vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2178 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import dataclasses
4
+ import gc
5
+ import inspect
6
+ import itertools
7
+ import time
8
+ import weakref
9
+ from contextlib import contextmanager
10
+ from dataclasses import dataclass
11
+ from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set,
12
+ Tuple, Type, TypeVar, Union)
13
+
14
+ import numpy as np
15
+ import torch
16
+ import torch.distributed
17
+ import torch.nn as nn
18
+ from tqdm.auto import tqdm
19
+
20
+ import vllm.envs as envs
21
+ from vllm.attention import AttentionMetadata, get_attn_backend
22
+ from vllm.attention.backends.abstract import AttentionState
23
+ from vllm.attention.backends.utils import CommonAttentionState
24
+ from vllm.config import CompilationLevel, VllmConfig
25
+ from vllm.core.scheduler import SchedulerOutputs
26
+ from vllm.distributed import broadcast_tensor_dict, get_pp_group
27
+ from vllm.distributed.kv_transfer import get_kv_transfer_group
28
+ from vllm.distributed.parallel_state import (get_tensor_model_parallel_rank,
29
+ graph_capture)
30
+ from vllm.forward_context import get_forward_context, set_forward_context
31
+ from vllm.inputs import INPUT_REGISTRY, InputRegistry
32
+ from vllm.logger import init_logger
33
+ from vllm.lora.layers import LoRAMapping
34
+ from vllm.lora.request import LoRARequest
35
+ from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
36
+ from vllm.model_executor import SamplingMetadata, SamplingMetadataCache
37
+ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
38
+ from vllm.model_executor.layers.sampler import (Sampler, SamplerOutput,
39
+ get_sampler)
40
+ from vllm.model_executor.model_loader import get_model
41
+ from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
42
+ from vllm.model_executor.models import supports_lora, supports_multimodal
43
+ from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
44
+ from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
45
+ MultiModalKwargs, MultiModalPlaceholderMap,
46
+ MultiModalRegistry)
47
+ from vllm.prompt_adapter.layers import PromptAdapterMapping
48
+ from vllm.prompt_adapter.request import PromptAdapterRequest
49
+ from vllm.prompt_adapter.worker_manager import (
50
+ LRUCacheWorkerPromptAdapterManager)
51
+ from vllm.sampling_params import SamplingParams
52
+ from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
53
+ from vllm.utils import (DeviceMemoryProfiler, GiB_bytes, PyObjectCache,
54
+ async_tensor_h2d, flatten_2d_lists,
55
+ is_pin_memory_available, supports_dynamo,
56
+ weak_ref_tensor)
57
+ from vllm.worker.model_runner_base import (
58
+ InputProcessingError, ModelRunnerBase, ModelRunnerInputBase,
59
+ ModelRunnerInputBuilderBase, _add_attn_metadata_broadcastable_dict,
60
+ _add_sampling_metadata_broadcastable_dict,
61
+ _init_attn_metadata_from_tensor_dict,
62
+ _init_sampling_metadata_from_tensor_dict)
63
+
64
+ if TYPE_CHECKING:
65
+ from vllm.attention.backends.abstract import AttentionBackend
66
+
67
+ logger = init_logger(__name__)
68
+
69
+ LORA_WARMUP_RANK = 8
70
+
71
+ _NUM_WARMUP_ITERS = 2
72
+
73
+ TModelInputForGPU = TypeVar('TModelInputForGPU', bound="ModelInputForGPU")
74
+
75
+ # For now, bump up cache limits for recompilations during CUDA graph warmups.
76
+ torch._dynamo.config.cache_size_limit = 128
77
+ torch._dynamo.config.accumulated_cache_size_limit = 128
78
+
79
+
80
+ @dataclass(frozen=True)
81
+ class ModelInputForGPU(ModelRunnerInputBase):
82
+ """
83
+ This base class contains metadata needed for the base model forward pass
84
+ but not metadata for possible additional steps, e.g., sampling. Model
85
+ runners that run additional steps should subclass this method to add
86
+ additional fields.
87
+ """
88
+ input_tokens: Optional[torch.Tensor] = None
89
+ inputs_embeds: Optional[torch.Tensor] = None
90
+ input_positions: Optional[torch.Tensor] = None
91
+ token_types: Optional[torch.Tensor] = None
92
+ seq_lens: Optional[List[int]] = None
93
+ query_lens: Optional[List[int]] = None
94
+ lora_mapping: Optional["LoRAMapping"] = None
95
+ lora_requests: Optional[Set[LoRARequest]] = None
96
+ attn_metadata: Optional["AttentionMetadata"] = None
97
+ prompt_adapter_mapping: Optional[PromptAdapterMapping] = None
98
+ prompt_adapter_requests: Optional[Set[PromptAdapterRequest]] = None
99
+ multi_modal_kwargs: Optional[BatchedTensorInputs] = None
100
+ request_ids_to_seq_ids: Optional[Dict[str, List[int]]] = None
101
+ finished_requests_ids: Optional[List[str]] = None
102
+ virtual_engine: int = 0
103
+ async_callback: Optional[Callable] = None
104
+ scheduler_outputs: Optional[SchedulerOutputs] = None
105
+ previous_hidden_states: Optional[torch.Tensor] = None
106
+
107
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
108
+ tensor_dict = {
109
+ "input_tokens": self.input_tokens,
110
+ "inputs_embeds": self.inputs_embeds,
111
+ "input_positions": self.input_positions,
112
+ "lora_requests": self.lora_requests,
113
+ "lora_mapping": self.lora_mapping,
114
+ "multi_modal_kwargs": self.multi_modal_kwargs,
115
+ "prompt_adapter_mapping": self.prompt_adapter_mapping,
116
+ "prompt_adapter_requests": self.prompt_adapter_requests,
117
+ "virtual_engine": self.virtual_engine,
118
+ "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
119
+ "finished_requests_ids": self.finished_requests_ids,
120
+ }
121
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
122
+ return tensor_dict
123
+
124
+ @classmethod
125
+ def from_broadcasted_tensor_dict(
126
+ cls: Type[TModelInputForGPU],
127
+ tensor_dict: Dict[str, Any],
128
+ attn_backend: Optional["AttentionBackend"] = None,
129
+ ) -> TModelInputForGPU:
130
+ if attn_backend is not None:
131
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
132
+ attn_backend, tensor_dict)
133
+ return cls(**tensor_dict)
134
+
135
+ # Exclude `async_callback` to be able to pickle this object
136
+ def __getstate__(self):
137
+ state = self.__dict__.copy()
138
+ del state["async_callback"]
139
+ return state
140
+
141
+ # TODO: What happens when we depickle this object?
142
+ # How can we update this callback to properly pass it to the engine?
143
+ def __setstate__(self, state):
144
+ self.__dict__.update(state)
145
+ self.__dict__.update({'async_callback': None})
146
+
147
+
148
+ @dataclass(frozen=True)
149
+ class ModelInputForGPUWithSamplingMetadata(ModelInputForGPU):
150
+ """
151
+ Used by the ModelRunner.
152
+ """
153
+ sampling_metadata: Optional["SamplingMetadata"] = None
154
+ # Used for speculative decoding. We do not broadcast it because it is only
155
+ # used by the driver worker.
156
+ is_prompt: Optional[bool] = None
157
+
158
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
159
+ tensor_dict = {
160
+ "input_tokens": self.input_tokens,
161
+ "inputs_embeds": self.inputs_embeds,
162
+ "input_positions": self.input_positions,
163
+ "lora_requests": self.lora_requests,
164
+ "lora_mapping": self.lora_mapping,
165
+ "multi_modal_kwargs": self.multi_modal_kwargs,
166
+ "prompt_adapter_mapping": self.prompt_adapter_mapping,
167
+ "prompt_adapter_requests": self.prompt_adapter_requests,
168
+ "virtual_engine": self.virtual_engine,
169
+ "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
170
+ "finished_requests_ids": self.finished_requests_ids,
171
+ }
172
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
173
+ _add_sampling_metadata_broadcastable_dict(tensor_dict,
174
+ self.sampling_metadata)
175
+ return tensor_dict
176
+
177
+ @classmethod
178
+ def from_broadcasted_tensor_dict(
179
+ cls,
180
+ tensor_dict: Dict[str, Any],
181
+ attn_backend: Optional["AttentionBackend"] = None,
182
+ ) -> "ModelInputForGPUWithSamplingMetadata":
183
+ tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
184
+ if attn_backend is not None:
185
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
186
+ attn_backend, tensor_dict)
187
+ return cls(**tensor_dict)
188
+
189
+
190
+ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
191
+ """Build ModelInputForGPU from SequenceGroupMetadata."""
192
+
193
+ # Note: ideally we would be using a dataclass(kw_only=True)
194
+ # here, so that this can be subclassed easily,
195
+ # but kw_only is not supported in python<3.10.
196
+ class InterDataForSeqGroup:
197
+ """Intermediate data for the current sequence group."""
198
+
199
+ def simple_reinit(self):
200
+ self.input_tokens[0].clear() # type: ignore
201
+ self.inputs_embeds = None # type: ignore
202
+ self.input_positions[0].clear() # type: ignore
203
+ self.token_types[0].clear() # type: ignore
204
+ self.mrope_input_positions = None # type: ignore
205
+ self.seq_lens[0] = 0 # type: ignore
206
+ self.orig_seq_lens[0] = 0 # type: ignore
207
+ self.prompt_lens[0] = 0 # type: ignore
208
+ self.query_lens[0] = 0 # type: ignore
209
+ self.context_lens[0] = 0 # type: ignore
210
+ self.curr_sliding_window_blocks[0] = 0 # type: ignore
211
+ self.lora_index_mapping.clear() # type: ignore
212
+ self.lora_prompt_mapping.clear() # type: ignore
213
+ self.lora_requests.clear() # type: ignore
214
+ self.prompt_adapter_index_mapping.clear() # type: ignore
215
+ self.prompt_adapter_prompt_mapping.clear() # type: ignore
216
+
217
+ def __init__(
218
+ self,
219
+ *,
220
+ # From sequence group metadata.
221
+ request_id: str,
222
+ seq_ids: List[int],
223
+ is_prompt: bool,
224
+ block_tables: Optional[Dict[int, List[int]]],
225
+ computed_block_nums: List[int],
226
+ n_seqs: int = 0,
227
+
228
+ # Input tokens and positions.
229
+ input_tokens: Optional[List[List[int]]] = None,
230
+ inputs_embeds: Optional[torch.Tensor] = None,
231
+ input_positions: Optional[List[List[int]]] = None,
232
+ token_types: Optional[List[List[int]]] = None,
233
+ mrope_input_positions: Optional[List[List[List[int]]]] = None,
234
+
235
+ # The sequence length (may be capped to the sliding window).
236
+ seq_lens: Optional[List[int]] = None,
237
+ # The original sequence length (before applying sliding window).
238
+ # This is used to compute slot mapping.
239
+ orig_seq_lens: Optional[List[int]] = None,
240
+ # This is used in the dual-chunk flash attention backend.
241
+ prompt_lens: Optional[List[int]] = None,
242
+ # The query length.
243
+ query_lens: Optional[List[int]] = None,
244
+ # The number of tokens that are already computed.
245
+ context_lens: Optional[List[int]] = None,
246
+ # The current sliding window block.
247
+ curr_sliding_window_blocks: Optional[List[int]] = None,
248
+
249
+ # LoRA inputs.
250
+ lora_index_mapping: Optional[List[List[int]]] = None,
251
+ lora_prompt_mapping: Optional[List[List[int]]] = None,
252
+ lora_requests: Optional[Set[LoRARequest]] = None,
253
+
254
+ # Prompt adapter inputs.
255
+ prompt_adapter_index_mapping: Optional[List[int]] = None,
256
+ prompt_adapter_prompt_mapping: Optional[List[int]] = None,
257
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
258
+
259
+ # Multi-modal inputs.
260
+ multi_modal_kwargs: Optional[MultiModalKwargs] = None,
261
+ multi_modal_placeholder_maps: Optional[Dict[
262
+ str, MultiModalPlaceholderMap]] = None,
263
+
264
+ # Whether the prefix cache is hit (prefill only).
265
+ prefix_cache_hit: bool = False,
266
+ reinit: bool = False,
267
+ reinit_use_defaults: bool = False,
268
+ encoder_seq_len: int = 0,
269
+ ):
270
+ if reinit:
271
+ assert len(self.seq_ids) == len(seq_ids) # type: ignore
272
+ for i, seq_id in enumerate(seq_ids):
273
+ self.seq_ids[i] = seq_id # type: ignore
274
+ else:
275
+ self.seq_ids = seq_ids
276
+
277
+ self.request_id = request_id
278
+ self.is_prompt = is_prompt
279
+ self.block_tables = block_tables
280
+ self.computed_block_nums = computed_block_nums
281
+ self.n_seqs = n_seqs
282
+ self.encoder_seq_len = encoder_seq_len
283
+
284
+ if reinit:
285
+ if len(self.seq_ids) == 1 and reinit_use_defaults:
286
+ self.simple_reinit()
287
+ else:
288
+ if input_tokens:
289
+ self.input_tokens = input_tokens
290
+ else:
291
+ for seq_id in range(len(self.seq_ids)):
292
+ self.input_tokens[seq_id].clear()
293
+
294
+ self.inputs_embeds = inputs_embeds
295
+
296
+ if input_positions:
297
+ self.input_positions = input_positions
298
+ else:
299
+ for seq_id in range(len(self.seq_ids)):
300
+ self.input_positions[seq_id].clear()
301
+
302
+ if token_types:
303
+ self.token_types = token_types
304
+ else:
305
+ for seq_id in range(len(self.seq_ids)):
306
+ self.token_types[seq_id].clear()
307
+
308
+ self.mrope_input_positions = None
309
+
310
+ if seq_lens:
311
+ self.seq_lens = seq_lens
312
+ else:
313
+ for seq_id in range(len(self.seq_ids)):
314
+ self.seq_lens[seq_id] = 0
315
+
316
+ if orig_seq_lens:
317
+ self.orig_seq_lens = orig_seq_lens
318
+ else:
319
+ for seq_id in range(len(self.seq_ids)):
320
+ self.orig_seq_lens[seq_id] = 0
321
+
322
+ if prompt_lens:
323
+ self.prompt_lens = prompt_lens
324
+ else:
325
+ for seq_id in range(len(self.seq_ids)):
326
+ self.prompt_lens[seq_id] = 0
327
+
328
+ if query_lens:
329
+ self.query_lens = query_lens
330
+ else:
331
+ for seq_id in range(len(self.seq_ids)):
332
+ self.query_lens[seq_id] = 0
333
+
334
+ if context_lens:
335
+ self.context_lens = context_lens
336
+ else:
337
+ for seq_id in range(len(self.seq_ids)):
338
+ self.context_lens[seq_id] = 0
339
+
340
+ if curr_sliding_window_blocks:
341
+ self.curr_sliding_window_blocks = \
342
+ curr_sliding_window_blocks
343
+ else:
344
+ for seq_id in range(len(self.seq_ids)):
345
+ self.curr_sliding_window_blocks[seq_id] = 0
346
+
347
+ if lora_index_mapping:
348
+ self.lora_index_mapping = lora_index_mapping
349
+ else:
350
+ self.lora_index_mapping.clear()
351
+
352
+ if lora_prompt_mapping:
353
+ self.lora_prompt_mapping = lora_prompt_mapping
354
+ else:
355
+ self.lora_prompt_mapping.clear()
356
+
357
+ if lora_requests:
358
+ self.lora_requests = lora_requests
359
+ else:
360
+ self.lora_requests.clear()
361
+
362
+ if prompt_adapter_index_mapping:
363
+ self.prompt_adapter_index_mapping = \
364
+ prompt_adapter_index_mapping
365
+ else:
366
+ self.prompt_adapter_index_mapping.clear()
367
+
368
+ if prompt_adapter_prompt_mapping:
369
+ self.prompt_adapter_prompt_mapping = \
370
+ prompt_adapter_prompt_mapping
371
+ else:
372
+ self.prompt_adapter_prompt_mapping.clear()
373
+
374
+ else:
375
+ self.input_tokens = input_tokens or []
376
+ self.inputs_embeds = inputs_embeds
377
+ self.input_positions = input_positions or []
378
+ self.token_types = token_types or []
379
+ self.mrope_input_positions = mrope_input_positions or None
380
+ self.seq_lens = seq_lens or []
381
+ self.orig_seq_lens = orig_seq_lens or []
382
+ self.prompt_lens = prompt_lens or []
383
+ self.query_lens = query_lens or []
384
+ self.context_lens = context_lens or []
385
+ self.curr_sliding_window_blocks = \
386
+ curr_sliding_window_blocks or []
387
+
388
+ self.lora_index_mapping = lora_index_mapping or []
389
+ self.lora_prompt_mapping = lora_prompt_mapping or []
390
+ self.lora_requests = lora_requests or set()
391
+
392
+ self.prompt_adapter_index_mapping = (
393
+ prompt_adapter_index_mapping or [])
394
+ self.prompt_adapter_prompt_mapping = (
395
+ prompt_adapter_prompt_mapping or [])
396
+
397
+ self.prompt_adapter_request = prompt_adapter_request
398
+ self.multi_modal_kwargs = multi_modal_kwargs
399
+ self.multi_modal_placeholder_maps = multi_modal_placeholder_maps
400
+ self.prefix_cache_hit = prefix_cache_hit
401
+
402
+ self.n_seqs = len(self.seq_ids)
403
+
404
+ if not reinit:
405
+ self.__post_init__()
406
+
407
+ def __post_init__(self):
408
+ self.n_seqs = len(self.seq_ids)
409
+
410
+ self.input_tokens = [[] for _ in range(self.n_seqs)]
411
+ self.input_positions = [[] for _ in range(self.n_seqs)]
412
+ self.token_types = [[] for _ in range(self.n_seqs)]
413
+ self.mrope_input_positions = None
414
+ self.seq_lens = [0] * self.n_seqs
415
+ self.orig_seq_lens = [0] * self.n_seqs
416
+ self.prompt_lens = [0] * self.n_seqs
417
+ self.query_lens = [0] * self.n_seqs
418
+ self.context_lens = [0] * self.n_seqs
419
+ self.curr_sliding_window_blocks = [0] * self.n_seqs
420
+
421
+ self.lora_index_mapping = []
422
+ self.lora_prompt_mapping = []
423
+
424
+ def __repr__(self) -> str:
425
+ return (f"InterDataForSeqGroup("
426
+ f"request_id={self.request_id}, "
427
+ f"seq_ids={self.seq_ids}, "
428
+ f"is_prompt={self.is_prompt}, "
429
+ f"block_tables={self.block_tables}, "
430
+ f"computed_block_nums={self.computed_block_nums}, "
431
+ f"n_seqs={self.n_seqs}, "
432
+ f"input_tokens={self.input_tokens}, "
433
+ f"inputs_embeds.shape="
434
+ f"{getattr(self.inputs_embeds, 'shape', None)}, "
435
+ f"input_positions={self.input_positions}, "
436
+ f"token_types={self.token_types}, "
437
+ f"mrope_input_positions={self.mrope_input_positions}, "
438
+ f"seq_lens={self.seq_lens}, "
439
+ f"orig_seq_lens={self.orig_seq_lens}, "
440
+ f"query_lens={self.query_lens}, "
441
+ f"context_lens={self.context_lens}, "
442
+ f"multi_modal_kwargs={self.multi_modal_kwargs}")
443
+
444
+ def gen_inter_data_builder(self, num_seqs: int):
445
+ return lambda: ModelInputForGPUBuilder.InterDataForSeqGroup(
446
+ request_id="",
447
+ seq_ids=[0] * num_seqs,
448
+ is_prompt=True,
449
+ block_tables=None,
450
+ computed_block_nums=[])
451
+
452
+ def init_cached_inter_data(self, *args, **kwargs):
453
+ assert len(args) == 0
454
+ assert "seq_ids" in kwargs
455
+ seq_ids = kwargs["seq_ids"]
456
+ num_seqs = len(seq_ids)
457
+
458
+ # The inter-data cache is per model_runner
459
+ inter_data_cache = self.runner.inter_data_cache
460
+ if num_seqs not in inter_data_cache:
461
+ inter_data_cache[num_seqs] = PyObjectCache(
462
+ self.gen_inter_data_builder(num_seqs))
463
+
464
+ obj = inter_data_cache[num_seqs].get_object()
465
+ obj.__init__(*args, **kwargs)
466
+ return obj
467
+
468
+ def reset_cached_inter_data(self):
469
+ for cache in self.runner.inter_data_cache.values():
470
+ cache.reset()
471
+
472
+ def __init__(self,
473
+ runner: "GPUModelRunnerBase",
474
+ finished_requests_ids: Optional[List[str]] = None):
475
+ super().__init__()
476
+ # Compute functions for each sequence in a sequence group.
477
+ # WARNING: The order of the functions matters!
478
+ self.per_seq_compute_fns = [
479
+ self._compute_lens,
480
+ self._compute_for_prefix_cache_hit,
481
+ self._compute_for_sliding_window,
482
+ self._compute_lora_input,
483
+ ]
484
+ # Compute functions for each sequence group.
485
+ # WARNING: The order of the functions matters!
486
+ self.per_seq_group_compute_fns = [
487
+ self._compute_prompt_adapter_input,
488
+ self._compute_multi_modal_input,
489
+ ]
490
+
491
+ self.runner = runner
492
+ self.model_input_cls = self.runner._model_input_cls
493
+ self.attn_backend = self.runner.attn_backend
494
+ self.scheduler_config = self.runner.scheduler_config
495
+ self.sliding_window = self.runner.sliding_window
496
+ self.block_size = self.runner.block_size
497
+ self.enable_lora = self.runner.lora_config is not None
498
+ self.enable_prompt_adapter = (self.runner.prompt_adapter_config
499
+ is not None)
500
+
501
+ # Attention metadata inputs.
502
+ if self.attn_backend is not None:
503
+ # spec decode (e.g. Medusa) does not have atten backend
504
+ self.attn_metadata_builder = self.attn_backend.get_builder_cls()(
505
+ weakref.proxy(self))
506
+
507
+ # Engine/Model configurations.
508
+ self.chunked_prefill_enabled = (
509
+ self.scheduler_config is not None
510
+ and self.scheduler_config.chunked_prefill_enabled)
511
+ if self.sliding_window is not None:
512
+ self.sliding_window_blocks = (
513
+ self.sliding_window + self.block_size - 1) // self.block_size
514
+ self.block_aligned_sliding_window = \
515
+ self.sliding_window_blocks * self.block_size
516
+
517
+ def prepare(self,
518
+ finished_requests_ids: Optional[List[str]] = None) -> None:
519
+ self.finished_requests_ids = finished_requests_ids
520
+
521
+ # if the current batch is decode-only.
522
+ # will be set to False if there is any non-decode request.
523
+ self.decode_only = True
524
+
525
+ # Intermediate data (data in CPU before going to GPU) for
526
+ # the current sequence group.
527
+ self.inter_data_list: List[
528
+ ModelInputForGPUBuilder.InterDataForSeqGroup] = []
529
+
530
+ self.attn_metadata_builder.prepare()
531
+
532
+ def _compute_lens(self, inter_data: InterDataForSeqGroup, seq_idx: int,
533
+ seq_group_metadata: SequenceGroupMetadata):
534
+ """Compute context length, sequence length and tokens
535
+ for the given sequence data.
536
+ """
537
+ seq_data = seq_group_metadata.seq_data[inter_data.seq_ids[seq_idx]]
538
+ token_chunk_size = seq_group_metadata.token_chunk_size
539
+
540
+ # Compute context length (the number of tokens that are
541
+ # already computed) and sequence length (total number of tokens).
542
+
543
+ seq_len = seq_data.get_len()
544
+ if inter_data.is_prompt:
545
+ context_len = seq_data.get_num_computed_tokens()
546
+ seq_len = min(seq_len, context_len + token_chunk_size)
547
+ elif self.runner.scheduler_config.is_multi_step or \
548
+ self.runner.model_config.is_encoder_decoder:
549
+ context_len = seq_len - 1
550
+ else:
551
+ context_len = seq_data.get_num_computed_tokens()
552
+
553
+ # Compute tokens.
554
+ if seq_data.prompt_embeds is None:
555
+ tokens = seq_data.get_token_ids()[context_len:seq_len]
556
+ prompt_embeds = None
557
+ else:
558
+ tokens = [0] * (seq_len - context_len)
559
+ prompt_embeds = seq_data.get_token_embeddings(
560
+ )[context_len:seq_len]
561
+
562
+ token_types = seq_group_metadata.token_type_ids
563
+
564
+ inter_data.seq_lens[seq_idx] = seq_len
565
+ inter_data.orig_seq_lens[seq_idx] = seq_len
566
+ inter_data.prompt_lens[seq_idx] = seq_data.get_prompt_len()
567
+ inter_data.context_lens[seq_idx] = context_len
568
+ inter_data.input_tokens[seq_idx].extend(tokens)
569
+ inter_data.inputs_embeds = prompt_embeds
570
+ inter_data.input_positions[seq_idx].extend(range(context_len, seq_len))
571
+ inter_data.token_types[seq_idx].extend(
572
+ token_types if token_types else [])
573
+ inter_data.query_lens[seq_idx] = seq_len - context_len
574
+
575
+ if seq_data.mrope_position_delta is not None:
576
+ if inter_data.mrope_input_positions is None:
577
+ inter_data.mrope_input_positions = [None] * inter_data.n_seqs
578
+
579
+ inter_data.mrope_input_positions[
580
+ seq_idx] = MRotaryEmbedding.get_next_input_positions(
581
+ seq_data.mrope_position_delta,
582
+ context_len,
583
+ seq_len,
584
+ )
585
+
586
+ def _compute_for_prefix_cache_hit(
587
+ self, inter_data: InterDataForSeqGroup, seq_idx: int,
588
+ seq_group_metadata: SequenceGroupMetadata):
589
+ """Check if hit prefix cache (i.e., some blocks are already computed).
590
+ If hit, update input tokens and positions to only compute the
591
+ remaining blocks.
592
+ """
593
+ computed_block_nums = inter_data.computed_block_nums
594
+
595
+ # Note that prefix caching does not support sliding window.
596
+ prefix_cache_hit = (computed_block_nums is not None
597
+ and len(computed_block_nums) > 0
598
+ and self.sliding_window is None
599
+ and inter_data.is_prompt)
600
+ inter_data.prefix_cache_hit = prefix_cache_hit
601
+
602
+ if not prefix_cache_hit:
603
+ return
604
+
605
+ assert computed_block_nums is not None
606
+ # The cache hit prompt tokens in this sequence. Note that
607
+ # this may be larger than the sequence length if chunked
608
+ # prefill is enabled.
609
+ prefix_cache_len = len(computed_block_nums) * self.block_size
610
+ seq_group_metadata.seq_data[inter_data.seq_ids[
611
+ seq_idx]].update_num_cached_tokens(prefix_cache_len)
612
+
613
+ # The number of so far computed prompt tokens in this sequence.
614
+ context_len = inter_data.context_lens[seq_idx]
615
+ # The total number of prompt tokens in this sequence.
616
+ # When chunked prefill is enabled, this is the token number of
617
+ # computed chunks + current chunk.
618
+ seq_len = inter_data.seq_lens[seq_idx]
619
+ if prefix_cache_len <= context_len:
620
+ # We already passed the cache hit region,
621
+ # so do normal computation.
622
+ pass
623
+ elif context_len < prefix_cache_len < seq_len:
624
+ # Partial hit. Compute the missing part.
625
+ uncomputed_start = prefix_cache_len - context_len
626
+ inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
627
+ seq_idx][uncomputed_start:]
628
+ inter_data.input_positions[seq_idx] = inter_data.input_positions[
629
+ seq_idx][uncomputed_start:]
630
+ inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
631
+ uncomputed_start:]
632
+ context_len = prefix_cache_len
633
+
634
+ inter_data.context_lens[seq_idx] = context_len
635
+ inter_data.query_lens[
636
+ seq_idx] = inter_data.seq_lens[seq_idx] - context_len
637
+ elif seq_len <= prefix_cache_len:
638
+ # Full hit. Only compute the last token to avoid
639
+ # erroneous behavior. FIXME: Ideally we should directly
640
+ # mark all tokens as computed in the scheduler and do not
641
+ # schedule this sequence, so this case should not happen.
642
+ inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
643
+ seq_idx][-1:]
644
+ inter_data.input_positions[seq_idx] = inter_data.input_positions[
645
+ seq_idx][-1:]
646
+ inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
647
+ -1:]
648
+ inter_data.query_lens[seq_idx] = 1
649
+ inter_data.context_lens[seq_idx] = inter_data.seq_lens[seq_idx] - 1
650
+
651
+ def _compute_for_sliding_window(self, inter_data: InterDataForSeqGroup,
652
+ seq_idx: int,
653
+ seq_group_metadata: SequenceGroupMetadata):
654
+ """Update seq_len and curr_sliding_window_block for the given
655
+ sequence data (only required by decoding) if sliding window is enabled.
656
+ """
657
+ curr_sliding_window_block = 0
658
+ sliding_seq_len = inter_data.seq_lens[seq_idx]
659
+ if not inter_data.is_prompt and self.sliding_window is not None:
660
+ # TODO(sang): This is a hack to make sliding window work with
661
+ # paged attn. We can remove it if we make paged attn kernel
662
+ # to properly handle slinding window attn.
663
+ curr_sliding_window_block = self.sliding_window_blocks
664
+ # number of elements in last block
665
+ suff_len = inter_data.seq_lens[seq_idx] % self.block_size
666
+ sliding_seq_len = min(inter_data.seq_lens[seq_idx],
667
+ self.block_aligned_sliding_window + suff_len)
668
+ if suff_len > 0:
669
+ curr_sliding_window_block += 1
670
+
671
+ inter_data.curr_sliding_window_blocks[
672
+ seq_idx] = curr_sliding_window_block
673
+ inter_data.seq_lens[seq_idx] = sliding_seq_len
674
+
675
+ def _compute_lora_input(self, inter_data: InterDataForSeqGroup,
676
+ seq_idx: int,
677
+ seq_group_metadata: SequenceGroupMetadata):
678
+ """If LoRA is enabled, compute LoRA index and prompt mapping."""
679
+ if not self.enable_lora:
680
+ return
681
+
682
+ lora_id = seq_group_metadata.lora_int_id
683
+ if lora_id > 0:
684
+ inter_data.lora_requests.add(seq_group_metadata.lora_request)
685
+ query_len = inter_data.query_lens[seq_idx]
686
+ inter_data.lora_index_mapping.append([lora_id] * query_len)
687
+ sampling_params = seq_group_metadata.sampling_params
688
+ if sampling_params and sampling_params.prompt_logprobs is not None:
689
+ inter_data.lora_prompt_mapping.append([lora_id] * query_len)
690
+ elif not self.chunked_prefill_enabled or seq_group_metadata.do_sample:
691
+ inter_data.lora_prompt_mapping.append([lora_id])
692
+ else:
693
+ inter_data.lora_prompt_mapping.append([])
694
+
695
+ def _compute_prompt_adapter_input(
696
+ self, inter_data: InterDataForSeqGroup,
697
+ seq_group_metadata: SequenceGroupMetadata):
698
+ """If prompt adapter is enabled, compute index and prompt mapping.
699
+ """
700
+ # Note that when is_prompt=True, we expect only one sequence
701
+ # in the group.
702
+ if not self.enable_prompt_adapter:
703
+ return
704
+
705
+ prompt_adapter_id = seq_group_metadata.prompt_adapter_id
706
+ if prompt_adapter_id <= 0 or not inter_data.is_prompt:
707
+ return
708
+
709
+ # We expect only one sequence in the group when is_prompt=True.
710
+ assert inter_data.n_seqs == 1
711
+ query_len = inter_data.query_lens[0]
712
+ inter_data.prompt_adapter_request = (
713
+ seq_group_metadata.prompt_adapter_request)
714
+
715
+ num_tokens = seq_group_metadata.prompt_adapter_num_virtual_tokens
716
+ inter_data.prompt_adapter_index_mapping = [
717
+ prompt_adapter_id
718
+ ] * num_tokens + [0] * (query_len - num_tokens)
719
+ inter_data.prompt_adapter_prompt_mapping = [prompt_adapter_id] * (
720
+ query_len if seq_group_metadata.sampling_params
721
+ and seq_group_metadata.sampling_params.prompt_logprobs else 1)
722
+
723
+ def _compute_multi_modal_input(self, inter_data: InterDataForSeqGroup,
724
+ seq_group_metadata: SequenceGroupMetadata):
725
+ """If multi-modal data is given, add it to the input."""
726
+ # NOTE: mm_kwargs only includes the subset of multi-modal items that
727
+ # intersect with the current prefill positions.
728
+ positions = inter_data.input_positions[0]
729
+ mm_kwargs, placeholder_maps = MultiModalPlaceholderMap.from_seq_group(
730
+ seq_group_metadata,
731
+ range(positions[0], positions[0] + len(positions)))
732
+
733
+ # M-RoPE requires mrope_positions even for plain text; return early
734
+ # when mm_kwargs is empty only if inter_data.is_prompt is False.
735
+ if not mm_kwargs and not inter_data.is_prompt:
736
+ return
737
+
738
+ inter_data.multi_modal_kwargs = mm_kwargs
739
+ inter_data.multi_modal_placeholder_maps = placeholder_maps
740
+
741
+ # special processing for mrope position deltas.
742
+ if self.runner.model_config.uses_mrope:
743
+ image_grid_thw = mm_kwargs.get("image_grid_thw", None)
744
+ video_grid_thw = mm_kwargs.get("video_grid_thw", None)
745
+ audio_feature_lengths = mm_kwargs.get("audio_feature_lengths",
746
+ None)
747
+
748
+ second_per_grid_ts = mm_kwargs.get("second_per_grid_ts", None)
749
+ use_audio_in_video = mm_kwargs.get("use_audio_in_video", False)
750
+ hf_config = self.runner.model_config.hf_config
751
+
752
+ inter_data.mrope_input_positions = [None] * inter_data.n_seqs
753
+ for seq_idx in range(inter_data.n_seqs):
754
+ seq_data = seq_group_metadata.seq_data[
755
+ inter_data.seq_ids[seq_idx]]
756
+ token_ids = seq_data.get_token_ids()
757
+
758
+ mrope_input_positions, mrope_position_delta = \
759
+ MRotaryEmbedding.get_input_positions(
760
+ token_ids,
761
+ hf_config=hf_config,
762
+ image_grid_thw=image_grid_thw,
763
+ video_grid_thw=video_grid_thw,
764
+ second_per_grid_ts=second_per_grid_ts,
765
+ context_len=inter_data.context_lens[seq_idx],
766
+ seq_len=inter_data.seq_lens[seq_idx],
767
+ audio_feature_lengths=audio_feature_lengths,
768
+ use_audio_in_video=use_audio_in_video,
769
+ )
770
+
771
+ seq_data.mrope_position_delta = mrope_position_delta
772
+ inter_data.mrope_input_positions[
773
+ seq_idx] = mrope_input_positions
774
+
775
+ def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
776
+ """Add a sequence group to the builder."""
777
+ seq_ids = seq_group_metadata.seq_data.keys()
778
+ n_seqs = len(seq_ids)
779
+ is_prompt = seq_group_metadata.is_prompt
780
+
781
+ if is_prompt:
782
+ assert n_seqs == 1
783
+ self.decode_only = False
784
+
785
+ encoder_seq_len = 0
786
+
787
+ if self.runner.model_config.is_encoder_decoder:
788
+ encoder_seq_len = seq_group_metadata.encoder_seq_data.get_len()
789
+
790
+ inter_data = self.init_cached_inter_data(
791
+ request_id=seq_group_metadata.request_id,
792
+ seq_ids=seq_ids,
793
+ is_prompt=is_prompt,
794
+ block_tables=seq_group_metadata.block_tables,
795
+ computed_block_nums=seq_group_metadata.computed_block_nums,
796
+ reinit=True,
797
+ reinit_use_defaults=True,
798
+ encoder_seq_len=encoder_seq_len)
799
+
800
+ self.inter_data_list.append(inter_data)
801
+
802
+ for seq_idx in range(n_seqs):
803
+ for per_seq_fn in self.per_seq_compute_fns:
804
+ per_seq_fn(inter_data, seq_idx, seq_group_metadata)
805
+ for per_seq_group_fn in self.per_seq_group_compute_fns:
806
+ per_seq_group_fn(inter_data, seq_group_metadata)
807
+
808
+ def _use_captured_graph(self,
809
+ batch_size: int,
810
+ decode_only: bool,
811
+ max_decode_seq_len: int,
812
+ max_encoder_seq_len: int = 0) -> bool:
813
+ return (decode_only and not self.runner.model_config.enforce_eager
814
+ and max_decode_seq_len <= self.runner.max_seq_len_to_capture
815
+ and max_encoder_seq_len <= self.runner.max_seq_len_to_capture
816
+ and batch_size <= self.runner.max_batchsize_to_capture)
817
+
818
+ def _get_cuda_graph_pad_size(self,
819
+ num_seqs: int,
820
+ max_decode_seq_len: int,
821
+ max_encoder_seq_len: int = 0) -> int:
822
+ """
823
+ Determine the number of padding sequences required for running in
824
+ CUDA graph mode. Returns -1 if CUDA graphs cannot be used.
825
+
826
+ In the multi-step + chunked-prefill case, only the first step
827
+ has Prefills (if any). The rest of the steps are guaranteed to be all
828
+ decodes. In this case, we set up the padding as if all the sequences
829
+ are decodes so we may run all steps except the first step in CUDA graph
830
+ mode. The padding is accounted for in the multi-step `advance_step`
831
+ family of functions.
832
+
833
+ Args:
834
+ num_seqs (int): Number of sequences scheduled to run.
835
+ max_decode_seq_len (int): Greatest of all the decode sequence
836
+ lengths. Used only in checking the viablility of using
837
+ CUDA graphs.
838
+ max_encoder_seq_len (int, optional): Greatest of all the encode
839
+ sequence lengths. Defaults to 0. Used only in checking the
840
+ viability of using CUDA graphs.
841
+ Returns:
842
+ int: Returns the determined number of padding sequences. If
843
+ CUDA graphs is not viable, returns -1.
844
+ """
845
+ is_mscp: bool = self.runner.scheduler_config.is_multi_step and \
846
+ self.runner.scheduler_config.chunked_prefill_enabled
847
+ decode_only = self.decode_only or is_mscp
848
+ if not decode_only:
849
+ # Early exit so we can treat num_seqs as the batch_size below.
850
+ return -1
851
+
852
+ # batch_size out of this function refers to the number of input
853
+ # tokens being scheduled. This conflation of num_seqs as batch_size
854
+ # is valid as this is a decode-only case.
855
+ batch_size = num_seqs
856
+ if not self._use_captured_graph(batch_size, decode_only,
857
+ max_decode_seq_len,
858
+ max_encoder_seq_len):
859
+ return -1
860
+
861
+ graph_batch_size = self.runner.vllm_config.pad_for_cudagraph(
862
+ batch_size)
863
+ assert graph_batch_size >= batch_size
864
+ return graph_batch_size - batch_size
865
+
866
+ def build(self) -> ModelInputForGPU:
867
+ """Finalize the builder intermediate data and
868
+ create on-device tensors.
869
+ """
870
+ # Combine and flatten intermediate data.
871
+ input_tokens = list[int]()
872
+ inputs_embeds_list = list[torch.Tensor]()
873
+ token_types = list[int]()
874
+ for inter_data in self.inter_data_list:
875
+ for cur_input_tokens in inter_data.input_tokens:
876
+ input_tokens.extend(cur_input_tokens)
877
+ for cur_token_types in inter_data.token_types:
878
+ token_types.extend(cur_token_types)
879
+ if inter_data.inputs_embeds is not None:
880
+ inputs_embeds_list.append(
881
+ inter_data.inputs_embeds.to(
882
+ dtype=self.runner.model_config.dtype,
883
+ device=self.runner.device))
884
+ inputs_embeds: Optional[torch.Tensor]
885
+ if len(inputs_embeds_list) == 0:
886
+ inputs_embeds = None
887
+ else:
888
+ inputs_embeds = torch.cat(inputs_embeds_list, dim=0).to(
889
+ dtype=self.runner.model_config.dtype,
890
+ device=self.runner.device)
891
+ assert len(inputs_embeds) == len(input_tokens)
892
+
893
+ if not input_tokens and inputs_embeds is None:
894
+ # This may happen when all prefill requests hit
895
+ # prefix caching and there is no decode request.
896
+ return self.model_input_cls()
897
+
898
+ mrope_input_positions: Optional[List[List[int]]] = None
899
+ if any(inter_data.mrope_input_positions is not None
900
+ for inter_data in self.inter_data_list):
901
+ mrope_input_positions = [[] for _ in range(3)]
902
+ for idx in range(3):
903
+ for inter_data in self.inter_data_list:
904
+ msections = inter_data.mrope_input_positions
905
+ if msections is None:
906
+ for _seq_input_positions in inter_data.input_positions:
907
+ mrope_input_positions[idx].extend(
908
+ _seq_input_positions)
909
+ else:
910
+ for _seq_mrope_input_positions in msections:
911
+ mrope_input_positions[idx].extend(
912
+ _seq_mrope_input_positions[idx])
913
+ input_positions = None
914
+ else:
915
+ input_positions = []
916
+ for inter_data in self.inter_data_list:
917
+ for cur_input_positions in inter_data.input_positions:
918
+ input_positions.extend(cur_input_positions)
919
+
920
+ seq_lens = []
921
+ query_lens = []
922
+ max_decode_seq_len = 0
923
+ max_encoder_seq_len = 0
924
+ for inter_data in self.inter_data_list:
925
+ seq_lens.extend(inter_data.seq_lens)
926
+ query_lens.extend(inter_data.query_lens)
927
+ if not inter_data.is_prompt:
928
+ max_decode_seq_len = max(max_decode_seq_len,
929
+ max(inter_data.seq_lens))
930
+ if self.runner.model_config.is_encoder_decoder:
931
+ max_encoder_seq_len = max(max_encoder_seq_len,
932
+ inter_data.encoder_seq_len)
933
+
934
+ # Mapping from request IDs to sequence IDs. Used for Jamba models
935
+ # that manages the cache by itself.
936
+ request_ids_to_seq_ids = {
937
+ data.request_id: data.seq_ids
938
+ for data in self.inter_data_list
939
+ }
940
+
941
+ cuda_graph_pad_size = self._get_cuda_graph_pad_size(
942
+ num_seqs=len(seq_lens),
943
+ max_decode_seq_len=max_decode_seq_len,
944
+ max_encoder_seq_len=max_encoder_seq_len)
945
+
946
+ batch_size = len(input_tokens)
947
+ if cuda_graph_pad_size != -1:
948
+ # If cuda graph can be used, pad tensors accordingly.
949
+ # See `capture_model` API for more details.
950
+ # vLLM uses cuda graph only for decoding requests.
951
+ batch_size += cuda_graph_pad_size
952
+
953
+ # Tokens and positions.
954
+ if cuda_graph_pad_size:
955
+ input_tokens.extend(itertools.repeat(0, cuda_graph_pad_size))
956
+ assert self.runner.device is not None
957
+ input_tokens_tensor = async_tensor_h2d(input_tokens, torch.long,
958
+ self.runner.device,
959
+ self.runner.pin_memory)
960
+
961
+ token_types_tensor = async_tensor_h2d(token_types, torch.long,
962
+ self.runner.device,
963
+ self.runner.pin_memory) \
964
+ if token_types else None
965
+
966
+ if mrope_input_positions is not None:
967
+ for idx in range(3):
968
+ mrope_input_positions[idx].extend(
969
+ itertools.repeat(0, cuda_graph_pad_size))
970
+ input_positions_tensor = async_tensor_h2d(mrope_input_positions,
971
+ torch.long,
972
+ self.runner.device,
973
+ self.runner.pin_memory)
974
+ else:
975
+ input_positions.extend(itertools.repeat(0, cuda_graph_pad_size))
976
+ input_positions_tensor = async_tensor_h2d(input_positions,
977
+ torch.long,
978
+ self.runner.device,
979
+ self.runner.pin_memory)
980
+ # Sequence and query lengths.
981
+ if cuda_graph_pad_size:
982
+ seq_lens.extend(itertools.repeat(1, cuda_graph_pad_size))
983
+
984
+ # Attention metadata.
985
+ attn_metadata = self.attn_metadata_builder.build(
986
+ seq_lens, query_lens, cuda_graph_pad_size, batch_size)
987
+
988
+ # LoRA data.
989
+ lora_requests = set()
990
+ lora_mapping = None
991
+ if self.enable_lora:
992
+ lora_requests = set(r for data in self.inter_data_list
993
+ for r in data.lora_requests)
994
+ lora_index_mapping = flatten_2d_lists([
995
+ flatten_2d_lists(inter_data.lora_index_mapping)
996
+ for inter_data in self.inter_data_list
997
+ ])
998
+ if cuda_graph_pad_size:
999
+ lora_index_mapping.extend(
1000
+ itertools.repeat(0, cuda_graph_pad_size))
1001
+ lora_prompt_mapping = flatten_2d_lists([
1002
+ flatten_2d_lists(inter_data.lora_prompt_mapping)
1003
+ for inter_data in self.inter_data_list
1004
+ ])
1005
+
1006
+ lora_mapping = LoRAMapping(
1007
+ **dict(index_mapping=lora_index_mapping,
1008
+ prompt_mapping=lora_prompt_mapping,
1009
+ is_prefill=not self.decode_only))
1010
+
1011
+ # Prompt adapter data.
1012
+ prompt_adapter_requests: Set[PromptAdapterRequest] = set()
1013
+ prompt_adapter_mapping = None
1014
+ if self.enable_prompt_adapter:
1015
+ prompt_adapter_requests = set(
1016
+ data.prompt_adapter_request for data in self.inter_data_list
1017
+ if data.prompt_adapter_request is not None)
1018
+ prompt_adapter_index_mapping = flatten_2d_lists([
1019
+ inter_data.prompt_adapter_index_mapping
1020
+ for inter_data in self.inter_data_list
1021
+ ])
1022
+ if cuda_graph_pad_size:
1023
+ prompt_adapter_index_mapping.extend(
1024
+ itertools.repeat(0, cuda_graph_pad_size))
1025
+ prompt_adapter_prompt_mapping = flatten_2d_lists([
1026
+ inter_data.prompt_adapter_prompt_mapping
1027
+ for inter_data in self.inter_data_list
1028
+ ])
1029
+ prompt_adapter_mapping = PromptAdapterMapping(
1030
+ prompt_adapter_index_mapping,
1031
+ prompt_adapter_prompt_mapping,
1032
+ )
1033
+
1034
+ # Multi-modal data.
1035
+ multi_modal_kwargs_list = [
1036
+ data.multi_modal_kwargs for data in self.inter_data_list
1037
+ if data.multi_modal_kwargs is not None
1038
+ ]
1039
+ multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
1040
+
1041
+ return self.model_input_cls(
1042
+ input_tokens=input_tokens_tensor,
1043
+ inputs_embeds=inputs_embeds,
1044
+ input_positions=input_positions_tensor,
1045
+ token_types=token_types_tensor,
1046
+ attn_metadata=attn_metadata,
1047
+ seq_lens=seq_lens,
1048
+ query_lens=query_lens,
1049
+ lora_mapping=lora_mapping,
1050
+ lora_requests=lora_requests,
1051
+ multi_modal_kwargs=multi_modal_kwargs,
1052
+ request_ids_to_seq_ids=request_ids_to_seq_ids,
1053
+ finished_requests_ids=self.finished_requests_ids,
1054
+ prompt_adapter_mapping=prompt_adapter_mapping,
1055
+ prompt_adapter_requests=prompt_adapter_requests)
1056
+
1057
+
1058
+ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
1059
+ """
1060
+ Helper class for shared methods between GPU model runners.
1061
+ """
1062
+ _model_input_cls: Type[TModelInputForGPU]
1063
+ _builder_cls: Type[ModelInputForGPUBuilder]
1064
+ builder: ModelInputForGPUBuilder
1065
+
1066
+ def __init__(
1067
+ self,
1068
+ vllm_config: VllmConfig,
1069
+ kv_cache_dtype: Optional[str] = "auto",
1070
+ is_driver_worker: bool = False,
1071
+ return_hidden_states: bool = False,
1072
+ input_registry: InputRegistry = INPUT_REGISTRY,
1073
+ mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
1074
+ ):
1075
+
1076
+ ModelRunnerBase.__init__(self, vllm_config)
1077
+ model_config = self.model_config
1078
+ cache_config = self.cache_config
1079
+
1080
+ self.is_driver_worker = is_driver_worker
1081
+ self.return_hidden_states = return_hidden_states
1082
+
1083
+ self.device = self.device_config.device
1084
+ self.pin_memory = is_pin_memory_available()
1085
+
1086
+ self.kv_cache_dtype = kv_cache_dtype
1087
+ self.sliding_window = model_config.get_sliding_window()
1088
+ self.block_size = cache_config.block_size
1089
+ self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture
1090
+ self.max_batchsize_to_capture = \
1091
+ self.vllm_config.compilation_config.max_capture_size
1092
+
1093
+ #
1094
+ self.graph_runners: List[Dict[Tuple[int, bool], CUDAGraphRunner]] = [
1095
+ {} for _ in range(self.parallel_config.pipeline_parallel_size)
1096
+ ]
1097
+ self.graph_memory_pool: Optional[Tuple[
1098
+ int, int]] = None # Set during graph capture.
1099
+
1100
+ self.has_inner_state = model_config.has_inner_state
1101
+
1102
+ self.in_profile_run = False
1103
+
1104
+ # When using CUDA graph, the input block tables must be padded to
1105
+ # max_seq_len_to_capture. However, creating the block table in
1106
+ # Python can be expensive. To optimize this, we cache the block table
1107
+ # in numpy and only copy the actual input content at every iteration.
1108
+ # The shape of the cached block table will be
1109
+ # (max batch size to capture, max seq len to capture / block size).
1110
+ self.graph_block_tables = np.zeros(
1111
+ (self.max_batchsize_to_capture, self.get_max_block_per_batch()),
1112
+ dtype=np.int32)
1113
+
1114
+ # Attention-free but stateful models like Mamba need a placeholder attn
1115
+ # backend, as the attention metadata is needed to manage internal state.
1116
+ # However we must bypass attention selection altogether for some models
1117
+ # used for speculative decoding to avoid a divide-by-zero in
1118
+ # model_config.get_head_size()
1119
+ num_attn_heads = self.model_config.get_num_attention_heads(
1120
+ self.parallel_config)
1121
+ needs_attn_backend = (num_attn_heads != 0
1122
+ or self.model_config.is_attention_free)
1123
+
1124
+ self.attn_backend = get_attn_backend(
1125
+ self.model_config.get_head_size(),
1126
+ self.model_config.dtype,
1127
+ self.kv_cache_dtype,
1128
+ self.block_size,
1129
+ self.model_config.is_attention_free,
1130
+ use_mla=self.model_config.use_mla,
1131
+ ) if needs_attn_backend else None
1132
+ if self.attn_backend:
1133
+ self.attn_state = self.attn_backend.get_state_cls()(
1134
+ weakref.proxy(self))
1135
+ else:
1136
+ self.attn_state = CommonAttentionState(weakref.proxy(self))
1137
+
1138
+ # Multi-modal data support
1139
+ self.input_registry = input_registry
1140
+ self.mm_registry = mm_registry
1141
+
1142
+ # Lazy initialization
1143
+ self.model: nn.Module # Set after load_model
1144
+ # Set after load_model.
1145
+ self.lora_manager: Optional[LRUCacheWorkerLoRAManager] = None
1146
+ self.prompt_adapter_manager: LRUCacheWorkerPromptAdapterManager = None
1147
+ self.sampler = get_sampler()
1148
+
1149
+ set_cpu_offload_max_bytes(
1150
+ int(self.cache_config.cpu_offload_gb * 1024**3))
1151
+
1152
+ # Used to cache python objects
1153
+ self.inter_data_cache: Dict[int, PyObjectCache] = {}
1154
+
1155
+ # Using the PythonizationCache in Pipeline-Parallel clobbers the
1156
+ # SequenceGroupToSample object. In Pipeline-Parallel, we have
1157
+ # more than 1 Scheduler, resulting in a potential back-to-back
1158
+ # prepare_model_inputs() call. This clobbers the cached
1159
+ # SequenceGroupToSample objects, as we reset the cache during
1160
+ # every prepare_model_inputs() call.
1161
+ self.sampling_metadata_cache: SamplingMetadataCache = \
1162
+ SamplingMetadataCache() \
1163
+ if self.parallel_config.pipeline_parallel_size == 1 else None
1164
+
1165
+ if hasattr(self, "_builder_cls"):
1166
+ # multi-step model runner does not have `_builder_cls`
1167
+ self.builder = self._builder_cls(weakref.proxy(self))
1168
+
1169
+ def load_model(self) -> None:
1170
+ logger.info("Starting to load model %s...", self.model_config.model)
1171
+ with DeviceMemoryProfiler(self.device) as m:
1172
+ time_before_load = time.perf_counter()
1173
+ self.model = get_model(vllm_config=self.vllm_config)
1174
+ if self.lora_config:
1175
+ assert supports_lora(
1176
+ self.model
1177
+ ), f"{self.model.__class__.__name__} does not support LoRA yet."
1178
+
1179
+ if supports_multimodal(self.model):
1180
+ logger.warning(
1181
+ "Regarding multimodal models, vLLM currently "
1182
+ "only supports adding LoRA to language model.")
1183
+
1184
+ # Use get_text_config() in case of multimodal models
1185
+ text_config = self.model_config.hf_config.get_text_config()
1186
+
1187
+ self.lora_manager = LRUCacheWorkerLoRAManager(
1188
+ self.scheduler_config.max_num_seqs,
1189
+ self.scheduler_config.max_num_batched_tokens,
1190
+ self.vocab_size,
1191
+ self.lora_config,
1192
+ self.device,
1193
+ self.model.embedding_modules,
1194
+ self.model.embedding_padding_modules,
1195
+ max_position_embeddings=text_config.
1196
+ max_position_embeddings,
1197
+ )
1198
+ self.model = self.lora_manager.create_lora_manager(self.model)
1199
+ time_after_load = time.perf_counter()
1200
+
1201
+ self.model_memory_usage = m.consumed_memory
1202
+ logger.info("Model loading took %.4f GiB and %.6f seconds",
1203
+ self.model_memory_usage / GiB_bytes,
1204
+ time_after_load - time_before_load)
1205
+ if self.prompt_adapter_config:
1206
+ self.prompt_adapter_manager = LRUCacheWorkerPromptAdapterManager(
1207
+ self.scheduler_config.max_num_seqs,
1208
+ self.scheduler_config.max_num_batched_tokens, self.device,
1209
+ self.prompt_adapter_config)
1210
+ self.model = (
1211
+ self.prompt_adapter_manager.create_prompt_adapter_manager(
1212
+ self.model))
1213
+
1214
+ if self.vllm_config.compilation_config.level ==\
1215
+ CompilationLevel.DYNAMO_AS_IS and supports_dynamo():
1216
+ backend = self.vllm_config.compilation_config.init_backend(
1217
+ self.vllm_config)
1218
+ self.model = torch.compile(
1219
+ self.model,
1220
+ fullgraph=envs.VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE,
1221
+ backend=backend)
1222
+
1223
+ def get_model(self) -> nn.Module:
1224
+ return self.model
1225
+
1226
+ def save_sharded_state(
1227
+ self,
1228
+ path: str,
1229
+ pattern: Optional[str] = None,
1230
+ max_size: Optional[int] = None,
1231
+ ) -> None:
1232
+ from vllm.model_executor.model_loader import ShardedStateLoader
1233
+ ShardedStateLoader.save_model(
1234
+ self.model,
1235
+ path,
1236
+ pattern=pattern,
1237
+ max_size=max_size,
1238
+ )
1239
+
1240
+ def save_tensorized_model(
1241
+ self,
1242
+ tensorizer_config: TensorizerConfig,
1243
+ ) -> None:
1244
+ from vllm.model_executor.model_loader import TensorizerLoader
1245
+ TensorizerLoader.save_model(
1246
+ self.model,
1247
+ tensorizer_config=tensorizer_config,
1248
+ )
1249
+
1250
+ def get_max_block_per_batch(self) -> int:
1251
+ block_size = self.block_size
1252
+ return (self.max_seq_len_to_capture + block_size - 1) // block_size
1253
+
1254
+ def _prepare_model_input_tensors(
1255
+ self,
1256
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1257
+ finished_requests_ids: Optional[List[str]] = None
1258
+ ) -> TModelInputForGPU:
1259
+ """Helper method to prepare the model input based on a given sequence
1260
+ group. Prepares metadata needed for the base model forward pass but not
1261
+ metadata for possible additional steps, e.g., sampling.
1262
+
1263
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1264
+
1265
+ The result tensors and data structure also batches input in prefill
1266
+ -> decode order. For example,
1267
+
1268
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1269
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1270
+
1271
+ If cuda graph is required, this API automatically pads inputs.
1272
+ """
1273
+ self.builder.prepare(finished_requests_ids)
1274
+ for seq_group_metadata in seq_group_metadata_list:
1275
+ try:
1276
+ self.builder.add_seq_group(seq_group_metadata)
1277
+ except Exception as e:
1278
+ # Raise an exception that tracks the ID of the bad request
1279
+ raise InputProcessingError(seq_group_metadata.request_id,
1280
+ str(e)) from e
1281
+
1282
+ self.builder.reset_cached_inter_data()
1283
+
1284
+ return self.builder.build() # type: ignore
1285
+
1286
+ @contextmanager
1287
+ def set_in_profile_run(self):
1288
+ self.in_profile_run = True
1289
+ try:
1290
+ yield
1291
+ finally:
1292
+ self.in_profile_run = False
1293
+
1294
+ @torch.inference_mode()
1295
+ def profile_run(self) -> None:
1296
+ max_num_batched_tokens = \
1297
+ self.scheduler_config.max_num_batched_tokens
1298
+ max_num_seqs = self.scheduler_config.max_num_seqs
1299
+ self._dummy_run(max_num_batched_tokens, max_num_seqs)
1300
+
1301
+ def _add_dummy_loras(self, num_loras: int) -> list[LoRARequest]:
1302
+ assert num_loras > 0
1303
+ assert self.lora_manager is not None
1304
+
1305
+ dummy_lora_requests: list[LoRARequest] = []
1306
+ with self.lora_manager.dummy_lora_cache():
1307
+ for idx in range(num_loras):
1308
+ lora_id = idx + 1
1309
+ dummy_lora_request = LoRARequest(
1310
+ lora_name=f"warmup_{lora_id}",
1311
+ lora_int_id=lora_id,
1312
+ lora_path="/not/a/real/path",
1313
+ )
1314
+ self.lora_manager.add_dummy_lora(dummy_lora_request,
1315
+ rank=LORA_WARMUP_RANK)
1316
+ dummy_lora_requests.append(dummy_lora_request)
1317
+ return dummy_lora_requests
1318
+
1319
+ def _remove_dummy_loras(self):
1320
+ # Remove dummy loras.
1321
+ assert self.lora_manager is not None
1322
+ self.remove_all_loras()
1323
+
1324
+ def _dummy_run(self,
1325
+ max_num_batched_tokens: int,
1326
+ max_num_seqs: int = 1) -> None:
1327
+ with self.set_in_profile_run():
1328
+ # Enable top-k sampling to reflect the accurate memory usage.
1329
+ sampling_params = \
1330
+ SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
1331
+
1332
+ # This represents the maximum number of different requests
1333
+ # that will have unique loras, and therefore the max amount of
1334
+ # memory consumption. Create dummy lora request copies from the
1335
+ # lora request passed in, which contains a lora from the lora
1336
+ # warmup path.
1337
+ dummy_lora_requests: List[LoRARequest] = []
1338
+ dummy_lora_requests_per_seq: List[LoRARequest] = []
1339
+ if self.lora_config:
1340
+ dummy_lora_requests = self._add_dummy_loras(
1341
+ self.lora_config.max_loras)
1342
+ assert len(dummy_lora_requests) == self.lora_config.max_loras
1343
+ dummy_lora_requests_per_seq = [
1344
+ dummy_lora_requests[idx % len(dummy_lora_requests)]
1345
+ for idx in range(max_num_seqs)
1346
+ ]
1347
+
1348
+ # Profile memory usage with max_num_sequences sequences and the
1349
+ # total number of tokens equal to max_num_batched_tokens.
1350
+ seqs: List[SequenceGroupMetadata] = []
1351
+ # Additional GPU memory may be needed for multi-modal encoding,
1352
+ # which needs to be accounted for when calculating the GPU blocks
1353
+ # for vLLM blocker manager.
1354
+ # To exercise the worst scenario for GPU memory consumption,
1355
+ # the number of seqs (batch_size) is chosen to maximize the number
1356
+ # of images processed.
1357
+
1358
+ max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
1359
+ self.model_config)
1360
+ if max_mm_tokens > 0:
1361
+ max_num_seqs_orig = max_num_seqs
1362
+ max_num_seqs = min(max_num_seqs,
1363
+ max_num_batched_tokens // max_mm_tokens)
1364
+ if max_num_seqs < 1:
1365
+ expr = (f"min({max_num_seqs_orig}, "
1366
+ f"{max_num_batched_tokens} // {max_mm_tokens})")
1367
+ logger.warning(
1368
+ "Computed max_num_seqs (%s) to be less than 1. "
1369
+ "Setting it to the minimum value of 1.", expr)
1370
+ max_num_seqs = 1
1371
+
1372
+ batch_size = 0
1373
+ for group_id in range(max_num_seqs):
1374
+ seq_len = (max_num_batched_tokens // max_num_seqs +
1375
+ (group_id < max_num_batched_tokens % max_num_seqs))
1376
+ batch_size += seq_len
1377
+
1378
+ dummy_data = self.input_registry \
1379
+ .dummy_data_for_profiling(self.model_config,
1380
+ seq_len,
1381
+ self.mm_registry)
1382
+
1383
+ seq = SequenceGroupMetadata(
1384
+ request_id=str(group_id),
1385
+ is_prompt=True,
1386
+ seq_data={group_id: dummy_data.seq_data},
1387
+ sampling_params=sampling_params,
1388
+ block_tables=None,
1389
+ lora_request=dummy_lora_requests_per_seq[group_id]
1390
+ if dummy_lora_requests_per_seq else None,
1391
+ multi_modal_data=dummy_data.multi_modal_data,
1392
+ multi_modal_placeholders=dummy_data.
1393
+ multi_modal_placeholders,
1394
+ )
1395
+ seqs.append(seq)
1396
+
1397
+ # Run the model with the dummy inputs.
1398
+ num_layers = self.model_config.get_num_layers(self.parallel_config)
1399
+ # use an empty tensor instead of `None`` to force Dynamo to pass
1400
+ # it by reference, rather by specializing on the value ``None``.
1401
+ # the `dtype` argument does not matter, and we use `float32` as
1402
+ # a placeholder (it has wide hardware support).
1403
+ # it is important to create tensors inside the loop, rather than
1404
+ # multiplying the list, to avoid Dynamo from treating them as
1405
+ # tensor aliasing.
1406
+ kv_caches = [
1407
+ torch.tensor([], dtype=torch.float32, device=self.device)
1408
+ for _ in range(num_layers)
1409
+ ]
1410
+ finished_requests_ids = [seq.request_id for seq in seqs]
1411
+ model_input = self.prepare_model_input(
1412
+ seqs, finished_requests_ids=finished_requests_ids)
1413
+ intermediate_tensors = None
1414
+ if not get_pp_group().is_first_rank:
1415
+ intermediate_tensors = \
1416
+ self.model.make_empty_intermediate_tensors(
1417
+ batch_size=batch_size,
1418
+ dtype=self.model_config.dtype,
1419
+ device=self.device)
1420
+
1421
+ # Disable KV Scale Calculation for dummy data during profile run
1422
+ if model_input.attn_metadata is not None:
1423
+ model_input.attn_metadata.enable_kv_scales_calculation = False
1424
+
1425
+ self.execute_model(model_input, kv_caches, intermediate_tensors)
1426
+ torch.cuda.synchronize()
1427
+ if self.lora_config:
1428
+ self._remove_dummy_loras()
1429
+
1430
+ return
1431
+
1432
+ def remove_all_loras(self):
1433
+ if not self.lora_manager:
1434
+ raise RuntimeError("LoRA is not enabled.")
1435
+ self.lora_manager.remove_all_adapters()
1436
+
1437
+ def set_active_loras(self, lora_requests: Set[LoRARequest],
1438
+ lora_mapping: LoRAMapping) -> None:
1439
+ if not self.lora_manager:
1440
+ raise RuntimeError("LoRA is not enabled.")
1441
+ self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
1442
+
1443
+ def add_lora(self, lora_request: LoRARequest) -> bool:
1444
+ if not self.lora_manager:
1445
+ raise RuntimeError("LoRA is not enabled.")
1446
+ return self.lora_manager.add_adapter(lora_request)
1447
+
1448
+ def remove_lora(self, lora_id: int) -> bool:
1449
+ if not self.lora_manager:
1450
+ raise RuntimeError("LoRA is not enabled.")
1451
+ return self.lora_manager.remove_adapter(lora_id)
1452
+
1453
+ def pin_lora(self, lora_id: int) -> bool:
1454
+ if not self.lora_manager:
1455
+ raise RuntimeError("LoRA is not enabled.")
1456
+ return self.lora_manager.pin_adapter(lora_id)
1457
+
1458
+ def list_loras(self) -> Set[int]:
1459
+ if not self.lora_manager:
1460
+ raise RuntimeError("LoRA is not enabled.")
1461
+ return self.lora_manager.list_adapters()
1462
+
1463
+ def remove_all_prompt_adapters(self):
1464
+ if not self.prompt_adapter_manager:
1465
+ raise RuntimeError("PromptAdapter is not enabled.")
1466
+ self.prompt_adapter_manager.remove_all_adapters()
1467
+
1468
+ def set_active_prompt_adapters(
1469
+ self, prompt_adapter_requests: Set[PromptAdapterRequest],
1470
+ prompt_adapter_mapping: PromptAdapterMapping) -> None:
1471
+ if not self.prompt_adapter_manager:
1472
+ raise RuntimeError("PromptAdapter is not enabled.")
1473
+ self.prompt_adapter_manager.set_active_adapters(
1474
+ prompt_adapter_requests, prompt_adapter_mapping)
1475
+
1476
+ def add_prompt_adapter(
1477
+ self, prompt_adapter_request: PromptAdapterRequest) -> bool:
1478
+ if not self.prompt_adapter_manager:
1479
+ raise RuntimeError("PromptAdapter is not enabled.")
1480
+ return self.prompt_adapter_manager.add_adapter(prompt_adapter_request)
1481
+
1482
+ def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
1483
+ if not self.prompt_adapter_manager:
1484
+ raise RuntimeError("PromptAdapter is not enabled.")
1485
+ return self.prompt_adapter_manager.remove_adapter(prompt_adapter_id)
1486
+
1487
+ def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
1488
+ if not self.prompt_adapter_manager:
1489
+ raise RuntimeError("PromptAdapter is not enabled.")
1490
+ return self.prompt_adapter_manager.pin_adapter(prompt_adapter_id)
1491
+
1492
+ def list_prompt_adapters(self) -> Set[int]:
1493
+ if not self.prompt_adapter_manager:
1494
+ raise RuntimeError("PromptAdapter is not enabled.")
1495
+ return self.prompt_adapter_manager.list_adapters()
1496
+
1497
+ @torch.inference_mode()
1498
+ def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None:
1499
+ """Cuda graph capture a model.
1500
+
1501
+ Note that CUDA graph's performance gain is negligible if number
1502
+ of batched tokens are larger than 200. And since CUDA graph
1503
+ requires fixed sized tensors, supporting large/variable batch
1504
+ size requires high GPU memory overhead. Thus, vLLM only captures
1505
+ decoding requests. Mixed batch (chunked prefill + decoding) or
1506
+ prefill requests are not captured.
1507
+
1508
+ Since it is used for decoding-only, it assumes there's only 1 token
1509
+ per sequence in the batch.
1510
+ """
1511
+ assert not self.model_config.enforce_eager
1512
+ logger.info("Capturing cudagraphs for decoding. This may lead to "
1513
+ "unexpected consequences if the model is not static. To "
1514
+ "run the model in eager mode, set 'enforce_eager=True' or "
1515
+ "use '--enforce-eager' in the CLI. "
1516
+ "If out-of-memory error occurs during cudagraph capture,"
1517
+ " consider decreasing `gpu_memory_utilization` or "
1518
+ "switching to eager mode. You can also reduce the "
1519
+ "`max_num_seqs` as needed to decrease memory usage.")
1520
+ start_time = time.perf_counter()
1521
+ start_free_gpu_memory = torch.cuda.mem_get_info()[0]
1522
+
1523
+ # Prepare dummy inputs. These will be reused for all batch sizes.
1524
+ max_batch_size = self.max_batchsize_to_capture
1525
+ input_tokens = torch.zeros(max_batch_size,
1526
+ dtype=torch.long,
1527
+ device=self.device)
1528
+ input_positions = torch.zeros(max_batch_size,
1529
+ dtype=torch.long,
1530
+ device=self.device)
1531
+ inputs_embeds = torch.zeros(
1532
+ (max_batch_size, self.model_config.get_hidden_size()),
1533
+ dtype=self.model_config.dtype,
1534
+ device=self.device)
1535
+ if self.model_config.uses_mrope:
1536
+ input_positions = torch.tile(input_positions,
1537
+ (3, 1)).cuda(device=self.device)
1538
+ # Prepare dummy previous_hidden_states only if needed by the model.
1539
+ # This is used by draft models such as EAGLE.
1540
+ previous_hidden_states = None
1541
+ if "previous_hidden_states" in inspect.signature(
1542
+ self.model.forward).parameters:
1543
+ previous_hidden_states = torch.empty(
1544
+ [max_batch_size,
1545
+ self.model_config.get_hidden_size()],
1546
+ dtype=self.model_config.dtype,
1547
+ device=self.device)
1548
+
1549
+ intermediate_inputs = None
1550
+ if not get_pp_group().is_first_rank:
1551
+ intermediate_inputs = self.model.make_empty_intermediate_tensors(
1552
+ batch_size=max_batch_size,
1553
+ dtype=self.model_config.dtype,
1554
+ device=self.device)
1555
+
1556
+ dummy_lora_id: Optional[int] = None
1557
+ dummy_lora_request: LoRARequest = []
1558
+ if self.lora_config:
1559
+ # The goal is to capture the LoRA kernels in cuda graphs.
1560
+ # for this purpose, as single dummy lora is sufficient.
1561
+ dummy_lora_requests = self._add_dummy_loras(num_loras=1)
1562
+ assert len(dummy_lora_requests) == 1
1563
+ dummy_lora_request = dummy_lora_requests[0]
1564
+ dummy_lora_id = dummy_lora_request.lora_int_id
1565
+
1566
+ with self.attn_state.graph_capture(max_batch_size), graph_capture(
1567
+ self.device) as graph_capture_context:
1568
+ # NOTE: Capturing the largest batch size first may help reduce the
1569
+ # memory usage of CUDA graph.
1570
+ for virtual_engine in range(
1571
+ self.parallel_config.pipeline_parallel_size):
1572
+ # We need to not only iterate over batch sizes, but also whether
1573
+ # to use inputs_embeds or not, hence we use the cartesian
1574
+ # product.
1575
+ cudagraph_capture_sizes = self.vllm_config.compilation_config\
1576
+ .cudagraph_capture_sizes
1577
+ cudagraph_inputs_embeds = ((
1578
+ True, False) if self.model_config.enable_prompt_embeds else
1579
+ (False, ))
1580
+ compilation_cases = itertools.product(
1581
+ cudagraph_capture_sizes,
1582
+ cudagraph_inputs_embeds,
1583
+ )
1584
+ # Only rank 0 should print progress bar during capture
1585
+ if get_tensor_model_parallel_rank() == 0:
1586
+ compilation_cases = tqdm(
1587
+ list(compilation_cases),
1588
+ desc="Capturing CUDA graph shapes")
1589
+ for batch_size, use_inputs_embeds in compilation_cases:
1590
+ attn_metadata = (
1591
+ self.attn_state.graph_capture_get_metadata_for_batch(
1592
+ batch_size,
1593
+ is_encoder_decoder_model=self.model_config.
1594
+ is_encoder_decoder))
1595
+ # Disable KV Scale Calculation for graph capture
1596
+ attn_metadata.enable_kv_scales_calculation = False
1597
+ if self.lora_config:
1598
+ lora_mapping = LoRAMapping(
1599
+ **dict(index_mapping=[dummy_lora_id] * batch_size,
1600
+ prompt_mapping=[dummy_lora_id] * batch_size,
1601
+ is_prefill=False))
1602
+ self.set_active_loras(set([dummy_lora_request]),
1603
+ lora_mapping)
1604
+
1605
+ if self.prompt_adapter_config:
1606
+ prompt_adapter_mapping = PromptAdapterMapping(
1607
+ [-1] * batch_size,
1608
+ [-1] * batch_size,
1609
+ )
1610
+ self.set_active_prompt_adapters(
1611
+ set(), prompt_adapter_mapping)
1612
+ graph_runner = CUDAGraphRunner(
1613
+ self.model, self.attn_backend.get_name(),
1614
+ self.attn_state.graph_clone(batch_size),
1615
+ self.model_config.is_encoder_decoder)
1616
+
1617
+ capture_inputs = {
1618
+ "input_ids":
1619
+ input_tokens[:batch_size],
1620
+ "inputs_embeds":
1621
+ inputs_embeds[:batch_size]
1622
+ if use_inputs_embeds else None,
1623
+ "positions":
1624
+ input_positions[..., :batch_size],
1625
+ "intermediate_inputs":
1626
+ intermediate_inputs[:batch_size]
1627
+ if intermediate_inputs is not None else None,
1628
+ "kv_caches":
1629
+ kv_caches[virtual_engine],
1630
+ "attn_metadata":
1631
+ attn_metadata,
1632
+ "memory_pool":
1633
+ self.graph_memory_pool,
1634
+ "stream":
1635
+ graph_capture_context.stream
1636
+ }
1637
+ if previous_hidden_states is not None:
1638
+ capture_inputs[
1639
+ "previous_hidden_states"] = previous_hidden_states[:
1640
+ batch_size]
1641
+
1642
+ if self.has_inner_state:
1643
+ # Only used by Mamba-based models CUDA graph atm (Jamba)
1644
+ capture_inputs.update({
1645
+ "seqlen_agnostic_capture_inputs":
1646
+ self.model.get_seqlen_agnostic_capture_inputs(
1647
+ batch_size)
1648
+ })
1649
+ if self.model_config.is_encoder_decoder:
1650
+ # add the additional inputs to capture for
1651
+ # encoder-decoder models.
1652
+ self._update_inputs_to_capture_for_enc_dec_model(
1653
+ capture_inputs)
1654
+
1655
+ with set_forward_context(attn_metadata, self.vllm_config,
1656
+ virtual_engine):
1657
+ graph_runner.capture(**capture_inputs)
1658
+ self.graph_memory_pool = graph_runner.graph.pool()
1659
+ self.graph_runners[virtual_engine][(
1660
+ batch_size, use_inputs_embeds)] = graph_runner
1661
+
1662
+ if self.lora_config:
1663
+ self._remove_dummy_loras()
1664
+
1665
+ end_time = time.perf_counter()
1666
+ end_free_gpu_memory = torch.cuda.mem_get_info()[0]
1667
+ elapsed_time = end_time - start_time
1668
+ cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
1669
+ # This usually takes < 10 seconds.
1670
+ logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
1671
+ elapsed_time, cuda_graph_size / GiB_bytes)
1672
+
1673
+ def _update_inputs_to_capture_for_enc_dec_model(self,
1674
+ capture_inputs: Dict[str,
1675
+ Any]):
1676
+ """
1677
+ Updates the set of input tensors needed for CUDA graph capture in an
1678
+ encoder-decoder model.
1679
+
1680
+ This method modifies the provided `capture_inputs` dictionary by
1681
+ adding tensors specific to encoder-decoder specific models that
1682
+ need to be captured for CUDA Graph replay.
1683
+ """
1684
+ # During the decode phase encoder_input_ids and encoder_positions are
1685
+ # unset. Do the same thing for graph capture.
1686
+ capture_inputs["encoder_input_ids"] = torch.tensor([],
1687
+ dtype=torch.long,
1688
+ device=self.device)
1689
+ capture_inputs["encoder_positions"] = torch.tensor([],
1690
+ dtype=torch.long,
1691
+ device=self.device)
1692
+
1693
+ @property
1694
+ def vocab_size(self) -> int:
1695
+ return self.model_config.get_vocab_size()
1696
+
1697
+
1698
+ class ModelRunner(GPUModelRunnerBase[ModelInputForGPUWithSamplingMetadata]):
1699
+ """
1700
+ GPU model runner with sampling step.
1701
+ """
1702
+ _model_input_cls: Type[ModelInputForGPUWithSamplingMetadata] = (
1703
+ ModelInputForGPUWithSamplingMetadata)
1704
+ _builder_cls: Type[ModelInputForGPUBuilder] = ModelInputForGPUBuilder
1705
+
1706
+ def make_model_input_from_broadcasted_tensor_dict(
1707
+ self,
1708
+ tensor_dict: Dict[str, Any],
1709
+ ) -> ModelInputForGPUWithSamplingMetadata:
1710
+ model_input = \
1711
+ ModelInputForGPUWithSamplingMetadata.from_broadcasted_tensor_dict(
1712
+ tensor_dict,
1713
+ attn_backend=self.attn_backend,
1714
+ )
1715
+ return model_input
1716
+
1717
+ def prepare_model_input(
1718
+ self,
1719
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1720
+ virtual_engine: int = 0,
1721
+ finished_requests_ids: Optional[List[str]] = None,
1722
+ ) -> ModelInputForGPUWithSamplingMetadata:
1723
+ """Prepare the model input based on a given sequence group, including
1724
+ metadata for the sampling step.
1725
+
1726
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1727
+
1728
+ The result tensors and data structure also batches input in prefill
1729
+ -> decode order. For example,
1730
+
1731
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1732
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1733
+
1734
+ If cuda graph is required, this API automatically pads inputs.
1735
+ """
1736
+ model_input = self._prepare_model_input_tensors(
1737
+ seq_group_metadata_list, finished_requests_ids)
1738
+ if get_pp_group().is_last_rank:
1739
+ # Sampling metadata is only required for the final pp group
1740
+ generators = self.get_generators(finished_requests_ids)
1741
+ sampling_metadata = SamplingMetadata.prepare(
1742
+ seq_group_metadata_list, model_input.seq_lens,
1743
+ model_input.query_lens, self.device, self.pin_memory,
1744
+ generators, self.sampling_metadata_cache)
1745
+ else:
1746
+ sampling_metadata = None
1747
+ is_prompt = (seq_group_metadata_list[0].is_prompt
1748
+ if seq_group_metadata_list else None)
1749
+ return dataclasses.replace(model_input,
1750
+ sampling_metadata=sampling_metadata,
1751
+ is_prompt=is_prompt,
1752
+ virtual_engine=virtual_engine)
1753
+
1754
+ @torch.inference_mode()
1755
+ def execute_model(
1756
+ self,
1757
+ model_input: ModelInputForGPUWithSamplingMetadata,
1758
+ kv_caches: List[torch.Tensor],
1759
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1760
+ num_steps: int = 1,
1761
+ **kwargs,
1762
+ ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
1763
+ if num_steps > 1:
1764
+ raise ValueError("num_steps > 1 is not supported in ModelRunner")
1765
+
1766
+ if self.lora_config:
1767
+ assert model_input.lora_requests is not None
1768
+ assert model_input.lora_mapping is not None
1769
+ self.set_active_loras(model_input.lora_requests,
1770
+ model_input.lora_mapping)
1771
+
1772
+ if self.prompt_adapter_config:
1773
+ assert model_input.prompt_adapter_requests is not None
1774
+ assert model_input.prompt_adapter_mapping is not None
1775
+ self.set_active_prompt_adapters(
1776
+ model_input.prompt_adapter_requests,
1777
+ model_input.prompt_adapter_mapping)
1778
+
1779
+ self.attn_state.begin_forward(model_input)
1780
+
1781
+ # Currently cuda graph is only supported by the decode phase.
1782
+ assert model_input.attn_metadata is not None
1783
+ prefill_meta = model_input.attn_metadata.prefill_metadata
1784
+ decode_meta = model_input.attn_metadata.decode_metadata
1785
+ # TODO(andoorve): We can remove this once all
1786
+ # virtual engines share the same kv cache.
1787
+ virtual_engine = model_input.virtual_engine
1788
+ previous_hidden_states = kwargs.get("previous_hidden_states")
1789
+ if prefill_meta is None and decode_meta.use_cuda_graph:
1790
+ assert model_input.input_tokens is not None
1791
+ graph_batch_size = model_input.input_tokens.shape[0]
1792
+ use_inputs_embeds = model_input.inputs_embeds is not None
1793
+ model_executable = self.graph_runners[virtual_engine][(
1794
+ graph_batch_size, use_inputs_embeds)]
1795
+ if previous_hidden_states is not None:
1796
+ previous_hidden_states = torch.cat([
1797
+ previous_hidden_states,
1798
+ torch.empty([
1799
+ graph_batch_size - previous_hidden_states.shape[0],
1800
+ *previous_hidden_states.shape[1:]
1801
+ ],
1802
+ dtype=previous_hidden_states.dtype,
1803
+ device=previous_hidden_states.device)
1804
+ ])
1805
+ else:
1806
+ model_executable = self.model
1807
+
1808
+ # Receive KV cache in distributed KV cache transfer setting
1809
+ # In disagg prefill setting, it will also recv hidden states and bypass
1810
+ # model forwarding
1811
+ # In KV cache database setting, it will change the model input so that
1812
+ # we can skip prefilling on tokens that successfully received KV caches
1813
+ # NOTE: The receive operation is blocking
1814
+ bypass_model_exec = False
1815
+ if self.need_recv_kv(model_input, kv_caches):
1816
+ hidden_or_intermediate_states, bypass_model_exec, model_input = \
1817
+ get_kv_transfer_group().recv_kv_caches_and_hidden_states(
1818
+ # model is used to know which layer the current worker
1819
+ # is working on, so that we can receive KV for only those
1820
+ # layers.
1821
+ model_executable,
1822
+ model_input,
1823
+ kv_caches=kv_caches
1824
+ )
1825
+
1826
+ multi_modal_kwargs = model_input.multi_modal_kwargs or {}
1827
+ seqlen_agnostic_kwargs = {
1828
+ "finished_requests_ids": model_input.finished_requests_ids,
1829
+ "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
1830
+ } if self.has_inner_state else {}
1831
+ model_kwargs = {}
1832
+ if previous_hidden_states is not None:
1833
+ model_kwargs["previous_hidden_states"] = previous_hidden_states
1834
+ if (self.observability_config is not None
1835
+ and self.observability_config.collect_model_forward_time):
1836
+ model_forward_start = torch.cuda.Event(enable_timing=True)
1837
+ model_forward_end = torch.cuda.Event(enable_timing=True)
1838
+ model_forward_start.record()
1839
+
1840
+ if not bypass_model_exec:
1841
+ with set_forward_context(model_input.attn_metadata,
1842
+ self.vllm_config, virtual_engine):
1843
+ hidden_or_intermediate_states = model_executable(
1844
+ input_ids=model_input.input_tokens,
1845
+ inputs_embeds=model_input.inputs_embeds,
1846
+ positions=model_input.input_positions,
1847
+ intermediate_tensors=intermediate_tensors,
1848
+ **MultiModalKwargs.as_kwargs(
1849
+ multi_modal_kwargs,
1850
+ dtype=self.model_config.dtype,
1851
+ device=self.device,
1852
+ ),
1853
+ **seqlen_agnostic_kwargs,
1854
+ **model_kwargs,
1855
+ )
1856
+
1857
+ if (self.observability_config is not None
1858
+ and self.observability_config.collect_model_forward_time):
1859
+ model_forward_end.record()
1860
+
1861
+ # Sending KV cache in distributed KV cache transfer setting
1862
+ # NOTE: the send operation is non-blocking
1863
+ if self.need_send_kv(model_input, kv_caches):
1864
+ get_kv_transfer_group().send_kv_caches_and_hidden_states(
1865
+ # model_executable is used to know which layer the current
1866
+ # worker is working on, so that we can send KV for only those
1867
+ # layers.
1868
+ model_executable,
1869
+ model_input,
1870
+ kv_caches,
1871
+ hidden_or_intermediate_states,
1872
+ )
1873
+
1874
+ # Compute the logits in the last pipeline stage.
1875
+ if not get_pp_group().is_last_rank:
1876
+ if (self.is_driver_worker
1877
+ and hidden_or_intermediate_states is not None
1878
+ and isinstance(hidden_or_intermediate_states,
1879
+ IntermediateTensors)
1880
+ and self.observability_config is not None
1881
+ and self.observability_config.collect_model_forward_time):
1882
+ model_forward_end.synchronize()
1883
+ model_forward_time = model_forward_start.elapsed_time(
1884
+ model_forward_end)
1885
+ orig_model_forward_time = 0.0
1886
+ if intermediate_tensors is not None:
1887
+ orig_model_forward_time = intermediate_tensors.tensors.get(
1888
+ "model_forward_time", torch.tensor(0.0)).item()
1889
+ hidden_or_intermediate_states.tensors["model_forward_time"] = (
1890
+ torch.tensor(model_forward_time + orig_model_forward_time))
1891
+ return hidden_or_intermediate_states
1892
+
1893
+ logits = self.model.compute_logits(hidden_or_intermediate_states,
1894
+ model_input.sampling_metadata)
1895
+
1896
+ if self.is_driver_worker:
1897
+ if model_input.async_callback is not None:
1898
+ model_input.async_callback()
1899
+
1900
+ # Sample the next token.
1901
+ assert isinstance(self.sampler, Sampler)
1902
+ orig_include_gpu_probs = self.sampler.include_gpu_probs_tensor
1903
+ if model_input.inputs_embeds is not None:
1904
+ self.sampler.include_gpu_probs_tensor = True
1905
+
1906
+ output: SamplerOutput = self.sampler(
1907
+ logits=logits,
1908
+ sampling_metadata=model_input.sampling_metadata,
1909
+ )
1910
+ if (self.observability_config is not None
1911
+ and self.observability_config.collect_model_forward_time
1912
+ and output is not None):
1913
+ model_forward_end.synchronize()
1914
+ model_forward_time = model_forward_start.elapsed_time(
1915
+ model_forward_end)
1916
+ orig_model_forward_time = 0.0
1917
+ if intermediate_tensors is not None:
1918
+ orig_model_forward_time = intermediate_tensors.tensors.get(
1919
+ "model_forward_time", torch.tensor(0.0)).item()
1920
+ # If there are multiple workers, we are still tracking the
1921
+ # latency from the start time of the driver worker to the end
1922
+ # time of the driver worker. The model forward time will then
1923
+ # end up covering the communication time as well.
1924
+ output.model_forward_time = (orig_model_forward_time +
1925
+ model_forward_time)
1926
+
1927
+ if model_input.inputs_embeds is not None:
1928
+ if self.is_driver_worker:
1929
+ sampled = broadcast_tensor_dict(
1930
+ {"token_ids": output.sampled_token_ids})
1931
+ else:
1932
+ sampled = broadcast_tensor_dict()
1933
+ if sampled["token_ids"] is not None:
1934
+ sampled_token_embeds = self.model.get_input_embeddings(
1935
+ sampled["token_ids"].squeeze(1))
1936
+ if self.is_driver_worker:
1937
+ self.sampler.include_gpu_probs_tensor = \
1938
+ orig_include_gpu_probs
1939
+
1940
+ output.sampled_token_embeds = sampled_token_embeds
1941
+
1942
+ for token_embed, sequence_group_output in zip(
1943
+ output.sampled_token_embeds, output.outputs):
1944
+ assert len(sequence_group_output.samples) == 1
1945
+ sequence_group_output.samples[
1946
+ 0].output_embed = token_embed
1947
+
1948
+ if not self.is_driver_worker:
1949
+ return []
1950
+
1951
+ if self.return_hidden_states:
1952
+ # we only need to pass hidden states of most recent token
1953
+ assert model_input.sampling_metadata is not None
1954
+ indices = model_input.sampling_metadata.selected_token_indices
1955
+ if model_input.is_prompt:
1956
+ hidden_states = hidden_or_intermediate_states.index_select(
1957
+ 0, indices)
1958
+ output.prefill_hidden_states = hidden_or_intermediate_states
1959
+ elif decode_meta.use_cuda_graph:
1960
+ hidden_states = hidden_or_intermediate_states[:len(indices)]
1961
+ else:
1962
+ hidden_states = hidden_or_intermediate_states
1963
+
1964
+ output.hidden_states = hidden_states
1965
+
1966
+ return [output]
1967
+
1968
+ def need_recv_kv(self, model_input, kv_caches) -> bool:
1969
+ """Check if we need to receive kv-cache from the other worker.
1970
+ We need to receive KV when
1971
+ 1. current vLLM instance is KV cache consumer/decode vLLM instance
1972
+ 2. this batch is not a profiling run
1973
+ 3. this batch is a prefill run
1974
+
1975
+ Args:
1976
+ model_input: input to the model executable
1977
+ kv_caches: vLLM's paged memory
1978
+ """
1979
+
1980
+ if self.vllm_config.kv_transfer_config is None:
1981
+ return False
1982
+
1983
+ prefill_meta = model_input.attn_metadata.prefill_metadata
1984
+
1985
+ # check if the current run is profiling
1986
+ is_profile_run = (kv_caches[0].numel() == 0)
1987
+ # check if the current run is prefill
1988
+ is_prefill_run = prefill_meta is not None
1989
+
1990
+ return self.vllm_config.kv_transfer_config.is_kv_consumer and (
1991
+ not is_profile_run) and is_prefill_run
1992
+
1993
+ def need_send_kv(self, model_input, kv_caches) -> bool:
1994
+ """Check if we need to send kv-cache to the other worker.
1995
+ We need to send KV when
1996
+ 1. current vLLM instance is KV cache producer/prefill vLLM instance
1997
+ 2. this batch is not a profiling run
1998
+ 3. this batch is a prefill run
1999
+
2000
+ Args:
2001
+ model_input: input to the model executable
2002
+ kv_caches: vLLM's paged memory
2003
+ """
2004
+
2005
+ if self.vllm_config.kv_transfer_config is None:
2006
+ return False
2007
+
2008
+ prefill_meta = model_input.attn_metadata.prefill_metadata
2009
+
2010
+ # check if the current run is profiling
2011
+ is_profile_run = (kv_caches[0].numel() == 0)
2012
+ # check if the current run is prefill
2013
+ is_prefill_run = prefill_meta is not None
2014
+
2015
+ return self.vllm_config.kv_transfer_config.is_kv_producer and (
2016
+ not is_profile_run) and is_prefill_run
2017
+
2018
+
2019
+ # NOTE: this is nn.Module so the profiler can properly capture/group
2020
+ # kernels calls made within the graph
2021
+ class CUDAGraphRunner(nn.Module):
2022
+
2023
+ def __init__(self, model: nn.Module, backend_name: str,
2024
+ attn_state: AttentionState, is_encoder_decoder_model: bool):
2025
+ super().__init__()
2026
+ self.model = model
2027
+ self.backend_name = backend_name
2028
+ self.attn_state = attn_state
2029
+
2030
+ self.input_buffers: Dict[str, torch.Tensor] = {}
2031
+ self.output_buffers: Dict[str, torch.Tensor] = {}
2032
+
2033
+ self._graph: Optional[torch.cuda.CUDAGraph] = None
2034
+ self._is_encoder_decoder_model = is_encoder_decoder_model
2035
+
2036
+ @property
2037
+ def graph(self):
2038
+ assert self._graph is not None
2039
+ return self._graph
2040
+
2041
+ def capture(
2042
+ self,
2043
+ input_ids: torch.Tensor,
2044
+ inputs_embeds: Optional[torch.Tensor],
2045
+ positions: torch.Tensor,
2046
+ intermediate_inputs: Optional[IntermediateTensors],
2047
+ kv_caches: List[torch.Tensor],
2048
+ attn_metadata: AttentionMetadata,
2049
+ memory_pool: Optional[Tuple[int, int]],
2050
+ stream: torch.cuda.Stream,
2051
+ **kwargs,
2052
+ ):
2053
+ assert self._graph is None
2054
+ # Run the model a few times without capturing the graph.
2055
+ # This is to make sure that the captured graph does not include the
2056
+ # kernel launches for initial benchmarking (e.g., Triton autotune).
2057
+ # Note one iteration is not enough for torch.compile
2058
+ for _ in range(_NUM_WARMUP_ITERS):
2059
+ self.model(
2060
+ input_ids=input_ids,
2061
+ inputs_embeds=inputs_embeds,
2062
+ positions=positions,
2063
+ intermediate_tensors=intermediate_inputs,
2064
+ **kwargs,
2065
+ )
2066
+ # Wait for the warm up operations to finish before proceeding with
2067
+ # Graph Capture.
2068
+ torch.cuda.synchronize()
2069
+ # Capture the graph.
2070
+ self._graph = torch.cuda.CUDAGraph()
2071
+ with torch.cuda.graph(self._graph, pool=memory_pool, stream=stream):
2072
+ output_hidden_or_intermediate_states = self.model(
2073
+ input_ids=input_ids,
2074
+ **({
2075
+ "inputs_embeds": inputs_embeds,
2076
+ } if inputs_embeds is not None else {}),
2077
+ positions=positions,
2078
+ intermediate_tensors=intermediate_inputs,
2079
+ **kwargs,
2080
+ )
2081
+
2082
+ if isinstance(output_hidden_or_intermediate_states, torch.Tensor):
2083
+ hidden_or_intermediate_states = weak_ref_tensor(
2084
+ output_hidden_or_intermediate_states)
2085
+ elif isinstance(output_hidden_or_intermediate_states,
2086
+ IntermediateTensors):
2087
+ hidden_or_intermediate_states = IntermediateTensors(
2088
+ tensors={
2089
+ key: weak_ref_tensor(value)
2090
+ for key, value in
2091
+ output_hidden_or_intermediate_states.tensors.items()
2092
+ })
2093
+
2094
+ del output_hidden_or_intermediate_states
2095
+ # make sure `output_hidden_or_intermediate_states` is deleted
2096
+ # in the graph's memory pool
2097
+ gc.collect()
2098
+ torch.cuda.synchronize()
2099
+
2100
+ # Save the input and output buffers.
2101
+ self.input_buffers = {
2102
+ "input_ids":
2103
+ input_ids,
2104
+ **({
2105
+ "inputs_embeds": inputs_embeds,
2106
+ } if inputs_embeds is not None else {}),
2107
+ "positions":
2108
+ positions,
2109
+ "kv_caches":
2110
+ kv_caches,
2111
+ **self.attn_state.get_graph_input_buffers(
2112
+ attn_metadata, self._is_encoder_decoder_model),
2113
+ **kwargs,
2114
+ }
2115
+ if intermediate_inputs is not None:
2116
+ self.input_buffers.update(intermediate_inputs.tensors)
2117
+ if get_pp_group().is_last_rank:
2118
+ self.output_buffers = {
2119
+ "hidden_states": hidden_or_intermediate_states
2120
+ }
2121
+ else:
2122
+ self.output_buffers = hidden_or_intermediate_states
2123
+
2124
+ def forward(
2125
+ self,
2126
+ input_ids: torch.Tensor,
2127
+ inputs_embeds: Optional[torch.Tensor],
2128
+ positions: torch.Tensor,
2129
+ intermediate_tensors: Optional[IntermediateTensors],
2130
+ **kwargs,
2131
+ ) -> torch.Tensor:
2132
+ attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
2133
+
2134
+ # Copy the input tensors to the input buffers.
2135
+ self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
2136
+ if positions is not None:
2137
+ # in some case like MLA, it will reuse positions in metadata
2138
+ # but truncate them to the original size
2139
+ # so the shape is not padded, we need to copy partial only
2140
+ self.input_buffers["positions"][:positions.shape[0]].copy_(
2141
+ positions, non_blocking=True)
2142
+ if inputs_embeds is not None:
2143
+ self.input_buffers["inputs_embeds"][:inputs_embeds.shape[0]].copy_(
2144
+ inputs_embeds, non_blocking=True)
2145
+
2146
+ if self.backend_name != "NO_ATTENTION":
2147
+ self.input_buffers["slot_mapping"].copy_(
2148
+ attn_metadata.slot_mapping, non_blocking=True)
2149
+
2150
+ self.attn_state.prepare_graph_input_buffers(
2151
+ self.input_buffers, attn_metadata, self._is_encoder_decoder_model)
2152
+
2153
+ if "seqlen_agnostic_capture_inputs" in self.input_buffers:
2154
+ self.model.copy_inputs_before_cuda_graphs(self.input_buffers,
2155
+ **kwargs)
2156
+
2157
+ if "previous_hidden_states" in self.input_buffers:
2158
+ self.input_buffers["previous_hidden_states"].copy_(
2159
+ kwargs["previous_hidden_states"], non_blocking=True)
2160
+
2161
+ if intermediate_tensors is not None:
2162
+ for key in intermediate_tensors.tensors:
2163
+ if key != "model_execute_time" and key != "model_forward_time":
2164
+ self.input_buffers[key].copy_(intermediate_tensors[key],
2165
+ non_blocking=True)
2166
+ if self._is_encoder_decoder_model:
2167
+ self.input_buffers["encoder_input_ids"].copy_(
2168
+ kwargs['encoder_input_ids'], non_blocking=True)
2169
+ self.input_buffers["encoder_positions"].copy_(
2170
+ kwargs['encoder_positions'], non_blocking=True)
2171
+
2172
+ # Run the graph.
2173
+ self.graph.replay()
2174
+ # Return the output tensor.
2175
+ if get_pp_group().is_last_rank:
2176
+ return self.output_buffers["hidden_states"]
2177
+
2178
+ return self.output_buffers