vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2084 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import copy
4
+ import gc
5
+ import time
6
+ import weakref
7
+ from typing import TYPE_CHECKING, Optional, Union
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.distributed
12
+ import torch.nn as nn
13
+
14
+ from vllm.attention import AttentionType, get_attn_backend
15
+ from vllm.attention.backends.abstract import (AttentionBackend,
16
+ AttentionMetadataBuilder)
17
+ from vllm.attention.layer import Attention
18
+ from vllm.attention.utils.fa_utils import get_flash_attn_version
19
+ from vllm.config import (CompilationLevel, VllmConfig,
20
+ get_layers_from_vllm_config)
21
+ from vllm.distributed.kv_transfer import (get_kv_transfer_group,
22
+ has_kv_transfer_group)
23
+ from vllm.distributed.kv_transfer.kv_connector.v1 import KVConnectorBase_V1
24
+ from vllm.distributed.parallel_state import (
25
+ get_pp_group, get_tp_group, graph_capture,
26
+ prepare_communication_buffer_for_model)
27
+ from vllm.forward_context import get_forward_context, set_forward_context
28
+ from vllm.logger import init_logger
29
+ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
30
+ from vllm.model_executor.model_loader import TensorizerLoader, get_model
31
+ from vllm.multimodal import MULTIMODAL_REGISTRY
32
+ from vllm.multimodal.inputs import MultiModalKwargs, PlaceholderRange
33
+ from vllm.multimodal.utils import group_mm_inputs_by_modality
34
+ from vllm.sampling_params import SamplingType
35
+ from vllm.sequence import IntermediateTensors
36
+ from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler,
37
+ GiB_bytes, LazyLoader, async_tensor_h2d, cdiv,
38
+ check_use_alibi, is_pin_memory_available)
39
+ from vllm.v1.attention.backends.flash_attn import FlashAttentionMetadata
40
+ from vllm.v1.attention.backends.utils import CommonAttentionMetadata
41
+ from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
42
+ from vllm.v1.kv_cache_interface import (AttentionSpec, FullAttentionSpec,
43
+ KVCacheConfig, KVCacheSpec,
44
+ SlidingWindowSpec)
45
+ from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, LogprobsTensors,
46
+ ModelRunnerOutput)
47
+ from vllm.v1.sample.metadata import SamplingMetadata
48
+ from vllm.v1.sample.rejection_sampler import RejectionSampler
49
+ from vllm.v1.sample.sampler import Sampler
50
+ from vllm.v1.spec_decode.eagle import EagleProposer
51
+ from vllm.v1.spec_decode.medusa import MedusaProposer
52
+ from vllm.v1.spec_decode.metadata import SpecDecodeMetadata
53
+ from vllm.v1.spec_decode.ngram_proposer import NgramProposer
54
+ from vllm.v1.spec_decode.utils import is_spec_decode_supported
55
+ from vllm.v1.utils import bind_kv_cache
56
+ from vllm.v1.worker.block_table import BlockTable
57
+ from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
58
+ from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin
59
+
60
+ from .utils import (gather_mm_placeholders, sanity_check_mm_encoder_outputs,
61
+ scatter_mm_placeholders)
62
+
63
+ if TYPE_CHECKING:
64
+ import xgrammar as xgr
65
+
66
+ from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
67
+ from vllm.v1.core.sched.output import SchedulerOutput
68
+ else:
69
+ xgr = LazyLoader("xgr", globals(), "xgrammar")
70
+
71
+ logger = init_logger(__name__)
72
+
73
+
74
+ class GPUModelRunner(LoRAModelRunnerMixin):
75
+
76
+ def __init__(
77
+ self,
78
+ vllm_config: VllmConfig,
79
+ device: torch.device,
80
+ ):
81
+ self.vllm_config = vllm_config
82
+ self.model_config = vllm_config.model_config
83
+ self.cache_config = vllm_config.cache_config
84
+ self.lora_config = vllm_config.lora_config
85
+ self.load_config = vllm_config.load_config
86
+ self.parallel_config = vllm_config.parallel_config
87
+ self.scheduler_config = vllm_config.scheduler_config
88
+ self.speculative_config = vllm_config.speculative_config
89
+ self.prompt_adapter_config = vllm_config.prompt_adapter_config
90
+ self.observability_config = vllm_config.observability_config
91
+
92
+ from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
93
+ set_cpu_offload_max_bytes(
94
+ int(self.cache_config.cpu_offload_gb * 1024**3))
95
+
96
+ model_config = self.model_config
97
+ cache_config = self.cache_config
98
+ scheduler_config = self.scheduler_config
99
+ parallel_config = self.parallel_config
100
+ self.device = device
101
+ self.pin_memory = is_pin_memory_available()
102
+ self.dtype = self.model_config.dtype
103
+ if cache_config.cache_dtype == "auto":
104
+ self.kv_cache_dtype = self.dtype
105
+ else:
106
+ self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
107
+ cache_config.cache_dtype]
108
+
109
+ self.is_multimodal_model = model_config.is_multimodal_model
110
+ self.max_model_len = model_config.max_model_len
111
+ self.max_num_tokens = scheduler_config.max_num_batched_tokens
112
+ self.max_num_reqs = scheduler_config.max_num_seqs
113
+
114
+ # Model-related.
115
+ self.num_query_heads = model_config.get_num_attention_heads(
116
+ parallel_config)
117
+ self.hidden_size = model_config.get_hidden_size()
118
+ self.attention_chunk_size = model_config.attention_chunk_size
119
+
120
+ self.cascade_attn_enabled = not self.model_config.disable_cascade_attn
121
+
122
+ # Multi-modal data support
123
+ self.mm_registry = MULTIMODAL_REGISTRY
124
+ self.uses_mrope = model_config.uses_mrope
125
+
126
+ encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
127
+ model_config=model_config,
128
+ scheduler_config=scheduler_config,
129
+ mm_registry=self.mm_registry,
130
+ )
131
+ self.max_num_encoder_input_tokens = encoder_compute_budget
132
+ self.encoder_cache_size = encoder_cache_size
133
+
134
+ # Sampler
135
+ self.sampler = Sampler()
136
+
137
+ # Lazy initializations
138
+ # self.model: nn.Module # Set after load_model
139
+ # Initialize in initialize_kv_cache
140
+ self.kv_caches: list[torch.Tensor] = []
141
+ self.attn_metadata_builders: list[AttentionMetadataBuilder] = []
142
+ self.attn_backends: list[type[AttentionBackend]] = []
143
+ # self.kv_cache_config: KVCacheConfig
144
+ # self.input_batch: InputBatch # Persistent batch.
145
+
146
+ # req_id -> (input_id -> encoder_output)
147
+ self.encoder_cache: dict[str, dict[int, torch.Tensor]] = {}
148
+
149
+ # Set up speculative decoding.
150
+ self.use_spec_decode = False
151
+ self.use_aux_hidden_state_outputs = False
152
+ if self.speculative_config:
153
+ self.use_spec_decode = True
154
+
155
+ # NOTE(Jiayi): currently we put the entire draft model on
156
+ # the last PP rank. This is not ideal if there are many
157
+ # layers in the draft model.
158
+ if get_pp_group().is_last_rank:
159
+ if self.speculative_config.method == "ngram":
160
+ self.drafter = NgramProposer(self.vllm_config)
161
+ elif self.speculative_config.use_eagle():
162
+ self.drafter = EagleProposer(self.vllm_config, self.device,
163
+ self) # type: ignore
164
+ if self.speculative_config.method == "eagle3":
165
+ self.use_aux_hidden_state_outputs = True
166
+ elif self.speculative_config.method == "medusa":
167
+ self.drafter = MedusaProposer(
168
+ vllm_config=self.vllm_config,
169
+ device=self.device) # type: ignore
170
+ else:
171
+ raise ValueError("Unknown speculative decoding method: "
172
+ f"{self.speculative_config.method}")
173
+ self.rejection_sampler = RejectionSampler()
174
+
175
+ # Request states.
176
+ self.requests: dict[str, CachedRequestState] = {}
177
+
178
+ self.input_batch = InputBatch(
179
+ max_num_reqs=self.max_num_reqs,
180
+ max_model_len=self.max_model_len,
181
+ max_num_batched_tokens=self.max_num_tokens,
182
+ device=self.device,
183
+ pin_memory=self.pin_memory,
184
+ vocab_size=self.model_config.get_vocab_size(),
185
+ block_size=self.cache_config.block_size,
186
+ )
187
+
188
+ self.use_cuda_graph = (self.vllm_config.compilation_config.level
189
+ == CompilationLevel.PIECEWISE
190
+ and not self.model_config.enforce_eager)
191
+ # TODO(woosuk): Provide an option to tune the max cudagraph batch size.
192
+ # The convention is different.
193
+ # self.cudagraph_batch_sizes sorts in ascending order.
194
+ # The batch sizes in the config are in descending order.
195
+ self.cudagraph_batch_sizes = list(
196
+ reversed(
197
+ self.vllm_config.compilation_config.cudagraph_capture_sizes))
198
+
199
+ # Cache the device properties.
200
+ self.device_properties = torch.cuda.get_device_properties(self.device)
201
+ self.num_sms = self.device_properties.multi_processor_count
202
+
203
+ # Persistent buffers for CUDA graphs.
204
+ self.input_ids = torch.zeros(self.max_num_tokens,
205
+ dtype=torch.int32,
206
+ device=self.device)
207
+ self.positions = torch.zeros(self.max_num_tokens,
208
+ dtype=torch.int64,
209
+ device=self.device)
210
+ self.query_start_loc = torch.zeros(self.max_num_reqs + 1,
211
+ dtype=torch.int32,
212
+ device=self.device)
213
+ self.seq_lens = torch.zeros(self.max_num_reqs,
214
+ dtype=torch.int32,
215
+ device=self.device)
216
+ self.slot_mapping = torch.zeros(self.max_num_tokens,
217
+ dtype=torch.int64,
218
+ device=self.device)
219
+
220
+ # None in the first PP rank. The rest are set after load_model.
221
+ self.intermediate_tensors: Optional[IntermediateTensors] = None
222
+
223
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
224
+ if self.uses_mrope:
225
+ # NOTE: `mrope_positions` is implemented with one additional dummy
226
+ # position on purpose to make it non-contiguous so that it can work
227
+ # with torch compile.
228
+ # See detailed explanation in https://github.com/vllm-project/vllm/pull/12128#discussion_r1926431923
229
+
230
+ # NOTE: When M-RoPE is enabled, position ids are 3D regardless of
231
+ # the modality of inputs. For text-only inputs, each dimension has
232
+ # identical position IDs, making M-RoPE functionally equivalent to
233
+ # 1D-RoPE.
234
+ # See page 5 of https://arxiv.org/abs/2409.12191
235
+ self.mrope_positions = torch.zeros((3, self.max_num_tokens + 1),
236
+ dtype=torch.int64,
237
+ device=self.device)
238
+ self.mrope_positions_cpu = torch.zeros(
239
+ (3, self.max_num_tokens + 1),
240
+ dtype=torch.int64,
241
+ device="cpu",
242
+ pin_memory=self.pin_memory)
243
+
244
+ # Only relevant for models using ALiBi (e.g, MPT)
245
+ self.use_alibi = check_use_alibi(model_config)
246
+
247
+ self.inputs_embeds = torch.zeros(
248
+ (self.max_num_tokens, self.hidden_size),
249
+ dtype=self.dtype,
250
+ device=self.device)
251
+
252
+ # OPTIMIZATION: Cache the tensors rather than creating them every step.
253
+ # Keep in int64 to avoid overflow with long context
254
+ self.arange_np = np.arange(max(self.max_num_reqs + 1,
255
+ self.max_model_len,
256
+ self.max_num_tokens),
257
+ dtype=np.int64)
258
+ # NOTE(woosuk): These tensors are "stateless", i.e., they are literally
259
+ # a faster version of creating a new tensor every time. Thus, we should
260
+ # not make any assumptions about the values in these tensors.
261
+ self.input_ids_cpu = torch.zeros(self.max_num_tokens,
262
+ dtype=torch.int32,
263
+ device="cpu",
264
+ pin_memory=self.pin_memory)
265
+ self.positions_cpu = torch.zeros(self.max_num_tokens,
266
+ dtype=torch.int64,
267
+ device="cpu",
268
+ pin_memory=self.pin_memory)
269
+ self.positions_np = self.positions_cpu.numpy()
270
+ self.query_start_loc_cpu = torch.zeros(self.max_num_reqs + 1,
271
+ dtype=torch.int32,
272
+ device="cpu",
273
+ pin_memory=self.pin_memory)
274
+ self.query_start_loc_np = self.query_start_loc_cpu.numpy()
275
+ self.seq_lens_cpu = torch.zeros(self.max_num_reqs,
276
+ dtype=torch.int32,
277
+ device="cpu",
278
+ pin_memory=self.pin_memory)
279
+ self.seq_lens_np = self.seq_lens_cpu.numpy()
280
+
281
+ def _may_reorder_batch(self, scheduler_output: "SchedulerOutput") -> bool:
282
+ """
283
+ Update the order of requests in the batch based on the attention
284
+ backend's needs. For example, some attention backends (namely MLA) may
285
+ want to separate requests based on if the attention computation will be
286
+ compute-bound or memory-bound.
287
+
288
+ Args:
289
+ scheduler_output: The scheduler output.
290
+
291
+ Returns:
292
+ True if the batch was reordered, False otherwise.
293
+ """
294
+ batch_reordered = self.attn_metadata_builders[0].reorder_batch(
295
+ self.input_batch, scheduler_output)
296
+
297
+ # For models with multiple KV cache groups, the groups should agree on
298
+ # the same order of requests. We ensure this by only allowing the first
299
+ # group to reorder the batch and asserting that all other groups do not
300
+ # reorder the batch.
301
+ for i in range(1, len(self.kv_cache_config.kv_cache_groups)):
302
+ assert not self.attn_metadata_builders[i].reorder_batch(
303
+ self.input_batch, scheduler_output)
304
+ return batch_reordered
305
+
306
+ def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
307
+ """Update the cached states and the persistent batch with the scheduler
308
+ output.
309
+
310
+ The updated states are used by the `_prepare_inputs` function to create
311
+ the input GPU tensors for the model.
312
+
313
+ The SamplingMetadata is updated and copied to the GPU if there is a
314
+ new/resumed/paused/finished request in the batch.
315
+ """
316
+ # Remove finished requests from the cached states.
317
+ for req_id in scheduler_output.finished_req_ids:
318
+ self.requests.pop(req_id, None)
319
+ self.encoder_cache.pop(req_id, None)
320
+ # Remove the finished requests from the persistent batch.
321
+ # NOTE(woosuk): There could be an edge case where finished_req_ids and
322
+ # scheduled_req_ids overlap. This happens when a request is aborted and
323
+ # then resubmitted with the same ID. In this case, we treat them as two
324
+ # distinct requests - clearing the cached states for the first request
325
+ # and handling the second as a new request.
326
+ removed_req_indices: list[int] = []
327
+ for req_id in scheduler_output.finished_req_ids:
328
+ req_index = self.input_batch.remove_request(req_id)
329
+ if req_index is not None:
330
+ removed_req_indices.append(req_index)
331
+
332
+ # Free the cached encoder outputs.
333
+ for req_id, input_id in scheduler_output.free_encoder_input_ids:
334
+ encoder_outputs = self.encoder_cache.get(req_id)
335
+ if encoder_outputs is not None:
336
+ encoder_outputs.pop(input_id, None)
337
+ if not encoder_outputs:
338
+ self.encoder_cache.pop(req_id, None)
339
+
340
+ # Remove the unscheduled requests from the persistent batch.
341
+ # NOTE(woosuk): The unscheduled requests are either preempted requests
342
+ # or running requests that are not scheduled in this step. We remove
343
+ # them from the persistent batch but keep their cached states since
344
+ # they will be scheduled again sometime in the future.
345
+ scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
346
+ cached_req_ids = self.input_batch.req_id_to_index.keys()
347
+ unscheduled_req_ids = cached_req_ids - scheduled_req_ids
348
+ # NOTE(woosuk): The persistent batch optimization assumes that
349
+ # consecutive batches contain mostly the same requests. If batches
350
+ # have low request overlap (e.g., alternating between two distinct
351
+ # sets of requests), this optimization becomes very inefficient.
352
+ for req_id in unscheduled_req_ids:
353
+ req_index = self.input_batch.remove_request(req_id)
354
+ assert req_index is not None
355
+ removed_req_indices.append(req_index)
356
+
357
+ req_ids_to_add: list[str] = []
358
+ # Add new requests to the cached states.
359
+ for new_req_data in scheduler_output.scheduled_new_reqs:
360
+ req_id = new_req_data.req_id
361
+ sampling_params = new_req_data.sampling_params
362
+ if sampling_params.sampling_type == SamplingType.RANDOM_SEED:
363
+ generator = torch.Generator(device=self.device)
364
+ generator.manual_seed(sampling_params.seed)
365
+ else:
366
+ generator = None
367
+
368
+ self.requests[req_id] = CachedRequestState(
369
+ req_id=req_id,
370
+ prompt_token_ids=new_req_data.prompt_token_ids,
371
+ mm_inputs=new_req_data.mm_inputs,
372
+ mm_positions=new_req_data.mm_positions,
373
+ sampling_params=sampling_params,
374
+ generator=generator,
375
+ block_ids=new_req_data.block_ids,
376
+ num_computed_tokens=new_req_data.num_computed_tokens,
377
+ output_token_ids=[],
378
+ lora_request=new_req_data.lora_request,
379
+ )
380
+
381
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
382
+ if self.uses_mrope:
383
+ image_grid_thw = []
384
+ video_grid_thw = []
385
+ second_per_grid_ts = []
386
+ audio_feature_lengths = []
387
+ use_audio_in_video = False
388
+ for mm_input in self.requests[req_id].mm_inputs:
389
+ if mm_input.get("image_grid_thw") is not None:
390
+ image_grid_thw.extend(
391
+ mm_input["image_grid_thw"].tolist())
392
+ if mm_input.get("video_grid_thw") is not None:
393
+ video_grid_thw.extend(
394
+ mm_input["video_grid_thw"].tolist())
395
+ if mm_input.get("second_per_grid_ts") is not None:
396
+ second_per_grid_ts.extend(
397
+ mm_input["second_per_grid_ts"])
398
+ if mm_input.get("audio_feature_lengths") is not None:
399
+ audio_feature_lengths.extend(
400
+ mm_input["audio_feature_lengths"])
401
+ if mm_input.get("use_audio_in_video") is True:
402
+ use_audio_in_video = True
403
+
404
+ hf_config = self.model_config.hf_config
405
+
406
+ self.requests[req_id].mrope_positions, \
407
+ self.requests[req_id].mrope_position_delta = \
408
+ MRotaryEmbedding.get_input_positions_tensor(
409
+ self.requests[req_id].prompt_token_ids,
410
+ hf_config=hf_config,
411
+ image_grid_thw=image_grid_thw,
412
+ video_grid_thw=video_grid_thw,
413
+ second_per_grid_ts=second_per_grid_ts,
414
+ audio_feature_lengths=audio_feature_lengths,
415
+ use_audio_in_video=use_audio_in_video,
416
+ )
417
+
418
+ req_ids_to_add.append(req_id)
419
+
420
+ # Update the states of the running/resumed requests.
421
+ for req_data in scheduler_output.scheduled_cached_reqs:
422
+ req_id = req_data.req_id
423
+ req_state = self.requests[req_id]
424
+
425
+ # Update the cached states.
426
+ num_computed_tokens = req_data.num_computed_tokens
427
+ req_state.num_computed_tokens = num_computed_tokens
428
+ # Add the sampled token(s) from the previous step (if any).
429
+ # This doesn't include "unverified" tokens like spec decode tokens.
430
+ num_new_tokens = (num_computed_tokens +
431
+ len(req_data.new_token_ids) -
432
+ req_state.num_tokens)
433
+ if num_new_tokens == 1:
434
+ # Avoid slicing list in most common case.
435
+ req_state.output_token_ids.append(req_data.new_token_ids[-1])
436
+ elif num_new_tokens > 0:
437
+ req_state.output_token_ids.extend(
438
+ req_data.new_token_ids[-num_new_tokens:])
439
+ # Update the block IDs.
440
+ if not req_data.resumed_from_preemption:
441
+ # Append the new blocks to the existing block IDs.
442
+ for i in range(len(self.kv_cache_config.kv_cache_groups)):
443
+ req_state.block_ids[i].extend(req_data.new_block_ids[i])
444
+ else:
445
+ # The request is resumed from preemption.
446
+ # Replace the existing block IDs with the new ones.
447
+ req_state.block_ids = req_data.new_block_ids
448
+
449
+ req_index = self.input_batch.req_id_to_index.get(req_id)
450
+ if req_index is None:
451
+ # The request is not in the persistent batch.
452
+ # The request was either preempted and resumed later, or was not
453
+ # scheduled in the previous step and needs to be added again.
454
+ req_ids_to_add.append(req_id)
455
+ continue
456
+
457
+ # Update the persistent batch.
458
+ self.input_batch.num_computed_tokens_cpu[req_index] = (
459
+ num_computed_tokens)
460
+ self.input_batch.block_table.append_row(req_data.new_block_ids,
461
+ req_index)
462
+ # Add new_token_ids to token_ids_cpu.
463
+ start_token_index = num_computed_tokens
464
+ end_token_index = num_computed_tokens + len(req_data.new_token_ids)
465
+ self.input_batch.token_ids_cpu[
466
+ req_index,
467
+ start_token_index:end_token_index] = req_data.new_token_ids
468
+ self.input_batch.num_tokens_no_spec[req_index] = end_token_index
469
+ # Add spec_token_ids to token_ids_cpu.
470
+ spec_token_ids = scheduler_output.scheduled_spec_decode_tokens.get(
471
+ req_id, ())
472
+ if spec_token_ids:
473
+ start_index = end_token_index
474
+ end_token_index += len(spec_token_ids)
475
+ self.input_batch.token_ids_cpu[
476
+ req_index, start_index:end_token_index] = spec_token_ids
477
+ # NOTE(woosuk): `num_tokens` here may include spec decode tokens.
478
+ self.input_batch.num_tokens[req_index] = end_token_index
479
+
480
+ # Check if the batch has changed. If not, we can skip copying the
481
+ # sampling metadata from CPU to GPU.
482
+ batch_changed = len(removed_req_indices) > 0 or len(req_ids_to_add) > 0
483
+
484
+ # Add the new or resumed requests to the persistent batch.
485
+ # The smaller empty indices are filled first.
486
+ removed_req_indices.sort(reverse=True)
487
+ for req_id in req_ids_to_add:
488
+ req_state = self.requests[req_id]
489
+ if removed_req_indices:
490
+ # Fill the empty index.
491
+ req_index = removed_req_indices.pop()
492
+ else:
493
+ # Append to the end.
494
+ req_index = None
495
+ self.input_batch.add_request(req_state, req_index)
496
+
497
+ # Condense the batched states if there are empty indices.
498
+ if removed_req_indices:
499
+ self.input_batch.condense(removed_req_indices)
500
+
501
+ batch_reordered = self._may_reorder_batch(scheduler_output)
502
+
503
+ if batch_changed or batch_reordered:
504
+ self.input_batch.refresh_sampling_metadata()
505
+
506
+ def _prepare_inputs(
507
+ self,
508
+ scheduler_output: "SchedulerOutput",
509
+ ) -> tuple[dict[str, FlashAttentionMetadata], torch.Tensor,
510
+ Optional[SpecDecodeMetadata]]:
511
+ total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
512
+ assert total_num_scheduled_tokens > 0
513
+ num_reqs = self.input_batch.num_reqs
514
+ assert num_reqs > 0
515
+
516
+ # OPTIMIZATION: Start copying the block table first.
517
+ # This way, we can overlap the copy with the following CPU operations.
518
+ self.input_batch.block_table.commit(num_reqs)
519
+
520
+ # Get the number of scheduled tokens for each request.
521
+ req_ids = self.input_batch.req_ids
522
+ tokens = [scheduler_output.num_scheduled_tokens[i] for i in req_ids]
523
+ num_scheduled_tokens = np.array(tokens, dtype=np.int32)
524
+ max_num_scheduled_tokens = max(tokens)
525
+
526
+ # Get request indices.
527
+ # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
528
+ req_indices = np.repeat(self.arange_np[:num_reqs],
529
+ num_scheduled_tokens)
530
+
531
+ # Get batched arange.
532
+ # E.g., [2, 5, 3] -> [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
533
+ # Equivalent to but faster than:
534
+ # np.concatenate([np.arange(n) for n in num_scheduled_tokens])
535
+ # Step 1. [2, 5, 3] -> [2, 7, 10]
536
+ cu_num_tokens = np.cumsum(num_scheduled_tokens)
537
+ # Step 2. [2, 7, 10] -> [0, 0, 2, 2, 2, 2, 2, 7, 7, 7]
538
+ cumsums_offsets = np.repeat(cu_num_tokens - num_scheduled_tokens,
539
+ num_scheduled_tokens)
540
+ # Step 3. [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
541
+ arange = self.arange_np[:total_num_scheduled_tokens] - cumsums_offsets
542
+
543
+ # Get positions.
544
+ positions_np = self.positions_np[:total_num_scheduled_tokens]
545
+ np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
546
+ arange,
547
+ out=positions_np)
548
+
549
+ # Calculate M-RoPE positions.
550
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
551
+ if self.uses_mrope:
552
+ self._calc_mrope_positions(scheduler_output)
553
+
554
+ # Get token indices.
555
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
556
+ # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
557
+ # where M is the max_model_len.
558
+ token_indices = (positions_np +
559
+ req_indices * self.input_batch.token_ids_cpu.shape[1])
560
+
561
+ # NOTE(woosuk): We use torch.index_select instead of np.take here
562
+ # because torch.index_select is much faster than np.take for large
563
+ # tensors.
564
+ torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
565
+ 0,
566
+ torch.from_numpy(token_indices),
567
+ out=self.input_ids_cpu[:total_num_scheduled_tokens])
568
+
569
+ # Calculate the slot mapping for each KV cache group.
570
+ for kv_cache_group_id, kv_cache_group_spec in enumerate(
571
+ self.kv_cache_config.kv_cache_groups):
572
+ block_size = kv_cache_group_spec.kv_cache_spec.block_size
573
+ block_table: BlockTable = self.input_batch.block_table[
574
+ kv_cache_group_id]
575
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
576
+ # -> [0, 0, K, K, K + 1, K + 1, K + 2, 2 * K, 2 * K, 2 * K + 1]
577
+ # where K is the max_num_blocks_per_req and the block size is 2.
578
+ # NOTE(woosuk): We can't simply use `token_indices // block_size`
579
+ # here because M (max_model_len) is not necessarily divisible by
580
+ # block_size.
581
+ block_table_indices = (
582
+ req_indices * block_table.max_num_blocks_per_req +
583
+ positions_np // block_size)
584
+ block_table_cpu = block_table.get_cpu_tensor()
585
+ block_numbers = block_table_cpu.flatten(
586
+ )[block_table_indices].numpy()
587
+ block_offsets = positions_np % block_size
588
+ np.add(
589
+ block_numbers * block_size,
590
+ block_offsets,
591
+ out=block_table.slot_mapping_np[:total_num_scheduled_tokens])
592
+
593
+ # Prepare the attention metadata.
594
+ self.query_start_loc_np[0] = 0
595
+ self.query_start_loc_np[1:num_reqs + 1] = cu_num_tokens
596
+
597
+ self.seq_lens_np[:num_reqs] = (
598
+ self.input_batch.num_computed_tokens_cpu[:num_reqs] +
599
+ num_scheduled_tokens)
600
+
601
+ # Copy the tensors to the GPU.
602
+ self.input_ids[:total_num_scheduled_tokens].copy_(
603
+ self.input_ids_cpu[:total_num_scheduled_tokens], non_blocking=True)
604
+ if self.uses_mrope:
605
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
606
+ self.mrope_positions[:, :total_num_scheduled_tokens].copy_(
607
+ self.mrope_positions_cpu[:, :total_num_scheduled_tokens],
608
+ non_blocking=True)
609
+ else:
610
+ # Common case (1D positions)
611
+ self.positions[:total_num_scheduled_tokens].copy_(
612
+ self.positions_cpu[:total_num_scheduled_tokens],
613
+ non_blocking=True)
614
+
615
+ self.query_start_loc[:num_reqs + 1].copy_(
616
+ self.query_start_loc_cpu[:num_reqs + 1], non_blocking=True)
617
+ self.seq_lens[:num_reqs].copy_(self.seq_lens_cpu[:num_reqs],
618
+ non_blocking=True)
619
+
620
+ # Fill unused with -1. Needed for reshape_and_cache
621
+ self.seq_lens[num_reqs:].fill_(0)
622
+ self.query_start_loc[num_reqs + 1:].fill_(-1)
623
+
624
+ query_start_loc = self.query_start_loc[:num_reqs + 1]
625
+ seq_lens = self.seq_lens[:num_reqs]
626
+
627
+ common_attn_metadata = CommonAttentionMetadata(
628
+ query_start_loc=query_start_loc, seq_lens=seq_lens)
629
+
630
+ attn_metadata: dict[str, FlashAttentionMetadata] = {}
631
+ # Prepare the attention metadata for each KV cache group and make layers
632
+ # in the same group share the same metadata.
633
+ for kv_cache_group_id, kv_cache_group_spec in enumerate(
634
+ self.kv_cache_config.kv_cache_groups):
635
+
636
+ # Prepare for cascade attention if enabled & beneficial.
637
+ common_prefix_len = 0
638
+ if self.cascade_attn_enabled:
639
+ common_prefix_len = self._compute_cascade_attn_prefix_len(
640
+ num_scheduled_tokens,
641
+ scheduler_output.
642
+ num_common_prefix_blocks[kv_cache_group_id],
643
+ kv_cache_group_spec.kv_cache_spec,
644
+ self.attn_metadata_builders[kv_cache_group_id],
645
+ )
646
+
647
+ attn_metadata_i = (
648
+ self.attn_metadata_builders[kv_cache_group_id].build(
649
+ num_reqs=num_reqs,
650
+ num_actual_tokens=total_num_scheduled_tokens,
651
+ max_query_len=max_num_scheduled_tokens,
652
+ common_prefix_len=common_prefix_len,
653
+ common_attn_metadata=common_attn_metadata))
654
+ for layer_name in kv_cache_group_spec.layer_names:
655
+ attn_metadata[layer_name] = attn_metadata_i
656
+
657
+ use_spec_decode = len(
658
+ scheduler_output.scheduled_spec_decode_tokens) > 0
659
+ if not use_spec_decode:
660
+ # NOTE(woosuk): Due to chunked prefills, the batch may contain
661
+ # partial requests. While we should not sample any token
662
+ # from these partial requests, we do so for simplicity.
663
+ # We will ignore the sampled tokens from the partial requests.
664
+ # TODO: Support prompt logprobs.
665
+ logits_indices = query_start_loc[1:] - 1
666
+ spec_decode_metadata = None
667
+ else:
668
+ # Get the number of draft tokens for each request.
669
+ # Iterate over the dictionary rather than all requests since not all
670
+ # requests have draft tokens.
671
+ num_draft_tokens = np.zeros(num_reqs, dtype=np.int32)
672
+ for req_id, draft_token_ids in (
673
+ scheduler_output.scheduled_spec_decode_tokens.items()):
674
+ req_idx = self.input_batch.req_id_to_index[req_id]
675
+ num_draft_tokens[req_idx] = len(draft_token_ids)
676
+
677
+ spec_decode_metadata = self._calc_spec_decode_metadata(
678
+ num_draft_tokens, cu_num_tokens)
679
+ logits_indices = spec_decode_metadata.logits_indices
680
+
681
+ # Hot-Swap lora model
682
+ if self.lora_config:
683
+ self.set_active_loras(self.input_batch, num_scheduled_tokens)
684
+
685
+ return attn_metadata, logits_indices, spec_decode_metadata
686
+
687
+ def _compute_cascade_attn_prefix_len(
688
+ self,
689
+ num_scheduled_tokens: np.ndarray,
690
+ num_common_prefix_blocks: int,
691
+ kv_cache_spec: KVCacheSpec,
692
+ attn_metadata_builder: AttentionMetadataBuilder,
693
+ ) -> int:
694
+ """Compute the length of the common prefix for cascade attention.
695
+
696
+ NOTE(woosuk): The common prefix length returned by this function
697
+ represents the length used specifically for cascade attention, not the
698
+ actual number of tokens shared between requests. When cascade attention
699
+ is disabled (use_cascade=False), this function returns 0 even if
700
+ requests share common tokens. Additionally, the common prefix length is
701
+ truncated to a multiple of the block size and may be further truncated
702
+ due to implementation details explained below.
703
+
704
+ Args:
705
+ num_scheduled_tokens: Number of tokens scheduled per request.
706
+ num_common_prefix_blocks: Number of shared KV cache blocks.
707
+
708
+ Returns:
709
+ int: Length of common prefix in tokens.
710
+ """
711
+ common_prefix_len = num_common_prefix_blocks * kv_cache_spec.block_size
712
+ if common_prefix_len == 0:
713
+ # Common case.
714
+ return 0
715
+
716
+ # NOTE(woosuk): Cascade attention uses two attention kernels: one
717
+ # for the common prefix and the other for the rest. For the first
718
+ # kernel, we concatenate all the query tokens (possibly from
719
+ # different requests) and treat them as if they are from the same
720
+ # request. Then, we use bi-directional attention to process the
721
+ # common prefix in the KV cache. Importantly, this means that the
722
+ # first kernel does not do any masking.
723
+
724
+ # Consider the following example:
725
+ # Request 1's input query: [D, E, X]
726
+ # Request 1's kv cache: [A, B, C, D, E, X]
727
+ # Request 1's num_computed_tokens: 3 (i.e., [A, B, C])
728
+ # Request 2's input query: [E, Y]
729
+ # Request 2's kv cache: [A, B, C, D, E, Y]
730
+ # Request 2's num_computed_tokens: 4 (i.e., [A, B, C, D])
731
+
732
+ # If we use [A, B, C, D, E] as the common prefix, then the
733
+ # first kernel will compute the bi-directional attention between
734
+ # input query [D, E, X, E, Y] and common prefix [A, B, C, D, E].
735
+ # However, this is wrong because D in Request 1 should not attend to
736
+ # E in the common prefix (i.e., we need masking).
737
+ # To avoid this, [A, B, C, D] should be the common prefix.
738
+ # That is, the common prefix should be capped by the minimum
739
+ # num_computed_tokens among the requests, and plus one to include
740
+ # the first token of the query.
741
+
742
+ # In practice, we use [A, B, C] as the common prefix, instead of
743
+ # [A, B, C, D] (i.e., the common prefix is capped by the minimum
744
+ # num_computed_tokens, without plus one).
745
+ # This is because of an implementation detail: We want to always
746
+ # use two kernels for cascade attention. Let's imagine:
747
+ # Request 3's input query: [D]
748
+ # Request 3's kv cache: [A, B, C, D]
749
+ # Request 3's num_computed_tokens: 3 (i.e., [A, B, C])
750
+ # If we use [A, B, C, D] as the common prefix for Request 1-3,
751
+ # then Request 3 will be processed only by the first kernel,
752
+ # and the second kernel will get an empty input. While this is not
753
+ # a fundamental problem, our current implementation does not support
754
+ # this case.
755
+ num_reqs = len(num_scheduled_tokens)
756
+ common_prefix_len = min(
757
+ common_prefix_len,
758
+ self.input_batch.num_computed_tokens_cpu[:num_reqs].min())
759
+ # common_prefix_len should be a multiple of the block size.
760
+ common_prefix_len = (common_prefix_len // kv_cache_spec.block_size *
761
+ kv_cache_spec.block_size)
762
+ use_sliding_window = (isinstance(kv_cache_spec, SlidingWindowSpec) or
763
+ (isinstance(kv_cache_spec, FullAttentionSpec)
764
+ and kv_cache_spec.sliding_window is not None))
765
+ assert isinstance(kv_cache_spec, AttentionSpec)
766
+ use_cascade = attn_metadata_builder.use_cascade_attention(
767
+ common_prefix_len=common_prefix_len,
768
+ query_lens=num_scheduled_tokens,
769
+ num_query_heads=self.num_query_heads,
770
+ num_kv_heads=kv_cache_spec.num_kv_heads,
771
+ use_alibi=self.use_alibi,
772
+ use_sliding_window=use_sliding_window,
773
+ num_sms=self.num_sms,
774
+ )
775
+ return common_prefix_len if use_cascade else 0
776
+
777
+ def _calc_mrope_positions(self, scheduler_output: "SchedulerOutput"):
778
+ mrope_pos_ptr = 0
779
+ for index, req_id in enumerate(self.input_batch.req_ids):
780
+ req = self.requests[req_id]
781
+ assert req.mrope_positions is not None
782
+
783
+ num_computed_tokens = \
784
+ self.input_batch.num_computed_tokens_cpu[index]
785
+ num_scheduled_tokens = \
786
+ scheduler_output.num_scheduled_tokens[req_id]
787
+ num_prompt_tokens = len(req.prompt_token_ids)
788
+
789
+ if num_computed_tokens + num_scheduled_tokens > num_prompt_tokens:
790
+ prompt_part_len = max(0,
791
+ num_prompt_tokens - num_computed_tokens)
792
+ completion_part_len = max(
793
+ 0, num_scheduled_tokens - prompt_part_len)
794
+ else:
795
+ prompt_part_len = num_scheduled_tokens
796
+ completion_part_len = 0
797
+
798
+ assert num_scheduled_tokens == prompt_part_len + completion_part_len
799
+
800
+ if prompt_part_len > 0:
801
+ # prompt's mrope_positions are pre-computed
802
+ dst_start = mrope_pos_ptr
803
+ dst_end = mrope_pos_ptr + prompt_part_len
804
+ src_start = num_computed_tokens
805
+ src_end = num_computed_tokens + prompt_part_len
806
+
807
+ self.mrope_positions_cpu[:, dst_start:dst_end] = \
808
+ req.mrope_positions[:,src_start:src_end]
809
+
810
+ mrope_pos_ptr += prompt_part_len
811
+
812
+ if completion_part_len > 0:
813
+ # compute completion's mrope_positions on-the-fly
814
+ dst_start = mrope_pos_ptr
815
+ dst_end = mrope_pos_ptr + completion_part_len
816
+
817
+ self.mrope_positions_cpu[:, dst_start:dst_end] = \
818
+ MRotaryEmbedding.get_next_input_positions_tensor(
819
+ req.mrope_position_delta,
820
+ context_len=num_computed_tokens +
821
+ prompt_part_len,
822
+ seq_len=num_computed_tokens +
823
+ prompt_part_len +
824
+ completion_part_len,
825
+ )
826
+
827
+ mrope_pos_ptr += completion_part_len
828
+
829
+ def _calc_spec_decode_metadata(
830
+ self,
831
+ num_draft_tokens: np.ndarray,
832
+ cu_num_scheduled_tokens: np.ndarray,
833
+ ) -> SpecDecodeMetadata:
834
+ # Inputs:
835
+ # cu_num_scheduled_tokens: [ 4, 104, 107, 207, 209]
836
+ # num_draft_tokens: [ 3, 0, 2, 0, 1]
837
+ # Outputs:
838
+ # cu_num_draft_tokens: [ 3, 3, 5, 5, 6]
839
+ # logits_indices: [ 0, 1, 2, 3, 103, 104, 105, 106,
840
+ # 206, 207, 208]
841
+ # target_logits_indices: [ 0, 1, 2, 5, 6, 9]
842
+ # bonus_logits_indices: [ 3, 4, 7, 8, 10]
843
+
844
+ # Compute the logits indices.
845
+ # [4, 1, 3, 1, 2]
846
+ num_sampled_tokens = num_draft_tokens + 1
847
+ # Step 1. [4, 5, 8, 9, 11]
848
+ cu_num_sampled_tokens = np.cumsum(num_sampled_tokens, dtype=np.int32)
849
+ total_num_sampled_tokens = cu_num_sampled_tokens[-1]
850
+ # Step 2. [0, 0, 0, 0, 4, 5, 5, 5, 8, 9, 9]
851
+ cumsums_offsets = np.repeat(cu_num_sampled_tokens - num_sampled_tokens,
852
+ num_sampled_tokens)
853
+ # Step 3. [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
854
+ arange = self.arange_np[:total_num_sampled_tokens] - cumsums_offsets
855
+ # Step 4. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
856
+ logits_indices = np.repeat(
857
+ cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
858
+ # Step 5. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
859
+ logits_indices += arange
860
+
861
+ # Compute the bonus logits indices.
862
+ bonus_logits_indices = cu_num_sampled_tokens - 1
863
+
864
+ # Compute the draft logits indices.
865
+ # [3, 3, 5, 5, 6]
866
+ cu_num_draft_tokens = np.cumsum(num_draft_tokens, dtype=np.int32)
867
+ total_num_draft_tokens = cu_num_draft_tokens[-1]
868
+ # [0, 0, 0, 3, 3, 5]
869
+ cumsums_offsets = np.repeat(cu_num_draft_tokens - num_draft_tokens,
870
+ num_draft_tokens)
871
+ # [0, 1, 2, 0, 1, 0]
872
+ arange = self.arange_np[:total_num_draft_tokens] - cumsums_offsets
873
+ # [0, 0, 0, 5, 5, 9]
874
+ target_logits_indices = np.repeat(
875
+ cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
876
+ # [0, 1, 2, 5, 6, 9]
877
+ target_logits_indices += arange
878
+
879
+ # TODO: Optimize the CPU -> GPU copy.
880
+ cu_num_draft_tokens = torch.from_numpy(cu_num_draft_tokens).to(
881
+ self.device, non_blocking=True)
882
+ logits_indices = torch.from_numpy(logits_indices).to(self.device,
883
+ non_blocking=True)
884
+ target_logits_indices = torch.from_numpy(target_logits_indices).to(
885
+ self.device, non_blocking=True)
886
+ bonus_logits_indices = torch.from_numpy(bonus_logits_indices).to(
887
+ self.device, non_blocking=True)
888
+
889
+ # Compute the draft token ids.
890
+ # draft_token_indices: [ 1, 2, 3, 105, 106, 208]
891
+ draft_token_ids = self.input_ids[logits_indices]
892
+ draft_token_ids = draft_token_ids[target_logits_indices + 1]
893
+
894
+ metadata = SpecDecodeMetadata(
895
+ draft_token_ids=draft_token_ids,
896
+ num_draft_tokens=num_draft_tokens.tolist(),
897
+ cu_num_draft_tokens=cu_num_draft_tokens,
898
+ target_logits_indices=target_logits_indices,
899
+ bonus_logits_indices=bonus_logits_indices,
900
+ logits_indices=logits_indices,
901
+ )
902
+ return metadata
903
+
904
+ def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
905
+ scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
906
+ if not scheduled_encoder_inputs:
907
+ return
908
+
909
+ # Batch the multi-modal inputs.
910
+ mm_inputs = list[MultiModalKwargs]()
911
+ req_ids_pos = list[tuple[str, int, PlaceholderRange]]()
912
+ for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
913
+ req_state = self.requests[req_id]
914
+
915
+ for mm_input_id in encoder_input_ids:
916
+ mm_inputs.append(req_state.mm_inputs[mm_input_id])
917
+ req_ids_pos.append(
918
+ (req_id, mm_input_id, req_state.mm_positions[mm_input_id]))
919
+
920
+ # Batch mm inputs as much as we can: if a request in the batch has
921
+ # multiple modalities or a different modality than the previous one,
922
+ # we process it separately to preserve item order.
923
+ # FIXME(ywang96): This is a hacky way to deal with multiple modalities
924
+ # in the same batch while still being able to benefit from batching
925
+ # multimodal inputs. The proper solution should be reordering the
926
+ # encoder outputs.
927
+ grouped_mm_inputs_list = group_mm_inputs_by_modality(mm_inputs)
928
+
929
+ encoder_outputs = []
930
+ for grouped_mm_inputs in grouped_mm_inputs_list:
931
+ batched_mm_inputs = MultiModalKwargs.batch(grouped_mm_inputs)
932
+ batched_mm_inputs = MultiModalKwargs.as_kwargs(
933
+ batched_mm_inputs,
934
+ dtype=self.model_config.dtype,
935
+ device=self.device,
936
+ )
937
+
938
+ # Run the encoder.
939
+ # `curr_group_outputs` is either of the following:
940
+ # 1. A tensor of shape (num_items, feature_size, hidden_size)
941
+ # in case feature_size is fixed across all multimodal items.
942
+ # 2. A list or tuple (length: num_items) of tensors, each of shape
943
+ # (feature_size, hidden_size) in case the feature size is dynamic
944
+ # depending on the input multimodal items.
945
+ curr_group_outputs = self.model.get_multimodal_embeddings(
946
+ **batched_mm_inputs)
947
+
948
+ sanity_check_mm_encoder_outputs(
949
+ curr_group_outputs,
950
+ expected_num_items=len(grouped_mm_inputs),
951
+ )
952
+
953
+ for output in curr_group_outputs:
954
+ encoder_outputs.append(output)
955
+
956
+ # Cache the encoder outputs.
957
+ for (req_id, input_id, pos_info), output in zip(
958
+ req_ids_pos,
959
+ encoder_outputs,
960
+ ):
961
+ if req_id not in self.encoder_cache:
962
+ self.encoder_cache[req_id] = {}
963
+
964
+ self.encoder_cache[req_id][input_id] = scatter_mm_placeholders(
965
+ output,
966
+ is_embed=pos_info.is_embed,
967
+ )
968
+
969
+ def _gather_mm_embeddings(
970
+ self,
971
+ scheduler_output: "SchedulerOutput",
972
+ ) -> list[torch.Tensor]:
973
+ mm_embeds: list[torch.Tensor] = []
974
+ for req_id in self.input_batch.req_ids:
975
+ num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
976
+ req_id]
977
+ req_state = self.requests[req_id]
978
+ num_computed_tokens = req_state.num_computed_tokens
979
+ mm_positions = req_state.mm_positions
980
+ for i, pos_info in enumerate(mm_positions):
981
+ start_pos = pos_info.offset
982
+ num_encoder_tokens = pos_info.length
983
+
984
+ # The encoder output is needed if the two ranges overlap:
985
+ # [num_computed_tokens,
986
+ # num_computed_tokens + num_scheduled_tokens) and
987
+ # [start_pos, start_pos + num_encoder_tokens)
988
+ if start_pos >= num_computed_tokens + num_scheduled_tokens:
989
+ # The encoder output is not needed in this step.
990
+ break
991
+ if start_pos + num_encoder_tokens <= num_computed_tokens:
992
+ # The encoder output is already processed and stored
993
+ # in the decoder's KV cache.
994
+ continue
995
+
996
+ start_idx = max(num_computed_tokens - start_pos, 0)
997
+ end_idx = min(
998
+ num_computed_tokens - start_pos + num_scheduled_tokens,
999
+ num_encoder_tokens)
1000
+ assert start_idx < end_idx
1001
+ assert req_id in self.encoder_cache
1002
+ assert i in self.encoder_cache[req_id]
1003
+ encoder_output = self.encoder_cache[req_id][i]
1004
+
1005
+ if (is_embed := pos_info.is_embed) is not None:
1006
+ is_embed = is_embed[start_idx:end_idx]
1007
+
1008
+ mm_embeds_item = gather_mm_placeholders(
1009
+ encoder_output[start_idx:end_idx],
1010
+ is_embed=is_embed,
1011
+ )
1012
+ mm_embeds.append(mm_embeds_item)
1013
+ return mm_embeds
1014
+
1015
+ def get_model(self) -> nn.Module:
1016
+ return self.model
1017
+
1018
+ def apply_grammar_bitmask(
1019
+ self,
1020
+ scheduler_output: "SchedulerOutput",
1021
+ logits: torch.Tensor,
1022
+ ):
1023
+ grammar_bitmask = scheduler_output.grammar_bitmask
1024
+ if grammar_bitmask is None:
1025
+ return
1026
+
1027
+ # We receive the structured output bitmask from the scheduler,
1028
+ # compacted to contain bitmasks only for structured output requests.
1029
+ # The order of the requests in the bitmask is not guaranteed to be the
1030
+ # same as the order of the requests in the gpu runner's batch. We need
1031
+ # to sort the bitmask to match the order of the requests used here.
1032
+
1033
+ # Get the batch indices of the structured output requests.
1034
+ # Keep track of the number of speculative tokens scheduled for every
1035
+ # request in the batch, as the logit indices are offset by this amount.
1036
+ struct_out_req_batch_indices: dict[str, int] = {}
1037
+ cumulative_offset = 0
1038
+ seq = sorted(self.input_batch.req_id_to_index.items(),
1039
+ key=lambda x: x[1])
1040
+ for req_id, batch_index in seq:
1041
+ logit_index = batch_index + cumulative_offset
1042
+ cumulative_offset += len(
1043
+ scheduler_output.scheduled_spec_decode_tokens.get(req_id, []))
1044
+ if req_id in scheduler_output.structured_output_request_ids:
1045
+ struct_out_req_batch_indices[req_id] = logit_index
1046
+
1047
+ out_indices = []
1048
+
1049
+ # Reorder the bitmask to match the order of the requests in the batch.
1050
+ sorted_bitmask = np.zeros_like(grammar_bitmask,
1051
+ shape=(logits.shape[0],
1052
+ grammar_bitmask.shape[1]))
1053
+ cumulative_index = 0
1054
+ seq = sorted(scheduler_output.structured_output_request_ids.items(),
1055
+ key=lambda x: x[1])
1056
+ for req_id, _ in seq:
1057
+ logit_index = struct_out_req_batch_indices[req_id]
1058
+ num_spec_tokens = len(
1059
+ scheduler_output.scheduled_spec_decode_tokens.get(req_id, []))
1060
+ for i in range(1 + num_spec_tokens):
1061
+ sorted_bitmask[logit_index + i] = \
1062
+ grammar_bitmask[cumulative_index + i]
1063
+ out_indices.append(logit_index + i)
1064
+ cumulative_index += 1 + num_spec_tokens
1065
+ grammar_bitmask = sorted_bitmask
1066
+
1067
+ # Serialization of np.ndarray is much more efficient than a tensor,
1068
+ # so we receive it in that format.
1069
+ grammar_bitmask = torch.from_numpy(grammar_bitmask)
1070
+
1071
+ xgr.apply_token_bitmask_inplace(
1072
+ logits,
1073
+ grammar_bitmask.to(self.device, non_blocking=True),
1074
+ indices=out_indices,
1075
+ )
1076
+
1077
+ def sync_and_slice_intermediate_tensors(
1078
+ self, num_tokens: int, intermediate_tensors: IntermediateTensors,
1079
+ sync_self: bool) -> IntermediateTensors:
1080
+
1081
+ assert self.intermediate_tensors is not None
1082
+
1083
+ tp = self.vllm_config.parallel_config.tensor_parallel_size
1084
+ enabled_sp = self.vllm_config.compilation_config.pass_config. \
1085
+ enable_sequence_parallelism
1086
+ if enabled_sp:
1087
+ # When sequence parallelism is enabled, we always pad num_tokens
1088
+ # to be a multiple of tensor_parallel_size (tp) earlier
1089
+ assert num_tokens % tp == 0
1090
+ is_residual_scattered = tp > 1 and enabled_sp \
1091
+ and num_tokens % tp == 0
1092
+
1093
+ # When sequence parallelism is enabled, the "residual" tensor is sharded
1094
+ # across tensor parallel ranks, so each rank only needs its own slice.
1095
+ if sync_self:
1096
+ assert intermediate_tensors is not None
1097
+ for k, v in intermediate_tensors.items():
1098
+ is_scattered = "residual" and is_residual_scattered
1099
+ copy_len = num_tokens // tp if is_scattered else \
1100
+ num_tokens
1101
+ self.intermediate_tensors[k][:copy_len].copy_(
1102
+ v[:copy_len], non_blocking=True)
1103
+
1104
+ return IntermediateTensors({
1105
+ k:
1106
+ v[:num_tokens // tp]
1107
+ if k == "residual" and is_residual_scattered else v[:num_tokens]
1108
+ for k, v in self.intermediate_tensors.items()
1109
+ })
1110
+
1111
+ @torch.inference_mode()
1112
+ def execute_model(
1113
+ self,
1114
+ scheduler_output: "SchedulerOutput",
1115
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1116
+ ) -> Union[ModelRunnerOutput, IntermediateTensors]:
1117
+
1118
+ self._update_states(scheduler_output)
1119
+ if not scheduler_output.total_num_scheduled_tokens:
1120
+ if not has_kv_transfer_group():
1121
+ # Return empty ModelRunnerOutput if there's no work to do.
1122
+ return EMPTY_MODEL_RUNNER_OUTPUT
1123
+
1124
+ return self.kv_connector_no_forward(scheduler_output)
1125
+
1126
+ # Prepare the decoder inputs.
1127
+ attn_metadata, logits_indices, spec_decode_metadata = (
1128
+ self._prepare_inputs(scheduler_output))
1129
+ num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
1130
+ if (self.use_cuda_graph
1131
+ and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]):
1132
+ # Use piecewise CUDA graphs.
1133
+ # Add padding to the batch size.
1134
+ num_input_tokens = self.vllm_config.pad_for_cudagraph(
1135
+ num_scheduled_tokens)
1136
+ else:
1137
+ # Eager mode.
1138
+ # Pad tokens to multiple of tensor_parallel_size when
1139
+ # enabled collective fusion for SP
1140
+ tp_size = self.vllm_config.parallel_config.tensor_parallel_size
1141
+ if self.vllm_config.compilation_config.pass_config. \
1142
+ enable_sequence_parallelism and tp_size > 1:
1143
+ from vllm.utils import round_up
1144
+ num_input_tokens = round_up(num_scheduled_tokens, tp_size)
1145
+ else:
1146
+ num_input_tokens = num_scheduled_tokens
1147
+
1148
+ # _prepare_inputs may reorder the batch, so we must gather multi
1149
+ # modal outputs after that to ensure the correct order
1150
+ if self.is_multimodal_model:
1151
+ # Run the multimodal encoder if any.
1152
+ self._execute_mm_encoder(scheduler_output)
1153
+ mm_embeds = self._gather_mm_embeddings(scheduler_output)
1154
+ else:
1155
+ mm_embeds = []
1156
+
1157
+ if self.is_multimodal_model and get_pp_group().is_first_rank:
1158
+ # NOTE(woosuk): To unify token ids and soft tokens (vision
1159
+ # embeddings), we always use embeddings (rather than token ids)
1160
+ # as input to the multimodal model, even when the input is text.
1161
+ input_ids = self.input_ids[:num_scheduled_tokens]
1162
+ if mm_embeds:
1163
+ inputs_embeds = self.model.get_input_embeddings(
1164
+ input_ids, mm_embeds)
1165
+ else:
1166
+ inputs_embeds = self.model.get_input_embeddings(input_ids)
1167
+ # TODO(woosuk): Avoid the copy. Optimize.
1168
+ self.inputs_embeds[:num_scheduled_tokens].copy_(inputs_embeds)
1169
+ inputs_embeds = self.inputs_embeds[:num_input_tokens]
1170
+ input_ids = None
1171
+ else:
1172
+ # For text-only models, we use token ids as input.
1173
+ # While it is possible to use embeddings as input just like the
1174
+ # multimodal models, it is not desirable for performance since
1175
+ # then the embedding layer is not included in the CUDA graph.
1176
+ input_ids = self.input_ids[:num_input_tokens]
1177
+ inputs_embeds = None
1178
+ if self.uses_mrope:
1179
+ positions = self.mrope_positions[:, :num_input_tokens]
1180
+ else:
1181
+ positions = self.positions[:num_input_tokens]
1182
+
1183
+ if get_pp_group().is_first_rank:
1184
+ intermediate_tensors = None
1185
+ else:
1186
+ intermediate_tensors = self.sync_and_slice_intermediate_tensors(
1187
+ num_input_tokens, intermediate_tensors, True)
1188
+
1189
+ # Run the decoder.
1190
+ # Use persistent buffers for CUDA graphs.
1191
+ with set_forward_context(attn_metadata,
1192
+ self.vllm_config,
1193
+ num_tokens=num_input_tokens):
1194
+ self.maybe_setup_kv_connector(scheduler_output)
1195
+
1196
+ model_output = self.model(
1197
+ input_ids=input_ids,
1198
+ positions=positions,
1199
+ intermediate_tensors=intermediate_tensors,
1200
+ inputs_embeds=inputs_embeds,
1201
+ )
1202
+
1203
+ self.maybe_wait_for_kv_save()
1204
+ finished_sending, finished_recving = (
1205
+ self.get_finished_kv_transfers(scheduler_output))
1206
+
1207
+ if self.use_aux_hidden_state_outputs:
1208
+ hidden_states, aux_hidden_states = model_output
1209
+ else:
1210
+ hidden_states = model_output
1211
+ # Broadcast PP output for external_launcher (torchrun)
1212
+ # to make sure we are synced across pp ranks
1213
+ # TODO: Support overlapping mirco-batches
1214
+ # https://github.com/vllm-project/vllm/issues/18019
1215
+ broadcast_pp_output = \
1216
+ self.parallel_config.distributed_executor_backend \
1217
+ == "external_launcher" and len(get_pp_group().ranks) > 0
1218
+ if not get_pp_group().is_last_rank:
1219
+ # For mid-pipeline stages, return the hidden states.
1220
+ if not broadcast_pp_output:
1221
+ return hidden_states
1222
+ assert isinstance(hidden_states, IntermediateTensors)
1223
+ get_pp_group().send_tensor_dict(hidden_states.tensors,
1224
+ all_gather_group=get_tp_group())
1225
+ logits = None
1226
+ else:
1227
+ sample_hidden_states = hidden_states[logits_indices]
1228
+ logits = self.model.compute_logits(sample_hidden_states, None)
1229
+ if broadcast_pp_output:
1230
+ model_output_broadcast_data = {
1231
+ "logits": logits.contiguous(),
1232
+ } if logits is not None else {}
1233
+ model_output_broadcast_data = get_pp_group().broadcast_tensor_dict(
1234
+ model_output_broadcast_data, src=len(get_pp_group().ranks) - 1)
1235
+ assert model_output_broadcast_data is not None
1236
+ logits = model_output_broadcast_data["logits"]
1237
+
1238
+ # Apply structured output bitmasks if present
1239
+ if scheduler_output.grammar_bitmask is not None:
1240
+ self.apply_grammar_bitmask(scheduler_output, logits)
1241
+
1242
+ # Sample the next token and get logprobs if needed.
1243
+ sampling_metadata = self.input_batch.sampling_metadata
1244
+ if spec_decode_metadata is None:
1245
+ sampler_output = self.sampler(
1246
+ logits=logits,
1247
+ sampling_metadata=sampling_metadata,
1248
+ )
1249
+ else:
1250
+ # When indexing with a tensor (bonus_logits_indices), PyTorch
1251
+ # creates a new tensor with separate storage from the original
1252
+ # logits tensor. This means any in-place operations on bonus_logits
1253
+ # won't affect the original logits tensor.
1254
+ assert logits is not None
1255
+ bonus_logits = logits[spec_decode_metadata.bonus_logits_indices]
1256
+ sampler_output = self.sampler(
1257
+ logits=bonus_logits,
1258
+ sampling_metadata=sampling_metadata,
1259
+ )
1260
+ bonus_token_ids = sampler_output.sampled_token_ids
1261
+
1262
+ # Just like `bonus_logits`, `target_logits` is a new tensor with
1263
+ # separate storage from the original `logits` tensor. Therefore,
1264
+ # it is safe to update `target_logits` in place.
1265
+ target_logits = logits[spec_decode_metadata.target_logits_indices]
1266
+ output_token_ids = self.rejection_sampler(
1267
+ spec_decode_metadata,
1268
+ None, # draft_probs
1269
+ target_logits,
1270
+ bonus_token_ids,
1271
+ sampling_metadata,
1272
+ )
1273
+ sampler_output.sampled_token_ids = output_token_ids
1274
+
1275
+ # TODO(woosuk): The following loop can be slow since it iterates over
1276
+ # the requests one by one. Optimize.
1277
+ discard_sampled_tokens_req_indices = []
1278
+ for i, req_id in enumerate(self.input_batch.req_ids):
1279
+ req_state = self.requests[req_id]
1280
+ seq_len = (req_state.num_computed_tokens +
1281
+ scheduler_output.num_scheduled_tokens[req_id])
1282
+ if seq_len < req_state.num_tokens:
1283
+ # Ignore the sampled token for partial prefills.
1284
+ # Rewind the generator state as if the token was not sampled.
1285
+ # This relies on cuda-specific torch-internal impl details
1286
+ generator = self.input_batch.generators.get(i)
1287
+ if generator is not None:
1288
+ generator.set_offset(generator.get_offset() - 4)
1289
+ # Record the index of the request that should not be sampled,
1290
+ # so that we could clear the sampled tokens before returning.
1291
+ discard_sampled_tokens_req_indices.append(i)
1292
+
1293
+ # NOTE: GPU -> CPU Sync happens here.
1294
+ # Move as many CPU operations as possible before this sync point.
1295
+ logprobs_tensors = sampler_output.logprobs_tensors
1296
+ logprobs_lists = logprobs_tensors.tolists() \
1297
+ if logprobs_tensors is not None else None
1298
+
1299
+ # Compute prompt logprobs if needed.
1300
+ prompt_logprobs_dict = self._get_prompt_logprobs_dict(
1301
+ hidden_states[:num_scheduled_tokens],
1302
+ scheduler_output,
1303
+ )
1304
+
1305
+ # Get the valid generated tokens.
1306
+ sampled_token_ids = sampler_output.sampled_token_ids
1307
+ max_gen_len = sampled_token_ids.shape[-1]
1308
+ if max_gen_len == 1:
1309
+ # No spec decode tokens.
1310
+ valid_sampled_token_ids = sampled_token_ids.tolist()
1311
+ else:
1312
+ # Includes spec decode tokens.
1313
+ valid_sampled_token_ids = self.rejection_sampler.parse_output(
1314
+ sampled_token_ids,
1315
+ self.input_batch.vocab_size,
1316
+ )
1317
+ # Mask out the sampled tokens that should not be sampled.
1318
+ for i in discard_sampled_tokens_req_indices:
1319
+ valid_sampled_token_ids[i].clear()
1320
+
1321
+ if not self.use_spec_decode:
1322
+ # Speculative decoding is not enabled.
1323
+ spec_token_ids = None
1324
+ elif self.speculative_config.method == "ngram":
1325
+ assert isinstance(self.drafter, NgramProposer)
1326
+ spec_token_ids = self.generate_draft_token_ids(
1327
+ valid_sampled_token_ids, sampling_metadata)
1328
+ elif self.speculative_config.method == "medusa":
1329
+ assert isinstance(self.drafter, MedusaProposer)
1330
+ if max_gen_len == 1:
1331
+ hidden_states = sample_hidden_states
1332
+ else:
1333
+ indices = []
1334
+ offset = 0
1335
+ for num_draft, tokens in zip(
1336
+ spec_decode_metadata.num_draft_tokens,
1337
+ valid_sampled_token_ids):
1338
+ indices.append(offset + len(tokens) - 1)
1339
+ offset += num_draft + 1
1340
+
1341
+ indices = torch.tensor(indices,
1342
+ device=sample_hidden_states.device)
1343
+ hidden_states = sample_hidden_states[indices]
1344
+
1345
+ spec_token_ids = self.drafter.propose(
1346
+ target_hidden_states=hidden_states,
1347
+ sampling_metadata=sampling_metadata,
1348
+ )
1349
+ elif self.speculative_config.use_eagle():
1350
+ assert isinstance(self.drafter, EagleProposer)
1351
+ # TODO(woosuk): Refactor the loop.
1352
+ next_token_ids: list[int] = []
1353
+ for i, token_ids in enumerate(valid_sampled_token_ids):
1354
+ if token_ids:
1355
+ # Common case.
1356
+ next_token_id = token_ids[-1]
1357
+ else:
1358
+ # Partial prefill (rare case).
1359
+ # Get the next token id from the request state.
1360
+ req_id = self.input_batch.req_ids[i]
1361
+ req_state = self.requests[req_id]
1362
+ seq_len = (req_state.num_computed_tokens +
1363
+ scheduler_output.num_scheduled_tokens[req_id])
1364
+ next_token_id = req_state.get_token_id(seq_len)
1365
+ next_token_ids.append(next_token_id)
1366
+ next_token_ids = torch.tensor(next_token_ids,
1367
+ dtype=torch.int32,
1368
+ device=self.device)
1369
+ # At this moment, we assume all eagle layers belong to the same KV
1370
+ # cache group, thus using the same attention metadata.
1371
+ eagle_attn_metadata = attn_metadata[
1372
+ self.drafter.attn_layer_names[0]]
1373
+
1374
+ # NOTE: deepseek_mtp uses MLA which does not have `block_table`
1375
+ if hasattr(eagle_attn_metadata, "block_table"):
1376
+ block_table = eagle_attn_metadata.block_table
1377
+ else:
1378
+ block_table = None
1379
+
1380
+ if spec_decode_metadata is None:
1381
+ # input_ids can be None for multimodal models.
1382
+ target_token_ids = self.input_ids[:num_scheduled_tokens]
1383
+ target_positions = positions[:num_scheduled_tokens]
1384
+ if self.use_aux_hidden_state_outputs:
1385
+ target_hidden_states = torch.cat(
1386
+ [h[:num_scheduled_tokens] for h in aux_hidden_states],
1387
+ dim=-1)
1388
+ else:
1389
+ target_hidden_states = hidden_states[:num_scheduled_tokens]
1390
+ target_slot_mapping = eagle_attn_metadata.slot_mapping
1391
+ cu_num_tokens = eagle_attn_metadata.query_start_loc
1392
+ else:
1393
+ # TODO(woosuk): Refactor this.
1394
+ num_draft_tokens = spec_decode_metadata.num_draft_tokens
1395
+ num_rejected_tokens = [
1396
+ n + 1 - len(valid_sampled_token_ids[i]) if n > 0 else 0
1397
+ for i, n in enumerate(num_draft_tokens)
1398
+ ]
1399
+ num_rejected_tokens_tensor = async_tensor_h2d(
1400
+ num_rejected_tokens,
1401
+ dtype=torch.int32,
1402
+ target_device=self.device,
1403
+ pin_memory=True)
1404
+ num_tokens = num_scheduled_tokens - sum(num_rejected_tokens)
1405
+ cu_num_tokens, token_indices = self.drafter.prepare_inputs(
1406
+ eagle_attn_metadata.query_start_loc,
1407
+ num_rejected_tokens_tensor,
1408
+ num_tokens,
1409
+ )
1410
+ target_token_ids = self.input_ids[token_indices]
1411
+ target_positions = positions[token_indices]
1412
+ if self.use_aux_hidden_state_outputs:
1413
+ target_hidden_states = torch.cat(
1414
+ [h[token_indices] for h in aux_hidden_states], dim=-1)
1415
+ else:
1416
+ target_hidden_states = hidden_states[token_indices]
1417
+ target_slot_mapping = eagle_attn_metadata.slot_mapping[
1418
+ token_indices]
1419
+ draft_token_ids = self.drafter.propose(
1420
+ target_token_ids=target_token_ids,
1421
+ target_positions=target_positions,
1422
+ target_hidden_states=target_hidden_states,
1423
+ target_slot_mapping=target_slot_mapping,
1424
+ next_token_ids=next_token_ids,
1425
+ cu_num_tokens=cu_num_tokens,
1426
+ block_table=block_table,
1427
+ sampling_metadata=sampling_metadata,
1428
+ )
1429
+ spec_token_ids = draft_token_ids.tolist()
1430
+
1431
+ # Clear KVConnector state after all KVs are generated.
1432
+ if has_kv_transfer_group():
1433
+ get_kv_transfer_group().clear_connector_metadata()
1434
+
1435
+ return ModelRunnerOutput(
1436
+ req_ids=self.input_batch.req_ids,
1437
+ req_id_to_index=self.input_batch.req_id_to_index,
1438
+ sampled_token_ids=valid_sampled_token_ids,
1439
+ spec_token_ids=spec_token_ids,
1440
+ logprobs=logprobs_lists,
1441
+ prompt_logprobs_dict=prompt_logprobs_dict,
1442
+ finished_sending=finished_sending,
1443
+ finished_recving=finished_recving,
1444
+ )
1445
+
1446
+ def kv_connector_no_forward(
1447
+ self, scheduler_output: "SchedulerOutput") -> ModelRunnerOutput:
1448
+ # KV send/recv even if no work to do.
1449
+ with set_forward_context(None, self.vllm_config):
1450
+ self.maybe_setup_kv_connector(scheduler_output)
1451
+ finished_sending, finished_recving = (
1452
+ self.get_finished_kv_transfers(scheduler_output))
1453
+
1454
+ if not finished_sending and not finished_recving:
1455
+ return EMPTY_MODEL_RUNNER_OUTPUT
1456
+
1457
+ output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
1458
+ output.finished_sending = finished_sending
1459
+ output.finished_recving = finished_recving
1460
+ return output
1461
+
1462
+ @staticmethod
1463
+ def maybe_setup_kv_connector(scheduler_output: "SchedulerOutput"):
1464
+ # Update KVConnector with the KVConnector metadata forward().
1465
+ if has_kv_transfer_group():
1466
+ kv_connector = get_kv_transfer_group()
1467
+ assert isinstance(kv_connector, KVConnectorBase_V1)
1468
+ assert scheduler_output.kv_connector_metadata is not None
1469
+ kv_connector.bind_connector_metadata(
1470
+ scheduler_output.kv_connector_metadata)
1471
+
1472
+ # Background KV cache transfers happen here.
1473
+ # These transfers are designed to be async and the requests
1474
+ # involved may be disjoint from the running requests.
1475
+ # Do this here to save a collective_rpc.
1476
+ kv_connector.start_load_kv(get_forward_context())
1477
+
1478
+ @staticmethod
1479
+ def maybe_wait_for_kv_save() -> None:
1480
+ if has_kv_transfer_group():
1481
+ get_kv_transfer_group().wait_for_save()
1482
+
1483
+ @staticmethod
1484
+ def get_finished_kv_transfers(
1485
+ scheduler_output: "SchedulerOutput",
1486
+ ) -> tuple[Optional[set[str]], Optional[set[str]]]:
1487
+ if has_kv_transfer_group():
1488
+ return get_kv_transfer_group().get_finished(
1489
+ scheduler_output.finished_req_ids)
1490
+ return None, None
1491
+
1492
+ def generate_draft_token_ids(
1493
+ self,
1494
+ sampled_token_ids: list[list[int]],
1495
+ sampling_metadata: SamplingMetadata,
1496
+ ) -> list[list[int]]:
1497
+ # TODO(woosuk): Optimize.
1498
+ draft_token_ids: list[list[int]] = []
1499
+ for i, sampled_ids in enumerate(sampled_token_ids):
1500
+ num_sampled_ids = len(sampled_ids)
1501
+ if not num_sampled_ids:
1502
+ # Skip speculative decoding.
1503
+ draft_token_ids.append([])
1504
+ continue
1505
+
1506
+ # Skip requests that require sampling parameters that are not
1507
+ # supported with speculative decoding.
1508
+ req_id = self.input_batch.req_ids[i]
1509
+ if not is_spec_decode_supported(req_id, self.input_batch):
1510
+ draft_token_ids.append([])
1511
+ continue
1512
+
1513
+ # Add sampled_token_ids to token_ids_cpu.
1514
+ start_idx = self.input_batch.num_tokens_no_spec[i]
1515
+ end_idx = start_idx + num_sampled_ids
1516
+ if end_idx >= self.max_model_len:
1517
+ # Skip requests that have already reached the max model length.
1518
+ draft_token_ids.append([])
1519
+ continue
1520
+
1521
+ self.input_batch.token_ids_cpu[i, start_idx:end_idx] = sampled_ids
1522
+ drafter_output = self.drafter.propose(
1523
+ self.input_batch.token_ids_cpu[i, :end_idx])
1524
+ if drafter_output is None or len(drafter_output) == 0:
1525
+ draft_token_ids.append([])
1526
+ else:
1527
+ draft_token_ids.append(drafter_output.tolist())
1528
+ return draft_token_ids
1529
+
1530
+ def load_model(self) -> None:
1531
+ logger.info("Starting to load model %s...", self.model_config.model)
1532
+ with DeviceMemoryProfiler() as m: # noqa: SIM117
1533
+ time_before_load = time.perf_counter()
1534
+ self.model = get_model(vllm_config=self.vllm_config)
1535
+ if self.lora_config:
1536
+ self.model = self.load_lora_model(self.model,
1537
+ self.model_config,
1538
+ self.scheduler_config,
1539
+ self.lora_config,
1540
+ self.device)
1541
+ if hasattr(self, "drafter"):
1542
+ logger.info("Loading drafter model...")
1543
+ self.drafter.load_model(self.model)
1544
+ if self.use_aux_hidden_state_outputs:
1545
+ self.model.set_aux_hidden_state_layers(
1546
+ self.model.get_eagle3_aux_hidden_state_layers())
1547
+ time_after_load = time.perf_counter()
1548
+ self.model_memory_usage = m.consumed_memory
1549
+ logger.info("Model loading took %.4f GiB and %.6f seconds",
1550
+ self.model_memory_usage / GiB_bytes,
1551
+ time_after_load - time_before_load)
1552
+ prepare_communication_buffer_for_model(self.model)
1553
+
1554
+ def save_tensorized_model(
1555
+ self,
1556
+ tensorizer_config: "TensorizerConfig",
1557
+ ) -> None:
1558
+ TensorizerLoader.save_model(
1559
+ self.model,
1560
+ tensorizer_config=tensorizer_config,
1561
+ )
1562
+
1563
+ def _get_prompt_logprobs_dict(
1564
+ self,
1565
+ hidden_states: torch.Tensor,
1566
+ scheduler_output: "SchedulerOutput",
1567
+ ) -> dict[str, Optional[LogprobsTensors]]:
1568
+ num_prompt_logprobs_dict = self.input_batch.num_prompt_logprobs
1569
+ if not num_prompt_logprobs_dict:
1570
+ return {}
1571
+
1572
+ in_progress_dict = self.input_batch.in_progress_prompt_logprobs_cpu
1573
+ prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}
1574
+
1575
+ # Since prompt logprobs are a rare feature, prioritize simple,
1576
+ # maintainable loop over optimal performance.
1577
+ completed_prefill_reqs = []
1578
+ for req_id, num_prompt_logprobs in num_prompt_logprobs_dict.items():
1579
+
1580
+ num_tokens = scheduler_output.num_scheduled_tokens[req_id]
1581
+
1582
+ # Get metadata for this request.
1583
+ request = self.requests[req_id]
1584
+ num_prompt_tokens = len(request.prompt_token_ids)
1585
+ prompt_token_ids = torch.tensor(request.prompt_token_ids).to(
1586
+ self.device, non_blocking=True)
1587
+
1588
+ # Set up target LogprobsTensors object.
1589
+ logprobs_tensors = in_progress_dict.get(req_id)
1590
+ if not logprobs_tensors:
1591
+ # Create empty logprobs CPU tensors for the entire prompt.
1592
+ # If chunked, we'll copy in slice by slice.
1593
+ logprobs_tensors = LogprobsTensors.empty_cpu(
1594
+ num_prompt_tokens - 1, num_prompt_logprobs + 1)
1595
+ in_progress_dict[req_id] = logprobs_tensors
1596
+
1597
+ # Determine number of logits to retrieve.
1598
+ start_idx = request.num_computed_tokens
1599
+ start_tok = start_idx + 1
1600
+ num_remaining_tokens = num_prompt_tokens - start_tok
1601
+ if num_tokens <= num_remaining_tokens:
1602
+ # This is a chunk, more tokens remain.
1603
+ # In the == case, there are no more prompt logprobs to produce
1604
+ # but we want to defer returning them to the next step where we
1605
+ # have new generated tokens to return.
1606
+ num_logits = num_tokens
1607
+ else:
1608
+ # This is the last chunk of prompt tokens to return.
1609
+ num_logits = num_remaining_tokens
1610
+ completed_prefill_reqs.append(req_id)
1611
+ prompt_logprobs_dict[req_id] = logprobs_tensors
1612
+
1613
+ if num_logits <= 0:
1614
+ # This can happen for the final chunk if we prefilled exactly
1615
+ # (num_prompt_tokens - 1) tokens for this request in the prior
1616
+ # step. There are no more prompt logprobs to produce.
1617
+ continue
1618
+
1619
+ # Get the logits corresponding to this req's prompt tokens.
1620
+ # If this is a partial request (i.e. chunked prefill),
1621
+ # then there is prompt logprob generated for each index.
1622
+ req_idx = self.input_batch.req_id_to_index[req_id]
1623
+ offset = self.query_start_loc_np[req_idx].item()
1624
+ prompt_hidden_states = hidden_states[offset:offset + num_logits]
1625
+ logits = self.model.compute_logits(prompt_hidden_states, None)
1626
+
1627
+ # Get the "target" tokens for each index. For prompt at index i,
1628
+ # the token at prompt index i+1 is the "sampled" token we want
1629
+ # to gather the logprob for.
1630
+ tgt_token_ids = prompt_token_ids[start_tok:start_tok + num_logits]
1631
+
1632
+ # Compute prompt logprobs.
1633
+ logprobs = self.sampler.compute_logprobs(logits)
1634
+ token_ids, logprobs, ranks = self.sampler.gather_logprobs(
1635
+ logprobs, num_prompt_logprobs, tgt_token_ids)
1636
+
1637
+ # Transfer GPU->CPU async.
1638
+ chunk_slice = slice(start_idx, start_idx + num_logits)
1639
+ logprobs_tensors.logprob_token_ids[chunk_slice].copy_(
1640
+ token_ids, non_blocking=True)
1641
+ logprobs_tensors.logprobs[chunk_slice].copy_(logprobs,
1642
+ non_blocking=True)
1643
+ logprobs_tensors.selected_token_ranks[chunk_slice].copy_(
1644
+ ranks, non_blocking=True)
1645
+
1646
+ # Remove requests that have completed prefill from the batch
1647
+ # num_prompt_logprobs_dict.
1648
+ for req_id in completed_prefill_reqs:
1649
+ del num_prompt_logprobs_dict[req_id]
1650
+ del in_progress_dict[req_id]
1651
+
1652
+ # Must synchronize the non-blocking GPU->CPU transfers.
1653
+ if prompt_logprobs_dict:
1654
+ torch.cuda.synchronize()
1655
+
1656
+ return prompt_logprobs_dict
1657
+
1658
+ @torch.inference_mode()
1659
+ def _dummy_run(
1660
+ self,
1661
+ num_tokens: int,
1662
+ skip_attn: bool = True,
1663
+ ) -> torch.Tensor:
1664
+
1665
+ # Set num_scheduled_tokens based on num_tokens and max_num_seqs
1666
+ # for dummy run with LoRA so that the num_reqs collectively
1667
+ # has num_tokens in total.
1668
+ assert num_tokens <= self.scheduler_config.max_num_batched_tokens
1669
+ max_num_reqs = self.scheduler_config.max_num_seqs
1670
+ num_reqs = max_num_reqs if num_tokens >= max_num_reqs else num_tokens
1671
+ min_tokens_per_req = num_tokens // num_reqs
1672
+ num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
1673
+ num_scheduled_tokens_list[-1] += num_tokens % num_reqs
1674
+ assert sum(num_scheduled_tokens_list) == num_tokens
1675
+ assert len(num_scheduled_tokens_list) == num_reqs
1676
+ num_scheduled_tokens = np.array(num_scheduled_tokens_list,
1677
+ dtype=np.int32)
1678
+
1679
+ if skip_attn:
1680
+ attn_metadata: Optional[dict[str, FlashAttentionMetadata]] = None
1681
+ else:
1682
+ query_start_loc = self.query_start_loc[:num_reqs + 1]
1683
+ seq_lens = self.seq_lens[:num_reqs]
1684
+
1685
+ common_attn_metadata = CommonAttentionMetadata(
1686
+ query_start_loc=query_start_loc, seq_lens=seq_lens)
1687
+
1688
+ attn_metadata = {}
1689
+ for kv_cache_group_id, kv_cache_group_spec in enumerate(
1690
+ self.kv_cache_config.kv_cache_groups):
1691
+ attn_metadata_i = (
1692
+ self.attn_metadata_builders[kv_cache_group_id].build(
1693
+ num_reqs=num_tokens,
1694
+ num_actual_tokens=num_tokens,
1695
+ max_query_len=num_tokens,
1696
+ common_prefix_len=0,
1697
+ common_attn_metadata=common_attn_metadata,
1698
+ ))
1699
+ for layer_name in kv_cache_group_spec.layer_names:
1700
+ attn_metadata[layer_name] = attn_metadata_i
1701
+
1702
+ with self.maybe_dummy_run_with_lora(self.lora_config,
1703
+ num_scheduled_tokens):
1704
+ model = self.model
1705
+ if self.is_multimodal_model:
1706
+ input_ids = None
1707
+ inputs_embeds = self.inputs_embeds[:num_tokens]
1708
+ else:
1709
+ input_ids = self.input_ids[:num_tokens]
1710
+ inputs_embeds = None
1711
+ if self.uses_mrope:
1712
+ positions = self.mrope_positions[:, :num_tokens]
1713
+ else:
1714
+ positions = self.positions[:num_tokens]
1715
+
1716
+ if get_pp_group().is_first_rank:
1717
+ intermediate_tensors = None
1718
+ else:
1719
+ if self.intermediate_tensors is None:
1720
+ self.intermediate_tensors = (
1721
+ self.model.make_empty_intermediate_tensors(
1722
+ batch_size=self.max_num_tokens,
1723
+ dtype=self.model_config.dtype,
1724
+ device=self.device))
1725
+
1726
+ intermediate_tensors = self.sync_and_slice_intermediate_tensors(
1727
+ num_tokens, None, False)
1728
+
1729
+ with set_forward_context(attn_metadata,
1730
+ self.vllm_config,
1731
+ num_tokens=num_tokens):
1732
+ outputs = model(
1733
+ input_ids=input_ids,
1734
+ positions=positions,
1735
+ intermediate_tensors=intermediate_tensors,
1736
+ inputs_embeds=inputs_embeds,
1737
+ )
1738
+ if self.use_aux_hidden_state_outputs:
1739
+ hidden_states, _ = outputs
1740
+ else:
1741
+ hidden_states = outputs
1742
+
1743
+ if self.use_spec_decode and self.speculative_config.use_eagle():
1744
+ assert isinstance(self.drafter, EagleProposer)
1745
+ self.drafter.dummy_run(num_tokens)
1746
+
1747
+ logit_indices = np.cumsum(num_scheduled_tokens) - 1
1748
+ return hidden_states[logit_indices]
1749
+
1750
+ @torch.inference_mode()
1751
+ def _dummy_sampler_run(
1752
+ self,
1753
+ hidden_states: torch.Tensor,
1754
+ ) -> torch.Tensor:
1755
+ # The dummy hidden states may contain special values,
1756
+ # like `inf` or `nan`.
1757
+ # To avoid breaking the sampler, we use a random tensor here instead.
1758
+ hidden_states = torch.rand_like(hidden_states)
1759
+
1760
+ logits = self.model.compute_logits(hidden_states, None)
1761
+ num_reqs = logits.size(0)
1762
+
1763
+ dummy_tensors = lambda v: torch.full(
1764
+ (num_reqs, ), v, device=self.device)
1765
+
1766
+ dummy_metadata = SamplingMetadata(
1767
+ temperature=dummy_tensors(0.5),
1768
+ all_greedy=False,
1769
+ all_random=False,
1770
+ top_p=dummy_tensors(0.9),
1771
+ top_k=dummy_tensors(logits.size(1) - 1),
1772
+ min_p=None,
1773
+ generators={},
1774
+ max_num_logprobs=None,
1775
+ no_penalties=True,
1776
+ prompt_token_ids=None,
1777
+ frequency_penalties=dummy_tensors(0.1),
1778
+ presence_penalties=dummy_tensors(0.1),
1779
+ repetition_penalties=dummy_tensors(0.1),
1780
+ output_token_ids=[[] for _ in range(num_reqs)],
1781
+ min_tokens={},
1782
+ logit_bias=[None for _ in range(num_reqs)],
1783
+ allowed_token_ids_mask=None,
1784
+ bad_words_token_ids={},
1785
+ )
1786
+ try:
1787
+ sampler_output = self.sampler(logits=logits,
1788
+ sampling_metadata=dummy_metadata)
1789
+ except RuntimeError as e:
1790
+ if 'out of memory' in str(e):
1791
+ raise RuntimeError(
1792
+ "CUDA out of memory occurred when warming up sampler with "
1793
+ f"{num_reqs} dummy requests. Please try lowering "
1794
+ "`max_num_seqs` or `gpu_memory_utilization` when "
1795
+ "initializing the engine.") from e
1796
+ else:
1797
+ raise e
1798
+ if self.use_spec_decode:
1799
+ draft_token_ids = [[0] for _ in range(num_reqs)]
1800
+ dummy_spec_decode_metadata = SpecDecodeMetadata.make_dummy(
1801
+ draft_token_ids, self.device)
1802
+
1803
+ num_tokens = sum(len(ids) for ids in draft_token_ids)
1804
+ # draft_probs = torch.randn(
1805
+ # num_tokens, logits.shape[-1], device=self.device,
1806
+ # dtype=logits.dtype)
1807
+ draft_probs = None
1808
+ target_logits = torch.randn(num_tokens,
1809
+ logits.shape[-1],
1810
+ device=self.device,
1811
+ dtype=logits.dtype)
1812
+ # NOTE(woosuk): Here, we should use int32 because the sampler uses
1813
+ # int32 for bonus_token_ids. If the dtype mismatches, re-compilation
1814
+ # will occur at runtime.
1815
+ bonus_token_ids = torch.zeros(num_reqs,
1816
+ device=self.device,
1817
+ dtype=torch.int32)
1818
+ self.rejection_sampler(
1819
+ dummy_spec_decode_metadata,
1820
+ draft_probs,
1821
+ target_logits,
1822
+ bonus_token_ids,
1823
+ dummy_metadata,
1824
+ )
1825
+ return sampler_output
1826
+
1827
+ def profile_run(self) -> None:
1828
+ # Profile with multimodal encoder & encoder cache.
1829
+ # TODO: handle encoder-decoder models once we support them.
1830
+ if (self.is_multimodal_model and self.max_num_encoder_input_tokens > 0
1831
+ and self.encoder_cache_size > 0):
1832
+
1833
+ # NOTE: Currently model is profiled with a single non-text
1834
+ # modality with the max possible input tokens even when
1835
+ # it supports multiple.
1836
+ max_tokens_by_modality_dict = self.mm_registry \
1837
+ .get_max_tokens_per_item_by_nonzero_modality(self.model_config)
1838
+ dummy_data_modality, max_tokens_per_mm_item = max(
1839
+ max_tokens_by_modality_dict.items(), key=lambda item: item[1])
1840
+
1841
+ # Check how many items of this modality can be supported by
1842
+ # the encoder budget.
1843
+ encoder_budget = min(self.max_num_encoder_input_tokens,
1844
+ self.encoder_cache_size)
1845
+
1846
+ max_num_mm_items_encoder_budget = cdiv(encoder_budget,
1847
+ max_tokens_per_mm_item)
1848
+
1849
+ # Check how many items of this modality can be supported by
1850
+ # the decoder budget.
1851
+ max_mm_items_per_req = self.mm_registry.get_mm_limits_per_prompt(
1852
+ self.model_config)[dummy_data_modality]
1853
+
1854
+ # NOTE: We do not consider max_num_batched_tokens on purpose
1855
+ # because the multimodal embeddings can be generated in advance
1856
+ # and chunked prefilled.
1857
+ max_num_mm_items_decoder_budget = self.max_num_reqs * \
1858
+ max_mm_items_per_req
1859
+
1860
+ max_num_mm_items = min(max_num_mm_items_encoder_budget,
1861
+ max_num_mm_items_decoder_budget)
1862
+
1863
+ logger.info(
1864
+ "Encoder cache will be initialized with a budget of %s tokens,"
1865
+ " and profiled with %s %s items of the maximum feature size.",
1866
+ encoder_budget, max_num_mm_items, dummy_data_modality)
1867
+
1868
+ # Create dummy batch of multimodal inputs.
1869
+ dummy_mm_kwargs = self.mm_registry.get_decoder_dummy_data(
1870
+ model_config=self.model_config,
1871
+ seq_len=self.max_num_tokens,
1872
+ mm_counts={
1873
+ dummy_data_modality: 1
1874
+ },
1875
+ ).multi_modal_data
1876
+
1877
+ batched_dummy_mm_inputs = MultiModalKwargs.batch(
1878
+ [dummy_mm_kwargs] * max_num_mm_items)
1879
+ batched_dummy_mm_inputs = MultiModalKwargs.as_kwargs(
1880
+ batched_dummy_mm_inputs,
1881
+ dtype=self.model_config.dtype,
1882
+ device=self.device,
1883
+ )
1884
+
1885
+ # Run multimodal encoder.
1886
+ dummy_encoder_outputs = self.model.get_multimodal_embeddings(
1887
+ **batched_dummy_mm_inputs)
1888
+
1889
+ sanity_check_mm_encoder_outputs(
1890
+ dummy_encoder_outputs,
1891
+ expected_num_items=max_num_mm_items,
1892
+ )
1893
+
1894
+ # Cache the dummy encoder outputs.
1895
+ self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs))
1896
+
1897
+ hidden_states = self._dummy_run(self.max_num_tokens)
1898
+ if get_pp_group().is_last_rank:
1899
+ sampler_output = self._dummy_sampler_run(hidden_states)
1900
+ else:
1901
+ sampler_output = None
1902
+ torch.cuda.synchronize()
1903
+ del hidden_states, sampler_output
1904
+ self.encoder_cache.clear()
1905
+ gc.collect()
1906
+
1907
+ def capture_model(self) -> None:
1908
+ if not self.use_cuda_graph:
1909
+ logger.warning(
1910
+ "Skipping CUDA graph capture. Please add "
1911
+ "-O %s to use CUDA graphs.", CompilationLevel.PIECEWISE)
1912
+ return
1913
+
1914
+ start_time = time.perf_counter()
1915
+ start_free_gpu_memory = torch.cuda.mem_get_info()[0]
1916
+
1917
+ # Trigger CUDA graph capture for specific shapes.
1918
+ # Capture the large shapes first so that the smaller shapes
1919
+ # can reuse the memory pool allocated for the large shapes.
1920
+ with graph_capture(device=self.device):
1921
+ skip_attn = not self.vllm_config.compilation_config.full_cuda_graph
1922
+ for num_tokens in reversed(self.cudagraph_batch_sizes):
1923
+ for _ in range(self.vllm_config.compilation_config.
1924
+ cudagraph_num_of_warmups):
1925
+ self._dummy_run(num_tokens, skip_attn=skip_attn)
1926
+ self._dummy_run(num_tokens, skip_attn=skip_attn)
1927
+
1928
+ end_time = time.perf_counter()
1929
+ end_free_gpu_memory = torch.cuda.mem_get_info()[0]
1930
+ elapsed_time = end_time - start_time
1931
+ cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
1932
+ # This usually takes 5~20 seconds.
1933
+ logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
1934
+ elapsed_time, cuda_graph_size / (1 << 30))
1935
+
1936
+ def initialize_attn_backend(self, kv_cache_config: KVCacheConfig) -> None:
1937
+ """
1938
+ Initialize the attention backends and attention metadata builders.
1939
+ """
1940
+ assert len(self.attn_backends) == 0 and len(
1941
+ self.attn_metadata_builders
1942
+ ) == 0, "Attention backends are already initialized"
1943
+ for i, kv_cache_group_spec in enumerate(
1944
+ kv_cache_config.kv_cache_groups):
1945
+ kv_cache_spec = kv_cache_group_spec.kv_cache_spec
1946
+ if not isinstance(kv_cache_spec, AttentionSpec):
1947
+ raise NotImplementedError(
1948
+ "Only AttentionSpec is supported for now.")
1949
+ attn_backend_i = get_attn_backend(
1950
+ kv_cache_spec.head_size,
1951
+ self.dtype,
1952
+ kv_cache_spec.dtype,
1953
+ kv_cache_spec.block_size,
1954
+ self.model_config.is_attention_free,
1955
+ use_mla=kv_cache_spec.use_mla,
1956
+ )
1957
+ if attn_backend_i is None:
1958
+ error_msg = (
1959
+ f"Error with get_attn_backend: {kv_cache_spec.head_size=}, "
1960
+ f"{self.dtype=}, {kv_cache_spec.dtype=}, "
1961
+ f"{kv_cache_spec.block_size=}, "
1962
+ f"{self.model_config.is_attention_free=}, "
1963
+ f"{kv_cache_spec.use_mla=}")
1964
+ logger.error(error_msg)
1965
+ raise NotImplementedError(
1966
+ "Non-Attention backend is not supported by V1 "
1967
+ "GPUModelRunner.")
1968
+
1969
+ if self.vllm_config.compilation_config.full_cuda_graph:
1970
+ attn_backend_name = attn_backend_i.__name__
1971
+ flash_attn_version = get_flash_attn_version()
1972
+ if attn_backend_name != "FlashAttentionBackend" or \
1973
+ flash_attn_version != 3:
1974
+ raise ValueError(
1975
+ f"full_cuda_graph is only supported with "
1976
+ f"FA3. Current attention backend is "
1977
+ f"{attn_backend_name}, FlashAttention version is "
1978
+ f"{flash_attn_version}.")
1979
+
1980
+ block_table_i = self.input_batch.block_table[i]
1981
+ attn_metadata_builder_i = attn_backend_i.get_builder_cls()(
1982
+ weakref.proxy(self), kv_cache_spec, block_table_i)
1983
+ self.attn_backends.append(attn_backend_i)
1984
+ self.attn_metadata_builders.append(attn_metadata_builder_i)
1985
+
1986
+ def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
1987
+ """
1988
+ Initialize KV cache based on `kv_cache_config`.
1989
+ Args:
1990
+ kv_cache_config: Configuration for the KV cache, including the KV
1991
+ cache size of each layer
1992
+ """
1993
+ if len(kv_cache_config.kv_cache_groups) > 1:
1994
+ raise NotImplementedError(
1995
+ "Hybrid models with more than one KV cache type are not "
1996
+ "supported yet.")
1997
+ self.kv_cache_config = kv_cache_config
1998
+ self.initialize_attn_backend(kv_cache_config)
1999
+
2000
+ kv_caches: dict[str, torch.Tensor] = {}
2001
+
2002
+ for i, kv_cache_group in enumerate(kv_cache_config.kv_cache_groups):
2003
+ kv_cache_spec = kv_cache_group.kv_cache_spec
2004
+ for layer_name in kv_cache_group.layer_names:
2005
+ tensor_config = kv_cache_config.tensors[layer_name]
2006
+ assert tensor_config.size % kv_cache_spec.page_size_bytes == 0
2007
+ num_blocks = tensor_config.size // kv_cache_spec.page_size_bytes
2008
+ # `num_blocks` is the number of blocks the model runner can use.
2009
+ # `kv_cache_config.num_blocks` is the number of blocks that
2010
+ # KVCacheManager may allocate.
2011
+ # Since different GPUs may have different number of layers and
2012
+ # different memory capacities, `num_blocks` can be different on
2013
+ # different GPUs, and `kv_cache_config.num_blocks` is set to
2014
+ # the min of all `num_blocks`. Verify it here.
2015
+ assert num_blocks >= kv_cache_config.num_blocks
2016
+ if isinstance(kv_cache_spec, AttentionSpec):
2017
+ kv_cache_shape = self.attn_backends[i].get_kv_cache_shape(
2018
+ num_blocks, kv_cache_spec.block_size,
2019
+ kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
2020
+ dtype = kv_cache_spec.dtype
2021
+ kv_caches[layer_name] = torch.zeros(kv_cache_shape,
2022
+ dtype=dtype,
2023
+ device=self.device)
2024
+ else:
2025
+ # TODO: add new branches when introducing more types of
2026
+ # KV cache specs.
2027
+ raise ValueError("Unknown KV cache spec type.")
2028
+
2029
+ if self.speculative_config and self.speculative_config.use_eagle():
2030
+ assert isinstance(self.drafter, EagleProposer)
2031
+ # validate all draft model layers belong to the same kv cache
2032
+ # group
2033
+ self.drafter.validate_same_kv_cache_group(kv_cache_config)
2034
+
2035
+ bind_kv_cache(
2036
+ kv_caches,
2037
+ self.vllm_config.compilation_config.static_forward_context,
2038
+ self.kv_caches)
2039
+
2040
+ if has_kv_transfer_group():
2041
+ get_kv_transfer_group().register_kv_caches(kv_caches)
2042
+
2043
+ def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
2044
+ """
2045
+ Generates the KVCacheSpec by parsing the kv cache format from each
2046
+ Attention module in the static forward context.
2047
+ Returns:
2048
+ KVCacheSpec: A dictionary mapping layer names to their KV cache
2049
+ format. Layers that do not need KV cache are not included.
2050
+ """
2051
+
2052
+ layers = get_layers_from_vllm_config(self.vllm_config, Attention)
2053
+ block_size = self.vllm_config.cache_config.block_size
2054
+ use_mla = self.vllm_config.model_config.use_mla
2055
+ kv_cache_spec: dict[str, KVCacheSpec] = {}
2056
+ for layer_name, attn_module in layers.items():
2057
+ # TODO: Support other attention modules, e.g., cross-attention
2058
+ if attn_module.attn_type == AttentionType.DECODER:
2059
+ if attn_module.sliding_window is not None:
2060
+ kv_cache_spec[layer_name] = SlidingWindowSpec(
2061
+ block_size=block_size,
2062
+ num_kv_heads=attn_module.num_kv_heads,
2063
+ head_size=attn_module.head_size,
2064
+ dtype=self.kv_cache_dtype,
2065
+ sliding_window=attn_module.sliding_window,
2066
+ use_mla=use_mla)
2067
+ else:
2068
+ kv_cache_spec[layer_name] = FullAttentionSpec(
2069
+ block_size=block_size,
2070
+ num_kv_heads=attn_module.num_kv_heads,
2071
+ head_size=attn_module.head_size,
2072
+ dtype=self.kv_cache_dtype,
2073
+ use_mla=use_mla)
2074
+ elif attn_module.attn_type in (AttentionType.ENCODER,
2075
+ AttentionType.ENCODER_ONLY):
2076
+ # encoder-only attention does not need KV cache.
2077
+ continue
2078
+ elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
2079
+ raise NotImplementedError
2080
+ else:
2081
+ raise ValueError(
2082
+ f"Unknown attention type: {attn_module.attn_type}")
2083
+
2084
+ return kv_cache_spec