vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
vllm/sequence.py ADDED
@@ -0,0 +1,1567 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ """Sequence and its related classes."""
3
+ import copy
4
+ import enum
5
+ from abc import ABC, abstractmethod
6
+ from array import array
7
+ from collections import defaultdict
8
+ from collections.abc import Mapping
9
+ from collections.abc import Sequence as GenericSequence
10
+ from dataclasses import dataclass, field
11
+ from functools import reduce
12
+ from typing import Any, Callable, Optional, Union
13
+
14
+ import msgspec
15
+ import torch
16
+
17
+ from vllm.inputs import SingletonInputs
18
+ from vllm.lora.request import LoRARequest
19
+ from vllm.multimodal import MultiModalKwargs, MultiModalPlaceholderDict
20
+ from vllm.pooling_params import PoolingParams
21
+ from vllm.prompt_adapter.request import PromptAdapterRequest
22
+ from vllm.sampling_params import RequestOutputKind, SamplingParams
23
+
24
+ VLLM_TOKEN_ID_ARRAY_TYPE = "l"
25
+
26
+ VLLM_INVALID_TOKEN_ID = -1
27
+
28
+
29
+ def array_full(token_id: int, count: int):
30
+ """[`array`][] equivalent of [numpy.full][]."""
31
+ return array(VLLM_TOKEN_ID_ARRAY_TYPE, [token_id]) * count
32
+
33
+
34
+ # We use dataclass for now because it is used for
35
+ # openai server output, and msgspec is not serializable.
36
+ # TODO(sang): Fix it.
37
+ @dataclass
38
+ class Logprob:
39
+ """Infos for supporting OpenAI compatible logprobs and token ranks.
40
+
41
+ Attributes:
42
+ logprob: The logprob of chosen token
43
+ rank: The vocab rank of chosen token (>=1)
44
+ decoded_token: The decoded chosen token index
45
+ """
46
+ logprob: float
47
+ rank: Optional[int] = None
48
+ decoded_token: Optional[str] = None
49
+
50
+
51
+ # {token_id -> logprob} per each sequence group. None if the corresponding
52
+ # sequence group doesn't require prompt logprob.
53
+ PromptLogprobs = list[Optional[dict[int, Logprob]]]
54
+ # {token_id -> logprob} for each sequence group.
55
+ SampleLogprobs = list[dict[int, Logprob]]
56
+
57
+
58
+ class SequenceStatus(enum.IntEnum):
59
+ """Status of a sequence."""
60
+ WAITING = 0
61
+ RUNNING = 1
62
+ SWAPPED = 2
63
+ # Note: anything after SWAPPED (2) will be considered
64
+ # as a finished status.
65
+ FINISHED_STOPPED = 3
66
+ FINISHED_LENGTH_CAPPED = 4
67
+ FINISHED_ABORTED = 5
68
+ FINISHED_IGNORED = 6
69
+
70
+ @staticmethod
71
+ def is_finished(status: "SequenceStatus") -> bool:
72
+ return status > SequenceStatus.SWAPPED
73
+
74
+ @staticmethod
75
+ def get_finished_reason(status: "SequenceStatus") -> Union[str, None]:
76
+ if status == SequenceStatus.FINISHED_STOPPED:
77
+ finish_reason = "stop"
78
+ elif status == SequenceStatus.FINISHED_LENGTH_CAPPED:
79
+ finish_reason = "length"
80
+ elif status == SequenceStatus.FINISHED_ABORTED:
81
+ finish_reason = "abort"
82
+ elif status == SequenceStatus.FINISHED_IGNORED:
83
+ # The ignored sequences are the sequences whose prompt lengths
84
+ # are longer than the model's length cap. Therefore, the stop
85
+ # reason should also be "length" as in OpenAI API.
86
+ finish_reason = "length"
87
+ else:
88
+ finish_reason = None
89
+ return finish_reason
90
+
91
+
92
+ class SequenceStage(enum.Enum):
93
+ PREFILL = enum.auto()
94
+ DECODE = enum.auto()
95
+
96
+
97
+ @dataclass
98
+ class RequestMetrics:
99
+ """Metrics associated with a request.
100
+
101
+ Attributes:
102
+ arrival_time: The time when the request arrived.
103
+ first_scheduled_time: The time when the request was first scheduled.
104
+ first_token_time: The time when the first token was generated.
105
+ time_in_queue: The time the request spent in the queue.
106
+ finished_time: The time when the request was finished.
107
+ scheduler_time: The time spent in the scheduler when this request was
108
+ being considered by the scheduler.
109
+ model_forward_time: The time spent in the model forward pass when this
110
+ request was in the batch.
111
+ model_execute_time: The time spent in the model execute function. This
112
+ will include model forward, block/sync across
113
+ workers, cpu-gpu sync time and sampling time.
114
+ spec_token_acceptance_counts: number of accepted speculative tokens at
115
+ each position; the first token is from
116
+ the target model and is always accepted;
117
+ e.g., when it's [10, 8, 4, 2] for a req,
118
+ it means there were 10 forward passes in
119
+ total, and there were 8, 4, 2 accepted
120
+ tokens at 1st, 2nd, 3rd speculation step.
121
+ """
122
+ arrival_time: float
123
+ last_token_time: float
124
+ first_scheduled_time: Optional[float]
125
+ first_token_time: Optional[float]
126
+ time_in_queue: Optional[float]
127
+ finished_time: Optional[float] = None
128
+ scheduler_time: Optional[float] = None
129
+ model_forward_time: Optional[float] = None
130
+ model_execute_time: Optional[float] = None
131
+ spec_token_acceptance_counts: Optional[list[int]] = None
132
+
133
+
134
+ class SequenceDataDelta(
135
+ msgspec.Struct,
136
+ array_like=True, # type: ignore[call-arg]
137
+ omit_defaults=True): # type: ignore[call-arg]
138
+ """Delta SequenceData to send to workers per step."""
139
+ # A new token to be appended to existing SequenceData.
140
+ new_output_token_ids: list[int]
141
+ # Overwriting existing `cumulative_logprob`
142
+ new_cumulative_logprob: float
143
+ # Overwriting existing `num_computed_tokens`.
144
+ new_num_computed_tokens: int
145
+ # Overwriting existing `stage`.
146
+ new_stage: SequenceStage
147
+
148
+
149
+ class SequenceData(msgspec.Struct,
150
+ omit_defaults=True): # type: ignore[call-arg]
151
+ """Data associated with a sequence.
152
+
153
+ Args:
154
+ prompt_token_ids: The token IDs of the prompt.
155
+ output_token_ids: The token IDs of the output. Set to an empty list if
156
+ None.
157
+
158
+ Attributes:
159
+ prompt_token_ids: The token IDs of the prompt.
160
+ output_token_ids: The token IDs of the output.
161
+ cumulative_logprob: The cumulative log probability of the output.
162
+ """
163
+ # NOTE: we cannot use Union[list, array] because msgspec cannot support
164
+ # union of 2 list types.
165
+ _prompt_token_ids: array
166
+ _output_token_ids: array = msgspec.field(
167
+ default_factory=lambda: array(VLLM_TOKEN_ID_ARRAY_TYPE, []))
168
+
169
+ _prompt_embeds: Optional[torch.Tensor] = None
170
+ _output_embeds: Optional[torch.Tensor] = None
171
+
172
+ ### The below fields should not be passed as an argument ###
173
+ _cumulative_logprob: float = 0.0
174
+ _prompt_token_ids_tuple: tuple[int,
175
+ ...] = msgspec.field(default_factory=tuple)
176
+ # The number of tokens that are computed (that run against the model).
177
+ _num_computed_tokens: int = 0
178
+ # The number of tokens with prefix cache hit.
179
+ _num_cached_tokens: int = 0
180
+ _stage: SequenceStage = SequenceStage.PREFILL
181
+ _cached_all_token_ids: list[int] = msgspec.field(default_factory=list)
182
+ _cached_all_token_embeds: Optional[torch.Tensor] = None
183
+
184
+ # It is used to get delta input. It is reset when `get_delta_and_reset`
185
+ # is called.
186
+ _new_appended_tokens: list[int] = msgspec.field(default_factory=list)
187
+
188
+ # It is used to compute mrope_position_ids.
189
+ _mrope_position_delta: Optional[int] = None
190
+
191
+ @staticmethod
192
+ def from_prompt_token_counts(
193
+ *token_counts: tuple[int, int]) -> "SequenceData":
194
+ """
195
+ Construct a [`SequenceData`][vllm.sequence.SequenceData] instance
196
+ by concatenating prompt token sequences.
197
+
198
+ Each tuple represents one token sequence, expressed in the form
199
+ `(token_id, count)`.
200
+ """
201
+ if len(token_counts) == 0:
202
+ return SequenceData.from_seqs([])
203
+
204
+ prompt_token_ids_arr = reduce(
205
+ array.__iadd__,
206
+ (array_full(token_id, count) for token_id, count in token_counts),
207
+ )
208
+
209
+ return SequenceData(prompt_token_ids_arr)
210
+
211
+ @staticmethod
212
+ def from_seqs(
213
+ prompt_token_ids: GenericSequence[int],
214
+ output_token_ids: Optional[GenericSequence[int]] = None,
215
+ *,
216
+ prompt_embeds: Optional[torch.Tensor] = None,
217
+ ) -> "SequenceData":
218
+ """
219
+ Construct a [`SequenceData`][vllm.sequence.SequenceData] instance
220
+ from prompt and output token sequences.
221
+ """
222
+ prompt_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
223
+ prompt_token_ids)
224
+
225
+ if output_token_ids is None:
226
+ return SequenceData(prompt_token_ids_arr,
227
+ _prompt_embeds=prompt_embeds)
228
+
229
+ output_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
230
+ output_token_ids)
231
+
232
+ return SequenceData(prompt_token_ids_arr,
233
+ _output_token_ids=output_token_ids_arr,
234
+ _prompt_embeds=prompt_embeds)
235
+
236
+ def __post_init__(self) -> None:
237
+ assert self._prompt_token_ids.typecode == "l"
238
+ assert self._output_token_ids.typecode == "l"
239
+ self._prompt_token_ids_tuple: tuple[int, ...] = tuple(
240
+ self._prompt_token_ids)
241
+ self._update_cached_all_tokens()
242
+ if self._prompt_embeds is not None:
243
+ self._update_cached_all_token_embeds()
244
+
245
+ def _update_cached_all_tokens(self):
246
+ assert isinstance(self._prompt_token_ids, array)
247
+ assert isinstance(self._output_token_ids, array)
248
+ self._cached_all_token_ids: list[int] = list(self._prompt_token_ids +
249
+ self._output_token_ids)
250
+
251
+ def _update_cached_all_token_embeds(self):
252
+ assert isinstance(self._prompt_embeds, torch.Tensor)
253
+ self._cached_all_token_embeds: torch.Tensor = self._prompt_embeds
254
+ if self._output_embeds is not None:
255
+ self._cached_all_token_embeds = torch.cat(
256
+ (self._cached_all_token_embeds, self._output_embeds), dim=0)
257
+
258
+ @property
259
+ def cumulative_logprob(self) -> float:
260
+ return self._cumulative_logprob
261
+
262
+ @property
263
+ def prompt_token_ids(self) -> tuple[int, ...]:
264
+ return self._prompt_token_ids_tuple
265
+
266
+ @prompt_token_ids.setter
267
+ def prompt_token_ids(self, new_prompt_token_ids) -> None:
268
+ raise NotImplementedError
269
+
270
+ @property
271
+ def prompt_token_ids_array(self) -> array:
272
+ """Return the prompt token ids in array type.
273
+
274
+ Note that the array is in "I" type, and it is not compatible
275
+ with torch.long (2 bytes vs 4 bytes). So beware of the usage.
276
+ """
277
+ return self._prompt_token_ids
278
+
279
+ @property
280
+ def output_token_ids(self) -> tuple[int, ...]:
281
+ return tuple(self._output_token_ids)
282
+
283
+ @output_token_ids.setter
284
+ def output_token_ids(self,
285
+ new_output_token_ids: GenericSequence[int]) -> None:
286
+ self._output_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE,
287
+ new_output_token_ids)
288
+ self._update_cached_all_tokens()
289
+
290
+ @property
291
+ def output_embeds(self) -> Optional[torch.Tensor]:
292
+ return self._output_embeds
293
+
294
+ @output_embeds.setter
295
+ def output_embeds(self, new_output_token_embeds: torch.Tensor) -> None:
296
+ self._output_token_embeds = new_output_token_embeds
297
+ self._update_cached_all_token_embeds()
298
+
299
+ @property
300
+ def output_token_ids_array(self) -> array:
301
+ """Return the prompt token ids in array type.
302
+
303
+ Note that the array is in "I" type, and it is not compatible
304
+ with torch.long (2 bytes vs 4 bytes). So beware of the usage.
305
+ """
306
+ assert isinstance(self._output_token_ids, array)
307
+ return self._output_token_ids
308
+
309
+ @property
310
+ def prompt_embeds(self) -> Optional[torch.Tensor]:
311
+ return self._prompt_embeds
312
+
313
+ @prompt_embeds.setter
314
+ def prompt_embeds(self, prompt_embeds: torch.Tensor) -> None:
315
+ self._prompt_embeds = prompt_embeds
316
+ self._update_cached_all_token_embeds()
317
+
318
+ @property
319
+ def mrope_position_delta(self) -> Optional[int]:
320
+ return self._mrope_position_delta
321
+
322
+ @mrope_position_delta.setter
323
+ def mrope_position_delta(self, new_mrope_position_delta):
324
+ self._mrope_position_delta = new_mrope_position_delta
325
+
326
+ def append_token_id(self,
327
+ token_id: int,
328
+ logprob: float,
329
+ token_embed: Optional[torch.Tensor] = None) -> None:
330
+ self._output_token_ids.append(token_id)
331
+ self._new_appended_tokens.append(token_id)
332
+ self._cached_all_token_ids.append(token_id)
333
+ self._cumulative_logprob += logprob
334
+ if token_embed is not None:
335
+ # Do not pass in with batch or sequence dimensions
336
+ assert token_embed.ndim == 1
337
+ token_embed = token_embed.detach().cpu().unsqueeze(0)
338
+ if self._output_embeds is None:
339
+ self._output_embeds = token_embed
340
+ else:
341
+ self._output_embeds = torch.cat(
342
+ (self._output_embeds, token_embed), dim=0)
343
+ assert self._cached_all_token_embeds is not None
344
+ self._cached_all_token_embeds = torch.cat(
345
+ (self._cached_all_token_embeds,
346
+ token_embed.to(device=self._cached_all_token_embeds.device)),
347
+ dim=0)
348
+
349
+ def get_len(self) -> int:
350
+ return len(self._output_token_ids) + len(self._prompt_token_ids)
351
+
352
+ def get_prompt_len(self) -> int:
353
+ return len(self._prompt_token_ids)
354
+
355
+ def get_output_len(self) -> int:
356
+ return len(self._output_token_ids)
357
+
358
+ def get_token_ids(self) -> list[int]:
359
+ return self._cached_all_token_ids
360
+
361
+ def get_token_embeddings(self) -> Optional[torch.Tensor]:
362
+ return self._cached_all_token_embeds
363
+
364
+ def get_prefix_token_ids(
365
+ self, num_tokens: int
366
+ ) -> tuple[tuple[int, ...], Optional[tuple[int, ...]]]:
367
+ """Get prefix tokens, and make the return value hashable"""
368
+ prompt_length = self.get_prompt_len()
369
+ if num_tokens > prompt_length:
370
+ return (self._prompt_token_ids_tuple,
371
+ tuple(self._output_token_ids[:num_tokens - prompt_length]))
372
+ else:
373
+ return (self._prompt_token_ids_tuple[:num_tokens], None)
374
+
375
+ def get_num_computed_tokens(self) -> int:
376
+ """Return the number of prefill tokens that are already computed."""
377
+ return self._num_computed_tokens
378
+
379
+ def update_num_computed_tokens(self, num_new_computed_tokens: int):
380
+ """Update number of tokens computed so far."""
381
+ self._num_computed_tokens += num_new_computed_tokens
382
+ assert self._num_computed_tokens <= self.get_len(), (
383
+ self._num_computed_tokens, self.get_len())
384
+ # If all tokens are computed, it means it is in decoding phase.
385
+ if self.get_num_uncomputed_tokens() == 0:
386
+ self._stage = SequenceStage.DECODE
387
+
388
+ def get_num_cached_tokens(self) -> int:
389
+ """Return the number of tokens with prefix cache hit."""
390
+ return self._num_cached_tokens
391
+
392
+ def update_num_cached_tokens(self, num_cached_tokens: int):
393
+ """Update the number of tokens with prefix cache hit."""
394
+ self._num_cached_tokens = num_cached_tokens
395
+
396
+ def reset_state_for_recompute(self) -> None:
397
+ """Reset the number of computed tokens from this sequence. It is
398
+ supposed to be called when a sequence needs to be started from
399
+ the beginning again (e.g., sequence is preempted).
400
+ """
401
+ self._num_computed_tokens = 0
402
+ self._stage = SequenceStage.PREFILL
403
+ self._new_appended_tokens = []
404
+
405
+ def get_num_uncomputed_tokens(self) -> int:
406
+ """Return the number of prefill tokens that are not computed."""
407
+ # we use `get_len()` which includes prompt_len + output_len instead
408
+ # of prompt_len here. This is because during recompute we need to
409
+ # prefill for both prompt and output.
410
+ return self.get_len() - self.get_num_computed_tokens()
411
+
412
+ def get_last_token_id(self) -> int:
413
+ if not self._output_token_ids:
414
+ return self._prompt_token_ids[-1]
415
+ return self._output_token_ids[-1]
416
+
417
+ def get_prompt_token_ids(self) -> tuple[int, ...]:
418
+ return self.prompt_token_ids
419
+
420
+ def get_output_token_ids(self) -> tuple[int, ...]:
421
+ return self.output_token_ids
422
+
423
+ def get_delta_and_reset(self) -> SequenceDataDelta:
424
+ delta = SequenceDataDelta(self._new_appended_tokens,
425
+ self._cumulative_logprob,
426
+ self.get_num_computed_tokens(), self.stage)
427
+ # Reset delta state.
428
+ self._new_appended_tokens = []
429
+ return delta
430
+
431
+ def apply_delta(self, delta: SequenceDataDelta):
432
+ self._num_computed_tokens = delta.new_num_computed_tokens
433
+ self._cumulative_logprob = delta.new_cumulative_logprob
434
+ self._stage = delta.new_stage
435
+ self._output_token_ids.extend(delta.new_output_token_ids)
436
+ self._cached_all_token_ids.extend(delta.new_output_token_ids)
437
+
438
+ @property
439
+ def stage(self) -> SequenceStage:
440
+ return self._stage
441
+
442
+ def __repr__(self) -> str:
443
+ return (f"SequenceData("
444
+ f"prompt_token_ids={self._prompt_token_ids}, "
445
+ f"prompt_embeds.shape="
446
+ f"{getattr(self._prompt_embeds, 'shape', None)}, "
447
+ f"output_token_ids={self.output_token_ids}, "
448
+ f"cumulative_logprob={self.cumulative_logprob}, "
449
+ f"get_num_computed_tokens={self.get_num_computed_tokens()})")
450
+
451
+
452
+ class Sequence:
453
+ """Stores the data, status, and block information of a sequence.
454
+
455
+ The sequence is constructed from the
456
+ [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] (for decoder-only)
457
+ or [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
458
+ (for encoder-decoder) instance passed in through the `inputs`
459
+ constructor argument.
460
+
461
+ Args:
462
+ seq_id: The ID of the sequence.
463
+ inputs: The inputs of the sequence.
464
+ block_size: The block size of the sequence. Should be the same as the
465
+ block size used by the block manager and cache engine.
466
+ eos_token_id: The end-of-sequence (EOS) token id recognized by this LLM.
467
+ lora_request: LoRA request.
468
+ prompt_adapter_request: Prompt Adapter request.
469
+ """
470
+
471
+ def __init__(
472
+ self,
473
+ seq_id: int,
474
+ inputs: SingletonInputs,
475
+ block_size: int,
476
+ eos_token_id: Optional[int] = None,
477
+ lora_request: Optional[LoRARequest] = None,
478
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
479
+ ) -> None:
480
+ self.seq_id = seq_id
481
+ self.inputs = inputs
482
+ self.block_size = block_size
483
+ self.eos_token_id = eos_token_id
484
+ self.lora_request = lora_request
485
+ self.prompt_adapter_request = prompt_adapter_request
486
+
487
+ self.data = SequenceData.from_seqs(
488
+ self.prompt_token_ids,
489
+ prompt_embeds=self.inputs["prompt_embeds"]
490
+ if self.inputs["type"] == "embeds" else None)
491
+ self.output_logprobs: SampleLogprobs = []
492
+ self.output_text = ""
493
+
494
+ self.status = SequenceStatus.WAITING
495
+ self.stop_reason: Union[int, str, None] = None
496
+
497
+ # These are used to keep track of delta outputs
498
+ self._last_output_token_ids_offset: int = 0
499
+ self._last_output_text_offset: int = 0
500
+
501
+ # Used for incremental detokenization
502
+ self.prefix_offset = 0
503
+ self.read_offset = 0
504
+ # Input + output tokens
505
+ self.tokens: Optional[list[str]] = None
506
+
507
+ @property
508
+ def n_blocks(self) -> int:
509
+ return (self.get_len() + self.block_size - 1) // self.block_size
510
+
511
+ @property
512
+ def prompt(self) -> Optional[str]:
513
+ if self.inputs["type"] == "embeds":
514
+ return None
515
+ return self.inputs.get("prompt")
516
+
517
+ @property
518
+ def prompt_token_ids(self) -> list[int]:
519
+ if self.inputs["type"] == "embeds":
520
+ return [0] * len(self.inputs["prompt_embeds"])
521
+ return self.inputs["prompt_token_ids"]
522
+
523
+ @property
524
+ def token_type_ids(self) -> list[int]:
525
+ if self.inputs["type"] == "embeds":
526
+ return []
527
+ return self.inputs.get("token_type_ids", [])
528
+
529
+ @property
530
+ def multi_modal_data(self) -> MultiModalKwargs:
531
+ if self.inputs["type"] == "multimodal":
532
+ return self.inputs["mm_kwargs"]
533
+
534
+ return MultiModalKwargs({})
535
+
536
+ @property
537
+ def multi_modal_placeholders(self) -> MultiModalPlaceholderDict:
538
+ if self.inputs["type"] == "multimodal":
539
+ return self.inputs["mm_placeholders"]
540
+
541
+ return {}
542
+
543
+ @property
544
+ def lora_int_id(self) -> int:
545
+ return self.lora_request.lora_int_id if self.lora_request else 0
546
+
547
+ @property
548
+ def prompt_adapter_id(self) -> int:
549
+ return self.prompt_adapter_request.prompt_adapter_id \
550
+ if self.prompt_adapter_request else 0
551
+
552
+ def get_output_text_to_return(self, buffer_length: int,
553
+ delta: bool) -> str:
554
+ """If delta is True, only new text since the last call to
555
+ this method is returned"""
556
+
557
+ # We return the full output text if the sequence is finished.
558
+ truncate = buffer_length and not self.is_finished()
559
+ if not delta:
560
+ return self.output_text[:-buffer_length] if truncate else (
561
+ self.output_text)
562
+ length = len(self.output_text)
563
+ if truncate:
564
+ length -= buffer_length
565
+ last_offset = self._last_output_text_offset
566
+ if last_offset < length:
567
+ self._last_output_text_offset = length
568
+ return self.output_text[last_offset:length]
569
+ return ""
570
+
571
+ def get_output_token_ids_to_return(
572
+ self, delta: bool) -> Union[GenericSequence[int], int]:
573
+ """If delta is True, only new tokens since the last call to
574
+ this method are returned"""
575
+ if not delta:
576
+ return self.get_output_token_ids()
577
+
578
+ output_len = self.get_output_len()
579
+
580
+ # Get the number of new tokens
581
+ num_new_tokens = output_len - self._last_output_token_ids_offset
582
+ self._last_output_token_ids_offset = output_len
583
+
584
+ # Return new tokens
585
+ if num_new_tokens == 1:
586
+ # Optimization for single decode token case
587
+ # (which is what we have most of the time)
588
+ return self.data._cached_all_token_ids[-1]
589
+
590
+ if num_new_tokens == 0:
591
+ return []
592
+
593
+ return self.data._cached_all_token_ids[-num_new_tokens:]
594
+
595
+ def hash_of_block(self, logical_idx: int) -> int:
596
+ # TODO This can produce incorrect hash when block size > prompt size
597
+
598
+ # Compute the number of tokens in the sequence
599
+ # TODO: The current hashing function is O(L^2). We should optimize
600
+ # this in the future.
601
+ num_tokens = self.num_hashed_tokens_of_block(logical_idx)
602
+ hashed_tokens = self.data.get_prefix_token_ids(num_tokens)
603
+ return hash((hashed_tokens, self.lora_int_id))
604
+
605
+ def extra_hash(self) -> Optional[int]:
606
+ """
607
+ This function computes an extra hash for a sequence, specifically
608
+ designed for prefix caching mode. The final sequence hash is determined
609
+ by applying token_ids from the sequence's blocks.
610
+ """
611
+ if self.prompt_adapter_id == 0 and self.lora_int_id == 0:
612
+ return None
613
+
614
+ # NOTE: If there are additional factors influencing the block aside from
615
+ # token_ids, include them as input parameters to the hash.
616
+ return hash((self.prompt_adapter_id, self.lora_int_id))
617
+
618
+ def num_hashed_tokens_of_block(self, logical_idx: int):
619
+ return logical_idx * self.block_size + self.block_size
620
+
621
+ def reset_state_for_recompute(self):
622
+ """Reset the sequence states for recomputation."""
623
+ self.data.reset_state_for_recompute()
624
+
625
+ def append_token_id(self,
626
+ token_id: int,
627
+ logprobs: dict[int, Logprob],
628
+ token_embed: Optional[torch.Tensor] = None) -> None:
629
+ assert token_id in logprobs
630
+ self.output_logprobs.append(logprobs)
631
+ self.data.append_token_id(token_id, logprobs[token_id].logprob,
632
+ token_embed)
633
+
634
+ def get_len(self) -> int:
635
+ return self.data.get_len()
636
+
637
+ def get_prompt_len(self) -> int:
638
+ return self.data.get_prompt_len()
639
+
640
+ def get_output_len(self) -> int:
641
+ return self.data.get_output_len()
642
+
643
+ def get_token_ids(self) -> list[int]:
644
+ return self.data.get_token_ids()
645
+
646
+ def get_prompt_token_ids(self) -> tuple[int, ...]:
647
+ return self.data.get_prompt_token_ids()
648
+
649
+ def get_last_token_id(self) -> int:
650
+ return self.data.get_last_token_id()
651
+
652
+ def get_output_token_ids(self) -> tuple[int, ...]:
653
+ return self.data.get_output_token_ids()
654
+
655
+ def get_cumulative_logprob(self) -> float:
656
+ return self.data.cumulative_logprob
657
+
658
+ def is_finished(self) -> bool:
659
+ return SequenceStatus.is_finished(self.status)
660
+
661
+ def fork(self, new_seq_id: int) -> "Sequence":
662
+ new_seq = copy.deepcopy(self)
663
+ new_seq.seq_id = new_seq_id
664
+ return new_seq
665
+
666
+ def get_num_new_tokens(self) -> int:
667
+ """Get the number of new tokens to be computed.
668
+
669
+ Returns:
670
+ The new number of tokens to be computed. I.e., 1 for decode, or
671
+ the remaining prompt size for prefill.
672
+ """
673
+ if self.data.stage == SequenceStage.DECODE:
674
+ return 1
675
+ return self.data.get_num_uncomputed_tokens()
676
+
677
+ def get_num_computed_tokens(self) -> int:
678
+ return self.data.get_num_computed_tokens()
679
+
680
+ def is_prefill(self) -> bool:
681
+ return self.data.stage == SequenceStage.PREFILL
682
+
683
+ def __repr__(self) -> str:
684
+ return (f"Sequence(seq_id={self.seq_id}, "
685
+ f"status={self.status.name}, "
686
+ f"num_blocks={self.n_blocks})")
687
+
688
+
689
+ class SequenceGroupState(msgspec.Struct,
690
+ omit_defaults=True): # type: ignore[call-arg]
691
+ """Mutable state tied to a specific sequence group"""
692
+
693
+ # for multi-step decoding
694
+ num_steps: int = 1
695
+ current_step: int = 0
696
+
697
+ @property
698
+ def remaining_steps(self) -> int:
699
+ return self.num_steps - self.current_step
700
+
701
+
702
+ class SequenceGroup:
703
+ """A group of sequences that are generated from the same prompt.
704
+
705
+ Args:
706
+ request_id: The ID of the request.
707
+ seqs: The list of sequences.
708
+ sampling_params: The sampling parameters used to generate the outputs.
709
+ arrival_time: The arrival time of the request.
710
+ lora_request: LoRA request.
711
+ pooling_params: The parameters used to generate the pooler
712
+ for a pooling model.
713
+ pooled_data: The extracted hidden states from a pooling model.
714
+ encoder_seq: Optional, the single encoder sequence. Should be None
715
+ unless you are working with an encoder/decoder model.
716
+ trace_headers: OpenTelemetry trace headers.
717
+ prompt_adapter_request: Prompt Adapter request.
718
+ priority: User-defined priority of the request.
719
+ draft_size: The number of speculative tokens plus one from the target
720
+ model; equal to max number of tokens a step can generate
721
+ for single-draft speculative decoding but larger than
722
+ that for multi-draft SD (currently not supported).
723
+ """
724
+
725
+ def __init__(self,
726
+ request_id: str,
727
+ seqs: list[Sequence],
728
+ arrival_time: float,
729
+ sampling_params: Optional[SamplingParams] = None,
730
+ lora_request: Optional[LoRARequest] = None,
731
+ pooling_params: Optional[PoolingParams] = None,
732
+ pooled_data: Optional[torch.Tensor] = None,
733
+ encoder_seq: Optional[Sequence] = None,
734
+ trace_headers: Optional[Mapping[str, str]] = None,
735
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
736
+ priority: int = 0,
737
+ draft_size: int = 1) -> None:
738
+ self.request_id = request_id
739
+ self.seqs = seqs
740
+ self.first_seq = seqs[0]
741
+ self.arrival_time = arrival_time
742
+ self.is_single_seq = len(seqs) == 1
743
+ self.seqs_dict = {seq.seq_id: seq for seq in seqs}
744
+
745
+ self.sampling_params = sampling_params
746
+ self.metrics = RequestMetrics(arrival_time=arrival_time,
747
+ last_token_time=arrival_time,
748
+ first_scheduled_time=None,
749
+ first_token_time=None,
750
+ time_in_queue=None,
751
+ spec_token_acceptance_counts=[0] *
752
+ draft_size)
753
+ self.last_token_latency = 0.0
754
+ self.lora_request = lora_request
755
+ self.prompt_logprobs: Optional[PromptLogprobs] = None
756
+ self.state = SequenceGroupState()
757
+ self.pooling_params = pooling_params
758
+ self.pooled_data = pooled_data
759
+ self.prompt_adapter_request = prompt_adapter_request
760
+ self.encoder_seq = encoder_seq
761
+ self.trace_headers = trace_headers
762
+ self.priority = priority
763
+
764
+ self.cached_request_output = None
765
+
766
+ @property
767
+ def prompt(self) -> Optional[str]:
768
+ return self.first_seq.prompt
769
+
770
+ @property
771
+ def prompt_token_ids(self) -> list[int]:
772
+ return self.first_seq.prompt_token_ids
773
+
774
+ @property
775
+ def encoder_prompt(self) -> Optional[str]:
776
+ # There are either 0 or 1 encoder sequences
777
+ # If one is present, its prompt is distinct
778
+ # from the decoder's.
779
+ return (self.encoder_seq.prompt
780
+ if self.encoder_seq is not None else None)
781
+
782
+ @property
783
+ def encoder_prompt_token_ids(self) -> Optional[list[int]]:
784
+ # There are either 0 or 1 encoder sequences
785
+ # If one is present, its prompt token ids are
786
+ # distinct from the decoder's.
787
+ return (self.encoder_seq.prompt_token_ids
788
+ if self.encoder_seq is not None else None)
789
+
790
+ @property
791
+ def token_type_ids(self) -> Optional[list[int]]:
792
+ return self.first_seq.token_type_ids
793
+
794
+ @property
795
+ def multi_modal_data(self) -> MultiModalKwargs:
796
+ if self.first_seq.multi_modal_data:
797
+ return self.first_seq.multi_modal_data
798
+ elif self.encoder_seq is not None:
799
+ return self.encoder_seq.multi_modal_data
800
+ return MultiModalKwargs({})
801
+
802
+ @property
803
+ def multi_modal_placeholders(self) -> MultiModalPlaceholderDict:
804
+ if self.first_seq.multi_modal_data:
805
+ return self.first_seq.multi_modal_placeholders
806
+ elif self.encoder_seq is not None:
807
+ return self.encoder_seq.multi_modal_placeholders
808
+ return {}
809
+
810
+ @property
811
+ def lora_int_id(self) -> int:
812
+ return self.lora_request.lora_int_id if self.lora_request else 0
813
+
814
+ @property
815
+ def prompt_adapter_id(self) -> int:
816
+ return self.prompt_adapter_request.prompt_adapter_id \
817
+ if self.prompt_adapter_request else 0
818
+
819
+ @property
820
+ def prompt_adapter_num_virtual_tokens(self) -> int:
821
+ return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens\
822
+ if self.prompt_adapter_request else 0
823
+
824
+ def init_multi_step(self, num_steps: int) -> None:
825
+ self.state.num_steps = num_steps
826
+ self.state.current_step = 0
827
+
828
+ def init_multi_step_from_lookahead_slots(self, num_lookahead_slots: int,
829
+ num_scheduler_steps: int,
830
+ is_multi_step: bool,
831
+ enable_chunking: bool) -> None:
832
+
833
+ if not is_multi_step:
834
+ self.init_multi_step(num_steps=num_scheduler_steps)
835
+ return
836
+
837
+ # Multi-Step case
838
+ is_prefill = self.is_prefill()
839
+
840
+ # The asserts below reflect the expectations of the current system.
841
+ if is_prefill and enable_chunking:
842
+ assert num_lookahead_slots == num_scheduler_steps
843
+ self.init_multi_step(num_steps=num_lookahead_slots)
844
+ else:
845
+ is_decode: bool = not is_prefill
846
+ # If it is a prefill, num_lookahead_slots must be 0
847
+ assert num_lookahead_slots == 0 or is_decode
848
+ # If it is a decode, num_lookahead_slots + 1 must match
849
+ # the scheduler steps.
850
+ assert num_lookahead_slots + 1 == num_scheduler_steps or is_prefill
851
+ self.init_multi_step(num_steps=num_lookahead_slots + 1)
852
+
853
+ def set_last_token_time(self, now: float) -> None:
854
+ """Sets the last token time for Request level timings."""
855
+ # If still in prefill phase, assertion fails.
856
+ assert not self.is_prefill(), (
857
+ "seq_group.set_last_token_time() should not be called "
858
+ "if the seq_group is in prefill phase.")
859
+ self.last_token_latency = now - self.metrics.last_token_time
860
+ self.metrics.last_token_time = now
861
+
862
+ def get_last_token_latency(self) -> float:
863
+ """Returns the latency of the last token."""
864
+ assert not self.is_prefill(), (
865
+ "seq_group.get_last_token_latency() should not be called "
866
+ "if the seq_group is in prefill phase.")
867
+ return self.last_token_latency
868
+
869
+ def maybe_set_first_token_time(self, time: float) -> None:
870
+ """Sets the first token time for Request level timings."""
871
+ # Note: in a case where a sequence_group is swapped and
872
+ # recomputed, the time between iterations is counted
873
+ # in TPOT, rather than recalculating TTFT (since from the )
874
+ # POV of the user, there is simply a long generation delay.
875
+ if (self.metrics.first_token_time is None
876
+ and self.first_seq.get_output_len() == 1):
877
+ self.metrics.first_token_time = time
878
+
879
+ def maybe_set_first_scheduled_time(self, time: float) -> None:
880
+ """Sets the first scheduled time and time in queue for Request
881
+ level timings."""
882
+ if self.metrics.first_scheduled_time is None:
883
+ self.metrics.first_scheduled_time = time
884
+ self.metrics.time_in_queue = time - self.metrics.arrival_time
885
+
886
+ def set_finished_time(self, time: Optional[float]) -> None:
887
+ """Sets the finished time for Request level timings."""
888
+ self.metrics.finished_time = time
889
+
890
+ def get_max_num_running_seqs(self) -> int:
891
+ """The maximum number of sequences running in parallel in the remaining
892
+ lifetime of the request."""
893
+ if self.is_single_seq:
894
+ return 0 if self.first_seq.is_finished() else 1
895
+ return self.num_seqs() - self.num_finished_seqs()
896
+
897
+ def get_seqs(
898
+ self,
899
+ status: Optional[SequenceStatus] = None,
900
+ ) -> list[Sequence]:
901
+ if status is None:
902
+ return self.seqs
903
+
904
+ if self.is_single_seq:
905
+ return self.seqs if self.first_seq.status == status else []
906
+
907
+ return [seq for seq in self.seqs if seq.status == status]
908
+
909
+ def is_encoder_decoder(self) -> bool:
910
+ return self.encoder_seq is not None
911
+
912
+ def get_encoder_seq(self) -> Optional[Sequence]:
913
+ return self.encoder_seq
914
+
915
+ def get_finished_seqs(self) -> list[Sequence]:
916
+ if self.is_single_seq:
917
+ return self.seqs if self.first_seq.is_finished() else []
918
+
919
+ return [seq for seq in self.seqs if seq.is_finished()]
920
+
921
+ def update_num_computed_tokens(self, num_new_computed_tokens: int):
922
+ """Update number of tokens computed so far."""
923
+ for seq in self.seqs:
924
+ if not seq.is_finished():
925
+ seq.data.update_num_computed_tokens(num_new_computed_tokens)
926
+
927
+ def get_num_uncomputed_tokens(self) -> int:
928
+ num_uncomputed_tokens = 0
929
+ for seq in self.seqs:
930
+ if not seq.is_finished():
931
+ num_uncomputed_tokens += seq.data.get_num_uncomputed_tokens()
932
+ return num_uncomputed_tokens
933
+
934
+ def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
935
+ # Optimization. We don't need to call get_seqs if we don't need to
936
+ # filter by states.
937
+ if status is None:
938
+ return len(self.seqs)
939
+
940
+ if self.is_single_seq:
941
+ return 1 if self.seqs[0].status == status else 0
942
+
943
+ return len(self.get_seqs(status))
944
+
945
+ def num_finished_seqs(self) -> int:
946
+ if self.is_single_seq:
947
+ return 1 if self.seqs[0].is_finished() else 0
948
+ return len(self.get_finished_seqs())
949
+
950
+ def is_finished(self) -> bool:
951
+ if self.is_single_seq:
952
+ return self.first_seq.is_finished()
953
+ return all(seq.is_finished() for seq in self.seqs)
954
+
955
+ def is_prefill(self) -> bool:
956
+ return self.first_seq.is_prefill()
957
+
958
+ def __repr__(self) -> str:
959
+ return (f"SequenceGroup(request_id={self.request_id}, "
960
+ f"sampling_params={self.sampling_params}, "
961
+ f"num_seqs={len(self.seqs)})")
962
+
963
+ def uses_prompt_embeds(self) -> bool:
964
+ """Returns True if the sequence group uses input embeds."""
965
+ return any(seq.data.prompt_embeds is not None for seq in self.seqs)
966
+
967
+
968
+ class SequenceGroupMetadataDelta(
969
+ msgspec.Struct,
970
+ tag=True, # type: ignore[call-arg]
971
+ array_like=True, # type: ignore[call-arg]
972
+ omit_defaults=True): # type: ignore[call-arg]
973
+ """Delta of SequenceGroupMetadata.
974
+
975
+ After sending the first SequenceGroupMetadata, vLLM scheduler
976
+ only sends delta to reduce the data payload size.
977
+ """
978
+ seq_data_delta: dict[int, SequenceDataDelta]
979
+ request_id: str
980
+ block_tables: dict[int, list[int]]
981
+ is_prompt: bool
982
+ do_sample: bool = True
983
+ token_chunk_size: Optional[int] = None
984
+ computed_block_nums: Optional[list[int]] = None
985
+ state: Optional[SequenceGroupState] = msgspec.field(
986
+ default_factory=lambda: SequenceGroupState())
987
+
988
+
989
+ class SequenceGroupMetadata(
990
+ msgspec.Struct,
991
+ tag=True, # type: ignore[call-arg]
992
+ array_like=True, # type: ignore[call-arg]
993
+ omit_defaults=True): # type: ignore[call-arg]
994
+ """Metadata for a sequence group. Used to create `AttentionMetadata`.
995
+
996
+ Args:
997
+ request_id: The ID of the request.
998
+ is_prompt: Whether the request is at prompt stage.
999
+ seq_data: The sequence data. (Seq id -> sequence data)
1000
+ sampling_params: The sampling parameters used to generate the outputs.
1001
+ block_tables: The block tables. (Seq id -> list of physical block
1002
+ numbers)
1003
+ do_sample: True if sampling is required. Sampling is not required when
1004
+ e.g., prefill is chunked, and the current iteration only computes
1005
+ query tokens for prefill, we don't need sampling.
1006
+ token_chunk_size: The number of tokens to be processed (per sequence).
1007
+ None if chunking is not required.
1008
+ lora_request: LoRA request.
1009
+ computed_block_nums: The block numbers that are already computed,
1010
+ used in prefix caching.
1011
+ state: Internal state tied to this sequence group.
1012
+ multi_modal_data: Multi modal data.
1013
+ mm_processor_kwargs: Multimodal input processor / mapper overrides.
1014
+ encoder_seq_data: Optional sequence data for encoder prompt
1015
+ (SequenceGroup.encoder_seq). Should be None
1016
+ unless you are working with an encoder/decoder
1017
+ model.
1018
+ cross_block_table: Optional cross-attention block table associated
1019
+ with the encoder prompt
1020
+ (SequenceGroup.encoder_seq). Should be None
1021
+ unless you are working with an encoder/decoder
1022
+ model.
1023
+ prompt_adapter_request: Prompt Adapter request.
1024
+ """
1025
+
1026
+ request_id: str
1027
+ is_prompt: bool
1028
+ seq_data: dict[int, SequenceData]
1029
+ sampling_params: Optional[SamplingParams]
1030
+ block_tables: dict[int, list[int]]
1031
+ do_sample: bool = True
1032
+ pooling_params: Optional[PoolingParams] = None
1033
+ lora_request: Optional[LoRARequest] = None
1034
+ computed_block_nums: Optional[list[int]] = None
1035
+ state: Optional[SequenceGroupState] = msgspec.field(
1036
+ default_factory=lambda: SequenceGroupState())
1037
+ token_type_ids: Optional[list[int]] = None
1038
+ multi_modal_data: Optional[MultiModalKwargs] = None
1039
+ multi_modal_placeholders: Optional[MultiModalPlaceholderDict] = None
1040
+ encoder_seq_data: Optional[SequenceData] = None
1041
+ cross_block_table: Optional[list[int]] = None
1042
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None
1043
+ token_chunk_size: Optional[int] = None
1044
+
1045
+ ### Stateful fields that are lazily defined. ###
1046
+ # The number of speculative tokens adopted in this request.
1047
+ # None means specuative decoding is not used.
1048
+ # Zero means speculative decoding is disabled for some reasons.
1049
+ # TODO: We should maintain this states out of the sequence group.
1050
+ num_speculative_tokens: Optional[int] = None
1051
+
1052
+ def __post_init__(self):
1053
+ if self.seq_data is not None and self.token_chunk_size is None:
1054
+ if self.is_prompt:
1055
+ self.token_chunk_size = next(iter(
1056
+ self.seq_data.values())).get_len()
1057
+ else:
1058
+ self.token_chunk_size = 1
1059
+
1060
+ @property
1061
+ def lora_int_id(self) -> int:
1062
+ return self.lora_request.lora_int_id if self.lora_request else 0
1063
+
1064
+ @property
1065
+ def prompt_adapter_id(self) -> int:
1066
+ return self.prompt_adapter_request.prompt_adapter_id \
1067
+ if self.prompt_adapter_request else 0
1068
+
1069
+ @property
1070
+ def prompt_adapter_num_virtual_tokens(self) -> int:
1071
+ return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens \
1072
+ if self.prompt_adapter_request else 0
1073
+
1074
+ # Multi-Step Chunked-Prefill property
1075
+ @property
1076
+ def is_single_step_prompt(self) -> bool:
1077
+ # do_sample is true, only when the token_chunk_size matches the
1078
+ # num_uncomputed_tokens of the sequence. This indicates that
1079
+ # the prompt will finish processing in a single `execute_model`
1080
+ # step.
1081
+ return self.is_prompt and self.do_sample
1082
+
1083
+ def get_first_seq_id(self) -> int:
1084
+ # This is an efficient way of fetching the seq_id when
1085
+ # we know this SequenceGroup has only one sequence.
1086
+ return next(iter(self.seq_data))
1087
+
1088
+ def apply_delta(self,
1089
+ sequence_group_metadata_delta: SequenceGroupMetadataDelta):
1090
+ for id, delta in sequence_group_metadata_delta.seq_data_delta.items():
1091
+ self.seq_data[id].apply_delta(delta)
1092
+ assert self.request_id == sequence_group_metadata_delta.request_id
1093
+ self.block_tables = sequence_group_metadata_delta.block_tables
1094
+ self.token_chunk_size = sequence_group_metadata_delta.token_chunk_size
1095
+ self.do_sample = sequence_group_metadata_delta.do_sample
1096
+ self.is_prompt = sequence_group_metadata_delta.is_prompt
1097
+
1098
+ def finish_step(self) -> None:
1099
+ assert self.state is not None
1100
+ assert self.state.current_step < self.state.num_steps, \
1101
+ f"current step {self.state.current_step}, num_steps {self.state.num_steps}" # noqa
1102
+ self.state.current_step += 1
1103
+
1104
+
1105
+ class SequenceOutput(
1106
+ msgspec.Struct,
1107
+ omit_defaults=True, # type: ignore[call-arg]
1108
+ array_like=True): # type: ignore[call-arg]
1109
+ """The model output associated with a sequence.
1110
+
1111
+ Args:
1112
+ parent_seq_id: The ID of the parent sequence (for forking in beam
1113
+ search).
1114
+ output_token: The output token ID.
1115
+ logprobs: The logprobs of the output token.
1116
+ (Token id -> logP(x_i+1 | x_0, ..., x_i))
1117
+ """
1118
+ parent_seq_id: int
1119
+ output_token: int
1120
+ logprobs: dict[int, Logprob]
1121
+ output_embed: Optional[torch.Tensor] = None
1122
+
1123
+ def __repr__(self) -> str:
1124
+ output_embed_shape = \
1125
+ self.output_embed.shape if self.output_embed is not None else None
1126
+ return (f"SequenceOutput(parent_seq_id={self.parent_seq_id}, "
1127
+ f"output_token={self.output_token}, "
1128
+ f"output_embed.shape={output_embed_shape}, "
1129
+ f"logprobs={self.logprobs})")
1130
+
1131
+ def __eq__(self, other: object) -> bool:
1132
+ if not isinstance(other, SequenceOutput):
1133
+ raise NotImplementedError()
1134
+ equal = (self.parent_seq_id == other.parent_seq_id
1135
+ and self.output_token == other.output_token)
1136
+ log_probs_equal = other.logprobs == self.logprobs
1137
+ return equal and log_probs_equal
1138
+
1139
+
1140
+ class SequenceGroupOutput(ABC):
1141
+ """The base class for model outputs associated with a sequence group."""
1142
+
1143
+ @abstractmethod
1144
+ def __repr__(self) -> str:
1145
+ pass
1146
+
1147
+ @abstractmethod
1148
+ def __eq__(self, other: object) -> bool:
1149
+ pass
1150
+
1151
+
1152
+ class CompletionSequenceGroupOutput(
1153
+ msgspec.Struct,
1154
+ omit_defaults=True, # type: ignore[call-arg]
1155
+ array_like=True): # type: ignore[call-arg]
1156
+ """The model output associated with a completion sequence group."""
1157
+ __metaclass__ = SequenceGroupOutput
1158
+ samples: list[SequenceOutput]
1159
+ # Prompt logprob for each prompt query token.
1160
+ prompt_logprobs: Optional[PromptLogprobs]
1161
+ step_index: Optional[int] = 0
1162
+
1163
+ def __repr__(self) -> str:
1164
+ return (f"CompletionSequenceGroupOutput(samples={self.samples}, "
1165
+ f"prompt_logprobs={self.prompt_logprobs})")
1166
+
1167
+ def __eq__(self, other: object) -> bool:
1168
+ if not isinstance(other, CompletionSequenceGroupOutput):
1169
+ raise NotImplementedError()
1170
+ return (self.samples == other.samples
1171
+ and self.prompt_logprobs == other.prompt_logprobs)
1172
+
1173
+
1174
+ class PoolingSequenceGroupOutput(
1175
+ msgspec.Struct,
1176
+ omit_defaults=True, # type: ignore[call-arg]
1177
+ array_like=True, # type: ignore[call-arg]
1178
+ ):
1179
+ """The model output associated with a pooling sequence group."""
1180
+ __metaclass__ = SequenceGroupOutput
1181
+ # Annotated as Any to be compatible with msgspec
1182
+ # The actual type is in SequenceGroup.pooled_data
1183
+ data: Any
1184
+
1185
+ def __repr__(self) -> str:
1186
+ return f"PoolingSequenceGroupOutput(data={self.data}"
1187
+
1188
+ def __eq__(self, other: object) -> bool:
1189
+ if not isinstance(other, PoolingSequenceGroupOutput):
1190
+ raise NotImplementedError()
1191
+ return self.data == other.data
1192
+
1193
+
1194
+ # cannot use msgspec.Struct here because Dynamo does not support it
1195
+ @dataclass
1196
+ class IntermediateTensors:
1197
+ """For all pipeline stages except the last, we need to return the hidden
1198
+ states and residuals to be sent to the next stage. This data structure
1199
+ contains the hidden states and residuals for a request.
1200
+ """
1201
+
1202
+ tensors: dict[str, torch.Tensor]
1203
+
1204
+ def __init__(self, tensors):
1205
+ # manually define this function, so that
1206
+ # Dynamo knows `IntermediateTensors()` comes from this file.
1207
+ # Otherwise, dataclass will generate this function by evaluating
1208
+ # a string, and we will lose the information about the source file.
1209
+ self.tensors = tensors
1210
+
1211
+ def __getitem__(self, key: Union[str, slice]):
1212
+ if isinstance(key, str):
1213
+ return self.tensors[key]
1214
+ elif isinstance(key, slice):
1215
+ return self.__class__({k: v[key] for k, v in self.tensors.items()})
1216
+
1217
+ def __setitem__(self, key: str, value: torch.Tensor):
1218
+ self.tensors[key] = value
1219
+
1220
+ def items(self):
1221
+ return self.tensors.items()
1222
+
1223
+ def __len__(self):
1224
+ return len(self.tensors)
1225
+
1226
+ def __eq__(self, other: object):
1227
+ return isinstance(other, self.__class__) and self
1228
+
1229
+ def __repr__(self) -> str:
1230
+ return f"IntermediateTensors(tensors={self.tensors})"
1231
+
1232
+
1233
+ class PoolerOutput(
1234
+ msgspec.Struct,
1235
+ omit_defaults=True, # type: ignore[call-arg]
1236
+ array_like=True): # type: ignore[call-arg]
1237
+ """The output from a pooling operation in the pooling model."""
1238
+ outputs: list[PoolingSequenceGroupOutput]
1239
+
1240
+ def __getitem__(self, idx: int) -> PoolingSequenceGroupOutput:
1241
+ return self.outputs[idx]
1242
+
1243
+ def __setitem__(self, idx: int, value: PoolingSequenceGroupOutput):
1244
+ self.outputs[idx] = value
1245
+
1246
+ def __len__(self):
1247
+ return len(self.outputs)
1248
+
1249
+ def __eq__(self, other: object):
1250
+ return isinstance(other,
1251
+ self.__class__) and self.outputs == other.outputs
1252
+
1253
+
1254
+ def get_all_seq_ids(
1255
+ seq_group_metadata_list: list[SequenceGroupMetadata]) -> list[int]:
1256
+ """Given a list of SequenceGroupMetadata, create a list of all
1257
+ sequence ids.
1258
+ """
1259
+ return [seq_id for sg in seq_group_metadata_list for seq_id in sg.seq_data]
1260
+
1261
+
1262
+ def get_all_seq_ids_and_request_ids(
1263
+ seq_group_metadata_list: list[SequenceGroupMetadata]
1264
+ ) -> tuple[list[int], dict[str, set[int]]]:
1265
+ """Given a list of SequenceGroupMetadata, create a list of all
1266
+ sequence ids.
1267
+ """
1268
+ seq_ids: list[int] = []
1269
+ request_id_seq_ids_mapping: defaultdict[str, set[int]] = defaultdict(set)
1270
+ for sg in seq_group_metadata_list:
1271
+ for seq_id in sg.seq_data:
1272
+ seq_ids.append(seq_id)
1273
+ request_id_seq_ids_mapping[sg.request_id].add(seq_id)
1274
+ return seq_ids, request_id_seq_ids_mapping
1275
+
1276
+
1277
+ class HiddenStates(msgspec.Struct, array_like=True,
1278
+ omit_defaults=True): # type: ignore[call-arg]
1279
+ """Hidden states corresponding to in-progress sequences.
1280
+ Used in speculative decoding to pass hidden states from
1281
+ the target model to the proposer model.
1282
+
1283
+ seq_ids are the sequence ids of each entry of the batch
1284
+ dimension of the hidden_states tensor"""
1285
+ # Scorer hidden states. For prefill step, it is used for hidden states of
1286
+ # all tokens, whereas for decode step, it use used for last accepted tokens.
1287
+ hidden_states: torch.Tensor
1288
+ # The sequence group metadata list. Only needed for decode step.
1289
+ seq_group_metadata_list: Optional[list[SequenceGroupMetadata]] = None
1290
+ # Scorer hidden states of the 2nd last token proposed by the proposer (
1291
+ # irrespective of whether it was accepted or not). Only used for cases when
1292
+ # last proposed token is accepted (i.e., in case of bonus tokens). For the
1293
+ # case of no bonus tokens, these are ignored.
1294
+ second_last_token_hidden_states: Optional[torch.Tensor] = None
1295
+
1296
+ _seq_ids: list[int] = msgspec.field(default_factory=list)
1297
+
1298
+ def __post_init__(self):
1299
+ if self.seq_group_metadata_list is not None:
1300
+ assert len(self.seq_group_metadata_list) == len(self.hidden_states)
1301
+ self._seq_ids = get_all_seq_ids(self.seq_group_metadata_list)
1302
+
1303
+ @property
1304
+ def seq_ids(self) -> list[int]:
1305
+ return self._seq_ids
1306
+
1307
+ def update(self,
1308
+ hidden_states: torch.Tensor,
1309
+ seq_group_metadata_list: list[SequenceGroupMetadata],
1310
+ second_last_token_hidden_states: Optional[torch.Tensor] = None):
1311
+ """Update hidden states from target model invocation. Only used for
1312
+ decode steps"""
1313
+ assert len(seq_group_metadata_list) == len(hidden_states)
1314
+ self._seq_ids.extend(get_all_seq_ids(seq_group_metadata_list))
1315
+ self.hidden_states = torch.cat([self.hidden_states, hidden_states])
1316
+
1317
+ if self.second_last_token_hidden_states is not None:
1318
+ # Adding dummy hidden_states to this to maintain same shape
1319
+ self.second_last_token_hidden_states = torch.cat([
1320
+ self.second_last_token_hidden_states,
1321
+ torch.zeros_like(hidden_states)
1322
+ if second_last_token_hidden_states is None else
1323
+ second_last_token_hidden_states
1324
+ ])
1325
+
1326
+ def prune(self,
1327
+ seq_group_metadata_list: list[SequenceGroupMetadata]) -> None:
1328
+ """Prune to provided list of sequence ids. Only used for decode steps.
1329
+ """
1330
+ # Currently this prunes all seq_ids not present in
1331
+ # seq_group_metadata_list which might cause problems where a sequence
1332
+ # may be "paused" then "resumed" later. This should only prune sequences
1333
+ # which are confirmed to be aborted.
1334
+ seq_ids = get_all_seq_ids(seq_group_metadata_list)
1335
+ # Only keep sequence IDs that exist in self._seq_ids
1336
+ seq_ids = [seq_id for seq_id in seq_ids if seq_id in self._seq_ids]
1337
+ if seq_ids != self._seq_ids:
1338
+ # Batch contents changed - prune removed sequences.
1339
+ index = [self._seq_ids.index(seq_id) for seq_id in seq_ids]
1340
+ self.hidden_states = self.hidden_states[index]
1341
+ if self.second_last_token_hidden_states is not None:
1342
+ self.second_last_token_hidden_states = self\
1343
+ .second_last_token_hidden_states[index]
1344
+ self._seq_ids = seq_ids
1345
+
1346
+ def expand_with_bonus_tokens(
1347
+ self, seq_with_bonus_token_in_last_step: set) -> None:
1348
+ """Expand hidden states for sequences with bonus tokens. This is in
1349
+ alignment with `MultiStepWorker._expand_execute_model_request`."""
1350
+ if self.second_last_token_hidden_states is None \
1351
+ or not seq_with_bonus_token_in_last_step:
1352
+ return
1353
+
1354
+ index = []
1355
+ for seq_id in self._seq_ids:
1356
+ i = self._seq_ids.index(seq_id)
1357
+ if seq_id in seq_with_bonus_token_in_last_step:
1358
+ index.append(i + len(self._seq_ids))
1359
+ index.append(i)
1360
+
1361
+ self.hidden_states = torch.cat(
1362
+ [self.hidden_states, self.second_last_token_hidden_states])[index]
1363
+
1364
+
1365
+ class ExecuteModelRequest(
1366
+ msgspec.Struct,
1367
+ array_like=True, # type: ignore[call-arg]
1368
+ omit_defaults=True): # type: ignore[call-arg]
1369
+ """The model execution request, containing CPU metadata only. The LLM
1370
+ engine should create an instance of this class for each request batch."""
1371
+ # The sequence group metadata list.
1372
+ seq_group_metadata_list: list[Union[SequenceGroupMetadata,
1373
+ SequenceGroupMetadataDelta]]
1374
+ # Blocks to swap in. List of CPU -> GPU block number.
1375
+ blocks_to_swap_in: list[tuple[int,
1376
+ int]] = msgspec.field(default_factory=list)
1377
+ # Blocks to swap out. List of GPU -> CPU block number.
1378
+ blocks_to_swap_out: list[tuple[int,
1379
+ int]] = msgspec.field(default_factory=list)
1380
+ # Blocks to copy. Source to dest block.
1381
+ blocks_to_copy: list[tuple[int, int]] = msgspec.field(default_factory=list)
1382
+ # Virtual engine ID for pipeline parallel.
1383
+ virtual_engine: int = 0
1384
+ # The number of slots for lookahead decoding.
1385
+ num_lookahead_slots: int = 0
1386
+ # The number of requests in the running queue.
1387
+ running_queue_size: int = 0
1388
+ # Optional hidden states from prior step.
1389
+ previous_hidden_states: Optional[HiddenStates] = None
1390
+ # The number of forward steps to run.
1391
+ num_steps: int = 1
1392
+ # The step index for spec model input.
1393
+ spec_step_idx: Optional[int] = None
1394
+ # Finished request ids since last step.
1395
+ finished_requests_ids: list[str] = msgspec.field(default_factory=list)
1396
+ # The last sampled token ids for multi step decoding.
1397
+ last_sampled_token_ids: Optional[torch.Tensor] = None
1398
+ # Async callback
1399
+ async_callback: Optional[Callable] = None
1400
+
1401
+ @property
1402
+ def is_first_multi_step(self) -> bool:
1403
+ # TODO(will) make this be able to handle batches with variable number of
1404
+ # steps
1405
+ assert len(self.seq_group_metadata_list) > 0
1406
+ first_seq_group = self.seq_group_metadata_list[0]
1407
+ assert first_seq_group.state is not None
1408
+ return first_seq_group.state.current_step == 0
1409
+
1410
+ @property
1411
+ def is_last_step(self) -> bool:
1412
+ # TODO(will) make this be able to handle batches with variable number of
1413
+ # steps
1414
+ assert len(self.seq_group_metadata_list) > 0
1415
+ first_seq_group = self.seq_group_metadata_list[0]
1416
+ assert first_seq_group.state is not None
1417
+ return first_seq_group.state.remaining_steps == 1
1418
+
1419
+ @property
1420
+ def current_step(self) -> int:
1421
+ # TODO(will) make this be able to handle batches with variable number of
1422
+ # steps
1423
+ assert len(self.seq_group_metadata_list) > 0
1424
+ state = self.seq_group_metadata_list[0].state
1425
+ assert state is not None
1426
+ return state.current_step
1427
+
1428
+ def clone(
1429
+ self, seq_group_metadata_list: list[Union[SequenceGroupMetadata,
1430
+ SequenceGroupMetadataDelta]]
1431
+ ) -> "ExecuteModelRequest":
1432
+ """Clone the request with a new sequence group metadata list."""
1433
+ return ExecuteModelRequest(
1434
+ seq_group_metadata_list=seq_group_metadata_list,
1435
+ blocks_to_swap_in=self.blocks_to_swap_in.copy(),
1436
+ blocks_to_swap_out=self.blocks_to_swap_out.copy(),
1437
+ blocks_to_copy=self.blocks_to_copy.copy(),
1438
+ virtual_engine=self.virtual_engine,
1439
+ num_lookahead_slots=self.num_lookahead_slots,
1440
+ running_queue_size=self.running_queue_size,
1441
+ previous_hidden_states=self.previous_hidden_states,
1442
+ num_steps=self.num_steps,
1443
+ finished_requests_ids=self.finished_requests_ids,
1444
+ last_sampled_token_ids=self.last_sampled_token_ids.clone()
1445
+ if self.last_sampled_token_ids is not None else None,
1446
+ async_callback=self.async_callback)
1447
+
1448
+
1449
+ @dataclass
1450
+ class SequenceGroupBase:
1451
+ group_id: str # the original request id before splitting
1452
+
1453
+ assembled_seq_group: Optional[SequenceGroup] = None
1454
+
1455
+ # seq id to a unique index inside this group
1456
+ seq_id_to_index: dict[str, int] = field(default_factory=dict)
1457
+
1458
+ # seq ids to be finished
1459
+ to_be_finished: dict[str, SequenceGroup] = field(default_factory=dict)
1460
+
1461
+ # seq id to finished sequences
1462
+ finished_reqs: dict[str, SequenceGroup] = field(default_factory=dict)
1463
+
1464
+ streaming: bool = False
1465
+
1466
+ output_produced: bool = False
1467
+
1468
+ @staticmethod
1469
+ def add_request(request_id: str, engine, params, *args, **kwargs):
1470
+ """When we are ready to add a request with request_id and params
1471
+ into the engine, we can split the request into multiple requests.
1472
+ """
1473
+ raise NotImplementedError
1474
+
1475
+ def finish_seq(self, seq: SequenceGroup):
1476
+ """The sequence `seq` finishes, we should record the information.
1477
+ """
1478
+ del self.to_be_finished[seq.request_id]
1479
+ self.finished_reqs[seq.request_id] = seq
1480
+
1481
+ def maybe_assemble_group(
1482
+ self, seq_group: SequenceGroup) -> Optional[SequenceGroup]:
1483
+ """Assemble the sequence group, for producing the final
1484
+ output, or adding request in the engine again.
1485
+ """
1486
+ raise NotImplementedError
1487
+
1488
+
1489
+ class ParallelSampleSequenceGroup(SequenceGroupBase):
1490
+
1491
+ @staticmethod
1492
+ def add_request(request_id: str, engine, params, **kwargs):
1493
+ original_params = params
1494
+ group = ParallelSampleSequenceGroup(request_id)
1495
+ seqs = []
1496
+ for i in range(original_params.n):
1497
+ request_id_i = f"{request_id}_parallel_sample_{i}"
1498
+ group.seq_id_to_index[request_id_i] = i
1499
+ params = original_params.clone()
1500
+ params.n = 1
1501
+ if params.seed is not None:
1502
+ params.seed += i
1503
+ seq_group = engine._add_processed_request(
1504
+ request_id_i,
1505
+ params=params,
1506
+ **kwargs,
1507
+ ) # type: ignore
1508
+ assert seq_group is not None
1509
+ engine.seq_id_to_seq_group[request_id_i] = group
1510
+ group.to_be_finished[request_id_i] = seq_group
1511
+ seqs.append(seq_group.seqs[0])
1512
+
1513
+ # for parallel sampling, the `assembled_seq_group` is always
1514
+ # available, since we have all the sequences ready, and they
1515
+ # will not change.
1516
+ group.assembled_seq_group = SequenceGroup(
1517
+ request_id=request_id,
1518
+ seqs=seqs,
1519
+ arrival_time=seq_group.arrival_time,
1520
+ sampling_params=original_params,
1521
+ lora_request=seq_group.lora_request,
1522
+ pooling_params=seq_group.pooling_params,
1523
+ pooled_data=seq_group.pooled_data,
1524
+ encoder_seq=seq_group.encoder_seq,
1525
+ trace_headers=seq_group.trace_headers,
1526
+ prompt_adapter_request=seq_group.prompt_adapter_request,
1527
+ priority=seq_group.priority,
1528
+ )
1529
+
1530
+ group.streaming = params.output_kind == RequestOutputKind.DELTA
1531
+ group.output_produced = False
1532
+
1533
+ def maybe_assemble_group(
1534
+ self, seq_group: SequenceGroup) -> Optional[SequenceGroup]:
1535
+
1536
+ # in the streaming mode, we will return the assembled sequence
1537
+ # for the first remaining sequence, and then return None for the
1538
+ # rest of sequences
1539
+ if self.streaming:
1540
+ first_remaining_id = next(iter(self.to_be_finished))
1541
+ if seq_group.request_id == first_remaining_id:
1542
+ return self.assembled_seq_group
1543
+ return None
1544
+
1545
+ # in the non-streaming mode, we will return the assembled sequence
1546
+ # when the last sequences finishes, and then return None for the
1547
+ # rest of the time
1548
+ if (len(self.to_be_finished) == 1
1549
+ and seq_group.request_id in self.to_be_finished
1550
+ and seq_group.is_finished()):
1551
+ assert self.assembled_seq_group is not None
1552
+ params = self.assembled_seq_group.sampling_params
1553
+ assert isinstance(params, SamplingParams)
1554
+ if not self.output_produced:
1555
+ self.output_produced = True
1556
+ if params._real_n is not None:
1557
+ # Get the top-n sequences.
1558
+ n = params._real_n or params.n
1559
+ seqs = self.assembled_seq_group.seqs
1560
+ sorting_key = lambda seq: seq.get_cumulative_logprob()
1561
+ sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
1562
+ top_n_seqs = sorted_seqs[:n]
1563
+ self.assembled_seq_group.seqs = top_n_seqs
1564
+ return self.assembled_seq_group
1565
+ if self.output_produced:
1566
+ return None
1567
+ return None