vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1894 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ import json
3
+ import sys
4
+ from abc import ABC, abstractmethod
5
+ from collections import defaultdict
6
+ from collections.abc import (Callable, Generator, ItemsView, Iterable, Mapping,
7
+ Sequence)
8
+ from dataclasses import dataclass, field
9
+ from enum import Enum
10
+ from functools import lru_cache
11
+ from typing import (TYPE_CHECKING, Generic, NamedTuple, Optional, Protocol,
12
+ TypeVar, Union, cast)
13
+
14
+ import regex as re
15
+ import torch
16
+ from typing_extensions import assert_never
17
+
18
+ from vllm.inputs import InputProcessingContext
19
+ from vllm.jsontree import json_map_leaves, json_reduce_leaves
20
+ from vllm.logger import init_logger
21
+ from vllm.transformers_utils.tokenizer import (AnyTokenizer, decode_tokens,
22
+ encode_tokens)
23
+ from vllm.utils import GiB_bytes, LRUCache, flatten_2d_lists, full_groupby
24
+
25
+ from .hasher import MultiModalHasher
26
+ from .inputs import (MultiModalDataDict, MultiModalEncDecInputs,
27
+ MultiModalFieldConfig, MultiModalInputs, MultiModalKwargs,
28
+ MultiModalKwargsItem, NestedTensors, PlaceholderRange)
29
+ from .parse import (DictEmbeddingItems, EmbeddingItems, MultiModalDataItems,
30
+ MultiModalDataParser)
31
+
32
+ if TYPE_CHECKING:
33
+ from transformers.configuration_utils import PretrainedConfig
34
+ from transformers.feature_extraction_utils import BatchFeature
35
+ from transformers.processing_utils import ProcessorMixin
36
+
37
+ from .profiling import BaseDummyInputsBuilder
38
+
39
+ logger = init_logger(__name__)
40
+
41
+ _S = TypeVar("_S", str, list[int])
42
+
43
+ PromptSeq = Union[str, list[int]]
44
+ """A token sequence (list of token IDs) or text."""
45
+
46
+
47
+ @dataclass
48
+ class PromptIndex:
49
+ """Resolves to an index in the prompt."""
50
+ get_match_index: Callable[[AnyTokenizer, PromptSeq], Optional[int]]
51
+
52
+
53
+ class PromptIndexTargets:
54
+
55
+ @staticmethod
56
+ def start() -> PromptIndex:
57
+ """
58
+ Resolves to the start of the prompt (before the first token).
59
+
60
+ This results in a match even if the prompt is empty.
61
+ """
62
+ return PromptIndex(lambda tok, prompt: 0)
63
+
64
+ @staticmethod
65
+ def prefix(seq: PromptSeq) -> PromptIndex:
66
+ """
67
+ Resolves to a location in the prompt after the given prefix.
68
+ """
69
+
70
+ def get_match_index(
71
+ tokenizer: AnyTokenizer,
72
+ prompt: PromptSeq,
73
+ ) -> Optional[int]:
74
+ prefix = seq
75
+
76
+ if isinstance(prompt, str):
77
+ if not isinstance(prefix, str):
78
+ # Make both `str`
79
+ prefix = decode_tokens(tokenizer, prefix)
80
+ else:
81
+ if isinstance(prefix, str):
82
+ # Make both `list[int]`
83
+ prefix = encode_tokens(tokenizer,
84
+ prefix,
85
+ add_special_tokens=False)
86
+
87
+ match_idx = len(prefix)
88
+ return match_idx if prompt[:match_idx] == prefix else None
89
+
90
+ return PromptIndex(get_match_index)
91
+
92
+ @staticmethod
93
+ def end() -> PromptIndex:
94
+ """
95
+ Resolves to the end of the prompt (after the last token).
96
+
97
+ This results in a match even if the prompt is empty.
98
+ """
99
+ return PromptIndex(lambda tok, prompt: len(prompt))
100
+
101
+
102
+ PromptTarget = Union[PromptSeq, PromptIndex]
103
+ """
104
+ The token sequence or text to update.
105
+ """
106
+
107
+
108
+ @dataclass
109
+ class PromptUpdateDetails(Generic[_S]):
110
+ """Details about the token sequence or text that are part of the update."""
111
+
112
+ full: _S
113
+ """The full content."""
114
+
115
+ is_embed: Optional[Callable[["_BoundPromptSequence"], torch.Tensor]] = None
116
+ """
117
+ Given [`full`][vllm.multimodal.processing.PromptUpdateDetails.full],
118
+ return a boolean mask of shape `(len(full),)` indicating which positions
119
+ of `full` to assign embeddings to.
120
+
121
+ `None` (default) means to assign embeddings to all positions of `full`.
122
+
123
+ The embeddings are obtained by calling
124
+ [`SupportsMultiModal.get_multimodal_embeddings`][vllm.model_executor.models.interfaces.SupportsMultiModal.get_multimodal_embeddings].
125
+ """
126
+
127
+ @staticmethod
128
+ def from_seq(seq: _S) -> "PromptUpdateDetails[_S]":
129
+ return PromptUpdateDetails(full=seq)
130
+
131
+ @staticmethod
132
+ def select_text(
133
+ seq: _S,
134
+ embed_text: str,
135
+ ) -> "PromptUpdateDetails[_S]":
136
+
137
+ def is_embed(full: "_BoundPromptSequence") -> torch.Tensor:
138
+ embed_token_ids = encode_tokens(full.tokenizer, embed_text)
139
+
140
+ return torch.isin(
141
+ torch.tensor(full.token_ids),
142
+ torch.tensor(embed_token_ids),
143
+ )
144
+
145
+ return PromptUpdateDetails(full=seq, is_embed=is_embed)
146
+
147
+ @staticmethod
148
+ def select_token_id(
149
+ seq: _S,
150
+ embed_token_id: int,
151
+ ) -> "PromptUpdateDetails[_S]":
152
+ return PromptUpdateDetails(
153
+ full=seq,
154
+ is_embed=lambda f: torch.tensor(f.token_ids) == embed_token_id,
155
+ )
156
+
157
+
158
+ PromptUpdateInfo = Union[PromptSeq, PromptUpdateDetails]
159
+ """
160
+ The token sequence or text that are part of the update.
161
+
162
+ If only part of the content corresponds to feature placeholders, you can
163
+ use [`PromptUpdateDetails`][vllm.multimodal.processing.PromptUpdateDetails] to
164
+ specify which part.
165
+ """
166
+
167
+ PromptUpdateContent = Union[Callable[[int], PromptUpdateInfo],
168
+ PromptUpdateInfo]
169
+ """
170
+ Given the index of the processed item within
171
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
172
+ output the corresponding token sequence (or text).
173
+
174
+ For convenience, you can directly pass in the token sequence (or text)
175
+ instead of a function if it does not depend on the input.
176
+ """
177
+
178
+
179
+ class UpdateMode(str, Enum):
180
+ INSERT = "insert"
181
+ REPLACE = "replace"
182
+
183
+
184
+ @dataclass
185
+ class PromptUpdate(ABC):
186
+ """
187
+ Defines how to update a prompt with placeholder tokens.
188
+ """
189
+
190
+ modality: str
191
+ """The modality for which the update is made."""
192
+
193
+ target: PromptTarget
194
+ """The token sequence (or text) to update."""
195
+
196
+ @property
197
+ @abstractmethod
198
+ def content(self) -> PromptUpdateContent:
199
+ """The placeholder tokens that are part of the update."""
200
+ raise NotImplementedError
201
+
202
+ @property
203
+ @abstractmethod
204
+ def mode(self) -> UpdateMode:
205
+ """Defines how to update the prompt."""
206
+ raise NotImplementedError
207
+
208
+ def bind(self, tokenizer: AnyTokenizer) -> "BoundPromptUpdate":
209
+ return BoundPromptUpdate(
210
+ _origin=self,
211
+ tokenizer=tokenizer,
212
+ )
213
+
214
+
215
+ @dataclass
216
+ class PromptInsertion(PromptUpdate):
217
+ """
218
+ Defines how to insert placeholder tokens into a prompt.
219
+
220
+ Example:
221
+
222
+ For each image, insert a number of ``<image>`` feature placeholders
223
+ equal to the feature size of the vision encoder after the ``<s>`` token:
224
+
225
+ ```python
226
+ PromptInsertion(
227
+ modality="image",
228
+ target="<s>",
229
+ insertion="<image>" * image_feature_size,
230
+ )
231
+ ```
232
+
233
+ Insert these tokens at the start of the prompt:
234
+
235
+ ```python
236
+ PromptInsertion(
237
+ modality="image",
238
+ target=PromptIndexTargets.start(),
239
+ insertion="<image>" * image_feature_size,
240
+ )
241
+ ```
242
+
243
+ Insert these tokens after a prefix ``Images:``:
244
+
245
+ ```python
246
+ PromptInsertion(
247
+ modality="image",
248
+ target=PromptIndexTargets.prefix("Images:"),
249
+ insertion="<image>" * image_feature_size,
250
+ )
251
+ ```
252
+
253
+ Insert these tokens at the end of the prompt:
254
+
255
+ ```python
256
+ PromptInsertion(
257
+ modality="image",
258
+ target=PromptIndexTargets.end(),
259
+ insertion="<image>" * image_feature_size,
260
+ )
261
+ ```
262
+ """
263
+
264
+ insertion: PromptUpdateContent = field(repr=False)
265
+ """
266
+ Given the index of the processed item within
267
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
268
+ output the token sequence (or text) to insert right after
269
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
270
+
271
+ For convenience, you can directly pass in the token sequence (or text)
272
+ instead of a function if it does not depend on the input.
273
+ """
274
+
275
+ @property
276
+ def content(self) -> PromptUpdateContent:
277
+ return self.insertion
278
+
279
+ @property
280
+ def mode(self) -> UpdateMode:
281
+ return UpdateMode.INSERT
282
+
283
+
284
+ @dataclass
285
+ class PromptReplacement(PromptUpdate):
286
+ """
287
+ Defines how to replace portions of an input prompt with placeholder tokens.
288
+
289
+ Example:
290
+
291
+ For each image, replace one ``<image>`` input placeholder in the prompt
292
+ with a number of ``<image>`` feature placeholders
293
+ equal to the feature size of the vision encoder:
294
+
295
+ ```python
296
+ PromptReplacement(
297
+ modality="image",
298
+ target="<image>",
299
+ replacement="<image>" * image_feature_size,
300
+ )
301
+ ```
302
+
303
+ As above, but further pad the feature placeholders with ``<image_bos>``
304
+ and `<image_eos>``, which are not supposed to be passed to the vision
305
+ encoder:
306
+
307
+ ```python
308
+ PromptReplacement(
309
+ modality="image",
310
+ target="<image>",
311
+ replacement=PromptUpdateDetails(
312
+ full="".join([
313
+ "<image_bos>",
314
+ "<image>" * image_feature_size,
315
+ "<image_eos>",
316
+ ]),
317
+ features="<image>" * image_feature_size,
318
+ ),
319
+ )
320
+ ```
321
+
322
+ To avoid unnecessary tokenization during prompt replacement,
323
+ we recommended passing token sequences instead of text:
324
+
325
+ ```python
326
+ PromptReplacement(
327
+ modality="image",
328
+ target=[image_token_id],
329
+ replacement=PromptUpdateDetails(
330
+ full=([image_bos_id] + [image_token_id] * image_feature_size
331
+ + [image_eos_id]),
332
+ features=[image_token_id] * image_feature_size,
333
+ ),
334
+ )
335
+ ```
336
+ """
337
+
338
+ replacement: PromptUpdateContent = field(repr=False)
339
+ """
340
+ Given the index of the processed item within
341
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
342
+ output the token sequence (or text) to replace
343
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
344
+
345
+ For convenience, you can directly pass in the token sequence (or text)
346
+ instead of a function if it does not depend on the input.
347
+ """
348
+
349
+ @property
350
+ def content(self) -> PromptUpdateContent:
351
+ return self.replacement
352
+
353
+ @property
354
+ def mode(self) -> UpdateMode:
355
+ return UpdateMode.REPLACE
356
+
357
+
358
+ @lru_cache(maxsize=2048)
359
+ def _cached_encode(
360
+ tokenizer: AnyTokenizer,
361
+ text: str,
362
+ *,
363
+ add_special_tokens: Optional[bool] = None,
364
+ ) -> list[int]:
365
+ return encode_tokens(tokenizer,
366
+ text,
367
+ add_special_tokens=add_special_tokens)
368
+
369
+
370
+ @lru_cache(maxsize=2048)
371
+ def _cached_decode(
372
+ tokenizer: AnyTokenizer,
373
+ token_ids: tuple[int, ...],
374
+ *,
375
+ skip_special_tokens: Optional[bool] = None,
376
+ ) -> str:
377
+ return decode_tokens(tokenizer,
378
+ list(token_ids),
379
+ skip_special_tokens=skip_special_tokens)
380
+
381
+
382
+ class _HasModalityAttr(Protocol):
383
+ modality: str
384
+
385
+
386
+ class _HasModalityProp(Protocol):
387
+
388
+ @property
389
+ def modality(self) -> str:
390
+ ...
391
+
392
+
393
+ _M = TypeVar("_M", bound=Union[_HasModalityAttr, _HasModalityProp])
394
+
395
+
396
+ def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
397
+ """Convenience function to apply [`full_groupby`][vllm.utils.full_groupby]
398
+ based on modality."""
399
+ return full_groupby(values, key=lambda x: x.modality)
400
+
401
+
402
+ @dataclass
403
+ class _BoundPromptSequence:
404
+ """
405
+ A [`_PromptSeq`][vllm.multimodal.processing.PromptSeq] bound
406
+ to a tokenizer to automatically
407
+ convert between token sequence and text representations.
408
+ """
409
+ tokenizer: AnyTokenizer = field(repr=False)
410
+
411
+ _text: Optional[str]
412
+ _token_ids: Optional[list[int]]
413
+
414
+ @staticmethod
415
+ def from_seq(
416
+ tokenizer: AnyTokenizer,
417
+ seq: PromptSeq,
418
+ ) -> "_BoundPromptSequence":
419
+ return _BoundPromptSequence(
420
+ tokenizer=tokenizer,
421
+ _text=seq if isinstance(seq, str) else None,
422
+ _token_ids=seq if isinstance(seq, list) else None,
423
+ )
424
+
425
+ def __post_init__(self) -> None:
426
+ if self._text is None and self._token_ids is None:
427
+ raise ValueError("At least one of 'text' and 'token_ids' must be "
428
+ "specified")
429
+
430
+ @property
431
+ def text(self) -> str:
432
+ if self._text is None:
433
+ assert self._token_ids is not None
434
+ self._text = _cached_decode(self.tokenizer, tuple(self._token_ids))
435
+
436
+ return self._text
437
+
438
+ @property
439
+ def token_ids(self) -> list[int]:
440
+ if self._token_ids is None:
441
+ assert self._text is not None
442
+ self._token_ids = _cached_encode(self.tokenizer,
443
+ self._text,
444
+ add_special_tokens=False)
445
+
446
+ return self._token_ids
447
+
448
+
449
+ @dataclass
450
+ class _BoundPromptContent:
451
+ full: _BoundPromptSequence
452
+ is_embed: Optional[Callable[["_BoundPromptSequence"], torch.Tensor]]
453
+
454
+
455
+ @dataclass
456
+ class BoundPromptUpdate:
457
+ """
458
+ A [`PromptUpdate`][vllm.multimodal.processing.PromptUpdate] bound
459
+ to a tokenizer to automatically convert
460
+ [`target`][vllm.multimodal.processing.PromptUpdate.target] and the result of
461
+ [`get_content`][vllm.multimodal.processing.BoundPromptUpdate.get_content]
462
+ between token sequence and text representations.
463
+ """
464
+ _origin: PromptUpdate
465
+ tokenizer: AnyTokenizer = field(repr=False)
466
+
467
+ def __post_init__(self) -> None:
468
+ self._content_cache = dict[int, _BoundPromptContent]()
469
+
470
+ @property
471
+ def modality(self) -> str:
472
+ return self._origin.modality
473
+
474
+ @property
475
+ def target(self) -> Union[_BoundPromptSequence, PromptIndex]:
476
+ """The token sequence (or text) to update."""
477
+ target = self._origin.target
478
+
479
+ if isinstance(target, PromptIndex):
480
+ return target
481
+
482
+ return _BoundPromptSequence.from_seq(self.tokenizer, target)
483
+
484
+ @property
485
+ def content(self) -> PromptUpdateContent:
486
+ """The placeholder tokens that are part of the update."""
487
+ return self._origin.content
488
+
489
+ @property
490
+ def mode(self) -> UpdateMode:
491
+ """Defines how to update the prompt."""
492
+ return self._origin.mode
493
+
494
+ def get_content(self, item_idx: int) -> _BoundPromptContent:
495
+ """
496
+ Given the index of the processed item within
497
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
498
+ output the token sequence (or text) to update.
499
+ """
500
+ content = self.content
501
+ if callable(content):
502
+ cache_key = item_idx
503
+ if cache_key in self._content_cache:
504
+ return self._content_cache[cache_key]
505
+
506
+ content = content(item_idx)
507
+ else:
508
+ cache_key = None
509
+
510
+ if not isinstance(content, PromptUpdateDetails):
511
+ content = PromptUpdateDetails.from_seq(content)
512
+
513
+ bound_full = _BoundPromptSequence.from_seq(self.tokenizer,
514
+ content.full)
515
+ bound_content = _BoundPromptContent(full=bound_full,
516
+ is_embed=content.is_embed)
517
+
518
+ if cache_key is not None:
519
+ self._content_cache[cache_key] = bound_content
520
+
521
+ return bound_content
522
+
523
+
524
+ class _TokenMatch(NamedTuple):
525
+ start_idx: int
526
+ end_idx: int
527
+
528
+
529
+ def iter_token_matches(
530
+ token_ids: list[int],
531
+ match_ids: list[int],
532
+ ) -> Generator[_TokenMatch]:
533
+ """
534
+ Yield each occurrence of `match_ids` in `token_ids`.
535
+
536
+ Note that empty matches are ignored.
537
+ """
538
+ prompt_len = len(token_ids)
539
+ match_len = len(match_ids)
540
+
541
+ if match_len == 0:
542
+ return
543
+
544
+ start_idx = 0
545
+ while start_idx < prompt_len - match_len + 1:
546
+ end_idx = start_idx + match_len
547
+
548
+ if token_ids[start_idx:end_idx] == match_ids:
549
+ yield _TokenMatch(start_idx=start_idx, end_idx=end_idx)
550
+
551
+ # Exclude overlapping matches
552
+ start_idx = end_idx
553
+ else:
554
+ start_idx += 1
555
+
556
+
557
+ def replace_token_matches(
558
+ token_ids: list[int],
559
+ match_ids: list[int],
560
+ new_ids: list[int],
561
+ ) -> list[int]:
562
+ """
563
+ Replace each occurrence of `match_ids` in `token_ids`
564
+ with `new_ids`.
565
+
566
+ Note that empty matches are ignored.
567
+ """
568
+ out_seqs = list[list[int]]()
569
+ prev_end_idx = 0
570
+
571
+ for match in iter_token_matches(token_ids, match_ids):
572
+ start_idx = match.start_idx
573
+ end_idx = match.end_idx
574
+
575
+ out_seqs.append(token_ids[prev_end_idx:start_idx])
576
+ out_seqs.append(new_ids)
577
+ prev_end_idx = end_idx
578
+
579
+ out_seqs.append(token_ids[prev_end_idx:])
580
+
581
+ return flatten_2d_lists(out_seqs)
582
+
583
+
584
+ @dataclass(repr=False)
585
+ class PromptTargetMatch(ABC):
586
+ _origin: BoundPromptUpdate
587
+
588
+ @property
589
+ def modality(self) -> str:
590
+ return self._origin.modality
591
+
592
+ @property
593
+ @abstractmethod
594
+ def start_idx(self) -> int:
595
+ raise NotImplementedError
596
+
597
+ @property
598
+ @abstractmethod
599
+ def end_idx(self) -> int:
600
+ raise NotImplementedError
601
+
602
+ def __repr__(self) -> str:
603
+ return (f"{type(self).__name__}(modality={self.modality!r}, "
604
+ f"start_idx={self.start_idx!r}, end_idx={self.end_idx!r})")
605
+
606
+
607
+ @dataclass(repr=False)
608
+ class _PromptTargetIndexMatch(PromptTargetMatch):
609
+ match_idx: int
610
+
611
+ @property
612
+ def start_idx(self) -> int:
613
+ return self.match_idx
614
+
615
+ @property
616
+ def end_idx(self) -> int:
617
+ return self.match_idx
618
+
619
+
620
+ @dataclass(repr=False)
621
+ class _PromptTargetTokenMatch(PromptTargetMatch):
622
+ match: _TokenMatch
623
+
624
+ @property
625
+ def start_idx(self) -> int:
626
+ return self.match.start_idx
627
+
628
+ @property
629
+ def end_idx(self) -> int:
630
+ return self.match.end_idx
631
+
632
+
633
+ @dataclass(repr=False)
634
+ class _PromptTargetTextMatch(PromptTargetMatch):
635
+ match: re.Match[str]
636
+
637
+ @property
638
+ def start_idx(self) -> int:
639
+ return self.match.start()
640
+
641
+ @property
642
+ def end_idx(self) -> int:
643
+ return self.match.end()
644
+
645
+
646
+ @dataclass
647
+ class PlaceholderFeaturesInfo:
648
+ modality: str
649
+ item_idx: int
650
+ start_idx: int
651
+ tokens: list[int]
652
+ is_embed: Optional[torch.Tensor]
653
+
654
+ @property
655
+ def length(self) -> int:
656
+ return len(self.tokens)
657
+
658
+ def to_range(self) -> PlaceholderRange:
659
+ # TODO: Is it worth it to optimize this by stripping the
660
+ # leading and ending positions where `is_embed=False`?
661
+ return PlaceholderRange(
662
+ offset=self.start_idx,
663
+ length=self.length,
664
+ is_embed=self.is_embed,
665
+ )
666
+
667
+
668
+ def find_token_matches(
669
+ prompt: list[int],
670
+ prompt_updates: Sequence[BoundPromptUpdate],
671
+ ) -> Sequence[PromptTargetMatch]:
672
+ """Return each target of `prompt_updates` found in `prompt`."""
673
+
674
+ def get_matches(update: BoundPromptUpdate):
675
+ target = update.target
676
+
677
+ if isinstance(target, PromptIndex):
678
+ match_idx = target.get_match_index(update.tokenizer, prompt)
679
+ if match_idx is None:
680
+ return []
681
+
682
+ return [_PromptTargetIndexMatch(update, match_idx)]
683
+
684
+ return [
685
+ _PromptTargetTokenMatch(update, match)
686
+ for match in iter_token_matches(prompt, target.token_ids)
687
+ ]
688
+
689
+ return [
690
+ match for update in prompt_updates for match in get_matches(update)
691
+ ]
692
+
693
+
694
+ def find_text_matches(
695
+ prompt: str,
696
+ prompt_updates: Sequence[BoundPromptUpdate],
697
+ ) -> Sequence[PromptTargetMatch]:
698
+ """Return each target of `prompt_updates` found in `prompt`."""
699
+
700
+ def get_matches(update: BoundPromptUpdate):
701
+ target = update.target
702
+
703
+ if isinstance(target, PromptIndex):
704
+ match_idx = target.get_match_index(update.tokenizer, prompt)
705
+ if match_idx is None:
706
+ return []
707
+
708
+ return [_PromptTargetIndexMatch(update, match_idx)]
709
+
710
+ return [
711
+ _PromptTargetTextMatch(update, match)
712
+ for match in re.finditer(re.escape(target.text), prompt)
713
+ ]
714
+
715
+ return [
716
+ match for update in prompt_updates for match in get_matches(update)
717
+ ]
718
+
719
+
720
+ def _resolve_matches(
721
+ prompt: PromptSeq,
722
+ mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
723
+ ) -> list[PromptTargetMatch]:
724
+ """
725
+ Resolve `mm_matches` to ensure that there are no overlapping matches,
726
+ and sort them such that earlier matches take priority over later ones.
727
+ """
728
+ matches = [m for matches in mm_matches.values() for m in matches]
729
+
730
+ seen_matches: list[Optional[PromptTargetMatch]] = [None] * len(prompt)
731
+
732
+ for match in matches:
733
+ for idx in range(match.start_idx, match.end_idx):
734
+ if seen_matches[idx] is not None:
735
+ raise ValueError("Found overlapping matches "
736
+ f"({seen_matches[idx]} and {match}) "
737
+ f"at index={idx} of prompt={prompt}")
738
+
739
+ seen_matches[idx] = match
740
+
741
+ return sorted(matches, key=lambda x: x.start_idx)
742
+
743
+
744
+ def _apply_matches(
745
+ prompt: _S,
746
+ mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
747
+ mm_item_counts: Mapping[str, int],
748
+ ) -> list[_S]:
749
+ """Apply the updates in `mm_matches` to `prompt`."""
750
+ out_seqs = list[Union[str, list[int]]]()
751
+ prev_end_idx = 0
752
+ next_idx_by_modality = defaultdict[str, int](lambda: 0)
753
+
754
+ for match in _resolve_matches(prompt, mm_matches):
755
+ modality = match.modality
756
+
757
+ item_start_idx = next_idx_by_modality[modality]
758
+ max_item_count = mm_item_counts.get(modality, 0)
759
+ if item_start_idx >= max_item_count:
760
+ continue
761
+
762
+ start_idx = match.start_idx
763
+ end_idx = match.end_idx
764
+ origin = match._origin
765
+ mode = origin.mode
766
+
767
+ if mode == UpdateMode.INSERT:
768
+ out_seqs.append(prompt[prev_end_idx:end_idx])
769
+ num_inserts = max_item_count
770
+ elif mode == UpdateMode.REPLACE:
771
+ out_seqs.append(prompt[prev_end_idx:start_idx])
772
+ num_inserts = max_item_count if start_idx == end_idx else 1
773
+ else:
774
+ assert_never(mode)
775
+
776
+ item_end_idx = min(item_start_idx + num_inserts, max_item_count)
777
+
778
+ for item_idx in range(item_start_idx, item_end_idx):
779
+ content = origin.get_content(item_idx)
780
+ insert_seq = (content.full.text if isinstance(prompt, str) else
781
+ content.full.token_ids)
782
+
783
+ out_seqs.append(insert_seq)
784
+
785
+ prev_end_idx = end_idx
786
+ next_idx_by_modality[modality] += item_end_idx - item_start_idx
787
+
788
+ out_seqs.append(prompt[prev_end_idx:])
789
+
790
+ return cast(list[_S], out_seqs)
791
+
792
+
793
+ def apply_token_matches(
794
+ prompt: list[int],
795
+ mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
796
+ mm_item_counts: Mapping[str, int],
797
+ ) -> list[int]:
798
+ """Apply the updates in `mm_matches` to `prompt`."""
799
+ if not mm_matches:
800
+ return prompt
801
+
802
+ token_id_seqs = _apply_matches(prompt, mm_matches, mm_item_counts)
803
+
804
+ return flatten_2d_lists(token_id_seqs)
805
+
806
+
807
+ def apply_text_matches(
808
+ prompt: str,
809
+ mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
810
+ mm_item_counts: Mapping[str, int],
811
+ ) -> str:
812
+ """Apply the updates in `mm_matches` to `prompt`."""
813
+ if not mm_matches:
814
+ return prompt
815
+
816
+ texts = _apply_matches(prompt, mm_matches, mm_item_counts)
817
+
818
+ return "".join(texts)
819
+
820
+
821
+ def _iter_placeholders(
822
+ mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
823
+ prompt: list[int],
824
+ mm_item_counts: Mapping[str, int],
825
+ ) -> Iterable[PlaceholderFeaturesInfo]:
826
+ """
827
+ Yield each set of placeholder tokens found in `prompt`.
828
+
829
+ Matches are exclusive even when multiple modalities share
830
+ the same placeholder tokens. In that case, the modality that
831
+ appears earlier in `mm_prompt_updates` takes priority.
832
+
833
+ Note that empty matches are ignored.
834
+ """
835
+ prompt_len = len(prompt)
836
+ item_idx_by_modality = defaultdict[str, int](lambda: 0)
837
+
838
+ start_idx = 0
839
+ while start_idx < prompt_len:
840
+ found = False
841
+
842
+ for modality, modality_updates in mm_prompt_updates.items():
843
+ item_idx = item_idx_by_modality[modality]
844
+ if item_idx >= mm_item_counts.get(modality, 0):
845
+ continue
846
+
847
+ for update_info in modality_updates:
848
+ content = update_info.get_content(item_idx)
849
+ content_tokens_full = content.full.token_ids
850
+ content_len_full = len(content_tokens_full)
851
+ end_idx_full = start_idx + content_len_full
852
+
853
+ if content_len_full == 0 or end_idx_full > prompt_len:
854
+ continue
855
+
856
+ if prompt[start_idx:end_idx_full] == content_tokens_full:
857
+ content_is_embed = content.is_embed
858
+ if content_is_embed is not None:
859
+ content_is_embed = content_is_embed(content.full)
860
+
861
+ yield PlaceholderFeaturesInfo(
862
+ modality=modality,
863
+ item_idx=item_idx,
864
+ start_idx=start_idx,
865
+ tokens=content_tokens_full,
866
+ is_embed=content_is_embed,
867
+ )
868
+
869
+ # Exclude overlapping matches
870
+ start_idx = end_idx_full
871
+ item_idx_by_modality[modality] += 1
872
+ found = True
873
+ break
874
+
875
+ if found:
876
+ break # Go back to the outer while loop
877
+
878
+ if not found:
879
+ start_idx += 1
880
+
881
+
882
+ def find_mm_placeholders(
883
+ mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
884
+ prompt: list[int],
885
+ mm_item_counts: Mapping[str, int],
886
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
887
+ it = _iter_placeholders(mm_prompt_updates, prompt, mm_item_counts)
888
+ return dict(full_groupby_modality(it))
889
+
890
+
891
+ _V = TypeVar("_V", bound="Union[MultiModalKwargs, MultiModalKwargsItem]")
892
+
893
+
894
+ class ProcessingCacheOptionalItem(NamedTuple):
895
+ key: str
896
+ value: Optional[MultiModalKwargsItem]
897
+
898
+
899
+ class ProcessingCacheItem(NamedTuple):
900
+ key: str
901
+ value: MultiModalKwargsItem
902
+
903
+
904
+ class ProcessingCache:
905
+
906
+ @staticmethod
907
+ def get_lru_cache(
908
+ capacity_gb: float,
909
+ value_type: type[_V],
910
+ *,
911
+ debug: bool = False,
912
+ ) -> LRUCache[str, _V]:
913
+
914
+ def get_leaf_size(leaf: object) -> int:
915
+ # MultiModalKwargs is not a subclass of dict
916
+ if isinstance(leaf, MultiModalKwargs):
917
+ return get_item_size(leaf.data)
918
+
919
+ # MultiModalKwargsItem is not a subclass of dict
920
+ if isinstance(leaf, MultiModalKwargsItem):
921
+ leaf_data = {k: v.data for k, v in leaf.items()}
922
+ return get_item_size(leaf_data)
923
+
924
+ # sys.getsizeof doesn't work for tensors
925
+ if isinstance(leaf, torch.Tensor):
926
+ return leaf.nbytes
927
+
928
+ return sys.getsizeof(leaf)
929
+
930
+ def get_item_size(
931
+ value: Union[MultiModalKwargs, MultiModalKwargsItem,
932
+ Mapping[str, NestedTensors]]
933
+ ) -> int:
934
+ size = json_reduce_leaves(
935
+ lambda a, b: a + b,
936
+ json_map_leaves(get_leaf_size, value),
937
+ )
938
+
939
+ if debug:
940
+ logger.debug("Calculated size of %s to be %.2f GiB",
941
+ type(value), size / GiB_bytes)
942
+
943
+ return size
944
+
945
+ return LRUCache(GiB_bytes * capacity_gb, getsizeof=get_item_size)
946
+
947
+ def __init__(
948
+ self,
949
+ capacity_gb: float,
950
+ *,
951
+ debug_cache_hit_ratio_steps: Optional[int] = None,
952
+ ) -> None:
953
+ super().__init__()
954
+
955
+ self.debug_cache_hit_ratio_steps = debug_cache_hit_ratio_steps
956
+ self.debug_cache_hits = 0
957
+ self.debug_cache_total = 0
958
+
959
+ self._cache = self.get_lru_cache(
960
+ capacity_gb,
961
+ MultiModalKwargsItem,
962
+ debug=bool(debug_cache_hit_ratio_steps),
963
+ )
964
+
965
+ def _maybe_log_cache_stats(self) -> None:
966
+ steps = self.debug_cache_hit_ratio_steps
967
+ if not steps:
968
+ return
969
+
970
+ total = self.debug_cache_total
971
+ if total > 0 and total % steps == 0:
972
+ logger.debug("ProcessingCache: hit_ratio = %.2f",
973
+ self.debug_cache_hits / total)
974
+ logger.debug("ProcessingCache: size = %.2f / %.2f GiB",
975
+ self._cache.currsize / GiB_bytes,
976
+ self._cache.maxsize / GiB_bytes)
977
+
978
+ def get(
979
+ self,
980
+ model_id: str,
981
+ modality: str,
982
+ input_item: object,
983
+ input_kwargs: Mapping[str, object],
984
+ ) -> Optional[MultiModalKwargsItem]:
985
+ """
986
+ Get a processed multi-modal item from the cache
987
+ according to its dependencies, including:
988
+
989
+ - The model ID
990
+ - The modality of the item
991
+ - The original data item passed to the HF processor
992
+ - The configuration options of the HF processor
993
+ """
994
+ self._maybe_log_cache_stats()
995
+
996
+ cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
997
+ **{modality: input_item},
998
+ **input_kwargs)
999
+
1000
+ if self.debug_cache_hit_ratio_steps:
1001
+ if cache_key in self._cache:
1002
+ self.debug_cache_hits += 1
1003
+
1004
+ self.debug_cache_total += 1
1005
+
1006
+ return self._cache.get(cache_key)
1007
+
1008
+ def get_item(
1009
+ self,
1010
+ model_id: str,
1011
+ modality: str,
1012
+ input_item: object,
1013
+ input_kwargs: Mapping[str, object],
1014
+ ) -> ProcessingCacheOptionalItem:
1015
+ cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
1016
+ **{modality: input_item},
1017
+ **input_kwargs)
1018
+
1019
+ return ProcessingCacheOptionalItem(
1020
+ key=cache_key,
1021
+ value=self._cache.get(cache_key),
1022
+ )
1023
+
1024
+ def put(
1025
+ self,
1026
+ model_id: str,
1027
+ modality: str,
1028
+ input_item: object,
1029
+ input_kwargs: Mapping[str, object],
1030
+ output_kwargs: MultiModalKwargsItem,
1031
+ ) -> None:
1032
+ """
1033
+ Put a processed multi-modal item into the cache
1034
+ according to its dependencies
1035
+ (see [`get`][vllm.multimodal.processing.ProcessingCache.get]).
1036
+ """
1037
+ cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
1038
+ **{modality: input_item},
1039
+ **input_kwargs)
1040
+ self._cache[cache_key] = output_kwargs
1041
+
1042
+ def put_item(self, item: ProcessingCacheItem) -> None:
1043
+ self._cache[item.key] = item.value
1044
+
1045
+ def reset(self) -> bool:
1046
+ self._cache.clear()
1047
+
1048
+ return True
1049
+
1050
+
1051
+ class BaseProcessingInfo:
1052
+ """Base class to provide the information necessary for data processing."""
1053
+
1054
+ def __init__(self, ctx: InputProcessingContext) -> None:
1055
+ super().__init__()
1056
+
1057
+ self.ctx = ctx
1058
+
1059
+ @property
1060
+ def model_id(self) -> str:
1061
+ return self.ctx.model_config.model
1062
+
1063
+ def get_tokenizer(self) -> AnyTokenizer:
1064
+ return self.ctx.tokenizer
1065
+
1066
+ def get_hf_config(self) -> "PretrainedConfig":
1067
+ return self.ctx.get_hf_config()
1068
+
1069
+ def get_hf_processor(self, **kwargs: object) -> "ProcessorMixin":
1070
+ """
1071
+ Subclasses can override this method to handle
1072
+ specific kwargs from model config or user inputs.
1073
+ """
1074
+ return self.ctx.get_hf_processor(**kwargs)
1075
+
1076
+ @abstractmethod
1077
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
1078
+ """
1079
+ Return the maximum supported number of items for each modality.
1080
+
1081
+ A value of `None` means unlimited number of items.
1082
+
1083
+ Omitting a modality from the returned dictionary means that
1084
+ it is not supported at all.
1085
+ """
1086
+ raise NotImplementedError
1087
+
1088
+ def get_allowed_mm_limits(self) -> Mapping[str, int]:
1089
+ """Return the maximum allowed number of items for each modality."""
1090
+ supported_mm_limits = self.get_supported_mm_limits()
1091
+ mm_config = self.ctx.get_mm_config()
1092
+
1093
+ allowed_limits = dict[str, int]()
1094
+ for modality, supported_limit in supported_mm_limits.items():
1095
+ user_limit = mm_config.get_limit_per_prompt(modality)
1096
+
1097
+ allowed_limits[modality] = (user_limit if supported_limit is None
1098
+ else min(user_limit, supported_limit))
1099
+
1100
+ return allowed_limits
1101
+
1102
+
1103
+ _I = TypeVar("_I", bound=BaseProcessingInfo)
1104
+
1105
+ MultiModalHashes = dict[str, list[str]]
1106
+ """
1107
+ A collection of hashes with a similar structure as
1108
+ [`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs].
1109
+ """
1110
+
1111
+
1112
+ class BaseMultiModalProcessor(ABC, Generic[_I]):
1113
+ """
1114
+ Abstract base class to process multi-modal inputs to be used in vLLM.
1115
+
1116
+ Not to be confused with `transformers.ProcessorMixin`.
1117
+ """
1118
+
1119
+ def __init__(self,
1120
+ info: _I,
1121
+ dummy_inputs: "BaseDummyInputsBuilder[_I]",
1122
+ *,
1123
+ cache: Optional[ProcessingCache] = None) -> None:
1124
+ super().__init__()
1125
+
1126
+ self.info = info
1127
+ self.dummy_inputs = dummy_inputs
1128
+ self.cache = cache
1129
+
1130
+ self.data_parser = self._get_data_parser()
1131
+
1132
+ def __call__(
1133
+ self,
1134
+ prompt: str,
1135
+ mm_data: MultiModalDataDict,
1136
+ hf_processor_mm_kwargs: Mapping[str, object],
1137
+ ) -> MultiModalInputs:
1138
+ return self.apply(prompt, mm_data, hf_processor_mm_kwargs)
1139
+
1140
+ def _get_data_parser(self) -> MultiModalDataParser:
1141
+ """
1142
+ Construct a parser to preprocess multi-modal data items
1143
+ before passing them to
1144
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1145
+
1146
+ You can support additional modalities by creating a subclass
1147
+ of [`MultiModalDataParser`][vllm.multimodal.parse.MultiModalDataParser]
1148
+ that has additional subparsers.
1149
+ """
1150
+ return MultiModalDataParser()
1151
+
1152
+ def _to_mm_items(
1153
+ self,
1154
+ mm_data: MultiModalDataDict,
1155
+ ) -> MultiModalDataItems:
1156
+ """
1157
+ Normalize
1158
+ [`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
1159
+ to [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems]
1160
+ before passing them to
1161
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1162
+ """
1163
+ mm_items = self.data_parser.parse_mm_data(mm_data)
1164
+ supported_mm_limits = self.info.get_supported_mm_limits()
1165
+ allowed_mm_limits = self.info.get_allowed_mm_limits()
1166
+
1167
+ for modality, items in mm_items.items():
1168
+ supported_limit = supported_mm_limits.get(modality, 0)
1169
+ allowed_limit = allowed_mm_limits.get(modality, 0)
1170
+ num_items = len(items)
1171
+
1172
+ if supported_limit is not None and num_items > supported_limit:
1173
+ raise ValueError(
1174
+ f"The model only supports at most {supported_limit} "
1175
+ f"{modality} items, but you passed {num_items} "
1176
+ f"{modality} items in the same prompt.")
1177
+
1178
+ if num_items > allowed_limit:
1179
+ raise ValueError(
1180
+ "You set or defaulted to "
1181
+ f"'{json.dumps({modality: allowed_limit})}' in "
1182
+ f"`--limit-mm-per-prompt`, but passed {num_items} "
1183
+ f"{modality} items in the same prompt.")
1184
+
1185
+ return mm_items
1186
+
1187
+ @abstractmethod
1188
+ def _get_mm_fields_config(
1189
+ self,
1190
+ hf_inputs: "BatchFeature",
1191
+ hf_processor_mm_kwargs: Mapping[str, object],
1192
+ ) -> Mapping[str, MultiModalFieldConfig]:
1193
+ """Given the HF-processed data, output the metadata of each field."""
1194
+ raise NotImplementedError
1195
+
1196
+ @abstractmethod
1197
+ def _get_prompt_updates(
1198
+ self,
1199
+ mm_items: MultiModalDataItems,
1200
+ hf_processor_mm_kwargs: Mapping[str, object],
1201
+ out_mm_kwargs: MultiModalKwargs,
1202
+ ) -> Sequence[PromptUpdate]:
1203
+ """
1204
+ Given the original multi-modal items for this modality
1205
+ and HF-processed data, output the updates to perform.
1206
+
1207
+ The information returned by this method is used to update token inputs
1208
+ which bypass the HF processor. It is also used to update the output of
1209
+ HF processor if the HF process does not apply prompt updates to text
1210
+ inputs.
1211
+
1212
+ Moreover, this information is critical to determine the token positions
1213
+ in order to construct
1214
+ [`PlaceholderRange`][vllm.multimodal.inputs.PlaceholderRange]
1215
+ for each multi-modal item.
1216
+ """
1217
+ raise NotImplementedError
1218
+
1219
+ def _find_mm_placeholders(
1220
+ self,
1221
+ mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
1222
+ new_token_ids: list[int],
1223
+ mm_item_counts: Mapping[str, int],
1224
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
1225
+ return find_mm_placeholders(mm_prompt_updates, new_token_ids,
1226
+ mm_item_counts)
1227
+
1228
+ def _get_hf_mm_data(
1229
+ self,
1230
+ mm_items: MultiModalDataItems,
1231
+ ) -> tuple[Mapping[str, object], Mapping[str, object]]:
1232
+ processor_data = dict[str, object]()
1233
+ passthrough_data = dict[str, object]()
1234
+
1235
+ for items in mm_items.values():
1236
+ processor_data.update(items.get_processor_data())
1237
+ passthrough_data.update(items.get_passthrough_data())
1238
+
1239
+ return processor_data, passthrough_data
1240
+
1241
+ def _call_hf_processor(
1242
+ self,
1243
+ prompt: str,
1244
+ # Not to be confused with `mm_data` in `self.apply`.
1245
+ # This refers to the data to be passed to HF processor.
1246
+ mm_data: Mapping[str, object],
1247
+ mm_kwargs: Mapping[str, object],
1248
+ ) -> "BatchFeature":
1249
+ """
1250
+ Call the HF processor on the prompt text and
1251
+ associated multi-modal data.
1252
+ """
1253
+ return self.info.ctx.call_hf_processor(
1254
+ self.info.get_hf_processor(**mm_kwargs),
1255
+ dict(text=prompt, **mm_data),
1256
+ mm_kwargs,
1257
+ )
1258
+
1259
+ def _hf_processor_applies_updates(
1260
+ self,
1261
+ prompt_text: str,
1262
+ mm_items: MultiModalDataItems,
1263
+ hf_processor_mm_kwargs: Mapping[str, object],
1264
+ ) -> bool:
1265
+ """
1266
+ Return whether the HF processor applies prompt updates.
1267
+
1268
+ For most HF processors, this should be `True` when multi-modal
1269
+ data items are passed, but `False` when multi-modal embeddings
1270
+ are passed.
1271
+ """
1272
+ return not any(
1273
+ isinstance(items, (EmbeddingItems, DictEmbeddingItems))
1274
+ for items in mm_items.values())
1275
+
1276
+ def _apply_hf_processor_text_mm(
1277
+ self,
1278
+ prompt_text: str,
1279
+ mm_items: MultiModalDataItems,
1280
+ hf_processor_mm_kwargs: Mapping[str, object],
1281
+ ) -> tuple[list[int], MultiModalKwargs, bool]:
1282
+ """
1283
+ Apply the HF processor on the prompt text and multi-modal data
1284
+ together.
1285
+
1286
+ In addition, return whether prompt updates have been applied.
1287
+ """
1288
+ processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
1289
+
1290
+ processed_data = self._call_hf_processor(
1291
+ prompt=prompt_text,
1292
+ mm_data=processor_data,
1293
+ mm_kwargs=hf_processor_mm_kwargs,
1294
+ )
1295
+ processed_data.update(passthrough_data)
1296
+
1297
+ prompt_ids, = processed_data.pop("input_ids").tolist()
1298
+
1299
+ mm_kwargs = MultiModalKwargs.from_hf_inputs(
1300
+ processed_data,
1301
+ self._get_mm_fields_config(processed_data, hf_processor_mm_kwargs),
1302
+ )
1303
+
1304
+ is_update_applied = self._hf_processor_applies_updates(
1305
+ prompt_text=prompt_text,
1306
+ mm_items=mm_items,
1307
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1308
+ )
1309
+
1310
+ return prompt_ids, mm_kwargs, is_update_applied
1311
+
1312
+ def _apply_hf_processor_text_only(self, prompt_text: str) -> list[int]:
1313
+ """
1314
+ Apply the HF processor on the prompt text only.
1315
+
1316
+ Since HF processor requires that text and multi-modal items
1317
+ correspond to each other, we create dummy multi-modal items
1318
+ to go along with the text.
1319
+ """
1320
+ prompt_ids, _, _ = self._apply_hf_processor_text_mm(
1321
+ prompt_text=prompt_text,
1322
+ mm_items=MultiModalDataItems({}),
1323
+ hf_processor_mm_kwargs={},
1324
+ )
1325
+
1326
+ return prompt_ids
1327
+
1328
+ def _apply_hf_processor_tokens_only(
1329
+ self,
1330
+ prompt_tokens: list[int],
1331
+ ) -> list[int]:
1332
+ """
1333
+ Apply the HF processor on the prompt tokens only.
1334
+
1335
+ Most HF processors accept prompt text but not prompt tokens.
1336
+ If the HF processor adds or removes tokens that are not related to
1337
+ multi-modal data, you should override this method so it is consistent
1338
+ with the output of
1339
+ [`_apply_hf_processor_text_only`][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_text_only]
1340
+ on the
1341
+ corresponding text.
1342
+ """
1343
+ return prompt_tokens
1344
+
1345
+ def _apply_hf_processor_mm_only(
1346
+ self,
1347
+ mm_items: MultiModalDataItems,
1348
+ hf_processor_mm_kwargs: Mapping[str, object],
1349
+ ) -> MultiModalKwargs:
1350
+ """
1351
+ Apply the HF processor on the multi-modal data only.
1352
+
1353
+ Since HF processor requires that text and multi-modal items
1354
+ correspond to each other, we generate dummy text using
1355
+ [`DummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
1356
+ to go along with the multi-modal data.
1357
+ """
1358
+ mm_counts = mm_items.get_all_counts()
1359
+
1360
+ _, mm_kwargs, _ = self._apply_hf_processor_text_mm(
1361
+ prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
1362
+ mm_items=mm_items,
1363
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1364
+ )
1365
+
1366
+ return mm_kwargs
1367
+
1368
+ def _apply_hf_processor_main(
1369
+ self,
1370
+ prompt: Union[str, list[int]],
1371
+ mm_items: MultiModalDataItems,
1372
+ hf_processor_mm_kwargs: Mapping[str, object],
1373
+ *,
1374
+ enable_hf_prompt_update: bool,
1375
+ ) -> tuple[list[int], MultiModalKwargs, bool]:
1376
+ """
1377
+ Apply the HF processor on the prompt text and multi-modal data.
1378
+
1379
+ In addition, return whether prompt updates have been applied
1380
+ (for most HF processors, this should be `True`).
1381
+
1382
+ Note:
1383
+ If `enable_hf_prompt_update=False`, we use HF processor
1384
+ to perform prompt updates if available; HF processor requires
1385
+ that the prompt corresponds to multi-modal items.
1386
+ """
1387
+ if isinstance(prompt, str):
1388
+ if enable_hf_prompt_update:
1389
+ return self._apply_hf_processor_text_mm(
1390
+ prompt_text=prompt,
1391
+ mm_items=mm_items,
1392
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1393
+ )
1394
+
1395
+ prompt_ids = self._apply_hf_processor_text_only(prompt)
1396
+ else:
1397
+ prompt_ids = self._apply_hf_processor_tokens_only(prompt)
1398
+
1399
+ mm_kwargs = self._apply_hf_processor_mm_only(
1400
+ mm_items=mm_items,
1401
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1402
+ )
1403
+
1404
+ return prompt_ids, mm_kwargs, False
1405
+
1406
+ def _get_cache_missing_items(
1407
+ self,
1408
+ cache: ProcessingCache,
1409
+ mm_data_items: MultiModalDataItems,
1410
+ hf_processor_mm_kwargs: Mapping[str, object],
1411
+ ) -> tuple[dict[str, list[ProcessingCacheOptionalItem]], dict[
1412
+ str, list[object]]]:
1413
+ model_id = self.info.model_id
1414
+
1415
+ mm_cache_items = {
1416
+ modality: [
1417
+ cache.get_item(model_id, modality, item,
1418
+ hf_processor_mm_kwargs) for item in items
1419
+ ]
1420
+ for modality, items in mm_data_items.items()
1421
+ }
1422
+
1423
+ mm_missing_idxs = {
1424
+ modality: [
1425
+ idx for idx, item in enumerate(cache_items)
1426
+ if item.value is None
1427
+ ]
1428
+ for modality, cache_items in mm_cache_items.items()
1429
+ }
1430
+ mm_missing_data = {
1431
+ modality: [mm_data_items[modality][idx] for idx in idxs]
1432
+ for modality, idxs in mm_missing_idxs.items()
1433
+ }
1434
+
1435
+ return mm_cache_items, mm_missing_data
1436
+
1437
+ def _hash_mm_items(
1438
+ self,
1439
+ mm_items: MultiModalDataItems,
1440
+ hf_processor_mm_kwargs: Mapping[str, object],
1441
+ ) -> MultiModalHashes:
1442
+ """Create MM hashes to be returned (only used in V1)."""
1443
+ model_id = self.info.model_id
1444
+
1445
+ return {
1446
+ modality: [
1447
+ MultiModalHasher.hash_kwargs(model_id=model_id,
1448
+ **{modality: item},
1449
+ **hf_processor_mm_kwargs)
1450
+ for item in items
1451
+ ]
1452
+ for modality, items in mm_items.items()
1453
+ }
1454
+
1455
+ def _merge_mm_kwargs(
1456
+ self,
1457
+ cache: ProcessingCache,
1458
+ mm_cache_items: dict[str, list[ProcessingCacheOptionalItem]],
1459
+ mm_missing_data: dict[str, list[object]],
1460
+ mm_missing_kwargs: MultiModalKwargs,
1461
+ ) -> dict[str, list[ProcessingCacheItem]]:
1462
+ mm_missing_next_idx = {modality: 0 for modality in mm_missing_data}
1463
+
1464
+ merged_items = defaultdict[str, list[ProcessingCacheItem]](list)
1465
+ for modality, cache_items in mm_cache_items.items():
1466
+ for cache_item in cache_items:
1467
+ if cache_item.value is None:
1468
+ kw_item = mm_missing_kwargs.get_item(
1469
+ modality,
1470
+ mm_missing_next_idx[modality],
1471
+ )
1472
+ cache_item_new = ProcessingCacheItem(
1473
+ key=cache_item.key,
1474
+ value=kw_item,
1475
+ )
1476
+
1477
+ cache.put_item(cache_item_new)
1478
+ mm_missing_next_idx[modality] += 1
1479
+ else:
1480
+ cache_item_new = ProcessingCacheItem(
1481
+ key=cache_item.key,
1482
+ value=cache_item.value,
1483
+ )
1484
+
1485
+ merged_items[modality].append(cache_item_new)
1486
+
1487
+ return dict(merged_items)
1488
+
1489
+ def _apply_hf_processor(
1490
+ self,
1491
+ prompt: Union[str, list[int]],
1492
+ mm_data_items: MultiModalDataItems,
1493
+ hf_processor_mm_kwargs: Mapping[str, object],
1494
+ *,
1495
+ return_mm_hashes: bool,
1496
+ ) -> tuple[list[int], MultiModalKwargs, Optional[MultiModalHashes], bool]:
1497
+ (
1498
+ prompt_ids,
1499
+ mm_kwargs,
1500
+ is_update_applied,
1501
+ ) = self._apply_hf_processor_main(
1502
+ prompt=prompt,
1503
+ mm_items=mm_data_items,
1504
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1505
+ enable_hf_prompt_update=True,
1506
+ )
1507
+
1508
+ mm_hashes = (self._hash_mm_items(mm_data_items, hf_processor_mm_kwargs)
1509
+ if return_mm_hashes else None)
1510
+
1511
+ return prompt_ids, mm_kwargs, mm_hashes, is_update_applied
1512
+
1513
+ def _cached_apply_hf_processor(
1514
+ self,
1515
+ prompt: Union[str, list[int]],
1516
+ mm_data_items: MultiModalDataItems,
1517
+ hf_processor_mm_kwargs: Mapping[str, object],
1518
+ *,
1519
+ return_mm_hashes: bool,
1520
+ ) -> tuple[list[int], MultiModalKwargs, Optional[MultiModalHashes], bool]:
1521
+ """
1522
+ Apply the HF processor on the full prompt text,
1523
+ caching the results and reusing cached results.
1524
+ """
1525
+ cache = self.cache
1526
+
1527
+ _, passthrough_data = self._get_hf_mm_data(mm_data_items)
1528
+ if cache is None or passthrough_data:
1529
+ return self._apply_hf_processor(
1530
+ prompt=prompt,
1531
+ mm_data_items=mm_data_items,
1532
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1533
+ return_mm_hashes=return_mm_hashes,
1534
+ )
1535
+
1536
+ (
1537
+ mm_cache_items,
1538
+ mm_missing_data,
1539
+ ) = self._get_cache_missing_items(
1540
+ cache=cache,
1541
+ mm_data_items=mm_data_items,
1542
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1543
+ )
1544
+
1545
+ # NOTE: `prompt` does not correspond to `mm_missing_data_items`,
1546
+ # so we can't apply prompt updates until the new multimodal
1547
+ # items are combined with the cached multimodal items
1548
+ (
1549
+ prompt_ids,
1550
+ mm_missing_kwargs,
1551
+ is_update_applied,
1552
+ ) = self._apply_hf_processor_main(
1553
+ prompt=prompt,
1554
+ mm_items=self._to_mm_items(mm_missing_data),
1555
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1556
+ enable_hf_prompt_update=False,
1557
+ )
1558
+
1559
+ mm_cache_items_merged = self._merge_mm_kwargs(
1560
+ cache,
1561
+ mm_cache_items=mm_cache_items,
1562
+ mm_missing_data=mm_missing_data,
1563
+ mm_missing_kwargs=mm_missing_kwargs,
1564
+ )
1565
+
1566
+ mm_kwargs = MultiModalKwargs.from_items([
1567
+ item.value for cache_items in mm_cache_items_merged.values()
1568
+ for item in cache_items
1569
+ ])
1570
+
1571
+ mm_hashes = {
1572
+ modality: [item.key for item in cache_items]
1573
+ for modality, cache_items in mm_cache_items_merged.items()
1574
+ } if return_mm_hashes else None
1575
+
1576
+ return prompt_ids, mm_kwargs, mm_hashes, is_update_applied
1577
+
1578
+ def _bind_and_group_updates(
1579
+ self,
1580
+ prompt_updates: Sequence[PromptUpdate],
1581
+ ) -> dict[str, Sequence[BoundPromptUpdate]]:
1582
+ tokenizer = self.info.get_tokenizer()
1583
+
1584
+ it = (update.bind(tokenizer) for update in prompt_updates)
1585
+ return dict(full_groupby_modality(it))
1586
+
1587
+ def _apply_token_matches(
1588
+ self,
1589
+ prompt: list[int],
1590
+ mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
1591
+ mm_item_counts: Mapping[str, int],
1592
+ ) -> list[int]:
1593
+ return apply_token_matches(prompt, mm_matches, mm_item_counts)
1594
+
1595
+ def _apply_text_matches(
1596
+ self,
1597
+ prompt: str,
1598
+ mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
1599
+ mm_item_counts: Mapping[str, int],
1600
+ ) -> str:
1601
+ return apply_text_matches(prompt, mm_matches, mm_item_counts)
1602
+
1603
+ def _apply_prompt_updates(
1604
+ self,
1605
+ token_ids: list[int],
1606
+ mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
1607
+ mm_item_counts: Mapping[str, int],
1608
+ ) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
1609
+ tokenizer = self.info.get_tokenizer()
1610
+
1611
+ mm_token_matches = {
1612
+ modality: find_token_matches(token_ids, updates)
1613
+ for modality, updates in mm_prompt_updates.items()
1614
+ }
1615
+ mm_match_counts = {
1616
+ modality: len(matches)
1617
+ for modality, matches in mm_token_matches.items()
1618
+ }
1619
+
1620
+ # If the search text does not represent a special token,
1621
+ # it may have different token IDs in the prompt, because
1622
+ # the tokens may go across the boundaries of the search text.
1623
+ # ----
1624
+ # e.g. when searching for "foo" in "food", if "food" itself makes
1625
+ # up a token, then the token ID of "foo" will not appear at all
1626
+ # ----
1627
+ # Since it is inefficient to search for all possible tokenizations
1628
+ # of the search text in the prompt, we instead perform string-based
1629
+ # updates on the decoded token IDs, then encode them back.
1630
+ if all(
1631
+ mm_match_counts.get(modality, 0) >= item_count
1632
+ for modality, item_count in mm_item_counts.items()
1633
+ ): # yapf: disable
1634
+ token_ids = self._apply_token_matches(
1635
+ token_ids,
1636
+ mm_token_matches,
1637
+ mm_item_counts,
1638
+ )
1639
+
1640
+ text = decode_tokens(tokenizer, token_ids)
1641
+ matched_updates = {
1642
+ modality: [match._origin for match in token_matches]
1643
+ for modality, token_matches in mm_token_matches.items()
1644
+ }
1645
+ else:
1646
+ text = decode_tokens(tokenizer, token_ids)
1647
+
1648
+ mm_text_matches = {
1649
+ modality: find_text_matches(text, updates)
1650
+ for modality, updates in mm_prompt_updates.items()
1651
+ }
1652
+ text = self._apply_text_matches(
1653
+ text,
1654
+ mm_text_matches,
1655
+ mm_item_counts,
1656
+ )
1657
+
1658
+ token_ids = encode_tokens(tokenizer,
1659
+ text,
1660
+ add_special_tokens=False)
1661
+ matched_updates = {
1662
+ modality: [match._origin for match in token_matches]
1663
+ for modality, token_matches in mm_text_matches.items()
1664
+ }
1665
+
1666
+ placeholders = self._find_mm_placeholders(
1667
+ matched_updates,
1668
+ token_ids,
1669
+ mm_item_counts,
1670
+ )
1671
+
1672
+ return token_ids, text, placeholders
1673
+
1674
+ def _validate_mm_kwargs(
1675
+ self,
1676
+ mm_kwargs: MultiModalKwargs,
1677
+ mm_item_counts: Mapping[str, int],
1678
+ ) -> None:
1679
+ for modality, item_count in mm_item_counts.items():
1680
+ if modality in mm_kwargs.modalities:
1681
+ items = mm_kwargs.get_items(modality)
1682
+ else:
1683
+ items = []
1684
+
1685
+ if len(items) != item_count:
1686
+ raise RuntimeError(
1687
+ f"Expected there to be {item_count} {modality} items in "
1688
+ f"keyword arguments corresponding to {item_count} "
1689
+ f"{modality} data items, but only found {len(items)}! "
1690
+ "There is likely a problem with your "
1691
+ "implementation of merged multi-modal processor for this "
1692
+ "model (usually arising from an inconsistency between "
1693
+ "`_call_hf_processor` and `_get_mm_fields_config`).")
1694
+
1695
+ def _validate_mm_placeholders(
1696
+ self,
1697
+ mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
1698
+ mm_item_counts: Mapping[str, int],
1699
+ ) -> None:
1700
+ for modality, item_count in mm_item_counts.items():
1701
+ placeholders = mm_placeholders.get(modality, [])
1702
+
1703
+ if len(placeholders) != item_count:
1704
+ # NOTE: If you are a model developer, this can also arise from
1705
+ # an inconsistency between `_call_hf_processor` and
1706
+ # `_get_mm_fields_config` implementations
1707
+ raise RuntimeError(
1708
+ f"Expected there to be {item_count} prompt updates "
1709
+ f"corresponding to {item_count} {modality} items, but "
1710
+ f"instead found {len(placeholders)} prompt updates! "
1711
+ "This is likely because you forgot to include input "
1712
+ "placeholder tokens (e.g., `<image>`, `<|image_pad|>`) "
1713
+ "in the prompt. If the model has a chat template, make "
1714
+ "sure you have applied it before calling `LLM.generate`.")
1715
+
1716
+ def _maybe_apply_prompt_updates(
1717
+ self,
1718
+ mm_items: MultiModalDataItems,
1719
+ hf_processor_mm_kwargs: Mapping[str, object],
1720
+ prompt_ids: list[int],
1721
+ mm_kwargs: MultiModalKwargs,
1722
+ is_update_applied: bool,
1723
+ ) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
1724
+ unbound_prompt_updates = self._get_prompt_updates(
1725
+ mm_items,
1726
+ hf_processor_mm_kwargs,
1727
+ mm_kwargs,
1728
+ )
1729
+ mm_prompt_updates = self._bind_and_group_updates(
1730
+ unbound_prompt_updates)
1731
+
1732
+ mm_item_counts = mm_items.get_all_counts()
1733
+ self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
1734
+
1735
+ if is_update_applied:
1736
+ mm_placeholders = self._find_mm_placeholders(
1737
+ mm_prompt_updates,
1738
+ prompt_ids,
1739
+ mm_item_counts,
1740
+ )
1741
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
1742
+
1743
+ tokenizer = self.info.get_tokenizer()
1744
+ prompt = decode_tokens(tokenizer, prompt_ids)
1745
+ else:
1746
+ (
1747
+ prompt_ids,
1748
+ prompt,
1749
+ mm_placeholders,
1750
+ ) = self._apply_prompt_updates(
1751
+ prompt_ids,
1752
+ mm_prompt_updates,
1753
+ mm_item_counts,
1754
+ )
1755
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
1756
+
1757
+ return prompt_ids, prompt, mm_placeholders
1758
+
1759
+ def apply(
1760
+ self,
1761
+ prompt: Union[str, list[int]],
1762
+ mm_data: MultiModalDataDict,
1763
+ hf_processor_mm_kwargs: Mapping[str, object],
1764
+ return_mm_hashes: bool = False,
1765
+ ) -> MultiModalInputs:
1766
+ """
1767
+ Process multi-modal inputs to be used in vLLM.
1768
+
1769
+ The main steps are:
1770
+
1771
+ 1. Apply HF Processor on prompt text and multi-modal data together,
1772
+ outputting token IDs and processed tensors.
1773
+ 2. Find and update sequences in the token IDs with placeholder tokens.
1774
+ The number of placeholder tokens equals the feature size of the
1775
+ multi-modal data outputted by the multi-modal encoder.
1776
+ 3. Extract information about the placeholder tokens from the
1777
+ processed token IDs.
1778
+ """
1779
+ mm_items = self._to_mm_items(mm_data)
1780
+
1781
+ (
1782
+ prompt_ids,
1783
+ mm_kwargs,
1784
+ mm_hashes,
1785
+ is_update_applied,
1786
+ ) = self._cached_apply_hf_processor(
1787
+ prompt,
1788
+ mm_items,
1789
+ hf_processor_mm_kwargs,
1790
+ return_mm_hashes=return_mm_hashes,
1791
+ )
1792
+
1793
+ prompt_ids, prompt, mm_placeholders = self._maybe_apply_prompt_updates(
1794
+ mm_items=mm_items,
1795
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1796
+ prompt_ids=prompt_ids,
1797
+ mm_kwargs=mm_kwargs,
1798
+ is_update_applied=is_update_applied,
1799
+ )
1800
+
1801
+ mm_placeholder_ranges = {
1802
+ modality: [item.to_range() for item in placeholders]
1803
+ for modality, placeholders in mm_placeholders.items()
1804
+ }
1805
+
1806
+ return MultiModalInputs(
1807
+ type="multimodal",
1808
+ prompt=prompt,
1809
+ prompt_token_ids=prompt_ids,
1810
+ mm_kwargs=mm_kwargs,
1811
+ mm_hashes=mm_hashes,
1812
+ mm_placeholders=mm_placeholder_ranges,
1813
+ )
1814
+
1815
+
1816
+ class EncDecMultiModalProcessor(BaseMultiModalProcessor[_I]):
1817
+
1818
+ @abstractmethod
1819
+ def create_encoder_prompt(
1820
+ self,
1821
+ prompt: Union[str, list[int]],
1822
+ mm_data: MultiModalDataDict,
1823
+ ) -> Union[str, list[int]]:
1824
+ """
1825
+ Create input prompt for the encoder. HF processor will be applied on
1826
+ this prompt during profiling and generation.
1827
+ """
1828
+ raise NotImplementedError
1829
+
1830
+ @property
1831
+ def pad_dummy_encoder_prompt(self) -> bool:
1832
+ return False
1833
+
1834
+ def create_decoder_prompt(
1835
+ self,
1836
+ prompt: Union[str, list[int]],
1837
+ mm_data: MultiModalDataDict,
1838
+ ) -> Union[str, list[int]]:
1839
+ """Create input prompt for the decoder."""
1840
+ return prompt
1841
+
1842
+ def _get_enc_dec_inputs(
1843
+ self,
1844
+ prompt: Union[str, list[int]],
1845
+ mm_data: MultiModalDataDict,
1846
+ encoder_inputs: MultiModalInputs,
1847
+ ):
1848
+ tokenizer = self.info.get_tokenizer()
1849
+ decoder_prompt = self.create_decoder_prompt(prompt, mm_data)
1850
+ if isinstance(decoder_prompt, str):
1851
+ decoder_prompt_ids = encode_tokens(tokenizer,
1852
+ decoder_prompt,
1853
+ add_special_tokens=False)
1854
+ else:
1855
+ decoder_prompt_ids = decoder_prompt
1856
+ decoder_prompt = decode_tokens(tokenizer, decoder_prompt)
1857
+
1858
+ mm_inputs = MultiModalEncDecInputs(
1859
+ encoder_prompt=encoder_inputs["prompt"],
1860
+ encoder_prompt_token_ids=encoder_inputs["prompt_token_ids"],
1861
+ **encoder_inputs)
1862
+ mm_inputs.update({
1863
+ "prompt": decoder_prompt,
1864
+ "prompt_token_ids": decoder_prompt_ids
1865
+ })
1866
+ return mm_inputs
1867
+
1868
+ def apply(
1869
+ self,
1870
+ prompt: Union[str, list[int]],
1871
+ mm_data: MultiModalDataDict,
1872
+ hf_processor_mm_kwargs: Mapping[str, object],
1873
+ return_mm_hashes: bool = False,
1874
+ ) -> MultiModalEncDecInputs:
1875
+ """
1876
+ Process multi-modal inputs to be used in vLLM.
1877
+ The main processing steps are modified to fit encoder-decoder model:
1878
+ 1. Create encoder prompt from input prompt text.
1879
+ 2. Apply the HF processor on encoder prompt.
1880
+ 3. Copy the input prompt text as decoder prompt inputs.
1881
+ """
1882
+ encoder_prompt = self.create_encoder_prompt(prompt, mm_data)
1883
+ encoder_inputs = super().apply(
1884
+ encoder_prompt,
1885
+ mm_data,
1886
+ hf_processor_mm_kwargs,
1887
+ return_mm_hashes,
1888
+ )
1889
+
1890
+ return self._get_enc_dec_inputs(
1891
+ prompt=prompt,
1892
+ mm_data=mm_data,
1893
+ encoder_inputs=encoder_inputs,
1894
+ )