vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1252 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import enum
4
+ from enum import Enum
5
+ from typing import Callable, Optional
6
+
7
+ import torch
8
+ from compressed_tensors import CompressionFormat
9
+ from compressed_tensors.quantization import (ActivationOrdering,
10
+ QuantizationStrategy)
11
+
12
+ import vllm.envs as envs
13
+ import vllm.model_executor.layers.fused_moe # noqa
14
+ from vllm import _custom_ops as ops
15
+ from vllm.logger import init_logger
16
+ from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
17
+ FusedMoeWeightScaleSupported)
18
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
19
+ WNA16_SUPPORTED_BITS, WNA16_SUPPORTED_TYPES_MAP)
20
+ from vllm.model_executor.layers.quantization.utils import replace_parameter
21
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
22
+ check_moe_marlin_supports_layer, marlin_make_workspace_new,
23
+ marlin_moe_permute_scales)
24
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
25
+ prepare_moe_fp8_layer_for_marlin)
26
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
27
+ all_close_1d, normalize_e4m3fn_to_e4m3fnuz, per_tensor_dequantize)
28
+ from vllm.model_executor.utils import set_weight_attrs
29
+ from vllm.platforms import current_platform
30
+ from vllm.scalar_type import scalar_types
31
+
32
+ logger = init_logger(__name__)
33
+
34
+
35
+ class GPTQMarlinState(Enum):
36
+ REPACK = enum.auto()
37
+ READY = enum.auto()
38
+
39
+
40
+ __all__ = [
41
+ "CompressedTensorsMoEMethod",
42
+ "CompressedTensorsW8A8Fp8MoEMethod",
43
+ "CompressedTensorsW8A8Fp8MoECutlassMethod",
44
+ "CompressedTensorsW8A8Int8MoEMethod",
45
+ "CompressedTensorsWNA16MarlinMoEMethod",
46
+ "CompressedTensorsWNA16MoEMethod",
47
+ ]
48
+
49
+
50
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
51
+
52
+ @staticmethod
53
+ def get_moe_method(
54
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
55
+ layer: torch.nn.Module,
56
+ ) -> "CompressedTensorsMoEMethod":
57
+ # TODO: @dsikka: refactor this to use schemes as other kernels
58
+ # are supported + check if the layer is being ignored.
59
+ weight_quant = quant_config.target_scheme_map["Linear"].get("weights")
60
+ input_quant = quant_config.target_scheme_map["Linear"].get(
61
+ "input_activations")
62
+
63
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
64
+ # group_size=None means channelwise
65
+ group_size = weight_quant.group_size or -1
66
+ # Prefer to use the MarlinMoE kernel when it is supported.
67
+ if not check_moe_marlin_supports_layer(layer, group_size):
68
+ if (weight_quant.strategy in QuantizationStrategy.GROUP and
69
+ weight_quant.actorder in (ActivationOrdering.GROUP,
70
+ ActivationOrdering.DYNAMIC)):
71
+ raise ValueError(
72
+ "WNA16MoE is not supported with actorder=group/dynamic."
73
+ )
74
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
75
+ return CompressedTensorsWNA16MoEMethod(quant_config)
76
+ else:
77
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
78
+ return CompressedTensorsWNA16MarlinMoEMethod(quant_config)
79
+ elif (quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant)
80
+ and layer.activation == "silu"):
81
+ return CompressedTensorsW8A8Fp8MoECutlassMethod(quant_config)
82
+ elif quant_config._is_fp8_w8a8(weight_quant, input_quant):
83
+ return CompressedTensorsW8A8Fp8MoEMethod(quant_config)
84
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
85
+ return CompressedTensorsW8A8Int8MoEMethod(quant_config)
86
+ else:
87
+ raise RuntimeError(
88
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}")
89
+
90
+
91
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
92
+
93
+ def __init__(
94
+ self,
95
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
96
+ ):
97
+ self.quant_config = quant_config
98
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
99
+ "weights")
100
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
101
+ "input_activations")
102
+
103
+ per_tensor = (self.weight_quant.strategy == QuantizationStrategy.TENSOR
104
+ and self.input_quant.strategy
105
+ == QuantizationStrategy.TENSOR)
106
+ per_channel = (
107
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
108
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
109
+ if not (per_tensor or per_channel):
110
+ raise ValueError(
111
+ "For FP8 Fused MoE layers, we require per tensor "
112
+ "or channelwise, dynamic per token quantization. Found "
113
+ f"{self.weight_quant}, {self.input_quant}")
114
+
115
+ self.static_input_scales = not self.input_quant.dynamic
116
+ if self.static_input_scales and per_channel:
117
+ raise ValueError(
118
+ "For FP8 Fused MoE layer, we require either per tensor or "
119
+ "channelwise, dynamic per token quantization.")
120
+
121
+ # For GPUs that lack FP8 hardware support, we can leverage the Marlin
122
+ # kernel for fast weight-only FP8 quantization
123
+ self.use_marlin = (not current_platform.has_device_capability(89)
124
+ or envs.VLLM_TEST_FORCE_FP8_MARLIN)
125
+ # Disable marlin for rocm
126
+ if current_platform.is_rocm():
127
+ self.use_marlin = False
128
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
129
+ is_rocm_aiter_moe_enabled)
130
+
131
+ self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
132
+
133
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
134
+ hidden_size: int, intermediate_size_per_partition: int,
135
+ params_dtype: torch.dtype, **extra_weight_attrs):
136
+
137
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
138
+ layer.hidden_size = hidden_size
139
+ layer.num_experts = num_experts
140
+ layer.orig_dtype = params_dtype
141
+ layer.weight_block_size = None
142
+
143
+ params_dtype = torch.float8_e4m3fn
144
+
145
+ # WEIGHTS
146
+ w13_weight = torch.nn.Parameter(torch.empty(
147
+ num_experts,
148
+ 2 * intermediate_size_per_partition,
149
+ hidden_size,
150
+ dtype=params_dtype),
151
+ requires_grad=False)
152
+ layer.register_parameter("w13_weight", w13_weight)
153
+ set_weight_attrs(w13_weight, extra_weight_attrs)
154
+
155
+ w2_weight = torch.nn.Parameter(torch.empty(
156
+ num_experts,
157
+ hidden_size,
158
+ intermediate_size_per_partition,
159
+ dtype=params_dtype),
160
+ requires_grad=False)
161
+ layer.register_parameter("w2_weight", w2_weight)
162
+ set_weight_attrs(w2_weight, extra_weight_attrs)
163
+
164
+ # WEIGHT_SCALES
165
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
166
+ # Allocate 2 scales for w1 and w3 respectively.
167
+ # They are combined to a single scale after weight loading.
168
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
169
+ num_experts, 2, dtype=torch.float32),
170
+ requires_grad=False)
171
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
172
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
173
+ num_experts, dtype=torch.float32),
174
+ requires_grad=False)
175
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
176
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
177
+ extra_weight_attrs.update(
178
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
179
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
180
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
181
+
182
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
183
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
184
+ num_experts,
185
+ 2 * intermediate_size_per_partition,
186
+ 1,
187
+ dtype=torch.float32),
188
+ requires_grad=False)
189
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
190
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
191
+ num_experts, hidden_size, 1, dtype=torch.float32),
192
+ requires_grad=False)
193
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
194
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
195
+ extra_weight_attrs.update(
196
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
197
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
198
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
199
+
200
+ # INPUT_SCALES
201
+ if self.static_input_scales:
202
+ w13_input_scale = torch.nn.Parameter(torch.ones(
203
+ num_experts, dtype=torch.float32),
204
+ requires_grad=False)
205
+ layer.register_parameter("w13_input_scale", w13_input_scale)
206
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
207
+
208
+ w2_input_scale = torch.nn.Parameter(torch.ones(
209
+ num_experts, dtype=torch.float32),
210
+ requires_grad=False)
211
+ layer.register_parameter("w2_input_scale", w2_input_scale)
212
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
213
+ else:
214
+ layer.w13_input_scale = None
215
+ layer.w2_input_scale = None
216
+
217
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
218
+ # Fp8 moe kernels require a single activation scale.
219
+ # We take the max of all the scales in case they differ.
220
+ if self.static_input_scales:
221
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
222
+ if (layer.w13_input_scale is None or layer.w2_input_scale is None):
223
+ raise ValueError(
224
+ "QuantConfig has static quantization, but found "
225
+ "activation scales are None.")
226
+ if (not all_close_1d(layer.w13_input_scale)
227
+ or not all_close_1d(layer.w2_input_scale)):
228
+ logger.warning_once(
229
+ "Found input_scales that are not equal for "
230
+ "fp8 MoE layer. Using the maximum across experts "
231
+ "for each layer.")
232
+ layer.w13_input_scale = torch.nn.Parameter(
233
+ layer.w13_input_scale.max(), requires_grad=False)
234
+ layer.w2_input_scale = torch.nn.Parameter(
235
+ layer.w2_input_scale.max(), requires_grad=False)
236
+
237
+ if current_platform.is_fp8_fnuz():
238
+ # Normalize the weights and scales
239
+ w13_weight, w13_weight_scale, w13_input_scale = \
240
+ normalize_e4m3fn_to_e4m3fnuz(
241
+ layer.w13_weight, layer.w13_weight_scale,
242
+ layer.w13_input_scale)
243
+ w2_weight, w2_weight_scale, w2_input_scale = \
244
+ normalize_e4m3fn_to_e4m3fnuz(
245
+ layer.w2_weight, layer.w2_weight_scale,
246
+ layer.w2_input_scale)
247
+ # Reset the parameter
248
+ layer.w13_weight = torch.nn.Parameter(w13_weight,
249
+ requires_grad=False)
250
+ layer.w13_weight_scale = torch.nn.Parameter(w13_weight_scale,
251
+ requires_grad=False)
252
+ if w13_input_scale is not None:
253
+ layer.w13_input_scale = torch.nn.Parameter(w13_input_scale,
254
+ requires_grad=False)
255
+ layer.w2_weight = torch.nn.Parameter(w2_weight,
256
+ requires_grad=False)
257
+ layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
258
+ requires_grad=False)
259
+ if w2_input_scale is not None:
260
+ layer.w2_input_scale = torch.nn.Parameter(w2_input_scale,
261
+ requires_grad=False)
262
+
263
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
264
+ # for w13 per expert. Use max then dequant and requant each expert.
265
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
266
+ assert layer.w13_weight_scale is not None
267
+ shard_size = layer.intermediate_size_per_partition
268
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
269
+ for expert_id in range(layer.local_num_experts):
270
+ start = 0
271
+ for shard_id in range(2):
272
+ dq_weight = per_tensor_dequantize(
273
+ layer.w13_weight[expert_id][start:start +
274
+ shard_size, :],
275
+ layer.w13_weight_scale[expert_id][shard_id])
276
+ layer.w13_weight[expert_id][
277
+ start:start + shard_size, :], _ = ops.scaled_fp8_quant(
278
+ dq_weight, max_w13_scales[expert_id])
279
+ start += shard_size
280
+ layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
281
+ requires_grad=False)
282
+
283
+ # Property to determine if AITER is used
284
+ if self.rocm_aiter_moe_enabled:
285
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
286
+ rocm_aiter_fused_experts, shuffle_weights)
287
+
288
+ # reshaping weights is required for aiter moe kernel.
289
+ shuffled_w13, shuffled_w2 = shuffle_weights(
290
+ layer.w13_weight.data, layer.w2_weight.data)
291
+
292
+ layer.w13_weight = torch.nn.Parameter(shuffled_w13,
293
+ requires_grad=False)
294
+ layer.w2_weight = torch.nn.Parameter(shuffled_w2,
295
+ requires_grad=False)
296
+
297
+ self.rocm_aiter_fused_experts_func = rocm_aiter_fused_experts
298
+ else:
299
+ from vllm.model_executor.layers.fused_moe import fused_experts
300
+ self.fused_experts_func = fused_experts
301
+
302
+ if self.use_marlin:
303
+ prepare_moe_fp8_layer_for_marlin(layer, False)
304
+ # Activations not quantized for marlin.
305
+ del layer.w13_input_scale
306
+ del layer.w2_input_scale
307
+
308
+ def apply(
309
+ self,
310
+ layer: torch.nn.Module,
311
+ x: torch.Tensor,
312
+ router_logits: torch.Tensor,
313
+ top_k: int,
314
+ renormalize: bool,
315
+ use_grouped_topk: bool = False,
316
+ topk_group: Optional[int] = None,
317
+ num_expert_group: Optional[int] = None,
318
+ global_num_experts: int = -1,
319
+ expert_map: Optional[torch.Tensor] = None,
320
+ custom_routing_function: Optional[Callable] = None,
321
+ scoring_func: str = "softmax",
322
+ e_score_correction_bias: Optional[torch.Tensor] = None,
323
+ apply_router_weight_on_input: bool = False,
324
+ activation: str = "silu",
325
+ ) -> torch.Tensor:
326
+
327
+ topk_weights, topk_ids = FusedMoE.select_experts(
328
+ hidden_states=x,
329
+ router_logits=router_logits,
330
+ use_grouped_topk=use_grouped_topk,
331
+ top_k=top_k,
332
+ renormalize=renormalize,
333
+ topk_group=topk_group,
334
+ num_expert_group=num_expert_group,
335
+ custom_routing_function=custom_routing_function,
336
+ scoring_func=scoring_func,
337
+ e_score_correction_bias=e_score_correction_bias)
338
+
339
+ if self.rocm_aiter_moe_enabled:
340
+ return self.rocm_aiter_fused_experts_func(
341
+ hidden_states=x,
342
+ w1=layer.w13_weight,
343
+ w2=layer.w2_weight,
344
+ topk_weights=topk_weights,
345
+ topk_ids=topk_ids,
346
+ activation=activation,
347
+ apply_router_weight_on_input=apply_router_weight_on_input,
348
+ use_fp8_w8a8=True,
349
+ per_channel_quant=self.weight_quant.strategy ==
350
+ QuantizationStrategy.CHANNEL,
351
+ w1_scale=layer.w13_weight_scale,
352
+ w2_scale=layer.w2_weight_scale,
353
+ a1_scale=layer.w13_input_scale,
354
+ a2_scale=layer.w2_input_scale)
355
+ if self.use_marlin:
356
+ assert activation == "silu", (
357
+ f"{activation} not supported for Marlin MoE.")
358
+ assert not apply_router_weight_on_input, (
359
+ "Apply router weight on input not supported for Marlin MoE.")
360
+ return torch.ops.vllm.fused_marlin_moe(
361
+ x,
362
+ layer.w13_weight,
363
+ layer.w2_weight,
364
+ layer.w13_weight_scale,
365
+ layer.w2_weight_scale,
366
+ router_logits,
367
+ topk_weights,
368
+ topk_ids,
369
+ quant_type_id=scalar_types.float8_e4m3fn.id,
370
+ global_num_experts=global_num_experts,
371
+ expert_map=expert_map)
372
+
373
+ return self.fused_experts_func(
374
+ hidden_states=x,
375
+ w1=layer.w13_weight,
376
+ w2=layer.w2_weight,
377
+ topk_weights=topk_weights,
378
+ topk_ids=topk_ids,
379
+ inplace=True,
380
+ activation=activation,
381
+ apply_router_weight_on_input=apply_router_weight_on_input,
382
+ use_fp8_w8a8=True,
383
+ per_channel_quant=self.weight_quant.strategy ==
384
+ QuantizationStrategy.CHANNEL,
385
+ global_num_experts=global_num_experts,
386
+ expert_map=expert_map,
387
+ w1_scale=layer.w13_weight_scale,
388
+ w2_scale=layer.w2_weight_scale,
389
+ a1_scale=layer.w13_input_scale,
390
+ a2_scale=layer.w2_input_scale)
391
+
392
+
393
+ class CompressedTensorsW8A8Fp8MoECutlassMethod(CompressedTensorsMoEMethod):
394
+
395
+ def __init__(
396
+ self,
397
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
398
+ ):
399
+ self.quant_config = quant_config
400
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
401
+ "weights")
402
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
403
+ "input_activations")
404
+
405
+ per_tensor = (self.weight_quant.strategy == QuantizationStrategy.TENSOR
406
+ and self.input_quant.strategy
407
+ == QuantizationStrategy.TENSOR)
408
+ per_channel = (
409
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
410
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
411
+ if not (per_tensor or per_channel):
412
+ raise ValueError(
413
+ "For FP8 Fused MoE layers, we require per tensor "
414
+ "or channelwise, dynamic per token quantization. Found "
415
+ f"{self.weight_quant}, {self.input_quant}")
416
+
417
+ self.static_input_scales = not self.input_quant.dynamic
418
+ if self.static_input_scales and per_channel:
419
+ raise ValueError(
420
+ "For FP8 Fused MoE layer, we require either per tensor or "
421
+ "channelwise, dynamic per token quantization.")
422
+
423
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
424
+ hidden_size: int, intermediate_size_per_partition: int,
425
+ params_dtype: torch.dtype, **extra_weight_attrs):
426
+
427
+ params_dtype = torch.float8_e4m3fn
428
+
429
+ # WEIGHTS
430
+ w13_weight = torch.nn.Parameter(torch.empty(
431
+ num_experts,
432
+ 2 * intermediate_size_per_partition,
433
+ hidden_size,
434
+ dtype=params_dtype),
435
+ requires_grad=False)
436
+ layer.register_parameter("w13_weight", w13_weight)
437
+ set_weight_attrs(w13_weight, extra_weight_attrs)
438
+
439
+ w2_weight = torch.nn.Parameter(torch.empty(
440
+ num_experts,
441
+ hidden_size,
442
+ intermediate_size_per_partition,
443
+ dtype=params_dtype),
444
+ requires_grad=False)
445
+ layer.register_parameter("w2_weight", w2_weight)
446
+ set_weight_attrs(w2_weight, extra_weight_attrs)
447
+
448
+ # WEIGHT_SCALES
449
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
450
+ # Allocate 2 scales for w1 and w3 respectively.
451
+ # They are combined to a single scale after weight loading.
452
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
453
+ num_experts, 2, dtype=torch.float32),
454
+ requires_grad=False)
455
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
456
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
457
+ num_experts, dtype=torch.float32),
458
+ requires_grad=False)
459
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
460
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
461
+ extra_weight_attrs.update(
462
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
463
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
464
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
465
+
466
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
467
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
468
+ num_experts,
469
+ 2 * intermediate_size_per_partition,
470
+ 1,
471
+ dtype=torch.float32),
472
+ requires_grad=False)
473
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
474
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
475
+ num_experts, hidden_size, 1, dtype=torch.float32),
476
+ requires_grad=False)
477
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
478
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
479
+ extra_weight_attrs.update(
480
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
481
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
482
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
483
+
484
+ # INPUT_SCALES
485
+ if self.static_input_scales:
486
+ w13_input_scale = torch.nn.Parameter(torch.ones(
487
+ num_experts, dtype=torch.float32),
488
+ requires_grad=False)
489
+ layer.register_parameter("w13_input_scale", w13_input_scale)
490
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
491
+
492
+ w2_input_scale = torch.nn.Parameter(torch.ones(
493
+ num_experts, dtype=torch.float32),
494
+ requires_grad=False)
495
+ layer.register_parameter("w2_input_scale", w2_input_scale)
496
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
497
+ else:
498
+ layer.w13_input_scale = None
499
+ layer.w2_input_scale = None
500
+
501
+ device = w13_weight.device
502
+ # TODO strides can be shared across multiple layers
503
+ self.ab_strides1 = torch.full((num_experts, ),
504
+ hidden_size,
505
+ device=device,
506
+ dtype=torch.int64)
507
+ self.c_strides1 = torch.full((num_experts, ),
508
+ 2 * intermediate_size_per_partition,
509
+ device=device,
510
+ dtype=torch.int64)
511
+ self.ab_strides2 = torch.full((num_experts, ),
512
+ intermediate_size_per_partition,
513
+ device=device,
514
+ dtype=torch.int64)
515
+ self.c_strides2 = torch.full((num_experts, ),
516
+ hidden_size,
517
+ device=device,
518
+ dtype=torch.int64)
519
+
520
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
521
+ # Fp8 moe kernels require a single activation scale.
522
+ # We take the max of all the scales in case they differ.
523
+ if self.static_input_scales:
524
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
525
+ if (layer.w13_input_scale is None or layer.w2_input_scale is None):
526
+ raise ValueError(
527
+ "QuantConfig has static quantization, but found "
528
+ "activation scales are None.")
529
+ if (not all_close_1d(layer.w13_input_scale)
530
+ or not all_close_1d(layer.w2_input_scale)):
531
+ logger.warning_once(
532
+ "Found input_scales that are not equal for "
533
+ "fp8 MoE layer. Using the maximum across experts "
534
+ "for each layer.")
535
+ layer.w13_input_scale = torch.nn.Parameter(
536
+ layer.w13_input_scale.max(), requires_grad=False)
537
+ layer.w2_input_scale = torch.nn.Parameter(
538
+ layer.w2_input_scale.max(), requires_grad=False)
539
+
540
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
541
+ # for w13 per expert. Use max then dequant and requant each expert.
542
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
543
+ assert layer.w13_weight_scale is not None
544
+ shard_size = layer.intermediate_size_per_partition
545
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
546
+ for expert_id in range(layer.local_num_experts):
547
+ start = 0
548
+ for shard_id in range(2):
549
+ dq_weight = per_tensor_dequantize(
550
+ layer.w13_weight[expert_id][start:start +
551
+ shard_size, :],
552
+ layer.w13_weight_scale[expert_id][shard_id])
553
+ layer.w13_weight[expert_id][
554
+ start:start + shard_size, :], _ = ops.scaled_fp8_quant(
555
+ dq_weight, max_w13_scales[expert_id])
556
+ start += shard_size
557
+ layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
558
+ requires_grad=False)
559
+
560
+ def apply(
561
+ self,
562
+ layer: torch.nn.Module,
563
+ x: torch.Tensor,
564
+ router_logits: torch.Tensor,
565
+ top_k: int,
566
+ renormalize: bool,
567
+ use_grouped_topk: bool = False,
568
+ topk_group: Optional[int] = None,
569
+ num_expert_group: Optional[int] = None,
570
+ global_num_experts: int = -1,
571
+ expert_map: Optional[torch.Tensor] = None,
572
+ custom_routing_function: Optional[Callable] = None,
573
+ scoring_func: str = "softmax",
574
+ e_score_correction_bias: Optional[torch.Tensor] = None,
575
+ apply_router_weight_on_input: bool = False,
576
+ activation: str = "silu",
577
+ ) -> torch.Tensor:
578
+
579
+ assert activation == "silu", (
580
+ f"{activation} not supported for Cutlass MoE.")
581
+
582
+ topk_weights, topk_ids = FusedMoE.select_experts(
583
+ hidden_states=x,
584
+ router_logits=router_logits,
585
+ use_grouped_topk=use_grouped_topk,
586
+ top_k=top_k,
587
+ renormalize=renormalize,
588
+ topk_group=topk_group,
589
+ num_expert_group=num_expert_group,
590
+ custom_routing_function=custom_routing_function,
591
+ scoring_func=scoring_func,
592
+ e_score_correction_bias=e_score_correction_bias)
593
+
594
+ from vllm.model_executor.layers.fused_moe import cutlass_moe_fp8
595
+
596
+ return cutlass_moe_fp8(
597
+ x,
598
+ layer.w13_weight.transpose(1, 2),
599
+ layer.w2_weight.transpose(1, 2),
600
+ layer.w13_weight_scale,
601
+ layer.w2_weight_scale,
602
+ topk_weights,
603
+ topk_ids,
604
+ self.ab_strides1,
605
+ self.c_strides1,
606
+ self.ab_strides2,
607
+ self.c_strides2,
608
+ a1_scale=layer.w13_input_scale,
609
+ a2_scale=layer.w2_input_scale,
610
+ out_dtype=x.dtype,
611
+ expert_map=expert_map,
612
+ apply_router_weight_on_input=apply_router_weight_on_input,
613
+ )
614
+
615
+
616
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
617
+
618
+ def __init__(
619
+ self,
620
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
621
+ ):
622
+ self.quant_config = quant_config
623
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
624
+ "weights")
625
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
626
+ "input_activations")
627
+
628
+ per_channel = (
629
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
630
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
631
+ if not per_channel:
632
+ raise ValueError(
633
+ "For INT8 Fused MoE layers, we require channelwise, "
634
+ "dynamic per token quantization. Found "
635
+ f"{self.weight_quant}, {self.input_quant}")
636
+
637
+ self.static_input_scales = not self.input_quant.dynamic
638
+ if self.static_input_scales:
639
+ raise ValueError(
640
+ "For INT8 Fused MoE layers, we require channelwise, "
641
+ "dynamic per token quantization. Found static input scales.")
642
+
643
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
644
+ hidden_size: int, intermediate_size_per_partition: int,
645
+ params_dtype: torch.dtype, **extra_weight_attrs):
646
+
647
+ params_dtype = torch.int8
648
+
649
+ # WEIGHTS
650
+ w13_weight = torch.nn.Parameter(torch.empty(
651
+ num_experts,
652
+ 2 * intermediate_size_per_partition,
653
+ hidden_size,
654
+ dtype=params_dtype),
655
+ requires_grad=False)
656
+ layer.register_parameter("w13_weight", w13_weight)
657
+ set_weight_attrs(w13_weight, extra_weight_attrs)
658
+
659
+ w2_weight = torch.nn.Parameter(torch.empty(
660
+ num_experts,
661
+ hidden_size,
662
+ intermediate_size_per_partition,
663
+ dtype=params_dtype),
664
+ requires_grad=False)
665
+ layer.register_parameter("w2_weight", w2_weight)
666
+ set_weight_attrs(w2_weight, extra_weight_attrs)
667
+
668
+ # WEIGHT_SCALES
669
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
670
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
671
+ num_experts,
672
+ 2 * intermediate_size_per_partition,
673
+ 1,
674
+ dtype=torch.float32),
675
+ requires_grad=False)
676
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
677
+ w2_weight_scale = torch.nn.Parameter(torch.ones(num_experts,
678
+ hidden_size,
679
+ 1,
680
+ dtype=torch.float32),
681
+ requires_grad=False)
682
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
683
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
684
+ extra_weight_attrs.update(
685
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
686
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
687
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
688
+
689
+ # INPUT_SCALES
690
+ assert not self.static_input_scales
691
+ layer.w13_input_scale = None
692
+ layer.w2_input_scale = None
693
+
694
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
695
+ pass
696
+
697
+ def apply(
698
+ self,
699
+ layer: torch.nn.Module,
700
+ x: torch.Tensor,
701
+ router_logits: torch.Tensor,
702
+ top_k: int,
703
+ renormalize: bool,
704
+ use_grouped_topk: bool = False,
705
+ topk_group: Optional[int] = None,
706
+ num_expert_group: Optional[int] = None,
707
+ global_num_experts: int = -1,
708
+ expert_map: Optional[torch.Tensor] = None,
709
+ custom_routing_function: Optional[Callable] = None,
710
+ scoring_func: str = "softmax",
711
+ e_score_correction_bias: Optional[torch.Tensor] = None,
712
+ apply_router_weight_on_input: bool = False,
713
+ activation: str = "silu",
714
+ ) -> torch.Tensor:
715
+ from vllm.model_executor.layers.fused_moe import fused_experts
716
+
717
+ topk_weights, topk_ids = FusedMoE.select_experts(
718
+ hidden_states=x,
719
+ router_logits=router_logits,
720
+ use_grouped_topk=use_grouped_topk,
721
+ top_k=top_k,
722
+ renormalize=renormalize,
723
+ topk_group=topk_group,
724
+ num_expert_group=num_expert_group,
725
+ custom_routing_function=custom_routing_function,
726
+ scoring_func=scoring_func,
727
+ e_score_correction_bias=e_score_correction_bias)
728
+
729
+ return fused_experts(
730
+ hidden_states=x,
731
+ w1=layer.w13_weight,
732
+ w2=layer.w2_weight,
733
+ topk_weights=topk_weights,
734
+ topk_ids=topk_ids,
735
+ inplace=True,
736
+ activation=activation,
737
+ apply_router_weight_on_input=apply_router_weight_on_input,
738
+ use_int8_w8a8=True,
739
+ per_channel_quant=True,
740
+ global_num_experts=global_num_experts,
741
+ expert_map=expert_map,
742
+ w1_scale=layer.w13_weight_scale,
743
+ w2_scale=layer.w2_weight_scale,
744
+ a1_scale=layer.w13_input_scale,
745
+ a2_scale=layer.w2_input_scale)
746
+
747
+
748
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
749
+
750
+ def __init__(
751
+ self,
752
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
753
+ ):
754
+ self.quant_config = quant_config
755
+ # TODO: @dsikka: refactor this to use schemes as other kernels
756
+ # are supported + check if the layer is being ignored.
757
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
758
+ self.num_bits = config.num_bits
759
+ self.packed_factor = 32 // config.num_bits
760
+ self.strategy = config.strategy
761
+ self.group_size = config.group_size
762
+ self.actorder = config.actorder
763
+ assert config.symmetric, (
764
+ "Only symmetric quantization is supported for MoE")
765
+
766
+ if not (self.quant_config.quant_format
767
+ == CompressionFormat.pack_quantized.value
768
+ and self.num_bits in WNA16_SUPPORTED_BITS):
769
+ raise ValueError("For Fused MoE layers, only ",
770
+ f"{CompressionFormat.pack_quantized.value} ",
771
+ "is supported for the following bits: ",
772
+ f"{WNA16_SUPPORTED_BITS}")
773
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
774
+
775
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
776
+ hidden_size: int, intermediate_size_per_partition: int,
777
+ params_dtype: torch.dtype, **extra_weight_attrs):
778
+
779
+ intermediate_size_full = extra_weight_attrs.pop(
780
+ "intermediate_size_full")
781
+
782
+ # Will transpose the loaded weight along the
783
+ # intermediate and hidden dim sizes. Will
784
+ # shard for TP along the transposed dims
785
+ extra_weight_attrs.update({
786
+ "is_transposed": True,
787
+ "quant_method": self.strategy
788
+ })
789
+ w13_weight = torch.nn.Parameter(torch.empty(
790
+ num_experts,
791
+ hidden_size // self.packed_factor,
792
+ 2 * intermediate_size_per_partition,
793
+ dtype=torch.int32),
794
+ requires_grad=False)
795
+ layer.register_parameter("w13_weight_packed", w13_weight)
796
+ set_weight_attrs(w13_weight, extra_weight_attrs)
797
+
798
+ w2_weight = torch.nn.Parameter(torch.empty(
799
+ num_experts,
800
+ intermediate_size_per_partition // self.packed_factor,
801
+ hidden_size,
802
+ dtype=torch.int32),
803
+ requires_grad=False)
804
+ layer.register_parameter("w2_weight_packed", w2_weight)
805
+ set_weight_attrs(w2_weight, extra_weight_attrs)
806
+
807
+ # In the case where we have actorder/g_idx,
808
+ # we do not partition the w2 scales
809
+ load_full_w2 = self.actorder and self.group_size != -1
810
+ w2_scales_size = (intermediate_size_full
811
+ if load_full_w2 else intermediate_size_per_partition)
812
+
813
+ self.is_k_full = (not self.actorder) or (
814
+ intermediate_size_per_partition == intermediate_size_full)
815
+
816
+ if self.strategy == "channel":
817
+ num_groups_w2 = num_groups_w13 = 1
818
+ self.group_size = -1
819
+ else:
820
+ num_groups_w2 = w2_scales_size // self.group_size
821
+ num_groups_w13 = hidden_size // self.group_size
822
+
823
+ w13_scale = torch.nn.Parameter(torch.ones(
824
+ num_experts,
825
+ num_groups_w13,
826
+ 2 * intermediate_size_per_partition,
827
+ dtype=params_dtype),
828
+ requires_grad=False)
829
+ layer.register_parameter("w13_weight_scale", w13_scale)
830
+ set_weight_attrs(w13_scale, extra_weight_attrs)
831
+
832
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
833
+ num_groups_w2,
834
+ hidden_size,
835
+ dtype=params_dtype),
836
+ requires_grad=False)
837
+ layer.register_parameter("w2_weight_scale", w2_scale)
838
+ set_weight_attrs(w2_scale, extra_weight_attrs)
839
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
840
+
841
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
842
+ requires_grad=False)
843
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
844
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
845
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
846
+ requires_grad=False)
847
+
848
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
849
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
850
+
851
+ w13_g_idx = torch.nn.Parameter(
852
+ torch.empty(
853
+ num_experts,
854
+ hidden_size,
855
+ dtype=torch.int32,
856
+ ),
857
+ requires_grad=False,
858
+ )
859
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
860
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
861
+
862
+ w2_g_idx = torch.nn.Parameter(
863
+ torch.empty(
864
+ num_experts,
865
+ intermediate_size_per_partition,
866
+ dtype=torch.int32,
867
+ ),
868
+ requires_grad=False,
869
+ )
870
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
871
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
872
+
873
+ w13_g_idx_sort_indices = torch.nn.Parameter(
874
+ torch.empty(
875
+ num_experts,
876
+ hidden_size,
877
+ dtype=torch.int32,
878
+ ),
879
+ requires_grad=False,
880
+ )
881
+ layer.register_parameter("w13_g_idx_sort_indices",
882
+ w13_g_idx_sort_indices)
883
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
884
+
885
+ w2_g_idx_sort_indices = torch.nn.Parameter(
886
+ torch.empty(
887
+ num_experts,
888
+ intermediate_size_per_partition,
889
+ dtype=torch.int32,
890
+ ),
891
+ requires_grad=False,
892
+ )
893
+ layer.register_parameter("w2_g_idx_sort_indices",
894
+ w2_g_idx_sort_indices)
895
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
896
+
897
+ layer.a13_scale = None
898
+ layer.a2_scale = None
899
+ layer.marlin_state = GPTQMarlinState.REPACK
900
+
901
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
902
+ num_experts = layer.w13_weight_g_idx.shape[0]
903
+ device = layer.w13_weight_g_idx.device
904
+
905
+ # when running models with grouped act order,
906
+ # resort to g_idx values provided in checkpoint
907
+ if self.actorder == "group":
908
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
909
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
910
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
911
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
912
+
913
+ for e in range(num_experts):
914
+ w13_g_idx_sort_indices[e] = torch.argsort(
915
+ layer.w13_weight_g_idx[e]).to(torch.int32)
916
+ w2_g_idx_sort_indices[e] = torch.argsort(
917
+ layer.w2_weight_g_idx[e]).to(torch.int32)
918
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
919
+ w13_g_idx_sort_indices[e]]
920
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][
921
+ w2_g_idx_sort_indices[e]]
922
+
923
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
924
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
925
+ replace_parameter(layer, "w13_g_idx_sort_indices",
926
+ w13_g_idx_sort_indices)
927
+ replace_parameter(layer, "w2_g_idx_sort_indices",
928
+ w2_g_idx_sort_indices)
929
+
930
+ else:
931
+ layer.w13_weight_g_idx = torch.nn.Parameter(
932
+ torch.empty((num_experts, 0), dtype=torch.int32,
933
+ device=device),
934
+ requires_grad=False,
935
+ )
936
+ layer.w2_weight_g_idx = torch.nn.Parameter(
937
+ torch.empty((num_experts, 0), dtype=torch.int32,
938
+ device=device),
939
+ requires_grad=False,
940
+ )
941
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
942
+ torch.empty((num_experts, 0), dtype=torch.int32,
943
+ device=device),
944
+ requires_grad=False,
945
+ )
946
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
947
+ torch.empty((num_experts, 0), dtype=torch.int32,
948
+ device=device),
949
+ requires_grad=False,
950
+ )
951
+
952
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
953
+ layer.w13_weight_packed,
954
+ layer.w13_g_idx_sort_indices,
955
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
956
+ layer.w13_weight_packed.shape[2],
957
+ self.num_bits,
958
+ )
959
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
960
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
961
+ layer.w2_weight_packed,
962
+ layer.w2_g_idx_sort_indices,
963
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
964
+ layer.w2_weight_packed.shape[2],
965
+ self.num_bits,
966
+ )
967
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
968
+ # Repack scales
969
+ marlin_w13_scales = marlin_moe_permute_scales(
970
+ s=layer.w13_weight_scale,
971
+ size_k=layer.w13_weight_packed.shape[2],
972
+ size_n=layer.w13_weight_scale.shape[2],
973
+ group_size=self.group_size,
974
+ )
975
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
976
+ marlin_w2_scales = marlin_moe_permute_scales(
977
+ s=layer.w2_weight_scale,
978
+ size_k=layer.w2_weight_scale.shape[1] *
979
+ (self.group_size if self.group_size != -1 else self.packed_factor),
980
+ size_n=layer.w2_weight_scale.shape[2],
981
+ group_size=self.group_size,
982
+ )
983
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
984
+
985
+ layer.workspace = marlin_make_workspace_new(device, 4)
986
+
987
+ def apply(
988
+ self,
989
+ layer: torch.nn.Module,
990
+ x: torch.Tensor,
991
+ router_logits: torch.Tensor,
992
+ top_k: int,
993
+ renormalize: bool,
994
+ use_grouped_topk: bool = False,
995
+ topk_group: Optional[int] = None,
996
+ num_expert_group: Optional[int] = None,
997
+ global_num_experts: int = -1,
998
+ expert_map: Optional[torch.Tensor] = None,
999
+ custom_routing_function: Optional[Callable] = None,
1000
+ scoring_func: str = "softmax",
1001
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1002
+ apply_router_weight_on_input: bool = False,
1003
+ activation: str = "silu",
1004
+ ) -> torch.Tensor:
1005
+ assert activation == "silu", (
1006
+ f"{activation} not supported for Marlin MoE.")
1007
+ assert not apply_router_weight_on_input, (
1008
+ "Apply router weight on input not supported for Marlin MoE.")
1009
+
1010
+ topk_weights, topk_ids = FusedMoE.select_experts(
1011
+ hidden_states=x,
1012
+ router_logits=router_logits,
1013
+ use_grouped_topk=use_grouped_topk,
1014
+ top_k=top_k,
1015
+ renormalize=renormalize,
1016
+ topk_group=topk_group,
1017
+ num_expert_group=num_expert_group,
1018
+ custom_routing_function=custom_routing_function,
1019
+ scoring_func=scoring_func,
1020
+ e_score_correction_bias=e_score_correction_bias)
1021
+
1022
+ return torch.ops.vllm.fused_marlin_moe(
1023
+ x,
1024
+ layer.w13_weight_packed,
1025
+ layer.w2_weight_packed,
1026
+ layer.w13_weight_scale,
1027
+ layer.w2_weight_scale,
1028
+ router_logits,
1029
+ topk_weights,
1030
+ topk_ids,
1031
+ quant_type_id=self.quant_type.id,
1032
+ global_num_experts=global_num_experts,
1033
+ expert_map=expert_map,
1034
+ g_idx1=layer.w13_weight_g_idx,
1035
+ g_idx2=layer.w2_weight_g_idx,
1036
+ sort_indices1=layer.w13_g_idx_sort_indices,
1037
+ sort_indices2=layer.w2_g_idx_sort_indices,
1038
+ workspace=layer.workspace,
1039
+ is_k_full=self.is_k_full)
1040
+
1041
+
1042
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1043
+
1044
+ def __init__(
1045
+ self,
1046
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
1047
+ ):
1048
+ self.quant_config = quant_config
1049
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1050
+ # are supported + check if the layer is being ignored.
1051
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1052
+ self.num_bits = config.num_bits
1053
+ self.packed_factor = 32 // config.num_bits
1054
+ self.strategy = config.strategy
1055
+ # channelwise is not supported by this kernel
1056
+ assert config.strategy == "group"
1057
+ self.group_size = config.group_size
1058
+ # grouped actorder isn't supported by this kernel
1059
+ assert config.actorder != "group"
1060
+ assert config.symmetric, (
1061
+ "Only symmetric quantization is supported for MoE")
1062
+
1063
+ if not (self.quant_config.quant_format
1064
+ == CompressionFormat.pack_quantized.value
1065
+ and self.num_bits in WNA16_SUPPORTED_BITS):
1066
+ raise ValueError("For Fused MoE layers, only ",
1067
+ f"{CompressionFormat.pack_quantized.value} ",
1068
+ "is supported for the following bits: ",
1069
+ f"{WNA16_SUPPORTED_BITS}")
1070
+
1071
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1072
+ hidden_size: int, intermediate_size_per_partition: int,
1073
+ params_dtype: torch.dtype, **extra_weight_attrs):
1074
+
1075
+ # Will transpose the loaded weight along the
1076
+ # intermediate and hidden dim sizes. Will
1077
+ # shard for TP along the transposed dims
1078
+ extra_weight_attrs.update({
1079
+ "is_transposed": True,
1080
+ "quant_method": self.strategy
1081
+ })
1082
+ w13_weight = torch.nn.Parameter(torch.empty(
1083
+ num_experts,
1084
+ hidden_size // self.packed_factor,
1085
+ 2 * intermediate_size_per_partition,
1086
+ dtype=torch.int32),
1087
+ requires_grad=False)
1088
+ layer.register_parameter("w13_weight_packed", w13_weight)
1089
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1090
+
1091
+ w2_weight = torch.nn.Parameter(torch.empty(
1092
+ num_experts,
1093
+ intermediate_size_per_partition // self.packed_factor,
1094
+ hidden_size,
1095
+ dtype=torch.int32),
1096
+ requires_grad=False)
1097
+ layer.register_parameter("w2_weight_packed", w2_weight)
1098
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1099
+
1100
+ w2_scales_size = intermediate_size_per_partition
1101
+
1102
+ if self.strategy == "channel":
1103
+ num_groups_w2 = num_groups_w13 = 1
1104
+ self.group_size = -1
1105
+ else:
1106
+ num_groups_w2 = w2_scales_size // self.group_size
1107
+ num_groups_w13 = hidden_size // self.group_size
1108
+
1109
+ w13_scale = torch.nn.Parameter(torch.ones(
1110
+ num_experts,
1111
+ num_groups_w13,
1112
+ 2 * intermediate_size_per_partition,
1113
+ dtype=params_dtype),
1114
+ requires_grad=False)
1115
+ layer.register_parameter("w13_weight_scale", w13_scale)
1116
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1117
+
1118
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
1119
+ num_groups_w2,
1120
+ hidden_size,
1121
+ dtype=params_dtype),
1122
+ requires_grad=False)
1123
+ layer.register_parameter("w2_weight_scale", w2_scale)
1124
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1125
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1126
+
1127
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1128
+ requires_grad=False)
1129
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1130
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1131
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1132
+ requires_grad=False)
1133
+
1134
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1135
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1136
+
1137
+ w13_g_idx = torch.nn.Parameter(
1138
+ torch.empty(
1139
+ num_experts,
1140
+ hidden_size,
1141
+ dtype=torch.int32,
1142
+ ),
1143
+ requires_grad=False,
1144
+ )
1145
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1146
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1147
+
1148
+ w2_g_idx = torch.nn.Parameter(
1149
+ torch.empty(
1150
+ num_experts,
1151
+ intermediate_size_per_partition,
1152
+ dtype=torch.int32,
1153
+ ),
1154
+ requires_grad=False,
1155
+ )
1156
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1157
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1158
+
1159
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1160
+ torch.empty(
1161
+ num_experts,
1162
+ hidden_size,
1163
+ dtype=torch.int32,
1164
+ ),
1165
+ requires_grad=False,
1166
+ )
1167
+ layer.register_parameter("w13_g_idx_sort_indices",
1168
+ w13_g_idx_sort_indices)
1169
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1170
+
1171
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1172
+ torch.empty(
1173
+ num_experts,
1174
+ intermediate_size_per_partition,
1175
+ dtype=torch.int32,
1176
+ ),
1177
+ requires_grad=False,
1178
+ )
1179
+ layer.register_parameter("w2_g_idx_sort_indices",
1180
+ w2_g_idx_sort_indices)
1181
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1182
+
1183
+ layer.a13_scale = None
1184
+ layer.a2_scale = None
1185
+
1186
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1187
+ # Reconfigure packed weights and scales to match moe_wna16 format
1188
+ layer.w13_weight_packed = torch.nn.Parameter(
1189
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(
1190
+ torch.uint8),
1191
+ requires_grad=False)
1192
+ layer.w2_weight_packed = torch.nn.Parameter(
1193
+ layer.w2_weight_packed.transpose(1,
1194
+ 2).contiguous().view(torch.uint8),
1195
+ requires_grad=False)
1196
+ layer.w13_weight_scale = torch.nn.Parameter(
1197
+ layer.w13_weight_scale.transpose(1, 2).contiguous(),
1198
+ requires_grad=False)
1199
+ layer.w2_weight_scale = torch.nn.Parameter(
1200
+ layer.w2_weight_scale.transpose(1, 2).contiguous(),
1201
+ requires_grad=False)
1202
+
1203
+ def apply(
1204
+ self,
1205
+ layer: torch.nn.Module,
1206
+ x: torch.Tensor,
1207
+ router_logits: torch.Tensor,
1208
+ top_k: int,
1209
+ renormalize: bool,
1210
+ use_grouped_topk: bool = False,
1211
+ topk_group: Optional[int] = None,
1212
+ num_expert_group: Optional[int] = None,
1213
+ global_num_experts: int = -1,
1214
+ expert_map: Optional[torch.Tensor] = None,
1215
+ custom_routing_function: Optional[Callable] = None,
1216
+ scoring_func: str = "softmax",
1217
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1218
+ apply_router_weight_on_input: bool = False,
1219
+ activation: str = "silu",
1220
+ ) -> torch.Tensor:
1221
+ from vllm.model_executor.layers.fused_moe import fused_experts
1222
+
1223
+ topk_weights, topk_ids = FusedMoE.select_experts(
1224
+ hidden_states=x,
1225
+ router_logits=router_logits,
1226
+ use_grouped_topk=use_grouped_topk,
1227
+ top_k=top_k,
1228
+ renormalize=renormalize,
1229
+ topk_group=topk_group,
1230
+ num_expert_group=num_expert_group,
1231
+ custom_routing_function=custom_routing_function,
1232
+ scoring_func=scoring_func,
1233
+ e_score_correction_bias=e_score_correction_bias)
1234
+
1235
+ return fused_experts(
1236
+ x,
1237
+ layer.w13_weight_packed,
1238
+ layer.w2_weight_packed,
1239
+ topk_weights=topk_weights,
1240
+ topk_ids=topk_ids,
1241
+ inplace=True,
1242
+ activation=activation,
1243
+ use_int4_w4a16=self.num_bits == 4,
1244
+ use_int8_w8a16=self.num_bits == 8,
1245
+ global_num_experts=global_num_experts,
1246
+ apply_router_weight_on_input=apply_router_weight_on_input,
1247
+ expert_map=expert_map,
1248
+ w1_scale=layer.w13_weight_scale,
1249
+ w2_scale=layer.w2_weight_scale,
1250
+ w1_zp=None,
1251
+ w2_zp=None,
1252
+ block_shape=[0, self.group_size])