vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1742 -0
- vllm/_ipex_ops.py +243 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +15 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +44 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +33 -0
- vllm/assets/video.py +114 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +305 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1100 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +309 -0
- vllm/attention/backends/ipex_attn.py +394 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1381 -0
- vllm/attention/backends/pallas.py +347 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +970 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +452 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +245 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +87 -0
- vllm/attention/ops/ipex_attn.py +194 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +901 -0
- vllm/attention/ops/rocm_aiter_mla.py +99 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +673 -0
- vllm/attention/ops/triton_flash_attention.py +1374 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/ops/triton_unified_attention.py +337 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +921 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +184 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +818 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +88 -0
- vllm/compilation/backends.py +560 -0
- vllm/compilation/base_piecewise_backend.py +71 -0
- vllm/compilation/collective_fusion.py +126 -0
- vllm/compilation/compiler_interface.py +533 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/cuda_piecewise_backend.py +213 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +190 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +61 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +136 -0
- vllm/compilation/pass_manager.py +77 -0
- vllm/compilation/sequence_parallelism.py +267 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +66 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4600 -0
- vllm/connections.py +173 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2092 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +126 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +144 -0
- vllm/distributed/device_communicators/cuda_communicator.py +167 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +541 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_events.py +296 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1294 -0
- vllm/distributed/utils.py +520 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1649 -0
- vllm/engine/async_llm_engine.py +1274 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2153 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +188 -0
- vllm/engine/multiprocessing/client.py +755 -0
- vllm/engine/multiprocessing/engine.py +459 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +215 -0
- vllm/engine/output_processor/single_step.py +144 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +310 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1298 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +34 -0
- vllm/entrypoints/cli/main.py +62 -0
- vllm/entrypoints/cli/openai.py +204 -0
- vllm/entrypoints/cli/serve.py +141 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1503 -0
- vllm/entrypoints/logger.py +49 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1376 -0
- vllm/entrypoints/openai/cli_args.py +306 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1890 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1192 -0
- vllm/entrypoints/openai/serving_classification.py +159 -0
- vllm/entrypoints/openai/serving_completion.py +590 -0
- vllm/entrypoints/openai/serving_embedding.py +200 -0
- vllm/entrypoints/openai/serving_engine.py +985 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +231 -0
- vllm/entrypoints/openai/serving_score.py +432 -0
- vllm/entrypoints/openai/serving_tokenization.py +151 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +219 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +896 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +398 -0
- vllm/executor/uniproc_executor.py +138 -0
- vllm/forward_context.py +147 -0
- vllm/inputs/__init__.py +40 -0
- vllm/inputs/data.py +330 -0
- vllm/inputs/parse.py +150 -0
- vllm/inputs/preprocess.py +908 -0
- vllm/inputs/registry.py +214 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +211 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/dump_input.py +84 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +118 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +354 -0
- vllm/lora/layers.py +1284 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +817 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
- vllm/lora/ops/triton_ops/utils.py +119 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +106 -0
- vllm/lora/ops/xla_ops/pallas.py +133 -0
- vllm/lora/peft_helper.py +135 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +484 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +19 -0
- vllm/lora/punica_wrapper/punica_tpu.py +325 -0
- vllm/lora/punica_wrapper/utils.py +163 -0
- vllm/lora/request.py +98 -0
- vllm/lora/resolver.py +84 -0
- vllm/lora/utils.py +239 -0
- vllm/lora/worker_manager.py +253 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +151 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +53 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
- vllm/model_executor/layers/fused_moe/layer.py +1366 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
- vllm/model_executor/layers/fused_moe/utils.py +97 -0
- vllm/model_executor/layers/layernorm.py +287 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1523 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +343 -0
- vllm/model_executor/layers/quantization/__init__.py +156 -0
- vllm/model_executor/layers/quantization/aqlm.py +375 -0
- vllm/model_executor/layers/quantization/auto_round.py +308 -0
- vllm/model_executor/layers/quantization/awq.py +185 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +150 -0
- vllm/model_executor/layers/quantization/bitblas.py +460 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
- vllm/model_executor/layers/quantization/experts_int8.py +195 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
- vllm/model_executor/layers/quantization/fp8.py +876 -0
- vllm/model_executor/layers/quantization/gguf.py +564 -0
- vllm/model_executor/layers/quantization/gptq.py +277 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +138 -0
- vllm/model_executor/layers/quantization/marlin.py +260 -0
- vllm/model_executor/layers/quantization/modelopt.py +734 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
- vllm/model_executor/layers/quantization/qqq.py +274 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +440 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +104 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +143 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1861 -0
- vllm/model_executor/layers/sampler.py +1203 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
- vllm/model_executor/model_loader/__init__.py +75 -0
- vllm/model_executor/model_loader/base_loader.py +24 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
- vllm/model_executor/model_loader/default_loader.py +295 -0
- vllm/model_executor/model_loader/dummy_loader.py +37 -0
- vllm/model_executor/model_loader/gguf_loader.py +113 -0
- vllm/model_executor/model_loader/neuron.py +475 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
- vllm/model_executor/model_loader/tensorizer.py +632 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
- vllm/model_executor/model_loader/utils.py +301 -0
- vllm/model_executor/model_loader/weight_utils.py +781 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/aimv2.py +199 -0
- vllm/model_executor/models/arctic.py +558 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +473 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +937 -0
- vllm/model_executor/models/bert.py +517 -0
- vllm/model_executor/models/bert_with_rope.py +714 -0
- vllm/model_executor/models/blip.py +338 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +372 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +477 -0
- vllm/model_executor/models/clip.py +411 -0
- vllm/model_executor/models/commandr.py +471 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +471 -0
- vllm/model_executor/models/deepseek.py +485 -0
- vllm/model_executor/models/deepseek_mtp.py +268 -0
- vllm/model_executor/models/deepseek_v2.py +842 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +259 -0
- vllm/model_executor/models/exaone.py +550 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +509 -0
- vllm/model_executor/models/falcon_h1.py +684 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +424 -0
- vllm/model_executor/models/gemma2.py +424 -0
- vllm/model_executor/models/gemma3.py +532 -0
- vllm/model_executor/models/gemma3_mm.py +708 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +304 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +327 -0
- vllm/model_executor/models/gpt_bigcode.py +334 -0
- vllm/model_executor/models/gpt_j.py +338 -0
- vllm/model_executor/models/gpt_neox.py +331 -0
- vllm/model_executor/models/granite.py +492 -0
- vllm/model_executor/models/granite_speech.py +778 -0
- vllm/model_executor/models/granitemoe.py +436 -0
- vllm/model_executor/models/granitemoehybrid.py +585 -0
- vllm/model_executor/models/granitemoeshared.py +340 -0
- vllm/model_executor/models/gritlm.py +223 -0
- vllm/model_executor/models/grok1.py +545 -0
- vllm/model_executor/models/h2ovl.py +545 -0
- vllm/model_executor/models/idefics2_vision_model.py +388 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +571 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +475 -0
- vllm/model_executor/models/internlm2.py +454 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +1405 -0
- vllm/model_executor/models/jais.py +372 -0
- vllm/model_executor/models/jamba.py +591 -0
- vllm/model_executor/models/kimi_vl.py +576 -0
- vllm/model_executor/models/llama.py +643 -0
- vllm/model_executor/models/llama4.py +531 -0
- vllm/model_executor/models/llama_eagle.py +166 -0
- vllm/model_executor/models/llama_eagle3.py +257 -0
- vllm/model_executor/models/llava.py +865 -0
- vllm/model_executor/models/llava_next.py +585 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +955 -0
- vllm/model_executor/models/mamba.py +272 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +75 -0
- vllm/model_executor/models/medusa.py +218 -0
- vllm/model_executor/models/mimo.py +191 -0
- vllm/model_executor/models/mimo_mtp.py +284 -0
- vllm/model_executor/models/minicpm.py +590 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +758 -0
- vllm/model_executor/models/minicpmv.py +1286 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1303 -0
- vllm/model_executor/models/minimax_vl_01.py +363 -0
- vllm/model_executor/models/mistral3.py +603 -0
- vllm/model_executor/models/mixtral.py +487 -0
- vllm/model_executor/models/mixtral_quant.py +452 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +329 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +629 -0
- vllm/model_executor/models/mpt.py +330 -0
- vllm/model_executor/models/nemotron.py +507 -0
- vllm/model_executor/models/nemotron_nas.py +483 -0
- vllm/model_executor/models/nvlm_d.py +215 -0
- vllm/model_executor/models/olmo.py +388 -0
- vllm/model_executor/models/olmo2.py +413 -0
- vllm/model_executor/models/olmoe.py +446 -0
- vllm/model_executor/models/opt.py +411 -0
- vllm/model_executor/models/orion.py +348 -0
- vllm/model_executor/models/ovis.py +554 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +343 -0
- vllm/model_executor/models/phi.py +355 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +464 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1245 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +664 -0
- vllm/model_executor/models/pixtral.py +1315 -0
- vllm/model_executor/models/plamo2.py +737 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +361 -0
- vllm/model_executor/models/qwen2.py +567 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
- vllm/model_executor/models/qwen2_5_vl.py +1171 -0
- vllm/model_executor/models/qwen2_audio.py +409 -0
- vllm/model_executor/models/qwen2_moe.py +539 -0
- vllm/model_executor/models/qwen2_rm.py +131 -0
- vllm/model_executor/models/qwen2_vl.py +1410 -0
- vllm/model_executor/models/qwen3.py +320 -0
- vllm/model_executor/models/qwen3_moe.py +534 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +618 -0
- vllm/model_executor/models/roberta.py +273 -0
- vllm/model_executor/models/siglip.py +523 -0
- vllm/model_executor/models/skyworkr1v.py +950 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +505 -0
- vllm/model_executor/models/stablelm.py +342 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +507 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +730 -0
- vllm/model_executor/models/vision.py +146 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +32 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +117 -0
- vllm/multimodal/image.py +96 -0
- vllm/multimodal/inputs.py +872 -0
- vllm/multimodal/parse.py +460 -0
- vllm/multimodal/processing.py +1894 -0
- vllm/multimodal/profiling.py +273 -0
- vllm/multimodal/registry.py +330 -0
- vllm/multimodal/utils.py +392 -0
- vllm/multimodal/video.py +197 -0
- vllm/outputs.py +525 -0
- vllm/platforms/__init__.py +290 -0
- vllm/platforms/cpu.py +205 -0
- vllm/platforms/cuda.py +461 -0
- vllm/platforms/hpu.py +105 -0
- vllm/platforms/interface.py +492 -0
- vllm/platforms/neuron.py +152 -0
- vllm/platforms/rocm.py +388 -0
- vllm/platforms/tpu.py +215 -0
- vllm/platforms/xpu.py +155 -0
- vllm/plugins/__init__.py +86 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +14 -0
- vllm/reasoning/abs_reasoning_parsers.py +191 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/reasoning/qwen3_reasoning_parser.py +150 -0
- vllm/sampling_params.py +590 -0
- vllm/scalar_type.py +346 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1567 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +422 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
- vllm/spec_decode/spec_decode_worker.py +1325 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +23 -0
- vllm/transformers_utils/chat_templates/__init__.py +4 -0
- vllm/transformers_utils/chat_templates/registry.py +59 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +835 -0
- vllm/transformers_utils/configs/__init__.py +58 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +279 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/exaone.py +189 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/minimax_text_01.py +69 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/ovis.py +183 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +220 -0
- vllm/transformers_utils/processors/__init__.py +7 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
- vllm/transformers_utils/processors/ovis.py +419 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +301 -0
- vllm/transformers_utils/tokenizer_base.py +148 -0
- vllm/transformers_utils/tokenizer_group.py +119 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +490 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +13 -0
- vllm/triton_utils/importing.py +49 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2844 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +833 -0
- vllm/v1/attention/backends/flashinfer.py +639 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +926 -0
- vllm/v1/attention/backends/mla/flashmla.py +150 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +235 -0
- vllm/v1/attention/backends/triton_attn.py +279 -0
- vllm/v1/attention/backends/utils.py +18 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +328 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +372 -0
- vllm/v1/core/kv_cache_utils.py +748 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +143 -0
- vllm/v1/core/sched/output.py +153 -0
- vllm/v1/core/sched/scheduler.py +1015 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/single_type_kv_cache_manager.py +358 -0
- vllm/v1/engine/__init__.py +171 -0
- vllm/v1/engine/async_llm.py +546 -0
- vllm/v1/engine/core.py +801 -0
- vllm/v1/engine/core_client.py +1020 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +316 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +90 -0
- vllm/v1/engine/output_processor.py +427 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +398 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +532 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +208 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +511 -0
- vllm/v1/metrics/ray_wrappers.py +120 -0
- vllm/v1/metrics/reader.py +245 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +115 -0
- vllm/v1/request.py +191 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
- vllm/v1/sample/rejection_sampler.py +630 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +123 -0
- vllm/v1/sample/tpu/sampler.py +144 -0
- vllm/v1/serial_utils.py +313 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +424 -0
- vllm/v1/spec_decode/medusa.py +61 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +177 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +45 -0
- vllm/v1/structured_output/__init__.py +215 -0
- vllm/v1/structured_output/backend_guidance.py +244 -0
- vllm/v1/structured_output/backend_types.py +133 -0
- vllm/v1/structured_output/backend_xgrammar.py +317 -0
- vllm/v1/structured_output/request.py +85 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +294 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +139 -0
- vllm/v1/worker/gpu_input_batch.py +680 -0
- vllm/v1/worker/gpu_model_runner.py +2084 -0
- vllm/v1/worker/gpu_worker.py +373 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1510 -0
- vllm/v1/worker/tpu_worker.py +276 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2319 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +910 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +418 -0
- vllm/worker/neuron_worker.py +158 -0
- vllm/worker/neuronx_distributed_model_runner.py +136 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +336 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +574 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
from vllm.v1.request import Request, RequestStatus
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def check_stop(request: Request, max_model_len: int) -> bool:
|
|
6
|
+
if (request.num_tokens >= max_model_len
|
|
7
|
+
or request.num_output_tokens >= request.max_tokens):
|
|
8
|
+
request.status = RequestStatus.FINISHED_LENGTH_CAPPED
|
|
9
|
+
return True
|
|
10
|
+
|
|
11
|
+
sampling_params = request.sampling_params
|
|
12
|
+
last_token_id = request.output_token_ids[-1]
|
|
13
|
+
if (not sampling_params.ignore_eos
|
|
14
|
+
and last_token_id == request.eos_token_id):
|
|
15
|
+
request.status = RequestStatus.FINISHED_STOPPED
|
|
16
|
+
return True
|
|
17
|
+
|
|
18
|
+
if last_token_id in (sampling_params.stop_token_ids or ()):
|
|
19
|
+
request.status = RequestStatus.FINISHED_STOPPED
|
|
20
|
+
request.stop_reason = last_token_id
|
|
21
|
+
return True
|
|
22
|
+
return False
|
|
@@ -0,0 +1,358 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
from abc import ABC, abstractmethod
|
|
3
|
+
from collections import defaultdict
|
|
4
|
+
from typing import Callable
|
|
5
|
+
|
|
6
|
+
from vllm.utils import cdiv
|
|
7
|
+
from vllm.v1.core.block_pool import BlockPool
|
|
8
|
+
from vllm.v1.core.kv_cache_utils import BlockHashType, KVCacheBlock
|
|
9
|
+
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheSpec,
|
|
10
|
+
SlidingWindowSpec)
|
|
11
|
+
from vllm.v1.request import Request
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class SingleTypeKVCacheManager(ABC):
|
|
15
|
+
"""
|
|
16
|
+
An abstract base class for a manager that handle the kv cache management
|
|
17
|
+
logic of one specific type of attention layer.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
def __init__(
|
|
21
|
+
self,
|
|
22
|
+
kv_cache_spec: KVCacheSpec,
|
|
23
|
+
block_pool: BlockPool,
|
|
24
|
+
use_eagle: bool,
|
|
25
|
+
num_kv_cache_groups: int,
|
|
26
|
+
caching_hash_fn: Callable,
|
|
27
|
+
) -> None:
|
|
28
|
+
"""
|
|
29
|
+
Initializes the SpecializedManager.
|
|
30
|
+
Args:
|
|
31
|
+
kv_cache_spec: The kv_cache_spec for this manager.
|
|
32
|
+
block_pool: The block pool.
|
|
33
|
+
use_eagle: Whether to use eagle.
|
|
34
|
+
num_kv_cache_groups: The number of kv cache groups managed by this
|
|
35
|
+
manager.
|
|
36
|
+
caching_hash_fn: The caching hash function.
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
self.block_size = kv_cache_spec.block_size
|
|
40
|
+
self.kv_cache_spec = kv_cache_spec
|
|
41
|
+
self.block_pool = block_pool
|
|
42
|
+
|
|
43
|
+
# Needs special handling for find_longest_cache_hit if eagle is enabled
|
|
44
|
+
self.use_eagle = use_eagle
|
|
45
|
+
|
|
46
|
+
# Mapping from request ID to blocks to track the blocks allocated
|
|
47
|
+
# for each request, so that we can free the blocks when the request
|
|
48
|
+
# is finished.
|
|
49
|
+
self.req_to_blocks: defaultdict[str,
|
|
50
|
+
list[KVCacheBlock]] = defaultdict(list)
|
|
51
|
+
|
|
52
|
+
# {req_id: The number of cached blocks for this given request}
|
|
53
|
+
# This is used to track the number of cached blocks for each request.
|
|
54
|
+
# This is only used to track the RUNNING requests, we do not track the
|
|
55
|
+
# data for reempted ones.
|
|
56
|
+
self.num_cached_block: dict[str, int] = {}
|
|
57
|
+
|
|
58
|
+
self.num_kv_cache_groups = num_kv_cache_groups
|
|
59
|
+
self.caching_hash_fn = caching_hash_fn
|
|
60
|
+
|
|
61
|
+
def get_num_blocks_to_allocate(
|
|
62
|
+
self, request_id: str, num_tokens: int,
|
|
63
|
+
new_computed_blocks: list[KVCacheBlock]) -> int:
|
|
64
|
+
"""
|
|
65
|
+
Get the number of blocks needed to be allocated for the request.
|
|
66
|
+
|
|
67
|
+
Args:
|
|
68
|
+
request_id: The request ID.
|
|
69
|
+
num_tokens: The total number of tokens that need a slot (including
|
|
70
|
+
tokens that are already allocated).
|
|
71
|
+
new_computed_blocks: The new computed blocks just hitting the
|
|
72
|
+
prefix caching.
|
|
73
|
+
|
|
74
|
+
Returns:
|
|
75
|
+
The number of blocks.
|
|
76
|
+
"""
|
|
77
|
+
|
|
78
|
+
num_required_blocks = cdiv(num_tokens, self.block_size)
|
|
79
|
+
num_new_blocks = (num_required_blocks - len(new_computed_blocks) -
|
|
80
|
+
len(self.req_to_blocks[request_id]))
|
|
81
|
+
# If a computed block of a request is an eviction candidate (in the
|
|
82
|
+
# free queue and ref_cnt == 0), it will be changed from a free block
|
|
83
|
+
# to a computed block when the request is allocated, so we also count
|
|
84
|
+
# it as needed to be allocated.
|
|
85
|
+
num_evictable_computed_blocks = sum(blk.ref_cnt == 0
|
|
86
|
+
for blk in new_computed_blocks)
|
|
87
|
+
return ((num_new_blocks + num_evictable_computed_blocks) *
|
|
88
|
+
self.num_kv_cache_groups)
|
|
89
|
+
|
|
90
|
+
def save_new_computed_blocks(
|
|
91
|
+
self, request_id: str,
|
|
92
|
+
new_computed_blocks: list[KVCacheBlock]) -> None:
|
|
93
|
+
"""
|
|
94
|
+
Add the new computed blocks to the request.
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
request_id: The request ID.
|
|
98
|
+
new_computed_blocks: The new computed blocks just hitting the
|
|
99
|
+
prefix cache.
|
|
100
|
+
"""
|
|
101
|
+
if request_id not in self.num_cached_block:
|
|
102
|
+
# A new request.
|
|
103
|
+
req_blocks = self.req_to_blocks[request_id]
|
|
104
|
+
assert len(req_blocks) == 0
|
|
105
|
+
req_blocks.extend(new_computed_blocks)
|
|
106
|
+
self.num_cached_block[request_id] = len(new_computed_blocks)
|
|
107
|
+
else:
|
|
108
|
+
# A running request. Should not have new computed blocks.
|
|
109
|
+
assert len(new_computed_blocks) == 0
|
|
110
|
+
|
|
111
|
+
def allocate_new_blocks(self, request_id: str,
|
|
112
|
+
num_tokens: int) -> list[KVCacheBlock]:
|
|
113
|
+
"""
|
|
114
|
+
Allocate new blocks for the request to give it at least `num_tokens`
|
|
115
|
+
token slots.
|
|
116
|
+
|
|
117
|
+
Args:
|
|
118
|
+
request_id: The request ID.
|
|
119
|
+
num_tokens: The total number of tokens that need a slot (including
|
|
120
|
+
tokens that are already allocated).
|
|
121
|
+
|
|
122
|
+
Returns:
|
|
123
|
+
The new allocated blocks.
|
|
124
|
+
"""
|
|
125
|
+
req_blocks = self.req_to_blocks[request_id]
|
|
126
|
+
num_required_blocks = cdiv(num_tokens, self.block_size)
|
|
127
|
+
num_new_blocks = num_required_blocks - len(req_blocks)
|
|
128
|
+
if num_new_blocks <= 0:
|
|
129
|
+
return []
|
|
130
|
+
else:
|
|
131
|
+
new_blocks = self.block_pool.get_new_blocks(
|
|
132
|
+
num_new_blocks * self.num_kv_cache_groups)
|
|
133
|
+
req_blocks.extend(new_blocks)
|
|
134
|
+
return new_blocks
|
|
135
|
+
|
|
136
|
+
def cache_blocks(self, request: Request, block_hashes: list[BlockHashType],
|
|
137
|
+
num_tokens: int) -> None:
|
|
138
|
+
"""
|
|
139
|
+
Cache the blocks for the request.
|
|
140
|
+
|
|
141
|
+
Args:
|
|
142
|
+
request: The request.
|
|
143
|
+
block_hashes: The block hashes of the request.
|
|
144
|
+
num_tokens: The total number of tokens that need to be cached
|
|
145
|
+
(including tokens that are already cached).
|
|
146
|
+
"""
|
|
147
|
+
num_cached_blocks = self.num_cached_block[request.request_id]
|
|
148
|
+
num_full_blocks = num_tokens // self.block_size
|
|
149
|
+
|
|
150
|
+
self.block_pool.cache_full_blocks(
|
|
151
|
+
request=request,
|
|
152
|
+
blocks=self.req_to_blocks[request.request_id],
|
|
153
|
+
block_hashes=block_hashes,
|
|
154
|
+
num_cached_blocks=num_cached_blocks,
|
|
155
|
+
num_full_blocks=num_full_blocks,
|
|
156
|
+
block_size=self.block_size,
|
|
157
|
+
hash_fn=self.caching_hash_fn,
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
self.num_cached_block[request.request_id] = num_full_blocks
|
|
161
|
+
|
|
162
|
+
def free(self, request_id: str) -> None:
|
|
163
|
+
# Default to [] in case a request is freed (aborted) before alloc.
|
|
164
|
+
req_blocks = self.req_to_blocks.pop(request_id, [])
|
|
165
|
+
|
|
166
|
+
# Free blocks in reverse order so that the tail blocks are
|
|
167
|
+
# freed first.
|
|
168
|
+
ordered_blocks = reversed(req_blocks)
|
|
169
|
+
|
|
170
|
+
self.block_pool.free_blocks(ordered_blocks)
|
|
171
|
+
self.num_cached_block.pop(request_id, None)
|
|
172
|
+
|
|
173
|
+
@abstractmethod
|
|
174
|
+
def get_num_common_prefix_blocks(self, request_id: str,
|
|
175
|
+
num_running_requests: int) -> int:
|
|
176
|
+
"""
|
|
177
|
+
Get the number of common prefix blocks for a request.
|
|
178
|
+
|
|
179
|
+
Args:
|
|
180
|
+
request_id: The request ID.
|
|
181
|
+
block_hashes: The block hashes of the request.
|
|
182
|
+
|
|
183
|
+
Returns:
|
|
184
|
+
The number of common prefix blocks.
|
|
185
|
+
"""
|
|
186
|
+
|
|
187
|
+
raise NotImplementedError
|
|
188
|
+
|
|
189
|
+
@abstractmethod
|
|
190
|
+
def find_longest_cache_hit(self, block_hashes: list[BlockHashType],
|
|
191
|
+
max_length: int) -> list[KVCacheBlock]:
|
|
192
|
+
"""
|
|
193
|
+
Get the longest cache hit prefix of the blocks that is not longer than
|
|
194
|
+
`max_length`. If no cache hit is found, return an empty list.
|
|
195
|
+
If eagle is enabled, drop the last matched block to force recompute the
|
|
196
|
+
last block to get the required hidden states for eagle drafting head.
|
|
197
|
+
Need to be customized for each attention type.
|
|
198
|
+
|
|
199
|
+
Args:
|
|
200
|
+
block_hashes: The block hashes of the request.
|
|
201
|
+
max_length: The maximum length of the cache hit prefix.
|
|
202
|
+
|
|
203
|
+
Returns:
|
|
204
|
+
A list of cached blocks with skipped blocks replaced by null block.
|
|
205
|
+
For example, sliding window manager should return a list like
|
|
206
|
+
[NULL, NULL, KVCacheBlock(7), KVCacheBlock(8)] for block size 4 and
|
|
207
|
+
sliding window 8.
|
|
208
|
+
"""
|
|
209
|
+
|
|
210
|
+
raise NotImplementedError
|
|
211
|
+
|
|
212
|
+
@abstractmethod
|
|
213
|
+
def remove_skipped_blocks(self, request_id: str,
|
|
214
|
+
num_computed_tokens: int) -> None:
|
|
215
|
+
"""
|
|
216
|
+
Remove the blocks that are no longer needed from `blocks`. The removed
|
|
217
|
+
blocks should be replaced by null_block. Return the removed blocks in
|
|
218
|
+
eviction order, where the first returned block should be evicted first.
|
|
219
|
+
Don't free the removed blocks in this function. Need to be customized
|
|
220
|
+
for each attention type.
|
|
221
|
+
|
|
222
|
+
Args:
|
|
223
|
+
request_id: The request ID.
|
|
224
|
+
num_computed_tokens: The number of tokens that have been computed.
|
|
225
|
+
"""
|
|
226
|
+
raise NotImplementedError
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
class FullAttentionManager(SingleTypeKVCacheManager):
|
|
230
|
+
|
|
231
|
+
def find_longest_cache_hit(self, block_hashes: list[BlockHashType],
|
|
232
|
+
max_length: int) -> list[KVCacheBlock]:
|
|
233
|
+
computed_blocks: list[KVCacheBlock] = []
|
|
234
|
+
max_num_blocks = max_length // self.block_size
|
|
235
|
+
for i in range(max_num_blocks):
|
|
236
|
+
block_hash = block_hashes[i]
|
|
237
|
+
# block_hashes is a chain of block hashes. If a block hash is not
|
|
238
|
+
# in the cached_block_hash_to_id, the following block hashes are
|
|
239
|
+
# not computed yet for sure.
|
|
240
|
+
if cached_block := self.block_pool.get_cached_block(block_hash):
|
|
241
|
+
computed_blocks.append(cached_block)
|
|
242
|
+
else:
|
|
243
|
+
break
|
|
244
|
+
if self.use_eagle and len(computed_blocks) > 0:
|
|
245
|
+
computed_blocks.pop()
|
|
246
|
+
return computed_blocks
|
|
247
|
+
|
|
248
|
+
def remove_skipped_blocks(self, request_id: str,
|
|
249
|
+
num_computed_tokens: int) -> None:
|
|
250
|
+
# No need to remove blocks for full attention.
|
|
251
|
+
pass
|
|
252
|
+
|
|
253
|
+
def get_num_common_prefix_blocks(self, request_id: str,
|
|
254
|
+
num_running_requests: int) -> int:
|
|
255
|
+
blocks = self.req_to_blocks[request_id]
|
|
256
|
+
num_common_blocks = 0
|
|
257
|
+
for block in blocks:
|
|
258
|
+
if block.ref_cnt == num_running_requests:
|
|
259
|
+
num_common_blocks += 1
|
|
260
|
+
else:
|
|
261
|
+
break
|
|
262
|
+
return num_common_blocks
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
class SlidingWindowManager(SingleTypeKVCacheManager):
|
|
266
|
+
|
|
267
|
+
def __init__(self, kv_cache_spec: SlidingWindowSpec, block_pool: BlockPool,
|
|
268
|
+
use_eagle: bool, **kwargs) -> None:
|
|
269
|
+
super().__init__(kv_cache_spec, block_pool, use_eagle, **kwargs)
|
|
270
|
+
self.sliding_window = kv_cache_spec.sliding_window
|
|
271
|
+
# The number of contiguous blocks needed for prefix cache hit.
|
|
272
|
+
# -1 since the input token itself is also included in the window
|
|
273
|
+
self.sliding_window_contiguous_blocks = cdiv(
|
|
274
|
+
(kv_cache_spec.sliding_window - 1), self.block_size)
|
|
275
|
+
if self.use_eagle:
|
|
276
|
+
# Need to drop the last matched block if eagle is enabled. For
|
|
277
|
+
# sliding window layer, we achieve this by increasing the number of
|
|
278
|
+
# contiguous blocks needed for prefix cache hit by one and dropping
|
|
279
|
+
# the last matched block.
|
|
280
|
+
self.sliding_window_contiguous_blocks += 1
|
|
281
|
+
self._null_block = block_pool.null_block
|
|
282
|
+
|
|
283
|
+
def find_longest_cache_hit(self, block_hashes: list[BlockHashType],
|
|
284
|
+
max_length: int) -> list[KVCacheBlock]:
|
|
285
|
+
# TODO: reduce i by sliding_window_contiguous_blocks when cache miss, to
|
|
286
|
+
# optimize the time complexity from O(max_num_blocks) to
|
|
287
|
+
# O(max_num_blocks / sliding_window_contiguous_blocks +
|
|
288
|
+
# sliding_window_contiguous_blocks),
|
|
289
|
+
# which is good for low cache hit rate scenarios.
|
|
290
|
+
max_num_blocks = max_length // self.block_size
|
|
291
|
+
computed_blocks = [self._null_block] * max_num_blocks
|
|
292
|
+
num_contiguous_blocks = 0
|
|
293
|
+
|
|
294
|
+
match_found = False
|
|
295
|
+
# Search from right to left and early stop when a match is found.
|
|
296
|
+
for i in range(max_num_blocks - 1, -1, -1):
|
|
297
|
+
if cached_block := self.block_pool.get_cached_block(
|
|
298
|
+
block_hashes[i]):
|
|
299
|
+
computed_blocks[i] = cached_block
|
|
300
|
+
num_contiguous_blocks += 1
|
|
301
|
+
if (num_contiguous_blocks
|
|
302
|
+
>= self.sliding_window_contiguous_blocks):
|
|
303
|
+
# Trim the trailing blocks.
|
|
304
|
+
# E.g., [NULL, NULL, 8, 3, NULL, 9] -> [NULL, NULL, 8, 3]
|
|
305
|
+
# when sliding_window_contiguous_blocks=2.
|
|
306
|
+
del computed_blocks[i + num_contiguous_blocks:]
|
|
307
|
+
match_found = True
|
|
308
|
+
break
|
|
309
|
+
else:
|
|
310
|
+
num_contiguous_blocks = 0
|
|
311
|
+
if not match_found:
|
|
312
|
+
# The first `num_contiguous_blocks` is a cache hit even if
|
|
313
|
+
# `num_contiguous_blocks < sliding_window_contiguous_blocks`.
|
|
314
|
+
del computed_blocks[num_contiguous_blocks:]
|
|
315
|
+
if self.use_eagle and len(computed_blocks) > 0:
|
|
316
|
+
computed_blocks.pop()
|
|
317
|
+
return computed_blocks
|
|
318
|
+
|
|
319
|
+
def remove_skipped_blocks(self, request_id: str,
|
|
320
|
+
num_computed_tokens: int) -> None:
|
|
321
|
+
# Remove the blocks that are no longer be in the sliding window and
|
|
322
|
+
# skipped during the attention computation.
|
|
323
|
+
last_useful_token = num_computed_tokens - self.sliding_window + 1
|
|
324
|
+
last_useful_block = last_useful_token // self.block_size
|
|
325
|
+
blocks = self.req_to_blocks[request_id]
|
|
326
|
+
removed_blocks: list[KVCacheBlock] = []
|
|
327
|
+
for i in range(last_useful_block - 1, -1, -1):
|
|
328
|
+
if blocks[i] == self._null_block:
|
|
329
|
+
# If the block is already a null block, the blocks before it
|
|
330
|
+
# should also have been set to null blocks by the previous calls
|
|
331
|
+
# to this function.
|
|
332
|
+
break
|
|
333
|
+
removed_blocks.append(blocks[i])
|
|
334
|
+
blocks[i] = self._null_block
|
|
335
|
+
self.block_pool.free_blocks(removed_blocks)
|
|
336
|
+
|
|
337
|
+
def get_num_common_prefix_blocks(self, request_id: str,
|
|
338
|
+
num_running_requests: int) -> int:
|
|
339
|
+
"""
|
|
340
|
+
NOTE(Chen): The prefix blocks are null blocks for sliding window layers.
|
|
341
|
+
So it's not correct to count ref_cnt like FullAttentionManager. Return
|
|
342
|
+
0 here for correctness. Need to support cascade attention + sliding
|
|
343
|
+
window in the future.
|
|
344
|
+
"""
|
|
345
|
+
return 0
|
|
346
|
+
|
|
347
|
+
|
|
348
|
+
spec_manager_map: dict[type[KVCacheSpec], type[SingleTypeKVCacheManager]] = {
|
|
349
|
+
FullAttentionSpec: FullAttentionManager,
|
|
350
|
+
SlidingWindowSpec: SlidingWindowManager,
|
|
351
|
+
}
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
def get_manager_for_kv_cache_spec(kv_cache_spec: KVCacheSpec,
|
|
355
|
+
**kwargs) -> SingleTypeKVCacheManager:
|
|
356
|
+
manager_class = spec_manager_map[type(kv_cache_spec)]
|
|
357
|
+
manager = manager_class(kv_cache_spec, **kwargs)
|
|
358
|
+
return manager
|
|
@@ -0,0 +1,171 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import time
|
|
5
|
+
from collections.abc import Sequence
|
|
6
|
+
from typing import Any, Optional, Union
|
|
7
|
+
|
|
8
|
+
import msgspec
|
|
9
|
+
|
|
10
|
+
from vllm.lora.request import LoRARequest
|
|
11
|
+
from vllm.multimodal import MultiModalKwargs
|
|
12
|
+
from vllm.multimodal.inputs import PlaceholderRange
|
|
13
|
+
from vllm.sampling_params import SamplingParams
|
|
14
|
+
from vllm.v1.metrics.stats import SchedulerStats
|
|
15
|
+
from vllm.v1.outputs import LogprobsLists, LogprobsTensors
|
|
16
|
+
|
|
17
|
+
# These are possible values of RequestOutput.finish_reason,
|
|
18
|
+
# so form part of the external API.
|
|
19
|
+
FINISH_REASON_STRINGS = ("stop", "length", "abort")
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class FinishReason(enum.IntEnum):
|
|
23
|
+
"""
|
|
24
|
+
Reason a request finished - stop, length, or abort.
|
|
25
|
+
|
|
26
|
+
Int rather than Str for more compact serialization.
|
|
27
|
+
|
|
28
|
+
stop - a stop string was emitted
|
|
29
|
+
length - max_tokens was consumed, or max_model_len was reached
|
|
30
|
+
abort - aborted for another reason
|
|
31
|
+
|
|
32
|
+
"""
|
|
33
|
+
STOP = 0
|
|
34
|
+
LENGTH = 1
|
|
35
|
+
ABORT = 2
|
|
36
|
+
|
|
37
|
+
def __str__(self):
|
|
38
|
+
return FINISH_REASON_STRINGS[self.value]
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class EngineCoreRequest(
|
|
42
|
+
msgspec.Struct,
|
|
43
|
+
array_like=True, # type: ignore[call-arg]
|
|
44
|
+
omit_defaults=True, # type: ignore[call-arg]
|
|
45
|
+
gc=False): # type: ignore[call-arg]
|
|
46
|
+
|
|
47
|
+
# NOTE: prompt and prompt_token_ids should be DecoderOnlyInput,
|
|
48
|
+
# but this object is currently not playing well with msgspec
|
|
49
|
+
# due to circular imports and typing we have in data.py
|
|
50
|
+
|
|
51
|
+
request_id: str
|
|
52
|
+
prompt_token_ids: list[int]
|
|
53
|
+
mm_inputs: Optional[Sequence[Optional[MultiModalKwargs]]]
|
|
54
|
+
mm_hashes: Optional[list[str]]
|
|
55
|
+
mm_placeholders: Optional[list[PlaceholderRange]]
|
|
56
|
+
sampling_params: SamplingParams
|
|
57
|
+
eos_token_id: Optional[int]
|
|
58
|
+
arrival_time: float
|
|
59
|
+
lora_request: Optional[LoRARequest]
|
|
60
|
+
cache_salt: Optional[str]
|
|
61
|
+
|
|
62
|
+
# Used in DP case to indicate which wave of requests this is expected to
|
|
63
|
+
# belong to, to cover a race condition where the request is sent before
|
|
64
|
+
# a wave finished notification is received.
|
|
65
|
+
current_wave: int = 0
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class EngineCoreEventType(enum.IntEnum):
|
|
69
|
+
"""The type of engine core request event."""
|
|
70
|
+
QUEUED = 1
|
|
71
|
+
SCHEDULED = 2
|
|
72
|
+
PREEMPTED = 3
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class EngineCoreEvent(msgspec.Struct):
|
|
76
|
+
"""A timestamped engine core event associated with a request.
|
|
77
|
+
|
|
78
|
+
The timestamp is a monotonic timestamps and is used for by the engine
|
|
79
|
+
frontend to calculate intervals between engine core events. These
|
|
80
|
+
timestamps should not be compared with timestamps from other processes.
|
|
81
|
+
"""
|
|
82
|
+
type: EngineCoreEventType
|
|
83
|
+
timestamp: float
|
|
84
|
+
|
|
85
|
+
@classmethod
|
|
86
|
+
def new_event(cls,
|
|
87
|
+
event_type: EngineCoreEventType,
|
|
88
|
+
timestamp: Optional[float] = None) -> "EngineCoreEvent":
|
|
89
|
+
timestamp = time.monotonic() if timestamp is None else timestamp
|
|
90
|
+
return cls(event_type, timestamp)
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
class EngineCoreOutput(
|
|
94
|
+
msgspec.Struct,
|
|
95
|
+
array_like=True, # type: ignore[call-arg]
|
|
96
|
+
omit_defaults=True, # type: ignore[call-arg]
|
|
97
|
+
gc=False): # type: ignore[call-arg]
|
|
98
|
+
|
|
99
|
+
request_id: str
|
|
100
|
+
new_token_ids: list[int]
|
|
101
|
+
|
|
102
|
+
new_logprobs: Optional[LogprobsLists] = None
|
|
103
|
+
new_prompt_logprobs_tensors: Optional[LogprobsTensors] = None
|
|
104
|
+
|
|
105
|
+
finish_reason: Optional[FinishReason] = None
|
|
106
|
+
stop_reason: Union[int, str, None] = None
|
|
107
|
+
events: Optional[list[EngineCoreEvent]] = None
|
|
108
|
+
kv_transfer_params: Optional[dict[str, Any]] = None
|
|
109
|
+
|
|
110
|
+
# The number of tokens with prefix cache hits.
|
|
111
|
+
num_cached_tokens: int = 0
|
|
112
|
+
|
|
113
|
+
@property
|
|
114
|
+
def finished(self) -> bool:
|
|
115
|
+
return self.finish_reason is not None
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class UtilityOutput(
|
|
119
|
+
msgspec.Struct,
|
|
120
|
+
array_like=True, # type: ignore[call-arg]
|
|
121
|
+
gc=False): # type: ignore[call-arg]
|
|
122
|
+
|
|
123
|
+
call_id: int
|
|
124
|
+
|
|
125
|
+
# Non-None implies the call failed, result should be None.
|
|
126
|
+
failure_message: Optional[str] = None
|
|
127
|
+
result: Any = None
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
class EngineCoreOutputs(
|
|
131
|
+
msgspec.Struct,
|
|
132
|
+
array_like=True, # type: ignore[call-arg]
|
|
133
|
+
omit_defaults=True, # type: ignore[call-arg]
|
|
134
|
+
gc=False): # type: ignore[call-arg]
|
|
135
|
+
|
|
136
|
+
#NOTE(Nick): We could consider ways to make this more compact,
|
|
137
|
+
# e.g. columnwise layout
|
|
138
|
+
|
|
139
|
+
engine_index: int = 0
|
|
140
|
+
|
|
141
|
+
# [num_reqs]
|
|
142
|
+
outputs: list[EngineCoreOutput] = []
|
|
143
|
+
scheduler_stats: Optional[SchedulerStats] = None
|
|
144
|
+
timestamp: float = 0.0
|
|
145
|
+
|
|
146
|
+
utility_output: Optional[UtilityOutput] = None
|
|
147
|
+
finished_requests: Optional[set[str]] = None
|
|
148
|
+
|
|
149
|
+
# In DP case, used to signal that the current wave of requests
|
|
150
|
+
# has finished and the engines are paused.
|
|
151
|
+
wave_complete: Optional[int] = None
|
|
152
|
+
# In DP case, used to signal that a request was received for an
|
|
153
|
+
# "old" wave, so the next wave needs to be started in other engines.
|
|
154
|
+
start_wave: Optional[int] = None
|
|
155
|
+
|
|
156
|
+
def __post_init__(self):
|
|
157
|
+
if self.timestamp == 0.0:
|
|
158
|
+
self.timestamp = time.monotonic()
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class EngineCoreRequestType(enum.Enum):
|
|
162
|
+
"""
|
|
163
|
+
Request types defined as hex byte strings, so it can be sent over sockets
|
|
164
|
+
without separate encoding step.
|
|
165
|
+
"""
|
|
166
|
+
ADD = b'\x00'
|
|
167
|
+
ABORT = b'\x01'
|
|
168
|
+
START_DP_WAVE = b'\x02'
|
|
169
|
+
UTILITY = b'\x03'
|
|
170
|
+
# Sentinel used within EngineCoreProc.
|
|
171
|
+
EXECUTOR_FAILED = b'\x04'
|