vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1374 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ """
3
+ Fused Attention
4
+ ===============
5
+
6
+ This is a Triton implementation of the Flash Attention v2 algorithm
7
+ See https://tridao.me/publications/flash2/flash2.pdf
8
+
9
+ Credits:
10
+ AMD Triton kernels team
11
+ OpenAI kernel team
12
+
13
+ Currently only the forward kernel is supported, and contains these features:
14
+
15
+ 1) Fwd with causal masking
16
+ 2) Arbitrary Q and KV sequence lengths
17
+ 3) Arbitrary head sizes
18
+ 4) Multi and grouped query attention
19
+ 5) Variable sequence lengths
20
+ 6) ALiBi and matrix bias
21
+ 7) FP8 support
22
+
23
+ """
24
+
25
+ from typing import Optional
26
+
27
+ import torch
28
+
29
+ from vllm import _custom_ops as ops
30
+ from vllm.platforms import current_platform
31
+ from vllm.triton_utils import tl, triton
32
+
33
+ SUPPORTED_LAYOUTS = ['thd', 'bhsd', 'bshd']
34
+
35
+ default_eight_bit_dtype_triton = tl.float8e4b8
36
+ default_eight_bit_dtype_torch = current_platform.fp8_dtype()
37
+ default_float8_info = torch.finfo(default_eight_bit_dtype_torch)
38
+
39
+ FP8_MIN = triton.language.constexpr(default_float8_info.min)
40
+
41
+ # According to https://github.com/vllm-project/vllm/blob/main
42
+ # /csrc/quantization/utils.cuh#L31,
43
+ # need to make the max for the uz datatype be 224.0 for accuracy reasons.
44
+ FP8_MAX = triton.language.constexpr(
45
+ default_float8_info.max if default_eight_bit_dtype_torch !=
46
+ torch.float8_e4m3fnuz else 224.0)
47
+
48
+
49
+ class MetaData:
50
+ cu_seqlens_q = None
51
+ cu_seqlens_k = None
52
+ max_seqlens_q = 0
53
+ max_seqlens_k = 0
54
+ bias = None
55
+ alibi_slopes = None
56
+ causal = False
57
+ num_contexts = 0
58
+ varlen = False
59
+ eight_bit = False
60
+ layout = None
61
+ return_encoded_softmax = False
62
+ eight_bit_dtype_triton = default_eight_bit_dtype_triton
63
+ eight_bit_dtype_torch = default_eight_bit_dtype_torch
64
+ output_dtype = None
65
+
66
+ # Note about layouts:
67
+ #
68
+ # thd - [num_tokens, num_heads, head_size]
69
+ # bshd - [batch_size, seq_len, num_heads, head_size]
70
+ # bhsd - [batch_size, num_heads, seq_len, head_size]
71
+ #
72
+ # This is for each tensor, all tensors must have same layout.
73
+ # Q can have num_heads and seq_len differ from from K and V,
74
+ # however K and V must agree on this.
75
+ #
76
+ # Notes about varlen and bias:
77
+ # Only one or the other is implemented, meaning can't combine
78
+ # both varlen and bias right now.
79
+ #
80
+ # Note about quantization:
81
+ # Only 8-bit quantization supported (for now) and specifically fp8.
82
+ # Scales must be tensors.
83
+ # o_scale: This is 'output scaling', but comes from parameter called
84
+ # 'input_scale', this is applied to the output from the kernel.
85
+ # o_scale should be None if none of the other quantization parameters
86
+ # are used.
87
+ #
88
+ # NOTE: Object is in a tentatively good state after initialized, however,
89
+ # to verify, call check_args(q,k,v,o) where o is the output tensor.
90
+ def __init__(
91
+ self,
92
+ sm_scale=1.0,
93
+ layout=None, # layout can be 'bshd', 'bhsd', or 'thd'
94
+ output_dtype=None,
95
+ max_seqlens_q=0,
96
+ max_seqlens_k=0,
97
+ # varlen params
98
+ cu_seqlens_q=None, # only 'thd' layout supported for varlen
99
+ cu_seqlens_k=None,
100
+ # quant params
101
+ q_descale=None,
102
+ k_descale=None,
103
+ v_descale=None,
104
+ p_scale=None,
105
+ o_scale=None,
106
+ # bias params
107
+ bias=None, # varlen not implemented for bias
108
+ seqlen_q=None,
109
+ seqlen_k=None,
110
+ # alibi params
111
+ alibi_slopes=None,
112
+ alibi_batch=None,
113
+ alibi_nheads=None,
114
+ # causal
115
+ causal=None,
116
+ ):
117
+ self.sm_scale = sm_scale
118
+ self.output_dtype = output_dtype
119
+ self.max_seqlens_q = max_seqlens_q
120
+ self.max_seqlens_k = max_seqlens_k
121
+ self.layout = layout
122
+ if cu_seqlens_q is not None or cu_seqlens_k is not None:
123
+ assert cu_seqlens_q is not None and cu_seqlens_k is not None
124
+ assert layout is None or layout not in [
125
+ 'bshd', 'bhsd'
126
+ ], "Varlen only implemented for thd layout"
127
+ self.set_varlen_params(cu_seqlens_q, cu_seqlens_k)
128
+ quant_params = [q_descale, k_descale, v_descale, p_scale, o_scale]
129
+ if any(x is not None for x in quant_params):
130
+ p_descale = 1.0 / p_scale if p_scale is not None else None
131
+ self.set_eight_bit_params(q_descale, k_descale, v_descale, p_scale,
132
+ p_descale, o_scale)
133
+ if bias is not None:
134
+ self.need_bias(bias, seqlen_q, seqlen_k)
135
+ if alibi_slopes is not None:
136
+ self.need_alibi(alibi_slopes, alibi_batch, alibi_nheads)
137
+ if causal is not None and causal:
138
+ self.need_causal()
139
+
140
+ def set_varlen_params(self, cu_seqlens_q, cu_seqlens_k):
141
+ self.varlen = True
142
+ self.layout = 'thd'
143
+ self.cu_seqlens_q = cu_seqlens_q
144
+ self.cu_seqlens_k = cu_seqlens_k
145
+ # Without "varlen", there should still be one sequence.
146
+ assert len(cu_seqlens_q) >= 2
147
+ assert len(cu_seqlens_q) == len(cu_seqlens_k)
148
+ self.num_contexts = len(cu_seqlens_q) - 1
149
+ for i in range(0, self.num_contexts):
150
+ self.max_seqlens_q = max(
151
+ cu_seqlens_q[i + 1].item() - cu_seqlens_q[i].item(),
152
+ self.max_seqlens_q)
153
+ self.max_seqlens_k = max(
154
+ cu_seqlens_k[i + 1].item() - cu_seqlens_k[i].item(),
155
+ self.max_seqlens_k)
156
+
157
+ def set_eight_bit_params(self, q_descale, k_descale, v_descale, p_scale,
158
+ p_descale, o_scale):
159
+ self.eight_bit = True
160
+ self.q_descale = q_descale
161
+ self.k_descale = k_descale
162
+ self.v_descale = v_descale
163
+ self.p_scale = p_scale
164
+ self.p_descale = p_descale
165
+ self.o_scale = o_scale
166
+ self.use_p_scale = (p_scale is not None) and (
167
+ p_descale is not None) and (v_descale is not None)
168
+ self.eight_bit_kv = ((q_descale is None) and (k_descale is not None)
169
+ and (v_descale is not None))
170
+ self.eight_bit_dtype_torch = default_eight_bit_dtype_torch
171
+
172
+ def need_bias(self, bias, seqlen_q, seqlen_k):
173
+ assert bias is not None
174
+ assert bias.is_cuda
175
+ assert bias.dim() == 4
176
+ assert bias.shape[0] == 1
177
+ assert bias.shape[2:] == (seqlen_q, seqlen_k)
178
+ self.bias = bias
179
+
180
+ def need_alibi(self, alibi_slopes, batch, nheads):
181
+ assert alibi_slopes.is_cuda
182
+ assert alibi_slopes.dim() == 2
183
+ assert alibi_slopes.shape[0] == batch
184
+ assert alibi_slopes.shape[1] == nheads
185
+ self.alibi_slopes = alibi_slopes
186
+
187
+ def need_causal(self):
188
+ self.causal = True
189
+
190
+ def check_args(self, q, k, v, o):
191
+ assert q.dim() == k.dim() and q.dim() == v.dim()
192
+
193
+ batch, nheads_q, nheads_k, head_size = get_shape_from_layout(
194
+ q, k, self)
195
+ if self.varlen:
196
+ assert q.dim() == 3
197
+ assert self.cu_seqlens_q is not None
198
+ assert self.cu_seqlens_k is not None
199
+ assert len(self.cu_seqlens_q) == len(self.cu_seqlens_k)
200
+ # TODO: Remove once bias is supported with varlen
201
+ assert self.bias is None
202
+ assert not self.return_encoded_softmax
203
+ else:
204
+ assert q.dim() == 4
205
+ assert self.max_seqlens_q > 0 and self.max_seqlens_k > 0
206
+ assert self.cu_seqlens_q is None and self.cu_seqlens_k is None
207
+ assert k.shape == v.shape
208
+ assert q.shape[-1] == k.shape[-1] and q.shape[-1] == v.shape[-1]
209
+ # TODO: Change assert if we support qkl f8 and v f16
210
+ if self.eight_bit:
211
+ if self.eight_bit_kv:
212
+ assert (v.dtype == k.dtype
213
+ and k.dtype == self.eight_bit_dtype_torch)
214
+ assert q.dtype != k.dtype
215
+ assert (self.v_descale is not None) and (self.k_descale
216
+ is not None)
217
+ else:
218
+ assert (q.dtype == k.dtype and q.dtype == v.dtype
219
+ and q.dtype == self.eight_bit_dtype_torch)
220
+ assert (self.q_descale
221
+ is not None) and (self.k_descale
222
+ is not None) and (self.v_descale
223
+ is not None)
224
+ if self.use_p_scale:
225
+ assert (self.p_scale is not None) and (self.p_descale
226
+ is not None)
227
+ else:
228
+ assert (q.dtype == k.dtype) and (q.dtype == v.dtype)
229
+ assert head_size <= 256
230
+ assert o.shape == q.shape
231
+ assert (nheads_q % nheads_k) == 0
232
+ assert self.layout is not None
233
+ assert self.layout == 'thd' or not self.varlen
234
+
235
+
236
+ @triton.jit
237
+ def cdiv_fn(x, y):
238
+ return (x + y - 1) // y
239
+
240
+
241
+ @triton.jit
242
+ def max_fn(x, y):
243
+ return tl.math.max(x, y)
244
+
245
+
246
+ # Convenience function to load with optional boundary checks.
247
+ # "First" is the major dim, "second" is the minor dim.
248
+ @triton.jit
249
+ def masked_load(ptrs, offset_first, offset_second, boundary_first,
250
+ boundary_second):
251
+ if offset_first is not None and offset_second is not None:
252
+ mask = (offset_first[:, None] < boundary_first) & \
253
+ (offset_second[None, :] < boundary_second)
254
+ tensor = tl.load(ptrs, mask=mask, other=0.0)
255
+ elif offset_first is not None:
256
+ mask = offset_first[:, None] < boundary_first
257
+ tensor = tl.load(ptrs, mask=mask, other=0.0)
258
+ elif offset_second is not None:
259
+ mask = offset_second[None, :] < boundary_second
260
+ tensor = tl.load(ptrs, mask=mask, other=0.0)
261
+ else:
262
+ tensor = tl.load(ptrs)
263
+ return tensor
264
+
265
+
266
+ @triton.jit
267
+ def compute_alibi_block(alibi_slope,
268
+ seqlen_q,
269
+ seqlen_k,
270
+ offs_m,
271
+ offs_n,
272
+ transpose=False):
273
+ # when seqlen_k and seqlen_q are different we want the diagonal to stick to
274
+ # the bottom right of the attention matrix
275
+ # for casual mask we want something like this where (1 is kept and 0 is
276
+ # masked)
277
+ # seqlen_q = 2 and seqlen_k = 5
278
+ # 1 1 1 1 0
279
+ # 1 1 1 1 1
280
+ # seqlen_q = 5 and seqlen_k = 2
281
+ # 0 0
282
+ # 0 0
283
+ # 0 0
284
+ # 1 0
285
+ # 1 1
286
+ # for alibi the diagonal is 0 indicating no penalty for attending to that
287
+ # spot and increasing penalty for attending further from the diagonal
288
+ # e.g. alibi_slope = 1, seqlen_q = 2, seqlen_k = 5,
289
+ # offs_m = [0, 1, 2, 3], offs_n = [0, 1, 2, 3, 4], transpose = False
290
+ # 1. offs_m[:,None] = [[0],
291
+ # [1],
292
+ # 2. offs_m[:,None] + seqlen_k = [[5],
293
+ # [6],
294
+ # 3. offs_m[:,None] + seqlen_k - seqlen_q = [[3],
295
+ # [4],
296
+ # 4. offs_m[:,None] + seqlen_k - seqlen_q - offs_n[None,:] =
297
+ # [[3], - [[0, 1, 2, 3, 4]] = [[ 3, 2, 1, 0,-1], [4], [ 4, 3, 2, 1, 0]]
298
+ # 5. -1 * alibi_slope * tl.abs(relative_pos_block) = [[ -3, -2, -1, 0,-1],
299
+ # [ -4, -3, -2, -1, 0]],
300
+ relative_pos_block = (offs_m[:, None] + seqlen_k - seqlen_q -
301
+ offs_n[None, :])
302
+ alibi_block = -1 * alibi_slope * tl.abs(relative_pos_block)
303
+ if transpose:
304
+ return alibi_block.T
305
+ else:
306
+ return alibi_block
307
+
308
+
309
+ def compute_alibi_tensor(alibi_slopes, seqlen_q, seqlen_k):
310
+ q_idx = torch.arange(seqlen_q, dtype=torch.int32,
311
+ device="cuda").unsqueeze(-1) # (N_CTX_Q, 1)
312
+ k_idx = torch.arange(seqlen_k, dtype=torch.int32,
313
+ device="cuda").unsqueeze(0) # (1, N_CTX_K)
314
+ relative_pos = torch.abs(q_idx + seqlen_k - seqlen_q -
315
+ k_idx) # (N_CTX_Q, N_CTX_K)
316
+ return -1 * alibi_slopes.unsqueeze(-1).unsqueeze(
317
+ -1) * relative_pos # (Z, H, N_CTX_Q, N_CTX_K)
318
+
319
+
320
+ @triton.jit
321
+ def quant_fp8(x, scale):
322
+ x *= scale
323
+ x = tl.clamp(x, FP8_MIN, FP8_MAX)
324
+ return x
325
+
326
+
327
+ @triton.jit
328
+ def _attn_fwd_inner(
329
+ acc,
330
+ l_i,
331
+ m_i,
332
+ q,
333
+ k_ptrs,
334
+ v_ptrs,
335
+ bias_ptrs,
336
+ stride_kn,
337
+ stride_vk,
338
+ stride_bn,
339
+ start_m,
340
+ actual_seqlen_k,
341
+ actual_seqlen_q,
342
+ philox_seed,
343
+ batch_philox_offset,
344
+ encoded_sm_ptrs,
345
+ block_min,
346
+ block_max,
347
+ offs_n_causal,
348
+ masked_blocks,
349
+ n_extra_tokens,
350
+ alibi_slope,
351
+ q_descale,
352
+ k_descale,
353
+ v_descale,
354
+ p_scale,
355
+ IS_CAUSAL: tl.constexpr,
356
+ BLOCK_M: tl.constexpr,
357
+ BLOCK_DMODEL: tl.constexpr,
358
+ BLOCK_N: tl.constexpr,
359
+ OFFS_M: tl.constexpr,
360
+ OFFS_N: tl.constexpr,
361
+ SHOULD_PRE_LOAD_V: tl.constexpr,
362
+ SHOULD_MASK_STEPS: tl.constexpr,
363
+ SHOULD_RETURN_ENCODED_SOFTMAX: tl.constexpr,
364
+ USE_PADDED_HEAD: tl.constexpr,
365
+ IS_ACTUAL_BLOCK_DMODEL: tl.constexpr,
366
+ QK_SCALE: tl.constexpr,
367
+ IS_EIGHT_BIT_GEMM: tl.constexpr,
368
+ USE_P_SCALE: tl.constexpr,
369
+ IS_EIGHT_BIT_KV: tl.constexpr,
370
+ QUANT_DTYPE: tl.constexpr = default_eight_bit_dtype_triton,
371
+ ):
372
+
373
+ # loop over k, v, and update accumulator
374
+ for start_n in range(block_min, block_max, BLOCK_N):
375
+ # For padded blocks, we will overrun the tensor size if
376
+ # we load all BLOCK_N. For others, the blocks are all within range.
377
+ k_offs_n = start_n + tl.arange(0,
378
+ BLOCK_N) if SHOULD_MASK_STEPS else None
379
+ k_offs_k = None if not USE_PADDED_HEAD else tl.arange(0, BLOCK_DMODEL)
380
+ k = masked_load(k_ptrs, k_offs_k, k_offs_n, IS_ACTUAL_BLOCK_DMODEL,
381
+ actual_seqlen_k)
382
+ if SHOULD_PRE_LOAD_V:
383
+ # We can use the same offsets as k, just with dims transposed.
384
+ v = masked_load(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k,
385
+ IS_ACTUAL_BLOCK_DMODEL)
386
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
387
+ # We start from end of seqlen_k so only the first iteration would need
388
+ # to be checked for padding if it is not a multiple of block_n
389
+ # TODO: This can be optimized to only be true for the padded block.
390
+ if SHOULD_MASK_STEPS: # noqa: SIM102
391
+ # If this is the last block / iteration, we want to
392
+ # mask if the sequence length is not a multiple of block size
393
+ # a solution is to always do BLOCK_M // BLOCK_N + 1 steps if not
394
+ # is_modulo_mn. last step might get wasted but that is okay.
395
+ # check if this masking works for that case.
396
+ if (start_n + BLOCK_N == block_max) and (n_extra_tokens != 0):
397
+ boundary_m = tl.full([BLOCK_M],
398
+ actual_seqlen_k,
399
+ dtype=tl.int32)
400
+ size_n = start_n + OFFS_N[None, :]
401
+ mask = size_n < boundary_m[:, None]
402
+ qk = tl.where(mask, qk, float("-inf"))
403
+ if IS_CAUSAL:
404
+ causal_boundary = start_n + offs_n_causal
405
+ causal_mask = OFFS_M[:, None] >= causal_boundary[None, :]
406
+ qk = tl.where(causal_mask, qk, float("-inf"))
407
+
408
+ # -- compute qk ----
409
+ if IS_EIGHT_BIT_GEMM:
410
+ qk += ((((tl.dot(q, k).to(tl.float32) * q_descale)) * k_descale) *
411
+ QK_SCALE)
412
+ else:
413
+ if IS_EIGHT_BIT_KV:
414
+ k = (k * k_descale).to(q.type.element_ty)
415
+ qk += (tl.dot(q, k) * QK_SCALE)
416
+
417
+ if bias_ptrs is not None:
418
+ bias_offs_n = start_n + tl.arange(
419
+ 0, BLOCK_N) if SHOULD_MASK_STEPS else None
420
+ bias = masked_load(bias_ptrs, OFFS_M, bias_offs_n, actual_seqlen_q,
421
+ actual_seqlen_k)
422
+ # While bias is added after multiplying qk with sm_scale,
423
+ # our optimization to use 2^x instead of e^x results in an
424
+ # additional scale factor of log2(e) which we must also multiply
425
+ # the bias with.
426
+ qk += (bias * 1.44269504089)
427
+
428
+ if alibi_slope is not None:
429
+ # Compute the global position of each token within the sequence
430
+ global_m_positions = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
431
+ global_n_positions = start_n + tl.arange(0, BLOCK_N)
432
+ alibi_block = compute_alibi_block(alibi_slope, actual_seqlen_q,
433
+ actual_seqlen_k,
434
+ global_m_positions,
435
+ global_n_positions)
436
+ qk += (alibi_block * 1.44269504089) # scale factor of log2(e)
437
+
438
+ # softmax
439
+ m_ij = tl.maximum(m_i, tl.max(qk, 1))
440
+ qk = qk - m_ij[:, None]
441
+ p = tl.math.exp2(qk)
442
+
443
+ # CAVEAT: Must update l_ij before applying dropout
444
+ l_ij = tl.sum(p, 1)
445
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
446
+ tl.store(encoded_sm_ptrs, p.to(encoded_sm_ptrs.type.element_ty))
447
+ # -- update output accumulator --
448
+ alpha = tl.math.exp2(m_i - m_ij)
449
+ acc = acc * alpha[:, None]
450
+ if not SHOULD_PRE_LOAD_V:
451
+ v = masked_load(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k,
452
+ IS_ACTUAL_BLOCK_DMODEL)
453
+ # -- update m_i and l_i
454
+ l_i = l_i * alpha + l_ij
455
+ # update m_i and l_i
456
+ m_i = m_ij
457
+
458
+ if IS_EIGHT_BIT_GEMM:
459
+ if USE_P_SCALE:
460
+ p = quant_fp8(p, p_scale).to(QUANT_DTYPE)
461
+ acc += tl.dot(p, v)
462
+ else:
463
+ # v is in eight_bit but p is not, we want the gemm in p's type
464
+ acc += tl.dot(p, v.to(p.type.element_ty))
465
+ else:
466
+ if IS_EIGHT_BIT_KV:
467
+ v = (v * v_descale).to(p.type.element_ty)
468
+ acc += tl.dot(p.to(v.type.element_ty), v)
469
+
470
+ k_ptrs += BLOCK_N * stride_kn
471
+ v_ptrs += BLOCK_N * stride_vk
472
+ if bias_ptrs is not None:
473
+ bias_ptrs += BLOCK_N * stride_bn
474
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
475
+ encoded_sm_ptrs += BLOCK_N
476
+ return acc, l_i, m_i
477
+
478
+
479
+ def get_cdna_autotune_configs():
480
+ return [
481
+ triton.Config(
482
+ {
483
+ 'BLOCK_M': 128,
484
+ 'BLOCK_N': 128,
485
+ 'waves_per_eu': 2,
486
+ 'SHOULD_PRE_LOAD_V': False,
487
+ 'GRID_CU_MULTIP': 2
488
+ },
489
+ num_stages=1,
490
+ num_warps=4),
491
+ triton.Config(
492
+ {
493
+ 'BLOCK_M': 128,
494
+ 'BLOCK_N': 64,
495
+ 'waves_per_eu': 2,
496
+ 'SHOULD_PRE_LOAD_V': False,
497
+ 'GRID_CU_MULTIP': 2
498
+ },
499
+ num_stages=1,
500
+ num_warps=4),
501
+ triton.Config(
502
+ {
503
+ 'BLOCK_M': 128,
504
+ 'BLOCK_N': 64,
505
+ 'waves_per_eu': 3,
506
+ 'SHOULD_PRE_LOAD_V': False,
507
+ 'GRID_CU_MULTIP': 2
508
+ },
509
+ num_stages=1,
510
+ num_warps=4),
511
+ triton.Config(
512
+ {
513
+ 'BLOCK_M': 128,
514
+ 'BLOCK_N': 64,
515
+ 'waves_per_eu': 1,
516
+ 'SHOULD_PRE_LOAD_V': False,
517
+ 'GRID_CU_MULTIP': 2
518
+ },
519
+ num_stages=1,
520
+ num_warps=4),
521
+ triton.Config(
522
+ {
523
+ 'BLOCK_M': 128,
524
+ 'BLOCK_N': 32,
525
+ 'waves_per_eu': 2,
526
+ 'SHOULD_PRE_LOAD_V': False,
527
+ 'GRID_CU_MULTIP': 2
528
+ },
529
+ num_stages=1,
530
+ num_warps=4),
531
+ ], [
532
+ 'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
533
+ 'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
534
+ ]
535
+
536
+
537
+ def get_rdna_autotune_configs():
538
+ return [
539
+ triton.Config(
540
+ {
541
+ 'BLOCK_M': 32,
542
+ 'BLOCK_N': 32,
543
+ 'waves_per_eu': 4,
544
+ 'SHOULD_PRE_LOAD_V': False,
545
+ 'GRID_CU_MULTIP': 2
546
+ },
547
+ num_stages=1,
548
+ num_warps=2),
549
+ triton.Config(
550
+ {
551
+ 'BLOCK_M': 32,
552
+ 'BLOCK_N': 32,
553
+ 'waves_per_eu': 2,
554
+ 'SHOULD_PRE_LOAD_V': False,
555
+ 'GRID_CU_MULTIP': 2
556
+ },
557
+ num_stages=1,
558
+ num_warps=2),
559
+ triton.Config(
560
+ {
561
+ 'BLOCK_M': 32,
562
+ 'BLOCK_N': 16,
563
+ 'waves_per_eu': 4,
564
+ 'SHOULD_PRE_LOAD_V': False,
565
+ 'GRID_CU_MULTIP': 2
566
+ },
567
+ num_stages=1,
568
+ num_warps=2),
569
+ triton.Config(
570
+ {
571
+ 'BLOCK_M': 32,
572
+ 'BLOCK_N': 16,
573
+ 'waves_per_eu': 2,
574
+ 'SHOULD_PRE_LOAD_V': False,
575
+ 'GRID_CU_MULTIP': 2
576
+ },
577
+ num_stages=1,
578
+ num_warps=2),
579
+ triton.Config(
580
+ {
581
+ 'BLOCK_M': 16,
582
+ 'BLOCK_N': 16,
583
+ 'waves_per_eu': 4,
584
+ 'SHOULD_PRE_LOAD_V': False,
585
+ 'GRID_CU_MULTIP': 2
586
+ },
587
+ num_stages=1,
588
+ num_warps=2),
589
+ triton.Config(
590
+ {
591
+ 'BLOCK_M': 16,
592
+ 'BLOCK_N': 16,
593
+ 'waves_per_eu': 2,
594
+ 'SHOULD_PRE_LOAD_V': False,
595
+ 'GRID_CU_MULTIP': 2
596
+ },
597
+ num_stages=1,
598
+ num_warps=2),
599
+ # Fall-back config.
600
+ triton.Config(
601
+ {
602
+ 'BLOCK_M': 16,
603
+ 'BLOCK_N': 16,
604
+ 'waves_per_eu': 1,
605
+ 'SHOULD_PRE_LOAD_V': False,
606
+ 'GRID_CU_MULTIP': 2
607
+ },
608
+ num_stages=1,
609
+ num_warps=2),
610
+ ], [
611
+ 'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
612
+ 'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
613
+ ]
614
+
615
+
616
+ def get_general_autotune_configs():
617
+ return [
618
+ triton.Config(
619
+ {
620
+ 'BLOCK_M': 128,
621
+ 'BLOCK_N': 128,
622
+ 'SHOULD_PRE_LOAD_V': False,
623
+ 'GRID_CU_MULTIP': 2
624
+ },
625
+ num_stages=1,
626
+ num_warps=4),
627
+ triton.Config(
628
+ {
629
+ 'BLOCK_M': 128,
630
+ 'BLOCK_N': 64,
631
+ 'SHOULD_PRE_LOAD_V': False,
632
+ 'GRID_CU_MULTIP': 2
633
+ },
634
+ num_stages=1,
635
+ num_warps=4),
636
+ triton.Config(
637
+ {
638
+ 'BLOCK_M': 128,
639
+ 'BLOCK_N': 32,
640
+ 'SHOULD_PRE_LOAD_V': False,
641
+ 'GRID_CU_MULTIP': 2
642
+ },
643
+ num_stages=1,
644
+ num_warps=4),
645
+ ], [
646
+ 'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
647
+ 'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
648
+ ]
649
+
650
+
651
+ def has_cdna_target():
652
+ ROCM_CDNA_TARGETS = ["gfx942", "gfx90a", "gfx908"]
653
+ return triton.runtime.driver.active.get_current_target(
654
+ ).arch in ROCM_CDNA_TARGETS
655
+
656
+
657
+ def is_rocm_cdna():
658
+ return current_platform.is_rocm() and has_cdna_target()
659
+
660
+
661
+ def get_autotune_configs():
662
+ if is_rocm_cdna():
663
+ return get_cdna_autotune_configs()
664
+ elif current_platform.is_rocm():
665
+ return get_rdna_autotune_configs()
666
+ else:
667
+ return get_general_autotune_configs()
668
+
669
+
670
+ autotune_configs, autotune_keys = get_autotune_configs()
671
+
672
+
673
+ @triton.autotune(
674
+ configs=autotune_configs,
675
+ key=autotune_keys,
676
+ use_cuda_graph=True,
677
+ )
678
+ @triton.jit
679
+ def attn_fwd(
680
+ Q,
681
+ K,
682
+ V,
683
+ bias,
684
+ SM_SCALE: tl.constexpr,
685
+ L,
686
+ Out,
687
+ stride_qz: tl.int64,
688
+ stride_qh: tl.int64,
689
+ stride_qm: tl.int64,
690
+ stride_qk: tl.int64,
691
+ stride_kz: tl.int64,
692
+ stride_kh: tl.int64,
693
+ stride_kn: tl.int64,
694
+ stride_kk: tl.int64,
695
+ stride_vz: tl.int64,
696
+ stride_vh: tl.int64,
697
+ stride_vk: tl.int64,
698
+ stride_vn: tl.int64,
699
+ stride_oz: tl.int64,
700
+ stride_oh: tl.int64,
701
+ stride_om: tl.int64,
702
+ stride_on: tl.int64,
703
+ stride_bz: tl.int64,
704
+ stride_bh: tl.int64,
705
+ stride_bm: tl.int64,
706
+ stride_bn: tl.int64,
707
+ stride_az: tl.int64,
708
+ stride_ah: tl.int64,
709
+ q_descale_ptr,
710
+ k_descale_ptr,
711
+ p_scale_ptr,
712
+ p_descale_ptr,
713
+ o_descale_ptr,
714
+ v_descale_ptr,
715
+ q_descale_has_singleton: tl.constexpr,
716
+ k_descale_has_singleton: tl.constexpr,
717
+ p_descale_has_singleton: tl.constexpr,
718
+ v_descale_has_singleton: tl.constexpr,
719
+ cu_seqlens_q,
720
+ cu_seqlens_k,
721
+ philox_seed,
722
+ NUM_CU: tl.constexpr,
723
+ GRID_CU_MULTIP: tl.constexpr,
724
+ B: tl.constexpr,
725
+ philox_offset_base,
726
+ encoded_softmax,
727
+ alibi_slopes,
728
+ HQ: tl.constexpr,
729
+ HK: tl.constexpr,
730
+ IS_ACTUAL_BLOCK_DMODEL: tl.constexpr,
731
+ MAX_SEQLENS_Q: tl.constexpr,
732
+ MAX_SEQLENS_K: tl.constexpr,
733
+ VARLEN: tl.constexpr,
734
+ IS_CAUSAL: tl.constexpr,
735
+ BLOCK_M: tl.constexpr,
736
+ BLOCK_DMODEL: tl.constexpr,
737
+ BLOCK_N: tl.constexpr,
738
+ SHOULD_PRE_LOAD_V: tl.constexpr,
739
+ USE_BIAS: tl.constexpr,
740
+ SHOULD_RETURN_ENCODED_SOFTMAX: tl.constexpr,
741
+ USE_ALIBI: tl.constexpr,
742
+ IS_EIGHT_BIT: tl.constexpr,
743
+ USE_P_SCALE: tl.constexpr,
744
+ IS_EIGHT_BIT_KV: tl.constexpr,
745
+ QUANT_DTYPE: tl.constexpr = default_eight_bit_dtype_triton,
746
+ ):
747
+
748
+ if o_descale_ptr is not None:
749
+ o_descale = tl.load(o_descale_ptr)
750
+
751
+ start_m: tl.int64 = tl.program_id(0)
752
+ off_h_q: tl.int64 = tl.program_id(1)
753
+ off_z: tl.int64 = tl.program_id(2)
754
+
755
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M).to(tl.int64)
756
+ offs_n = tl.arange(0, BLOCK_N).to(tl.int64)
757
+ offs_d = tl.arange(0, BLOCK_DMODEL).to(tl.int64)
758
+
759
+ # as we can't have return statements inside while loop in Triton
760
+ continue_condition = True
761
+
762
+ if VARLEN:
763
+ cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z)
764
+ cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1)
765
+ seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start
766
+ # We have a one-size-fits-all grid in id(0). Some seqlens might be
767
+ # too small for all start_m so for those we return early.
768
+ if start_m * BLOCK_M > seqlen_q:
769
+ continue_condition = False
770
+ # return
771
+ cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z)
772
+ cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1)
773
+ seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start
774
+ else:
775
+ cu_seqlens_q_start = 0
776
+ cu_seqlens_k_start = 0
777
+ seqlen_q = MAX_SEQLENS_Q
778
+ seqlen_k = MAX_SEQLENS_K
779
+
780
+ if continue_condition:
781
+ # Now we compute whether we need to exit early due to causal
782
+ # masking. This is because for seqlen_q > seqlen_k, M rows of the
783
+ # attn scores are completely masked, resulting in 0s written to the
784
+ # output, and inf written to LSE. We don't need to do any GEMMs in
785
+ # this case. This block of code determines what N is, and if this
786
+ # WG is operating on those M rows.
787
+ n_blocks = cdiv_fn(seqlen_k, BLOCK_N)
788
+ if (IS_CAUSAL):
789
+ # If seqlen_q == seqlen_k, the attn scores are a square matrix.
790
+ # If seqlen_q != seqlen_k, attn scores are rectangular which
791
+ # means the causal mask boundary is bottom right aligned, and
792
+ # ends at either the top edge (seqlen_q < seqlen_k) or left
793
+ # edge. This captures the decrease in n_blocks if we have a
794
+ # rectangular attn matrix
795
+ n_blocks_seqlen = cdiv_fn(
796
+ (start_m + 1) * BLOCK_M + seqlen_k - seqlen_q, BLOCK_N)
797
+ # This is what adjusts the block_max for the current WG, only
798
+ # if IS_CAUSAL. Otherwise we want to always iterate through all
799
+ # n_blocks
800
+ n_blocks = min(n_blocks, n_blocks_seqlen)
801
+ # If we have no blocks after adjusting for seqlen deltas, this
802
+ # WG is part of the blocks that are all 0. We exit early.
803
+ if n_blocks <= 0:
804
+ o_offset = (Out + off_z * stride_oz + off_h_q * stride_oh +
805
+ cu_seqlens_q_start * stride_om)
806
+ o_ptrs = (o_offset + offs_m[:, None] * stride_om +
807
+ offs_d[None, :] * stride_on)
808
+ acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
809
+ o_ptrs_mask = (offs_m[:, None] < seqlen_q).broadcast_to(
810
+ [BLOCK_M, BLOCK_DMODEL])
811
+ # We still need to write 0s to the result
812
+ tl.store(o_ptrs, acc, mask=o_ptrs_mask)
813
+ # The tensor allocated for L is based on MAX_SEQLENS_Q as
814
+ # that is statically known.
815
+ l_ptrs = (L + off_z * HQ * MAX_SEQLENS_Q +
816
+ off_h_q * MAX_SEQLENS_Q + offs_m)
817
+ # We store inf to LSE, not -inf because in the bwd pass,
818
+ # we subtract this from qk which makes it -inf, such that
819
+ # exp(qk - inf) = 0 for these masked blocks.
820
+ l_value = tl.full([BLOCK_M],
821
+ value=float("inf"),
822
+ dtype=tl.float32)
823
+ l_ptrs_mask = offs_m < MAX_SEQLENS_Q
824
+ tl.store(l_ptrs, l_value, mask=l_ptrs_mask)
825
+ # TODO: Should dropout and return encoded softmax be
826
+ # handled here too?
827
+ continue_condition = False
828
+ # return
829
+
830
+ if continue_condition:
831
+ # If MQA / GQA, set the K and V head offsets appropriately.
832
+ GROUP_SIZE: tl.constexpr = HQ // HK
833
+ off_h_k = off_h_q // GROUP_SIZE if GROUP_SIZE != 1 else off_h_q
834
+ n_extra_tokens = 0
835
+ if seqlen_k < BLOCK_N:
836
+ n_extra_tokens = BLOCK_N - seqlen_k
837
+ elif seqlen_k % BLOCK_N:
838
+ n_extra_tokens = seqlen_k % BLOCK_N
839
+ USE_PADDED_HEAD: tl.constexpr = (IS_ACTUAL_BLOCK_DMODEL
840
+ != BLOCK_DMODEL)
841
+
842
+ # Compute pointers for all the tensors used in this kernel.
843
+ q_offset = (Q + off_z * stride_qz + off_h_q * stride_qh +
844
+ cu_seqlens_q_start * stride_qm)
845
+ q_ptrs = (q_offset + offs_m[:, None] * stride_qm +
846
+ offs_d[None, :] * stride_qk)
847
+ k_offset = (K + off_z * stride_kz + off_h_k * stride_kh +
848
+ cu_seqlens_k_start * stride_kn)
849
+ k_ptrs = (k_offset + offs_d[:, None] * stride_kk +
850
+ offs_n[None, :] * stride_kn)
851
+ v_offset = (V + off_z * stride_vz + off_h_k * stride_vh +
852
+ cu_seqlens_k_start * stride_vk)
853
+ v_ptrs = (v_offset + offs_n[:, None] * stride_vk +
854
+ offs_d[None, :] * stride_vn)
855
+ # Compute pointers for all scale tensors used in this kernel.
856
+
857
+ IS_EIGHT_BIT_GEMM: tl.constexpr = IS_EIGHT_BIT & (
858
+ not IS_EIGHT_BIT_KV)
859
+ if IS_EIGHT_BIT:
860
+ if k_descale_has_singleton:
861
+ k_descale_ptrs = k_descale_ptr
862
+ else:
863
+ k_descale_ptrs = k_descale_ptr + off_h_k
864
+
865
+ if v_descale_has_singleton:
866
+ v_descale_ptrs = v_descale_ptr
867
+ else:
868
+ v_descale_ptrs = v_descale_ptr + off_h_k
869
+
870
+ if not IS_EIGHT_BIT_KV:
871
+ if q_descale_has_singleton:
872
+ q_descale_ptrs = q_descale_ptr
873
+ else:
874
+ q_descale_ptrs = q_descale_ptr + off_h_q
875
+ if USE_P_SCALE:
876
+ if p_descale_has_singleton:
877
+ p_scale_ptrs = p_scale_ptr
878
+ p_descale_ptrs = p_descale_ptr
879
+ else:
880
+ p_scale_ptrs = p_scale_ptr + off_h_q
881
+ p_descale_ptrs = p_descale_ptr + off_h_q
882
+
883
+ if USE_BIAS:
884
+ bias_offset = off_h_q * stride_bh
885
+ bias_ptrs = (bias + bias_offset + offs_m[:, None] * stride_bm +
886
+ offs_n[None, :] * stride_bn)
887
+ else:
888
+ bias_ptrs = None
889
+
890
+ if USE_ALIBI:
891
+ a_offset = off_z * stride_az + off_h_q * stride_ah
892
+ alibi_slope = tl.load(alibi_slopes + a_offset)
893
+ else:
894
+ alibi_slope = None
895
+
896
+ batch_philox_offset = 0
897
+ # We can ask to return the dropout mask without doing any
898
+ # dropout. In this case, we return an invalid pointer so
899
+ # indicate the mask is not valid.
900
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
901
+ encoded_sm_base = (encoded_softmax +
902
+ off_h_q * seqlen_q * seqlen_k)
903
+ encoded_sm_ptrs = (encoded_sm_base +
904
+ offs_m[:, None] * seqlen_k +
905
+ offs_n[None, :])
906
+ else:
907
+ encoded_sm_ptrs = None
908
+ # initialize pointer to m and l
909
+ m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
910
+ l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32)
911
+ acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
912
+ # scale sm_scale by log_2(e) and use 2^x in the loop as we do
913
+ # not have native e^x support in HW.
914
+ QK_SCALE: tl.constexpr = SM_SCALE * 1.44269504089
915
+ # Q is loaded once at the beginning and shared by all N blocks.
916
+ q_ptrs_mask = offs_m[:, None] < seqlen_q
917
+ if USE_PADDED_HEAD:
918
+ q_ptrs_mask = q_ptrs_mask & (offs_d[None, :]
919
+ < IS_ACTUAL_BLOCK_DMODEL)
920
+ q = tl.load(q_ptrs, mask=q_ptrs_mask, other=0.0)
921
+
922
+ if IS_EIGHT_BIT:
923
+ k_descale = tl.load(k_descale_ptrs)
924
+ v_descale = tl.load(v_descale_ptrs)
925
+ q_descale = None if IS_EIGHT_BIT_KV else tl.load(
926
+ q_descale_ptrs)
927
+ if USE_P_SCALE:
928
+ p_scale = tl.load(p_scale_ptrs)
929
+ p_descale = tl.load(p_descale_ptrs)
930
+ else:
931
+ p_scale = None
932
+ p_descale = None
933
+ else:
934
+ q_descale = None
935
+ k_descale = None
936
+ v_descale = None
937
+ p_scale = None
938
+ p_descale = None
939
+ # Here we compute how many full and masked blocks we have.
940
+ padded_block_k = n_extra_tokens != 0
941
+ is_modulo_mn = not padded_block_k and (seqlen_q % BLOCK_M == 0)
942
+ if IS_CAUSAL:
943
+ # There are always at least BLOCK_M // BLOCK_N masked
944
+ # blocks. Additionally there might be one more due to
945
+ # dissimilar seqlens.
946
+ masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn)
947
+ else:
948
+ # Padding on Q does not need to be masked in the FA loop.
949
+ masked_blocks = padded_block_k
950
+ # if IS_CAUSAL, not is_modulo_mn does not always result in an
951
+ # additional block. In this case we might exceed n_blocks so
952
+ # pick the min.
953
+ masked_blocks = min(masked_blocks, n_blocks)
954
+ n_full_blocks = n_blocks - masked_blocks
955
+ block_min = 0
956
+ block_max = n_blocks * BLOCK_N
957
+ # Compute for full blocks. Here we set causal to false
958
+ # regardless of its actual value because there is no masking.
959
+ # Similarly we do not need padding.
960
+ if n_full_blocks > 0:
961
+ block_max = (n_blocks - masked_blocks) * BLOCK_N
962
+ acc, l_i, m_i = _attn_fwd_inner(
963
+ acc,
964
+ l_i,
965
+ m_i,
966
+ q,
967
+ k_ptrs,
968
+ v_ptrs,
969
+ bias_ptrs,
970
+ stride_kn,
971
+ stride_vk,
972
+ stride_bn,
973
+ start_m,
974
+ seqlen_k,
975
+ seqlen_q,
976
+ philox_seed,
977
+ batch_philox_offset,
978
+ encoded_sm_ptrs,
979
+ # _, _, offs_n_causal, masked_blocks, n_extra_tokens, _
980
+ block_min,
981
+ block_max,
982
+ 0,
983
+ 0,
984
+ 0,
985
+ alibi_slope,
986
+ q_descale,
987
+ k_descale,
988
+ v_descale,
989
+ p_scale,
990
+ # IS_CAUSAL, ....
991
+ False,
992
+ BLOCK_M,
993
+ BLOCK_DMODEL,
994
+ BLOCK_N,
995
+ offs_m,
996
+ offs_n,
997
+ # _, SHOULD_MASK_STEPS, ...
998
+ SHOULD_PRE_LOAD_V,
999
+ False,
1000
+ SHOULD_RETURN_ENCODED_SOFTMAX,
1001
+ USE_PADDED_HEAD,
1002
+ IS_ACTUAL_BLOCK_DMODEL,
1003
+ QK_SCALE,
1004
+ IS_EIGHT_BIT_GEMM,
1005
+ USE_P_SCALE,
1006
+ IS_EIGHT_BIT_KV,
1007
+ QUANT_DTYPE)
1008
+ block_min = block_max
1009
+ block_max = n_blocks * BLOCK_N
1010
+
1011
+ tl.debug_barrier()
1012
+ # Remaining blocks, if any, are full / not masked.
1013
+ if (masked_blocks > 0):
1014
+ if IS_CAUSAL:
1015
+ offs_n_causal = offs_n + (seqlen_q - seqlen_k)
1016
+ else:
1017
+ offs_n_causal = 0
1018
+ k_ptrs += n_full_blocks * BLOCK_N * stride_kn
1019
+ v_ptrs += n_full_blocks * BLOCK_N * stride_vk
1020
+ if USE_BIAS:
1021
+ bias_ptrs += n_full_blocks * BLOCK_N * stride_bn
1022
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
1023
+ encoded_sm_ptrs += n_full_blocks * BLOCK_N
1024
+ acc, l_i, m_i = _attn_fwd_inner(
1025
+ acc,
1026
+ l_i,
1027
+ m_i,
1028
+ q,
1029
+ k_ptrs,
1030
+ v_ptrs,
1031
+ bias_ptrs,
1032
+ stride_kn,
1033
+ stride_vk,
1034
+ stride_bn,
1035
+ start_m,
1036
+ seqlen_k,
1037
+ seqlen_q,
1038
+ philox_seed,
1039
+ batch_philox_offset,
1040
+ encoded_sm_ptrs,
1041
+ block_min,
1042
+ block_max,
1043
+ offs_n_causal,
1044
+ masked_blocks,
1045
+ n_extra_tokens,
1046
+ alibi_slope,
1047
+ q_descale,
1048
+ k_descale,
1049
+ v_descale,
1050
+ p_scale,
1051
+ IS_CAUSAL,
1052
+ BLOCK_M,
1053
+ BLOCK_DMODEL,
1054
+ BLOCK_N,
1055
+ offs_m,
1056
+ offs_n,
1057
+ # _, SHOULD_MASK_STEPS, ...
1058
+ SHOULD_PRE_LOAD_V,
1059
+ True,
1060
+ SHOULD_RETURN_ENCODED_SOFTMAX,
1061
+ USE_PADDED_HEAD,
1062
+ IS_ACTUAL_BLOCK_DMODEL,
1063
+ QK_SCALE,
1064
+ IS_EIGHT_BIT_GEMM,
1065
+ USE_P_SCALE,
1066
+ IS_EIGHT_BIT_KV,
1067
+ QUANT_DTYPE)
1068
+
1069
+ if IS_EIGHT_BIT and not IS_EIGHT_BIT_KV:
1070
+ if USE_P_SCALE:
1071
+ acc *= p_descale
1072
+ acc *= v_descale
1073
+
1074
+ # epilogue
1075
+ # This helps the compiler do Newton Raphson on l_i vs on acc
1076
+ # which is much larger.
1077
+ l_recip = 1 / l_i[:, None]
1078
+ acc = acc * l_recip
1079
+
1080
+ # If seqlen_q > seqlen_k but the delta is not a multiple of
1081
+ # BLOCK_M, then we have one block with a row of all NaNs which
1082
+ # come from computing softmax over a row of all
1083
+ # -infs (-inf - inf = NaN). We check for that here and store 0s
1084
+ # where there are NaNs as these rows should've been zeroed out.
1085
+ end_m_idx = (start_m + 1) * BLOCK_M
1086
+ start_m_idx = start_m * BLOCK_M
1087
+ causal_start_idx = seqlen_q - seqlen_k
1088
+ if IS_EIGHT_BIT and not IS_EIGHT_BIT_KV: # noqa: SIM102
1089
+ if o_descale_ptr is not None:
1090
+ acc = quant_fp8(acc, o_descale)
1091
+
1092
+ acc = acc.to(Out.type.element_ty)
1093
+ if IS_CAUSAL: # noqa: SIM102
1094
+ if (causal_start_idx > start_m_idx
1095
+ and causal_start_idx < end_m_idx):
1096
+ out_mask_boundary = tl.full((BLOCK_DMODEL, ),
1097
+ causal_start_idx,
1098
+ dtype=tl.int32)
1099
+ mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M)
1100
+ out_ptrs_mask = (mask_m_offsets[:, None]
1101
+ >= out_mask_boundary[None, :])
1102
+ z = tl.zeros((1, ), tl.float32)
1103
+ acc = tl.where(out_ptrs_mask, acc,
1104
+ z.to(acc.type.element_ty))
1105
+ # write back LSE
1106
+ l_ptrs = (L + off_z * HQ * MAX_SEQLENS_Q +
1107
+ off_h_q * MAX_SEQLENS_Q + offs_m)
1108
+ # If seqlen_q not multiple of BLOCK_M, we need to mask out the
1109
+ # last few rows. This is only true for the last M block.
1110
+ # For others, overflow_size will be -ve
1111
+ overflow_size = end_m_idx - seqlen_q
1112
+ if overflow_size > 0:
1113
+ boundary = tl.full((BLOCK_M, ),
1114
+ BLOCK_M - overflow_size,
1115
+ dtype=tl.int32)
1116
+ l_ptrs_mask = tl.arange(0, BLOCK_M) < boundary
1117
+ tl.store(l_ptrs, m_i + tl.math.log2(l_i), mask=l_ptrs_mask)
1118
+ else:
1119
+ tl.store(l_ptrs, m_i + tl.math.log2(l_i))
1120
+
1121
+ # write back O
1122
+ o_offset = (Out + off_z * stride_oz + off_h_q * stride_oh +
1123
+ cu_seqlens_q_start * stride_om)
1124
+ o_ptrs = (o_offset + offs_m[:, None] * stride_om +
1125
+ offs_d[None, :] * stride_on)
1126
+ o_ptrs_mask = tl.full([BLOCK_M, BLOCK_DMODEL], 1, dtype=tl.int1)
1127
+ if overflow_size > 0:
1128
+ o_ptrs_mask = o_ptrs_mask & (offs_m[:, None] < seqlen_q)
1129
+ if USE_PADDED_HEAD:
1130
+ o_ptrs_mask = o_ptrs_mask & (offs_d[None, :]
1131
+ < IS_ACTUAL_BLOCK_DMODEL)
1132
+ tl.store(o_ptrs, acc.to(Out.dtype.element_ty), mask=o_ptrs_mask)
1133
+
1134
+
1135
+ def get_shape_from_layout(q, k, metadata):
1136
+ assert metadata.layout in SUPPORTED_LAYOUTS, "Got unsupported layout."
1137
+
1138
+ if metadata.layout == 'thd':
1139
+ nheads_q, nheads_k = q.shape[1], k.shape[1]
1140
+ head_size = q.shape[-1]
1141
+ batch = metadata.num_contexts
1142
+ elif metadata.layout == 'bhsd':
1143
+ batch, nheads_q, _, head_size = q.shape
1144
+ nheads_k = k.shape[1]
1145
+ elif metadata.layout == 'bshd':
1146
+ batch, _, nheads_q, head_size = q.shape
1147
+ nheads_k = k.shape[2]
1148
+ return batch, nheads_q, nheads_k, head_size
1149
+
1150
+
1151
+ def get_strides_from_layout(q, k, v, o, metadata):
1152
+ assert metadata.layout in SUPPORTED_LAYOUTS, "Got unsupported layout."
1153
+
1154
+ STRIDE_PERMUTATIONS = {
1155
+ 'thd': (None, 1, 0, 2),
1156
+ 'bhsd': (0, 1, 2, 3),
1157
+ 'bshd': (0, 2, 1, 3),
1158
+ }
1159
+
1160
+ perm = STRIDE_PERMUTATIONS[metadata.layout]
1161
+ stride = lambda x, p: (0 if p is None else x.stride(p))
1162
+ strides = lambda x: (stride(x, p) for p in perm)
1163
+
1164
+ return tuple(strides(x) for x in [q, k, v, o])
1165
+
1166
+
1167
+ class _attention(torch.autograd.Function):
1168
+
1169
+ @staticmethod
1170
+ def forward(ctx, q, k, v, o, metadata: MetaData):
1171
+ # NOTE: a large bias tensor leads to overflow during pointer arithmetic
1172
+ if (metadata.bias is not None):
1173
+ assert (metadata.bias.numel() < 2**31)
1174
+
1175
+ if o is None:
1176
+ if metadata.eight_bit:
1177
+ o = torch.empty_like(
1178
+ q,
1179
+ dtype=metadata.output_dtype if metadata.output_dtype
1180
+ is not None else metadata.eight_bit_dtype_torch)
1181
+ else:
1182
+ o = torch.empty_like(q, dtype=q.dtype)
1183
+
1184
+ metadata.check_args(q, k, v, o)
1185
+
1186
+ batch, nheads_q, nheads_k, head_size = get_shape_from_layout(
1187
+ q, k, metadata)
1188
+ q_strides, k_strides, v_strides, o_strides = get_strides_from_layout(
1189
+ q, k, v, o, metadata)
1190
+
1191
+ # Get closest power of 2 over or equal to 32.
1192
+ padded_d_model = 1 << (head_size - 1).bit_length()
1193
+ # Smallest head_dim supported is 16. If smaller, the tile in the
1194
+ # kernel is padded - there is no padding in memory for any dims.
1195
+ padded_d_model = max(padded_d_model, 16)
1196
+
1197
+ # encoded_softmax is used to validate dropout behavior vs the
1198
+ # PyTorch SDPA math backend reference. We zero this out to give a
1199
+ # consistent starting point and then populate it with the output of
1200
+ # softmax with the sign bit set according to the dropout mask.
1201
+ # The resulting return allows this mask to be fed into the reference
1202
+ # implementation for testing only. This return holds no useful output
1203
+ # aside from debugging.
1204
+ if metadata.return_encoded_softmax:
1205
+ encoded_softmax = torch.zeros(
1206
+ (q.shape[0], q.shape[1], q.shape[2], k.shape[2]),
1207
+ device=q.device,
1208
+ dtype=torch.float32)
1209
+ else:
1210
+ encoded_softmax = None
1211
+
1212
+ M = torch.empty((batch, nheads_q, metadata.max_seqlens_q),
1213
+ device=q.device,
1214
+ dtype=torch.float32)
1215
+
1216
+ # Seed the RNG so we get reproducible results for testing.
1217
+ philox_seed = 0x1BF52
1218
+ philox_offset = 0x1D4B42
1219
+
1220
+ if metadata.bias is not None:
1221
+ bias_strides = (metadata.bias.stride(0), metadata.bias.stride(1),
1222
+ metadata.bias.stride(2), metadata.bias.stride(3))
1223
+ else:
1224
+ bias_strides = (0, 0, 0, 0)
1225
+
1226
+ if metadata.alibi_slopes is not None:
1227
+ alibi_strides = (metadata.alibi_slopes.stride(0),
1228
+ metadata.alibi_slopes.stride(1))
1229
+ else:
1230
+ alibi_strides = (0, 0)
1231
+
1232
+ if metadata.eight_bit:
1233
+ q_descale, k_descale, p_scale, p_descale, v_descale, o_scale = (
1234
+ metadata.q_descale, metadata.k_descale, metadata.p_scale,
1235
+ metadata.p_descale, metadata.v_descale, metadata.o_scale)
1236
+ o_descale = 1.0 / o_scale if o_scale is not None else None
1237
+ else:
1238
+ q_descale = k_descale = p_scale = None
1239
+ p_descale = v_descale = o_descale = None
1240
+
1241
+ # number of compute units available
1242
+ NUM_CU = torch.cuda.get_device_properties("cuda").multi_processor_count
1243
+
1244
+ grid = lambda META: (triton.cdiv(metadata.max_seqlens_q, META[
1245
+ 'BLOCK_M']), nheads_q, batch)
1246
+
1247
+ attn_fwd[grid](
1248
+ q,
1249
+ k,
1250
+ v,
1251
+ metadata.bias,
1252
+ metadata.sm_scale,
1253
+ M,
1254
+ o,
1255
+ *q_strides,
1256
+ *k_strides,
1257
+ *v_strides,
1258
+ *o_strides,
1259
+ *bias_strides,
1260
+ *alibi_strides,
1261
+ q_descale,
1262
+ k_descale,
1263
+ p_scale,
1264
+ p_descale,
1265
+ o_descale,
1266
+ v_descale,
1267
+ q_descale.numel() == 1 if q_descale is not None else False,
1268
+ k_descale.numel() == 1 if k_descale is not None else False,
1269
+ p_descale.numel() == 1 if p_descale is not None else False,
1270
+ v_descale.numel() == 1 if v_descale is not None else False,
1271
+ metadata.cu_seqlens_q,
1272
+ metadata.cu_seqlens_k,
1273
+ philox_seed=philox_seed,
1274
+ philox_offset_base=philox_offset,
1275
+ encoded_softmax=encoded_softmax,
1276
+ alibi_slopes=metadata.alibi_slopes,
1277
+ HQ=nheads_q,
1278
+ HK=nheads_k,
1279
+ IS_ACTUAL_BLOCK_DMODEL=head_size,
1280
+ MAX_SEQLENS_Q=metadata.max_seqlens_q,
1281
+ MAX_SEQLENS_K=metadata.max_seqlens_k,
1282
+ IS_CAUSAL=metadata.causal,
1283
+ VARLEN=metadata.varlen,
1284
+ BLOCK_DMODEL=padded_d_model,
1285
+ USE_BIAS=metadata.bias is not None,
1286
+ USE_ALIBI=metadata.alibi_slopes is not None,
1287
+ SHOULD_RETURN_ENCODED_SOFTMAX=metadata.return_encoded_softmax,
1288
+ IS_EIGHT_BIT=metadata.eight_bit,
1289
+ USE_P_SCALE=metadata.eight_bit and metadata.use_p_scale,
1290
+ IS_EIGHT_BIT_KV=metadata.eight_bit and metadata.eight_bit_kv,
1291
+ NUM_CU=NUM_CU,
1292
+ B=batch,
1293
+ QUANT_DTYPE=metadata.eight_bit_dtype_triton)
1294
+
1295
+ ctx.grid = grid
1296
+ ctx.sm_scale = metadata.sm_scale
1297
+ ctx.BLOCK_DMODEL = head_size
1298
+ ctx.causal = metadata.causal
1299
+ ctx.alibi_slopes = metadata.alibi_slopes
1300
+ ctx.philox_seed = philox_seed
1301
+ ctx.philox_offset = philox_offset
1302
+ ctx.encoded_softmax = encoded_softmax
1303
+ ctx.return_encoded_softmax = metadata.return_encoded_softmax
1304
+ return o, encoded_softmax
1305
+
1306
+
1307
+ triton_attention_rocm = _attention.apply
1308
+
1309
+
1310
+ def scale_fp8(t, scale=None):
1311
+ t_scaled, scale_out = ops.scaled_fp8_quant(t.reshape(-1, t.shape[-1]),
1312
+ scale)
1313
+ return t_scaled.reshape(t.shape), scale_out
1314
+
1315
+
1316
+ def maybe_quantize_fp8(t, scale):
1317
+ eight_bit_dtype = current_platform.fp8_dtype()
1318
+ if t.dtype != eight_bit_dtype:
1319
+ t, _ = scale_fp8(t, scale)
1320
+ return t
1321
+
1322
+
1323
+ def check_and_maybe_quantize_qkv(q, k, v, fp8_scales):
1324
+ (q_scale, k_scale, v_scale, p_scale) = fp8_scales
1325
+
1326
+ q = maybe_quantize_fp8(q, q_scale)
1327
+ k = maybe_quantize_fp8(k, k_scale)
1328
+ v = maybe_quantize_fp8(v, v_scale)
1329
+
1330
+ return q, k, v
1331
+
1332
+
1333
+ # query - [num_tokens, num_heads, head_size]
1334
+ # key - [num_tokens, num_kv_heads, head_size]
1335
+ # value - [num_tokens, num_kv_heads, head_size
1336
+ # output - [num_tokens, num_heads, head_size]
1337
+ def triton_attention(
1338
+ q: torch.Tensor,
1339
+ k: torch.Tensor,
1340
+ v: torch.Tensor,
1341
+ o: torch.Tensor,
1342
+ cu_seqlens_q: torch.Tensor,
1343
+ cu_seqlens_k: torch.Tensor,
1344
+ max_seqlens_q: int,
1345
+ max_seqlens_k: int,
1346
+ causal: bool = False,
1347
+ sm_scale: float = 1.0,
1348
+ bias: Optional[torch.Tensor] = None,
1349
+ fp8_scales: Optional[tuple[float, ...]] = None,
1350
+ input_scale: Optional[torch.Tensor] = None,
1351
+ ) -> torch.Tensor:
1352
+ if fp8_scales is not None:
1353
+ q_descale, k_descale, v_descale, p_scale = fp8_scales
1354
+ else:
1355
+ q_descale = k_descale = v_descale = p_scale = None
1356
+
1357
+ attn_metadata = MetaData(sm_scale=sm_scale,
1358
+ max_seqlens_q=max_seqlens_q,
1359
+ max_seqlens_k=max_seqlens_k,
1360
+ causal=causal,
1361
+ bias=bias,
1362
+ output_dtype=q.dtype,
1363
+ cu_seqlens_q=cu_seqlens_q,
1364
+ cu_seqlens_k=cu_seqlens_k,
1365
+ q_descale=q_descale,
1366
+ k_descale=k_descale,
1367
+ v_descale=v_descale,
1368
+ p_scale=p_scale,
1369
+ o_scale=input_scale)
1370
+
1371
+ if fp8_scales is not None:
1372
+ q, k, v = check_and_maybe_quantize_qkv(q, k, v, fp8_scales)
1373
+
1374
+ return triton_attention_rocm(q, k, v, o, attn_metadata)