket_type,
|
|
848
|
+
bind=socket_type == zmq.ROUTER)
|
|
849
|
+
finally:
|
|
850
|
+
if ctx is not None:
|
|
851
|
+
ctx.destroy(linger=0)
|