vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py ADDED
@@ -0,0 +1,1742 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import contextlib
4
+ import importlib
5
+ from typing import TYPE_CHECKING, Optional, Union
6
+
7
+ import torch
8
+ import torch.library
9
+
10
+ import vllm.envs as envs
11
+ from vllm.logger import init_logger
12
+ from vllm.platforms import current_platform
13
+ from vllm.scalar_type import ScalarType
14
+
15
+ logger = init_logger(__name__)
16
+
17
+ if not current_platform.is_tpu() and not current_platform.is_hpu():
18
+ try:
19
+ import vllm._C
20
+ except ImportError as e:
21
+ logger.warning("Failed to import from vllm._C with %r", e)
22
+
23
+ supports_moe_ops = False
24
+ with contextlib.suppress(ImportError):
25
+ import vllm._moe_C # noqa: F401
26
+ supports_moe_ops = True
27
+
28
+ if TYPE_CHECKING:
29
+
30
+ def register_fake(fn):
31
+ return lambda name: fn
32
+ else:
33
+ try:
34
+ from torch.library import register_fake
35
+ except ImportError:
36
+ from torch.library import impl_abstract as register_fake
37
+
38
+
39
+ # page attention ops
40
+ def paged_attention_v1(
41
+ out: torch.Tensor,
42
+ query: torch.Tensor,
43
+ key_cache: torch.Tensor,
44
+ value_cache: torch.Tensor,
45
+ num_kv_heads: int,
46
+ scale: float,
47
+ block_tables: torch.Tensor,
48
+ seq_lens: torch.Tensor,
49
+ block_size: int,
50
+ max_seq_len: int,
51
+ alibi_slopes: Optional[torch.Tensor],
52
+ kv_cache_dtype: str,
53
+ k_scale: torch.Tensor,
54
+ v_scale: torch.Tensor,
55
+ tp_rank: int = 0,
56
+ blocksparse_local_blocks: int = 0,
57
+ blocksparse_vert_stride: int = 0,
58
+ blocksparse_block_size: int = 64,
59
+ blocksparse_head_sliding_step: int = 0,
60
+ ) -> None:
61
+ torch.ops._C.paged_attention_v1(
62
+ out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
63
+ seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
64
+ k_scale, v_scale, tp_rank, blocksparse_local_blocks,
65
+ blocksparse_vert_stride, blocksparse_block_size,
66
+ blocksparse_head_sliding_step)
67
+
68
+
69
+ def paged_attention_v2(
70
+ out: torch.Tensor,
71
+ exp_sum: torch.Tensor,
72
+ max_logits: torch.Tensor,
73
+ tmp_out: torch.Tensor,
74
+ query: torch.Tensor,
75
+ key_cache: torch.Tensor,
76
+ value_cache: torch.Tensor,
77
+ num_kv_heads: int,
78
+ scale: float,
79
+ block_tables: torch.Tensor,
80
+ seq_lens: torch.Tensor,
81
+ block_size: int,
82
+ max_seq_len: int,
83
+ alibi_slopes: Optional[torch.Tensor],
84
+ kv_cache_dtype: str,
85
+ k_scale: torch.Tensor,
86
+ v_scale: torch.Tensor,
87
+ tp_rank: int = 0,
88
+ blocksparse_local_blocks: int = 0,
89
+ blocksparse_vert_stride: int = 0,
90
+ blocksparse_block_size: int = 64,
91
+ blocksparse_head_sliding_step: int = 0,
92
+ ) -> None:
93
+ torch.ops._C.paged_attention_v2(
94
+ out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
95
+ num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
96
+ alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
97
+ blocksparse_local_blocks, blocksparse_vert_stride,
98
+ blocksparse_block_size, blocksparse_head_sliding_step)
99
+
100
+
101
+ def paged_attention_rocm(
102
+ out: torch.Tensor,
103
+ exp_sum: torch.Tensor,
104
+ max_logits: torch.Tensor,
105
+ tmp_out: torch.Tensor,
106
+ query: torch.Tensor,
107
+ key_cache: torch.Tensor,
108
+ value_cache: torch.Tensor,
109
+ num_kv_heads: int,
110
+ scale: float,
111
+ block_tables: torch.Tensor,
112
+ seq_lens: torch.Tensor,
113
+ query_start_loc: Optional[torch.Tensor],
114
+ block_size: int,
115
+ max_seq_len: int,
116
+ alibi_slopes: Optional[torch.Tensor],
117
+ kv_cache_dtype: str,
118
+ k_scale: torch.Tensor,
119
+ v_scale: torch.Tensor,
120
+ fp8_out_scale: Optional[torch.Tensor] = None,
121
+ ) -> None:
122
+ torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
123
+ key_cache, value_cache, num_kv_heads,
124
+ scale, block_tables, seq_lens,
125
+ query_start_loc, block_size, max_seq_len,
126
+ alibi_slopes, kv_cache_dtype, k_scale,
127
+ v_scale, fp8_out_scale)
128
+
129
+
130
+ def mla_decode_kvcache_cpu(
131
+ out: torch.Tensor,
132
+ query: torch.Tensor,
133
+ kv_cache: torch.Tensor,
134
+ scale: float,
135
+ block_tables: torch.Tensor,
136
+ seq_lens: torch.Tensor,
137
+ ) -> None:
138
+ torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
139
+ block_tables, seq_lens)
140
+
141
+
142
+ # merge attn states ops
143
+ def merge_attn_states(output: torch.Tensor,
144
+ prefix_output: torch.Tensor,
145
+ prefix_lse: torch.Tensor,
146
+ suffix_output: torch.Tensor,
147
+ suffix_lse: torch.Tensor,
148
+ output_lse: Optional[torch.Tensor] = None) -> None:
149
+ torch.ops._C.merge_attn_states(output, output_lse, prefix_output,
150
+ prefix_lse, suffix_output, suffix_lse)
151
+
152
+
153
+ def convert_vertical_slash_indexes(
154
+ q_seqlens: torch.Tensor, # [BATCH, ]
155
+ kv_seqlens: torch.Tensor, # [BATCH, ]
156
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
157
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
158
+ context_size: int,
159
+ block_size_M: int,
160
+ block_size_N: int,
161
+ causal: bool = True,
162
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
163
+ batch_size = slash_indexes.size(0)
164
+ num_heads = slash_indexes.size(1)
165
+ nnz_slash = slash_indexes.size(2)
166
+ nnz_vertical = vertical_indexes.size(2)
167
+ num_rows = (context_size + block_size_M - 1) // block_size_M
168
+
169
+ block_count = torch.zeros(batch_size,
170
+ num_heads,
171
+ num_rows,
172
+ dtype=q_seqlens.dtype,
173
+ device=q_seqlens.device)
174
+ block_offset = torch.zeros(batch_size,
175
+ num_heads,
176
+ num_rows,
177
+ nnz_slash,
178
+ dtype=q_seqlens.dtype,
179
+ device=q_seqlens.device)
180
+ column_count = torch.zeros(batch_size,
181
+ num_heads,
182
+ num_rows,
183
+ dtype=q_seqlens.dtype,
184
+ device=q_seqlens.device)
185
+ column_index = torch.zeros(batch_size,
186
+ num_heads,
187
+ num_rows,
188
+ nnz_vertical,
189
+ dtype=q_seqlens.dtype,
190
+ device=q_seqlens.device)
191
+
192
+ torch.ops._C.convert_vertical_slash_indexes(
193
+ block_count, block_offset, column_count, column_index, q_seqlens,
194
+ kv_seqlens, vertical_indexes, slash_indexes, context_size,
195
+ block_size_M, block_size_N, causal)
196
+ return block_count, block_offset, column_count, column_index
197
+
198
+
199
+ def convert_vertical_slash_indexes_mergehead(
200
+ q_seqlens: torch.Tensor, # [BATCH, ]
201
+ kv_seqlens: torch.Tensor, # [BATCH, ]
202
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
203
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
204
+ # [N_HEADS] : different head use different number of indices
205
+ vertical_indices_count: torch.Tensor,
206
+ slash_indices_count: torch.Tensor,
207
+ context_size: int,
208
+ block_size_M: int,
209
+ block_size_N: int,
210
+ causal: bool = True,
211
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
212
+ batch_size = slash_indexes.size(0)
213
+ num_heads = slash_indexes.size(1)
214
+ nnz_slash = slash_indexes.size(2)
215
+ nnz_vertical = vertical_indexes.size(2)
216
+ num_rows = (context_size + block_size_M - 1) // block_size_M
217
+
218
+ block_count = torch.empty(batch_size,
219
+ num_heads,
220
+ num_rows,
221
+ dtype=q_seqlens.dtype,
222
+ device=q_seqlens.device)
223
+ block_offset = torch.empty(batch_size,
224
+ num_heads,
225
+ num_rows,
226
+ nnz_slash,
227
+ dtype=q_seqlens.dtype,
228
+ device=q_seqlens.device)
229
+ column_count = torch.empty(batch_size,
230
+ num_heads,
231
+ num_rows,
232
+ dtype=q_seqlens.dtype,
233
+ device=q_seqlens.device)
234
+ column_index = torch.empty(batch_size,
235
+ num_heads,
236
+ num_rows,
237
+ nnz_vertical,
238
+ dtype=q_seqlens.dtype,
239
+ device=q_seqlens.device)
240
+
241
+ torch.ops._C.convert_vertical_slash_indexes_mergehead(
242
+ block_count, block_offset, column_count, column_index, q_seqlens,
243
+ kv_seqlens, vertical_indexes, slash_indexes, vertical_indices_count,
244
+ slash_indices_count, context_size, block_size_M, block_size_N, causal)
245
+ return block_count, block_offset, column_count, column_index
246
+
247
+
248
+ # pos encoding ops
249
+ def rotary_embedding(
250
+ positions: torch.Tensor,
251
+ query: torch.Tensor,
252
+ key: Optional[torch.Tensor],
253
+ head_size: int,
254
+ cos_sin_cache: torch.Tensor,
255
+ is_neox: bool,
256
+ ) -> None:
257
+ torch.ops._C.rotary_embedding(positions, query, key, head_size,
258
+ cos_sin_cache, is_neox)
259
+
260
+
261
+ def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
262
+ key: Optional[torch.Tensor], head_size: int,
263
+ cos_sin_cache: torch.Tensor, is_neox: bool,
264
+ rot_dim: int,
265
+ cos_sin_cache_offsets: torch.Tensor) -> None:
266
+ torch.ops._C.batched_rotary_embedding(positions, query, key, head_size,
267
+ cos_sin_cache, is_neox, rot_dim,
268
+ cos_sin_cache_offsets)
269
+
270
+
271
+ # layer norm ops
272
+ def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
273
+ epsilon: float) -> None:
274
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
275
+ input_contiguous = input.contiguous()
276
+ torch.ops._C.rms_norm(out, input_contiguous, weight, epsilon)
277
+
278
+
279
+ def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
280
+ weight: torch.Tensor, epsilon: float) -> None:
281
+ torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
282
+
283
+
284
+ def advance_step_flashattn(num_seqs: int, num_queries: int, block_size: int,
285
+ input_tokens: torch.Tensor,
286
+ sampled_token_ids: torch.Tensor,
287
+ input_positions: torch.Tensor,
288
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
289
+ block_tables: torch.Tensor) -> None:
290
+ """Advance a step on GPU for existing inputs for a multi-step runner"""
291
+ return torch.ops._C.advance_step_flashattn(num_seqs, num_queries,
292
+ block_size, input_tokens,
293
+ sampled_token_ids,
294
+ input_positions, seq_lens,
295
+ slot_mapping, block_tables)
296
+
297
+
298
+ def advance_step_flashinfer(num_seqs: int, num_queries: int, block_size: int,
299
+ input_tokens: torch.Tensor,
300
+ sampled_token_ids: torch.Tensor,
301
+ input_positions: torch.Tensor,
302
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
303
+ block_tables: torch.Tensor,
304
+ paged_kv_indices: torch.Tensor,
305
+ paged_kv_indptr: torch.Tensor,
306
+ paged_kv_last_page_len: torch.Tensor,
307
+ block_table_bound: torch.Tensor) -> None:
308
+
309
+ return torch.ops._C.advance_step_flashinfer(
310
+ num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
311
+ input_positions, seq_lens, slot_mapping, block_tables,
312
+ paged_kv_indices, paged_kv_indptr, paged_kv_last_page_len,
313
+ block_table_bound)
314
+
315
+
316
+ # fused quant layer norm ops
317
+ def rms_norm_dynamic_per_token_quant(
318
+ input: torch.Tensor,
319
+ weight: torch.Tensor,
320
+ epsilon: float,
321
+ quant_dtype: torch.dtype,
322
+ scale_ub: Optional[torch.Tensor] = None,
323
+ residual: Optional[torch.Tensor] = None
324
+ ) -> tuple[torch.Tensor, torch.Tensor]:
325
+ output = torch.empty_like(input, dtype=quant_dtype)
326
+ scales = torch.empty((input.numel() // input.shape[-1], 1),
327
+ device=input.device,
328
+ dtype=torch.float32)
329
+
330
+ torch.ops._C.rms_norm_dynamic_per_token_quant(output, input, weight,
331
+ scales, epsilon, scale_ub,
332
+ residual)
333
+ return output, scales
334
+
335
+
336
+ # quantization ops
337
+ # awq
338
+ def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
339
+ zeros: torch.Tensor, split_k_iters: int, thx: int,
340
+ thy: int) -> torch.Tensor:
341
+ if envs.VLLM_USE_TRITON_AWQ:
342
+ from vllm.model_executor.layers.quantization.awq_triton import (
343
+ awq_dequantize_triton)
344
+ return awq_dequantize_triton(qweight, scales, zeros)
345
+ return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
346
+ thx, thy)
347
+
348
+
349
+ def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
350
+ scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
351
+ if envs.VLLM_USE_TRITON_AWQ:
352
+ from vllm.model_executor.layers.quantization.awq_triton import (
353
+ awq_gemm_triton)
354
+ return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
355
+ return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
356
+
357
+
358
+ # gptq
359
+ def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
360
+ b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
361
+ b_g_idx: torch.Tensor, use_exllama: bool,
362
+ bit: int) -> torch.Tensor:
363
+ return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
364
+ b_g_idx, use_exllama, bit)
365
+
366
+
367
+ if hasattr(torch.ops._C, "gptq_gemm"):
368
+
369
+ @register_fake("_C::gptq_gemm")
370
+ def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
371
+ b_gptq_qzeros: torch.Tensor,
372
+ b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor,
373
+ use_exllama: bool, bit: int) -> torch.Tensor:
374
+ return torch.empty((a.size(0), b_q_weight.size(1)),
375
+ dtype=a.dtype,
376
+ device=a.device)
377
+
378
+
379
+ def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
380
+ bit: int) -> None:
381
+ torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
382
+
383
+
384
+ # marlin
385
+ def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
386
+ b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int,
387
+ size_n: int, size_k: int) -> torch.Tensor:
388
+ return torch.ops._C.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m,
389
+ size_n, size_k)
390
+
391
+
392
+ # marlin_24
393
+ def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
394
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
395
+ workspace: torch.Tensor, b_q_type: ScalarType,
396
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
397
+ return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
398
+ workspace, b_q_type.id, size_m,
399
+ size_n, size_k)
400
+
401
+
402
+ if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
403
+
404
+ @register_fake("_C::gptq_marlin_24_gemm")
405
+ def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
406
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
407
+ workspace: torch.Tensor,
408
+ b_q_type: ScalarType, size_m: torch.SymInt,
409
+ size_n: torch.SymInt,
410
+ size_k: torch.SymInt) -> torch.Tensor:
411
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
412
+
413
+ @register_fake("_C::gptq_marlin_gemm")
414
+ def _gptq_marlin_gemm_fake(a: torch.Tensor,
415
+ c: Optional[torch.Tensor],
416
+ b_q_weight: torch.Tensor,
417
+ b_scales: torch.Tensor,
418
+ global_scale: Optional[torch.Tensor],
419
+ b_zeros: Optional[torch.Tensor],
420
+ g_idx: Optional[torch.Tensor],
421
+ perm: Optional[torch.Tensor],
422
+ workspace: torch.Tensor,
423
+ b_q_type_id: int,
424
+ size_m: torch.SymInt,
425
+ size_n: torch.SymInt,
426
+ size_k: torch.SymInt,
427
+ is_k_full: bool = True,
428
+ use_atomic_add: bool = False,
429
+ use_fp32_reduce: bool = False,
430
+ is_zp_float: bool = False) -> torch.Tensor:
431
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
432
+
433
+ @register_fake("_C::marlin_qqq_gemm")
434
+ def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
435
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
436
+ s_group: torch.Tensor, workspace: torch.Tensor,
437
+ size_m: torch.SymInt, size_n: torch.SymInt,
438
+ size_k: torch.SymInt) -> torch.Tensor:
439
+ return torch.empty((size_m, size_n),
440
+ dtype=torch.float16,
441
+ device=a.device)
442
+
443
+ @register_fake("_C::marlin_gemm")
444
+ def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
445
+ b_scales: torch.Tensor, workspace: torch.Tensor,
446
+ size_m: torch.SymInt, size_n: torch.SymInt,
447
+ size_k: torch.SymInt) -> torch.Tensor:
448
+ return torch.empty((size_m, size_n),
449
+ dtype=torch.float16,
450
+ device=a.device)
451
+
452
+ @register_fake("_C::awq_dequantize")
453
+ def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor,
454
+ zeros: torch.Tensor, split_k_iters: torch.SymInt,
455
+ thx: int, thy: int) -> torch.Tensor:
456
+ in_c = qweight.size(0)
457
+ qout_c = qweight.size(1)
458
+ out_c = qout_c * 8
459
+ return torch.empty((in_c, out_c),
460
+ dtype=scales.dtype,
461
+ device=scales.device)
462
+
463
+ @register_fake("_C::awq_gemm")
464
+ def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor,
465
+ qzeros: torch.Tensor, scales: torch.Tensor,
466
+ split_k_iters: torch.SymInt) -> torch.Tensor:
467
+ num_in_feats = input.size(0)
468
+ return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8),
469
+ dtype=input.dtype,
470
+ device=input.device).sum(0)
471
+
472
+ @register_fake("_C::aqlm_gemm")
473
+ def _aqlm_gemm_fake(input: torch.Tensor, codes: torch.Tensor,
474
+ codebooks: torch.Tensor, scales: torch.Tensor,
475
+ codebook_partition_sizes: list[int],
476
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
477
+ out_features = codes.size(0) * codebooks.size(2)
478
+ flat_input = input.reshape((-1, input.size(-1)))
479
+ flat_output = torch.empty((flat_input.size(0), out_features),
480
+ dtype=input.dtype,
481
+ device=input.device)
482
+
483
+ output_sizes = list(input.shape)
484
+ output_sizes.pop()
485
+ output_sizes.append(-1)
486
+ return flat_output.reshape(tuple(output_sizes))
487
+
488
+ @register_fake("_C::aqlm_dequant")
489
+ def _aqlm_dequant_fake(
490
+ codes: torch.Tensor, codebooks: torch.Tensor,
491
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
492
+ in_features = codes.size(1) * 8
493
+ out_features = codes.size(0)
494
+ return torch.empty((out_features, in_features),
495
+ dtype=codebooks.dtype,
496
+ device=codebooks.device)
497
+
498
+ @register_fake("_C::machete_mm")
499
+ def machete_mm_fake(
500
+ a: torch.Tensor,
501
+ # b_q Should be the tensor returned by machete_prepack_B
502
+ b_q: torch.Tensor,
503
+ b_type: ScalarType,
504
+ out_type: Optional[torch.dtype] = None,
505
+ b_group_scales: Optional[torch.Tensor] = None,
506
+ b_group_zeros: Optional[torch.Tensor] = None,
507
+ b_group_size: Optional[int] = None,
508
+ b_channel_scales: Optional[torch.Tensor] = None,
509
+ a_token_scales: Optional[torch.Tensor] = None,
510
+ schedule: Optional[str] = None,
511
+ ) -> torch.Tensor:
512
+ m = a.size(0)
513
+ n = b_q.size(1)
514
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
515
+
516
+ @register_fake("_C::machete_prepack_B")
517
+ def machete_prepack_B_fake(
518
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
519
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
520
+ return torch.empty_like(b_q_weight,
521
+ memory_format=torch.contiguous_format)
522
+
523
+
524
+ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
525
+
526
+ @register_fake("_C::allspark_w8a16_gemm")
527
+ def _allspark_w8a16_gemm_fake(a: torch.Tensor, b_qweight: torch.Tensor,
528
+ b_scales: torch.Tensor,
529
+ b_qzeros: Optional[torch.Tensor],
530
+ n: torch.SymInt, group_size: torch.SymInt,
531
+ sm_count: torch.SymInt,
532
+ sm_version: torch.SymInt,
533
+ CUBLAS_M_THRESHOLD: torch.SymInt,
534
+ has_zp: bool,
535
+ n32k16_reorder: bool) -> torch.Tensor:
536
+ m = a.size(0)
537
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
538
+
539
+
540
+ if hasattr(torch.ops._C, "ggml_dequantize"):
541
+
542
+ @register_fake("_C::ggml_dequantize")
543
+ def _ggml_dequantize_fake(
544
+ W: torch.Tensor,
545
+ quant_type: int,
546
+ m: torch.SymInt,
547
+ n: torch.SymInt,
548
+ dtype: Optional[torch.dtype] = None) -> torch.Tensor:
549
+ return torch.empty((m, n), dtype=torch.float16, device=W.device)
550
+
551
+ @register_fake("_C::ggml_mul_mat_vec_a8")
552
+ def _ggml_mul_mat_vec_a8_fake(
553
+ W: torch.Tensor,
554
+ X: torch.Tensor,
555
+ quant_type: int,
556
+ row: torch.SymInt,
557
+ ) -> torch.Tensor:
558
+ return torch.empty((1, row), dtype=X.dtype, device=W.device)
559
+
560
+ @register_fake("_C::ggml_mul_mat_a8")
561
+ def _ggml_mul_mat_a8_fake(
562
+ W: torch.Tensor,
563
+ X: torch.Tensor,
564
+ quant_type: int,
565
+ row: torch.SymInt,
566
+ ) -> torch.Tensor:
567
+ batch = X.size(0)
568
+ return torch.empty((batch, row), dtype=X.dtype, device=W.device)
569
+
570
+ @register_fake("_C::ggml_moe_a8")
571
+ def _ggml_moe_a8_fake(
572
+ X: torch.Tensor,
573
+ W: torch.Tensor,
574
+ sorted_token_ids: torch.Tensor,
575
+ expert_ids: torch.Tensor,
576
+ num_tokens_post_padded: torch.Tensor,
577
+ quant_type: int,
578
+ row: torch.SymInt,
579
+ top_k: torch.SymInt,
580
+ tokens: torch.SymInt,
581
+ ) -> torch.Tensor:
582
+ tokens = X.size(0)
583
+ return torch.empty((tokens * top_k, row),
584
+ dtype=torch.float16,
585
+ device=W.device)
586
+
587
+
588
+ if hasattr(torch.ops._C, "ggml_moe_a8_vec"):
589
+
590
+ @register_fake("_C::ggml_moe_a8_vec")
591
+ def _ggml_moe_a8_vec_fake(
592
+ X: torch.Tensor,
593
+ W: torch.Tensor,
594
+ topk_ids: torch.Tensor,
595
+ top_k: int,
596
+ quant_type: int,
597
+ row: torch.SymInt,
598
+ tokens: torch.SymInt,
599
+ ) -> torch.Tensor:
600
+ tokens = X.size(0)
601
+ return torch.empty((tokens * top_k, row),
602
+ dtype=X.dtype,
603
+ device=W.device)
604
+
605
+
606
+ # cutlass
607
+ def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
608
+ return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
609
+
610
+
611
+ def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
612
+ block_scale_a: torch.Tensor,
613
+ block_scale_b: torch.Tensor, alpha: torch.Tensor,
614
+ out_dtype: torch.dtype) -> torch.Tensor:
615
+ assert a.ndim == 2 and b.ndim == 2
616
+ m, n = a.shape[0], b.shape[0]
617
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
618
+ torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b,
619
+ alpha)
620
+ return out
621
+
622
+
623
+ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
624
+ return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
625
+
626
+
627
+ def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
628
+ return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
629
+ cuda_device_capability)
630
+
631
+
632
+ def cutlass_scaled_mm(a: torch.Tensor,
633
+ b: torch.Tensor,
634
+ scale_a: torch.Tensor,
635
+ scale_b: torch.Tensor,
636
+ out_dtype: torch.dtype,
637
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
638
+ """
639
+ `cutlass_scaled_mm` implements a fused version of
640
+ `output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
641
+ where scale_a * a and scale_b * b are implemented using numpy-style
642
+ broadcasting.
643
+
644
+ In order to support blockwise scaling like found in DeepSeek V3 we also
645
+ support extended "group" broadcast rules. We extend the numpy-style
646
+ broadcasting rules with the following rule:
647
+ "if the extent of a dimension in the source shape is between 1 and
648
+ corresponding extent in the target shape we repeat each element along
649
+ that dimension src_shape[dim] // target_shape[dim] times consecutively"
650
+ example if we have:
651
+ a = [[1, 2], and target_shape = (2, 4)
652
+ [3, 4]]
653
+ then we would expand a to:
654
+ a = [[1, 1, 2, 2],
655
+ [3, 3, 4, 4]]
656
+ currently we only support the case:
657
+ scale_a.shape * [1, 128] == a.shape
658
+ scale_b.shape * [128, 128] == b.shape
659
+ """
660
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
661
+ assert bias is None or bias.shape[0] == b.shape[
662
+ 1] and bias.dtype == out_dtype
663
+
664
+ m = a.shape[0]
665
+ n = b.shape[1]
666
+
667
+ cutlass_compatible_b = (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
668
+ if current_platform.is_rocm() or not cutlass_compatible_b:
669
+ triton_scaled_mm_module = importlib.import_module(
670
+ "vllm.model_executor.layers.quantization.compressed_tensors."
671
+ "triton_scaled_mm")
672
+ triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm
673
+ return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
674
+
675
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
676
+
677
+ torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
678
+
679
+ return out
680
+
681
+
682
+ def cutlass_scaled_mm_azp(a: torch.Tensor,
683
+ b: torch.Tensor,
684
+ scale_a: torch.Tensor,
685
+ scale_b: torch.Tensor,
686
+ out_dtype: torch.dtype,
687
+ azp_adj: torch.Tensor,
688
+ azp: Optional[torch.Tensor] = None,
689
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
690
+ """
691
+ :param azp_adj: In the per-tensor case, this should include the azp.
692
+ Always per-channel.
693
+ :param azp: Only set in the per-token case. Per-token if set.
694
+ """
695
+ assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
696
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
697
+ assert bias is None or bias.numel(
698
+ ) == b.shape[1] and bias.dtype == out_dtype
699
+ assert azp is None or azp.numel() == a.shape[0]
700
+
701
+ m = a.shape[0]
702
+ n = b.shape[1]
703
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
704
+
705
+ torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
706
+ azp, bias)
707
+ return out
708
+
709
+
710
+ def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
711
+ return torch.ops._C.cutlass_sparse_scaled_mm_supported(
712
+ cuda_device_capability)
713
+
714
+
715
+ def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
716
+ return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
717
+
718
+ def cutlass_sparse_compress(a: torch.Tensor) \
719
+ -> tuple[torch.Tensor, torch.Tensor]:
720
+ """
721
+ Compresses a sparse matrix for use with Cutlass sparse operations.
722
+
723
+ This function takes a dense tensor and compresses it into two components:
724
+ non-zero elements and metadata. The compressed representation is compatible
725
+ with Cutlass sparse kernels.
726
+
727
+ Args:
728
+ a (torch.Tensor):
729
+ The input tensor to be compressed. Must have one of the following data types:
730
+ - `torch.int8`
731
+ - `torch.float8_e4m3fn`
732
+ - `torch.bfloat16`
733
+ - `torch.float16`
734
+
735
+ Returns:
736
+ tuple[torch.Tensor, torch.Tensor]:
737
+ A tuple containing:
738
+ - `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
739
+ - `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
740
+
741
+ Raises:
742
+ ValueError: If the compression operation fails.
743
+
744
+ Notes:
745
+ - The `a_meta` tensor has a data type of `torch.uint8`.
746
+ - Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
747
+ - The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
748
+ - The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
749
+ """
750
+ assert (a.dtype in [
751
+ torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16
752
+ ])
753
+ assert (a.is_contiguous())
754
+
755
+ # a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
756
+ elemsPerMetaElem = 4
757
+ assert (a.shape[1] % (2 * elemsPerMetaElem) == 0)
758
+
759
+ return torch.ops._C.cutlass_sparse_compress(a)
760
+
761
+
762
+ def cutlass_scaled_sparse_mm(
763
+ a: torch.Tensor,
764
+ bt_nzs: torch.Tensor,
765
+ bt_meta: torch.Tensor,
766
+ scale_a: torch.Tensor,
767
+ scale_b: torch.Tensor,
768
+ out_dtype: torch.dtype,
769
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
770
+ """
771
+ Performs a scaled sparse matrix multiplication using Cutlass.
772
+
773
+ Steps:
774
+ 1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
775
+ `a = torch.randn((m, k), device='cuda')`.
776
+
777
+ 2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
778
+ `b = torch.randn((k, n), device='cuda')`.
779
+
780
+ 3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
781
+ `b = prune_to_2_4(b, dim=0)`.
782
+
783
+ 4. Compress the transposed sparse matrix `b.t()`:
784
+ `bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
785
+
786
+ 5. Perform sparse matrix multiplication using the compressed matrix,
787
+ applying scaling factors for `a` and `b`, and the output data type:
788
+ `out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
789
+
790
+ Returns:
791
+ - The result of the scaled sparse matrix multiplication.
792
+ """
793
+ assert (bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0)
794
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
795
+ assert bias is None or bias.shape[0] == bt_nzs.shape[0] \
796
+ and bias.dtype == out_dtype
797
+
798
+ m = a.shape[0]
799
+ n = bt_nzs.shape[0]
800
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
801
+
802
+ torch.ops._C.cutlass_scaled_sparse_mm(out, a, bt_nzs, bt_meta, scale_a,
803
+ scale_b, bias)
804
+
805
+ return out
806
+
807
+
808
+ def get_cutlass_moe_mm_data(
809
+ topk_ids: torch.Tensor, expert_offsets: torch.Tensor,
810
+ problem_sizes1: torch.Tensor, problem_sizes2: torch.Tensor,
811
+ input_permutation: torch.Tensor, output_permutation: torch.Tensor,
812
+ num_experts: int, n: int, k: int):
813
+ """
814
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
815
+ used in CUTLASS-based fused MoE.
816
+
817
+ The function takes in topk_ids (token-expert mapping) and uses it to
818
+ compute:
819
+ - expert_offsets: Indices that mark at which token index each expert begins
820
+ its computation after the input is sorted with
821
+ input_permutation. The number of tokens computed with
822
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
823
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
824
+ multiplication in two grouped MMs used in
825
+ the fused MoE operation.
826
+ - input_permutation: Permutation that must be used to shuffle the input
827
+ before executing the MMs.
828
+ - output_permutation: Permutation that must be used to shuffle the output
829
+ after executing the MMs.
830
+ """
831
+ return torch.ops._C.get_cutlass_moe_mm_data(topk_ids, expert_offsets,
832
+ problem_sizes1, problem_sizes2,
833
+ input_permutation,
834
+ output_permutation,
835
+ num_experts, n, k)
836
+
837
+
838
+ def cutlass_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
839
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
840
+ b_scales: torch.Tensor, expert_offsets: torch.Tensor,
841
+ problem_sizes: torch.Tensor, a_strides: torch.Tensor,
842
+ b_strides: torch.Tensor, c_strides: torch.Tensor):
843
+ """
844
+ A single grouped matrix multiplication used in CUTLASS-based fused MoE.
845
+ The function executes fp8-quantized OUT = AB matrix multiplication.
846
+
847
+ - expert_offsets: Indices that mark at which token index each expert begins
848
+ its computation. The number of tokens computed with
849
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
850
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
851
+ MMs used in the fused MoE operation.
852
+ - a/b/c_strides: The data strides passed to grouped matrix multiplication.
853
+ """
854
+ return torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors,
855
+ a_scales, b_scales, expert_offsets,
856
+ problem_sizes, a_strides, b_strides,
857
+ c_strides)
858
+
859
+
860
+ def cutlass_fp4_moe_mm(a_tensors: torch.Tensor, b_tensors: torch.Tensor,
861
+ a_scales: torch.Tensor, b_scales: torch.Tensor,
862
+ alphas: torch.Tensor, problem_sizes: torch.Tensor,
863
+ expert_offsets: torch.Tensor, sf_offsets: torch.Tensor,
864
+ out_dtype: torch.dtype, device: torch.device):
865
+ """
866
+ An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs
867
+ the gemms for each combination based on the specified problem sizes.
868
+
869
+ This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
870
+ - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
871
+ input and expert weights.
872
+ - a_/b_scales: The blockscales in FP8-E4M3 precision
873
+ - expert_offsets/sf_offsets: Indices that mark at which token index
874
+ each expert begins its computation. The number of tokens
875
+ computed with expert E is expert_offsets[E + 1] -
876
+ expert_offsets[E] And the sf_size per expert is
877
+ sf_offset[E+1] - sf_offset[E]
878
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
879
+ MMs used in the fused MoE operation.
880
+ """
881
+ m_topk = a_tensors.shape[0]
882
+ n = b_tensors.shape[1]
883
+ c_shape = (m_topk, n)
884
+ c = torch.empty(c_shape, device=device, dtype=out_dtype)
885
+ torch.ops._C.cutlass_fp4_group_mm(c, a_tensors, b_tensors, a_scales,
886
+ b_scales, alphas, problem_sizes,
887
+ expert_offsets, sf_offsets)
888
+ return c.to(out_dtype)
889
+
890
+
891
+ # aqlm
892
+ def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor,
893
+ codebooks: torch.Tensor, scales: torch.Tensor,
894
+ codebook_partition_sizes: list[int],
895
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
896
+ return torch.ops._C.aqlm_gemm(input, codes, codebooks, scales,
897
+ codebook_partition_sizes, bias)
898
+
899
+
900
+ def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor,
901
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
902
+ return torch.ops._C.aqlm_dequant(codes, codebooks,
903
+ codebook_partition_sizes)
904
+
905
+
906
+ # gptq_marlin
907
+ def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
908
+ size_k: int, size_n: int,
909
+ num_bits: int) -> torch.Tensor:
910
+ return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
911
+ num_bits)
912
+
913
+
914
+ # gptq_marlin
915
+ def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
916
+ num_bits: int) -> torch.Tensor:
917
+ return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
918
+
919
+
920
+ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
921
+ size_k: int, size_n: int,
922
+ num_bits: int) -> torch.Tensor:
923
+ num_experts = b_q_weight.shape[0]
924
+ assert size_k % 16 == 0
925
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
926
+ device=b_q_weight.device,
927
+ dtype=b_q_weight.dtype)
928
+ for e in range(num_experts):
929
+ output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e],
930
+ size_k, size_n, num_bits)
931
+ return output
932
+
933
+
934
+ def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
935
+ size_k: int, size_n: int,
936
+ num_bits: int) -> torch.Tensor:
937
+ num_experts = b_q_weight.shape[0]
938
+ assert size_k % 16 == 0
939
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
940
+ device=b_q_weight.device,
941
+ dtype=b_q_weight.dtype)
942
+ for e in range(num_experts):
943
+ output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
944
+ size_n, num_bits)
945
+ return output
946
+
947
+
948
+ def gptq_marlin_gemm(a: torch.Tensor,
949
+ c: Optional[torch.Tensor],
950
+ b_q_weight: torch.Tensor,
951
+ b_scales: torch.Tensor,
952
+ global_scale: Optional[torch.Tensor],
953
+ b_zeros: Optional[torch.Tensor],
954
+ g_idx: Optional[torch.Tensor],
955
+ perm: Optional[torch.Tensor],
956
+ workspace: torch.Tensor,
957
+ b_q_type: ScalarType,
958
+ size_m: int,
959
+ size_n: int,
960
+ size_k: int,
961
+ is_k_full: bool = True,
962
+ use_atomic_add: bool = False,
963
+ use_fp32_reduce: bool = False,
964
+ is_zp_float: bool = False) -> torch.Tensor:
965
+ return torch.ops._C.gptq_marlin_gemm(a, c, b_q_weight, b_scales,
966
+ global_scale, b_zeros, g_idx, perm,
967
+ workspace, b_q_type.id, size_m,
968
+ size_n, size_k, is_k_full,
969
+ use_atomic_add, use_fp32_reduce,
970
+ is_zp_float)
971
+
972
+
973
+ # machete
974
+ def machete_supported_schedules(
975
+ a_type: torch.dtype,
976
+ b_type: ScalarType,
977
+ group_scales_type: Optional[torch.dtype],
978
+ group_zeros_type: Optional[torch.dtype] = None,
979
+ channel_scales_type: Optional[torch.dtype] = None,
980
+ token_scales_type: Optional[torch.dtype] = None,
981
+ out_type: Optional[torch.dtype] = None) -> list[str]:
982
+ return torch.ops._C.machete_supported_schedules(
983
+ a_type, b_type.id, group_scales_type, group_zeros_type,
984
+ channel_scales_type, token_scales_type, out_type)
985
+
986
+
987
+ def machete_mm(
988
+ a: torch.Tensor,
989
+ # b_q Should be the tensor returned by machete_prepack_B
990
+ b_q: torch.Tensor,
991
+ b_type: ScalarType,
992
+ out_type: Optional[torch.dtype] = None,
993
+ b_group_scales: Optional[torch.Tensor] = None,
994
+ b_group_zeros: Optional[torch.Tensor] = None,
995
+ b_group_size: Optional[int] = None,
996
+ b_channel_scales: Optional[torch.Tensor] = None,
997
+ a_token_scales: Optional[torch.Tensor] = None,
998
+ schedule: Optional[str] = None) -> torch.Tensor:
999
+ return torch.ops._C.machete_mm(a, b_q, b_type.id, out_type, b_group_scales,
1000
+ b_group_zeros, b_group_size,
1001
+ b_channel_scales, a_token_scales, schedule)
1002
+
1003
+
1004
+ def machete_prepack_B(
1005
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
1006
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
1007
+ return torch.ops._C.machete_prepack_B(b_q_weight, a_type, b_type.id,
1008
+ group_scales_type)
1009
+
1010
+
1011
+ if hasattr(torch.ops._C, "permute_cols"):
1012
+
1013
+ @register_fake("_C::permute_cols")
1014
+ def _permute_cols_fake(a: torch.Tensor,
1015
+ perm: torch.Tensor) -> torch.Tensor:
1016
+ return torch.empty_like(a)
1017
+
1018
+
1019
+ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
1020
+ return torch.ops._C.permute_cols(a, perm)
1021
+
1022
+
1023
+ # fp4
1024
+ def scaled_fp4_quant(
1025
+ input: torch.Tensor,
1026
+ input_global_scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
1027
+ """
1028
+ Quantize input tensor to FP4 and return quantized tensor and scale.
1029
+
1030
+ This function quantizes the last dimension of the given tensor `input`. For
1031
+ every 16 consecutive elements, a single dynamically computed scaling factor
1032
+ is shared. This scaling factor is quantized using the `input_global_scale`
1033
+ and is stored in a swizzled layout (see
1034
+ https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
1035
+
1036
+ Args:
1037
+ input: The input tensor to be quantized to FP4
1038
+ input_global_scale: A scalar scaling factor for the entire tensor.
1039
+
1040
+ Returns:
1041
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
1042
+ two values are packed into a uint8 and float8_e4m3 scaling factors
1043
+ in the sizzled layout.
1044
+ """
1045
+ assert not current_platform.is_rocm()
1046
+ assert input.ndim >= 1, (
1047
+ f'input.ndim needs to be >= 1, but got {input.ndim}.')
1048
+ other_dims = 1 if input.ndim == 1 else -1
1049
+ input = input.reshape(other_dims, input.shape[-1])
1050
+ m, n = input.shape
1051
+ block_size = 16
1052
+ device = input.device
1053
+
1054
+ assert n % block_size == 0, (
1055
+ f'last dim has to be multiple of 16, but got {n}.')
1056
+ assert input.dtype in (torch.float16, torch.bfloat16), (
1057
+ f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
1058
+
1059
+ # Two fp4 values will be packed into an uint8.
1060
+ output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
1061
+
1062
+ # We use the rounded values to store the swizzled values. Due to the
1063
+ # requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
1064
+ # So, we first pad the scales to multiples of 128 and 4. Then, the scales
1065
+ # (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
1066
+ # https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
1067
+ round_up = lambda x, y: (x + y - 1) // y * y
1068
+ rounded_m = round_up(m, 128)
1069
+ scale_n = n // block_size
1070
+ rounded_n = round_up(scale_n, 4)
1071
+ output_scale = torch.empty((rounded_m, rounded_n // 4),
1072
+ device=device,
1073
+ dtype=torch.int32)
1074
+
1075
+ torch.ops._C.scaled_fp4_quant(output, input, output_scale,
1076
+ input_global_scale)
1077
+ output_scale = output_scale.view(torch.float8_e4m3fn)
1078
+ return output, output_scale
1079
+
1080
+
1081
+ def scaled_fp4_experts_quant(
1082
+ input_tensor: torch.Tensor,
1083
+ input_global_scale: torch.Tensor,
1084
+ expert_offsets: torch.Tensor,
1085
+ blockscale_offsets: torch.Tensor,
1086
+ topk: int,
1087
+ expert_map: Optional[torch.Tensor] = None,
1088
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1089
+ """
1090
+ Quantize input tensor to FP4 and return quantized tensor and scale, for
1091
+ packed MoE Inputs.
1092
+ Args:
1093
+ input: The input tensor to be quantized to FP4
1094
+ expert_map: The expert map tensor
1095
+ input_global_scale: A scalar scaling factor for the entire tensor.
1096
+ expert_offsets: The expert offsets tensor
1097
+ blockscale_offsets: The blockscale offsets tensor
1098
+ Outputs:
1099
+ output: The quantized tensor in FP4
1100
+ output_scales: The blockscale tensor in FP8-E4M3
1101
+ """
1102
+ assert not current_platform.is_rocm()
1103
+ assert input_tensor.ndim == 2, (
1104
+ f'input.ndim needs to be == 2, but got {input_tensor.ndim}.')
1105
+
1106
+ input_tensor = input_tensor[
1107
+ expert_map] if expert_map is not None else input_tensor
1108
+ m_numtopk, k = input_tensor.shape
1109
+ # Control the maximum number of tokens per expert supported by the
1110
+ # NVFP4 MoE Expert Quantization. This is used to prevent the kernel
1111
+ # from running out of memory. This value can also be increased to support
1112
+ # larger models.
1113
+ MAX_TOKENS_PER_EXPERT = envs.VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE
1114
+ assert (m_numtopk <= MAX_TOKENS_PER_EXPERT * topk), (
1115
+ f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
1116
+ f"{MAX_TOKENS_PER_EXPERT})"
1117
+ f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
1118
+ f" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE to set this value.")
1119
+ scales_k = k // 16
1120
+ padded_k = (scales_k + (4 - 1)) // 4
1121
+
1122
+ # output is uint8 and packed fp4 values
1123
+ output = torch.empty(m_numtopk,
1124
+ k // 2,
1125
+ device=input_tensor.device,
1126
+ dtype=torch.uint8)
1127
+ output_scales = torch.empty(MAX_TOKENS_PER_EXPERT * topk,
1128
+ padded_k,
1129
+ dtype=torch.int32,
1130
+ device=input_tensor.device)
1131
+ torch.ops._C.scaled_fp4_experts_quant(output, output_scales, input_tensor,
1132
+ input_global_scale, expert_offsets,
1133
+ blockscale_offsets)
1134
+ output_scales = output_scales.view(torch.float8_e4m3fn)
1135
+ return output, output_scales
1136
+
1137
+
1138
+ # fp8
1139
+ def scaled_fp8_quant(
1140
+ input: torch.Tensor,
1141
+ scale: Optional[torch.Tensor] = None,
1142
+ num_token_padding: Optional[int] = None,
1143
+ scale_ub: Optional[torch.Tensor] = None,
1144
+ use_per_token_if_dynamic: bool = False,
1145
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1146
+ """
1147
+ Quantize input tensor to FP8 and return quantized tensor and scale.
1148
+
1149
+ This function supports both static and dynamic quantization: If you
1150
+ provide the scale, it will use static scaling and if you omit it,
1151
+ the scale will be determined dynamically. The function also allows
1152
+ optional padding of the output tensors for downstream kernels that
1153
+ will benefit from padding.
1154
+
1155
+ Args:
1156
+ input: The input tensor to be quantized to FP8
1157
+ scale: Optional scaling factor for the FP8 quantization
1158
+ scale_ub: Optional upper bound for scaling factor in dynamic
1159
+ per token case
1160
+ num_token_padding: If specified, pad the first dimension
1161
+ of the output to at least this value.
1162
+ use_per_token_if_dynamic: Whether to do per_tensor or per_token
1163
+ in the dynamic quantization case.
1164
+
1165
+ Returns:
1166
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
1167
+ scaling factor.
1168
+ """
1169
+ # This code assumes batch_dim and num_tokens are flattened
1170
+ assert (input.ndim == 2)
1171
+ shape: Union[tuple[int, int], torch.Size] = input.shape
1172
+ # For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
1173
+ out_dtype: torch.dtype = current_platform.fp8_dtype()
1174
+ if num_token_padding:
1175
+ shape = (max(num_token_padding, input.shape[0]), shape[1])
1176
+ output = torch.empty(shape, device=input.device, dtype=out_dtype)
1177
+
1178
+ if scale is None:
1179
+ if use_per_token_if_dynamic:
1180
+ scale = torch.empty((shape[0], 1),
1181
+ device=input.device,
1182
+ dtype=torch.float32)
1183
+ torch.ops._C.dynamic_per_token_scaled_fp8_quant(
1184
+ output, input, scale, scale_ub)
1185
+ else:
1186
+ scale = torch.zeros(1, device=input.device, dtype=torch.float32)
1187
+ torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
1188
+ else:
1189
+ # num_token_padding not implemented for this case
1190
+ assert (scale.numel() == 1 or num_token_padding is None)
1191
+ torch.ops._C.static_scaled_fp8_quant(output, input, scale)
1192
+
1193
+ return output, scale
1194
+
1195
+
1196
+ # gptq allspark
1197
+ def allspark_repack_weight(
1198
+ qweight: torch.Tensor,
1199
+ scale: torch.Tensor,
1200
+ zero_point: Optional[torch.Tensor] = None,
1201
+ has_zp: bool = False
1202
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1203
+ """
1204
+ Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
1205
+ for Ampere W8A16 Fused Gemm kernel
1206
+
1207
+ Args:
1208
+ qweight: uint8 weight tensor, original k x n format.
1209
+ scale: fp16/bf16 weight scale tensor, 1 x n format.
1210
+ zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
1211
+ Must be provided for asymmetric quantization.
1212
+ has_zp: if use symmetric quantization, has_zp = False.
1213
+ if use asymmetric quantization, has_zp = True.
1214
+
1215
+ Returns:
1216
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
1217
+ rearranged weight, scale, and optionally zero_point.
1218
+ """
1219
+ K = qweight.shape[0]
1220
+ N = qweight.shape[1]
1221
+ N_32align = (N + 32 - 1) // 32 * 32
1222
+
1223
+ qweight_reorder = torch.empty((N_32align, K),
1224
+ device=qweight.device,
1225
+ dtype=qweight.dtype)
1226
+ scale_reorder = torch.empty((1, N_32align),
1227
+ device=scale.device,
1228
+ dtype=scale.dtype)
1229
+ zero_point_reorder = None
1230
+ if has_zp:
1231
+ assert zero_point is not None, (
1232
+ "zero_point must be provided for asymmetric quantization.")
1233
+ zero_point_reorder = torch.empty((1, N_32align),
1234
+ device=zero_point.device,
1235
+ dtype=zero_point.dtype)
1236
+
1237
+ torch.ops._C.rearrange_kn_weight_as_n32k16_order(
1238
+ qweight, scale, zero_point, has_zp, qweight_reorder, scale_reorder,
1239
+ zero_point_reorder, K, N, N_32align)
1240
+
1241
+ return qweight_reorder, scale_reorder, zero_point_reorder
1242
+
1243
+
1244
+ def allspark_w8a16_gemm(a: torch.Tensor, b_qweight: torch.Tensor,
1245
+ b_scales: torch.Tensor,
1246
+ b_qzeros: Optional[torch.Tensor], n: int,
1247
+ group_size: int, sm_count: int, sm_version: int,
1248
+ CUBLAS_M_THRESHOLD: int, has_zp: bool,
1249
+ n32k16_reorder: bool) -> torch.Tensor:
1250
+
1251
+ return torch.ops._C.allspark_w8a16_gemm(a, b_qweight, b_scales, b_qzeros,
1252
+ n, group_size, sm_count,
1253
+ sm_version, CUBLAS_M_THRESHOLD,
1254
+ has_zp, n32k16_reorder)
1255
+
1256
+
1257
+ # int8
1258
+ def scaled_int8_quant(
1259
+ input: torch.Tensor,
1260
+ scale: Optional[torch.Tensor] = None,
1261
+ azp: Optional[torch.Tensor] = None,
1262
+ symmetric: bool = True
1263
+ ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
1264
+ """
1265
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1266
+
1267
+ Args:
1268
+ input: The input tensor to be quantized to int8.
1269
+ scale: Optional scaling factor for the int8 quantization.
1270
+ When not provided, we invoke dynamic-per-token quantization.
1271
+ azp: Optional zero-point for the int8 quantization.
1272
+ Must be provided for asymmetric quantization if `scale` is provided.
1273
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1274
+
1275
+ Returns:
1276
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1277
+ """
1278
+ output = torch.empty_like(input, dtype=torch.int8)
1279
+ if scale is not None:
1280
+ # static-per-tensor quantization.
1281
+ assert symmetric == (
1282
+ azp
1283
+ is None), "azp must only be provided for asymmetric quantization."
1284
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1285
+ return output, scale, azp
1286
+
1287
+ # dynamic-per-token quantization.
1288
+ input_scales = torch.empty((input.numel() // input.shape[-1], 1),
1289
+ device=input.device,
1290
+ dtype=torch.float32)
1291
+ input_azp = None if symmetric else torch.empty_like(input_scales,
1292
+ dtype=torch.int32)
1293
+ torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales,
1294
+ input_azp)
1295
+ return output, input_scales, input_azp
1296
+
1297
+
1298
+ # qqq ops
1299
+ def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
1300
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
1301
+ s_group: torch.Tensor, workspace: torch.Tensor,
1302
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
1303
+ return torch.ops._C.marlin_qqq_gemm(a, b_q_weight, s_tok, s_ch, s_group,
1304
+ workspace, size_m, size_n, size_k)
1305
+
1306
+
1307
+ # gguf
1308
+ def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
1309
+ dtype: Optional[torch.dtype]) -> torch.Tensor:
1310
+ return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
1311
+
1312
+
1313
+ def ggml_mul_mat_vec_a8(
1314
+ W: torch.Tensor,
1315
+ X: torch.Tensor,
1316
+ quant_type: int,
1317
+ row: int,
1318
+ ) -> torch.Tensor:
1319
+ return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
1320
+
1321
+
1322
+ def ggml_mul_mat_a8(
1323
+ W: torch.Tensor,
1324
+ X: torch.Tensor,
1325
+ quant_type: int,
1326
+ row: int,
1327
+ ) -> torch.Tensor:
1328
+ return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
1329
+
1330
+
1331
+ def ggml_moe_a8(
1332
+ X: torch.Tensor,
1333
+ W: torch.Tensor,
1334
+ sorted_token_ids: torch.Tensor,
1335
+ expert_ids: torch.Tensor,
1336
+ num_tokens_post_padded: torch.Tensor,
1337
+ quant_type: int,
1338
+ row: int,
1339
+ top_k: int,
1340
+ tokens: int,
1341
+ ) -> torch.Tensor:
1342
+ return torch.ops._C.ggml_moe_a8(X, W, sorted_token_ids, expert_ids,
1343
+ num_tokens_post_padded, quant_type, row,
1344
+ top_k, tokens)
1345
+
1346
+
1347
+ def ggml_moe_a8_vec(
1348
+ X: torch.Tensor,
1349
+ W: torch.Tensor,
1350
+ topk_ids: torch.Tensor,
1351
+ top_k: int,
1352
+ quant_type: int,
1353
+ row: torch.SymInt,
1354
+ tokens: torch.SymInt,
1355
+ ) -> torch.Tensor:
1356
+ return torch.ops._C.ggml_moe_a8_vec(X, W, topk_ids, top_k, quant_type, row,
1357
+ tokens)
1358
+
1359
+
1360
+ def ggml_moe_get_block_size(quant_type: int) -> int:
1361
+ return torch.ops._C.ggml_moe_get_block_size(quant_type)
1362
+
1363
+
1364
+ # mamba
1365
+ def causal_conv1d_fwd(x: torch.Tensor, weight: torch.Tensor,
1366
+ bias_: Optional[torch.Tensor],
1367
+ conv_states: Optional[torch.Tensor],
1368
+ query_start_loc: Optional[torch.Tensor],
1369
+ cache_indices: Optional[torch.Tensor],
1370
+ has_initial_state: Optional[torch.Tensor],
1371
+ silu_activation: bool, pad_slot_id: int):
1372
+ torch.ops._C.causal_conv1d_fwd(x, weight, bias_, conv_states,
1373
+ query_start_loc, cache_indices,
1374
+ has_initial_state, silu_activation,
1375
+ pad_slot_id)
1376
+
1377
+
1378
+ def causal_conv1d_update(x: torch.Tensor, conv_state: torch.Tensor,
1379
+ weight: torch.Tensor, bias_: Optional[torch.Tensor],
1380
+ silu_activation: bool,
1381
+ cache_seqlens: Optional[torch.Tensor],
1382
+ conv_state_indices: Optional[torch.Tensor],
1383
+ pad_slot_id: int):
1384
+ torch.ops._C.causal_conv1d_update(x, conv_state, weight, bias_,
1385
+ silu_activation, cache_seqlens,
1386
+ conv_state_indices, pad_slot_id)
1387
+
1388
+
1389
+ def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
1390
+ B: torch.Tensor, C: torch.Tensor,
1391
+ D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
1392
+ delta_bias_: Optional[torch.Tensor],
1393
+ delta_softplus: bool,
1394
+ query_start_loc: Optional[torch.Tensor],
1395
+ cache_indices: Optional[torch.Tensor],
1396
+ has_initial_state: Optional[torch.Tensor],
1397
+ ssm_states: torch.Tensor, pad_slot_id: int):
1398
+ torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_, delta_bias_,
1399
+ delta_softplus, query_start_loc,
1400
+ cache_indices, has_initial_state,
1401
+ ssm_states, pad_slot_id)
1402
+
1403
+
1404
+ # ROCm skinny gemms
1405
+ def LLMM1(a: torch.Tensor, b: torch.Tensor,
1406
+ rows_per_block: int) -> torch.Tensor:
1407
+ return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
1408
+
1409
+
1410
+ def wvSplitK(a: torch.Tensor, b: torch.Tensor, cu_count: int) -> torch.Tensor:
1411
+ return torch.ops._rocm_C.wvSplitK(a, b, cu_count)
1412
+
1413
+
1414
+ def wvSplitKQ(a: torch.Tensor, b: torch.Tensor, out_dtype: torch.dtype,
1415
+ scale_a: torch.Tensor, scale_b: torch.Tensor,
1416
+ cu_count: int) -> torch.Tensor:
1417
+ out = torch.empty((b.shape[0], a.shape[0]),
1418
+ dtype=out_dtype,
1419
+ device=b.device)
1420
+ torch.ops._rocm_C.wvSplitKQ(a, b, out, scale_a, scale_b, cu_count)
1421
+ return out
1422
+
1423
+
1424
+ # moe
1425
+ def moe_sum(input: torch.Tensor, output: torch.Tensor):
1426
+ torch.ops._moe_C.moe_sum(input, output)
1427
+
1428
+
1429
+ def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1430
+ block_size: int, sorted_token_ids: torch.Tensor,
1431
+ experts_ids: torch.Tensor,
1432
+ num_tokens_post_pad: torch.Tensor) -> None:
1433
+ torch.ops._moe_C.moe_align_block_size(topk_ids, num_experts, block_size,
1434
+ sorted_token_ids, experts_ids,
1435
+ num_tokens_post_pad)
1436
+
1437
+
1438
+ def sgl_moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1439
+ block_size: int, sorted_token_ids: torch.Tensor,
1440
+ experts_ids: torch.Tensor,
1441
+ num_tokens_post_pad: torch.Tensor) -> None:
1442
+ torch.ops._moe_C.sgl_moe_align_block_size(topk_ids, num_experts,
1443
+ block_size, sorted_token_ids,
1444
+ experts_ids, num_tokens_post_pad)
1445
+
1446
+
1447
+ def moe_wna16_gemm(input: torch.Tensor, output: torch.Tensor,
1448
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1449
+ b_qzeros: Optional[torch.Tensor],
1450
+ topk_weights: Optional[torch.Tensor],
1451
+ sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor,
1452
+ num_tokens_post_pad: torch.Tensor, top_k: int,
1453
+ BLOCK_SIZE_M: int, BLOCK_SIZE_N: int, BLOCK_SIZE_K: int,
1454
+ bit: int) -> torch.Tensor:
1455
+ if not current_platform.is_cuda():
1456
+ raise NotImplementedError(
1457
+ "The optimized moe_wna16_gemm kernel is only "
1458
+ "available on CUDA platforms")
1459
+ torch.ops._moe_C.moe_wna16_gemm(input, output, b_qweight, b_scales,
1460
+ b_qzeros, topk_weights, sorted_token_ids,
1461
+ experts_ids, num_tokens_post_pad, top_k,
1462
+ BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
1463
+ bit)
1464
+
1465
+
1466
+ def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
1467
+ token_expert_indicies: torch.Tensor,
1468
+ gating_output: torch.Tensor) -> None:
1469
+ torch.ops._moe_C.topk_softmax(topk_weights, topk_ids,
1470
+ token_expert_indicies, gating_output)
1471
+
1472
+
1473
+ def moe_wna16_marlin_gemm(input: torch.Tensor, output: Optional[torch.Tensor],
1474
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1475
+ global_scale: Optional[torch.Tensor],
1476
+ b_qzeros: Optional[torch.Tensor],
1477
+ g_idx: Optional[torch.Tensor],
1478
+ perm: Optional[torch.Tensor],
1479
+ workspace: torch.Tensor,
1480
+ sorted_token_ids: torch.Tensor,
1481
+ expert_ids: torch.Tensor,
1482
+ num_tokens_past_padded: torch.Tensor,
1483
+ topk_weights: torch.Tensor, moe_block_size: int,
1484
+ top_k: int, mul_topk_weights: bool, is_ep: bool,
1485
+ b_q_type: ScalarType, size_m: int, size_n: int,
1486
+ size_k: int, is_k_full: bool, use_atomic_add: bool,
1487
+ use_fp32_reduce: bool,
1488
+ is_zp_float: bool) -> torch.Tensor:
1489
+ return torch.ops._moe_C.moe_wna16_marlin_gemm(
1490
+ input, output, b_qweight, b_scales, global_scale, b_qzeros, g_idx,
1491
+ perm, workspace, sorted_token_ids, expert_ids, num_tokens_past_padded,
1492
+ topk_weights, moe_block_size, top_k, mul_topk_weights, is_ep,
1493
+ b_q_type.id, size_m, size_n, size_k, is_k_full, use_atomic_add,
1494
+ use_fp32_reduce, is_zp_float)
1495
+
1496
+
1497
+ if supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
1498
+
1499
+ @register_fake("_moe_C::marlin_gemm_moe")
1500
+ def marlin_gemm_moe_fake(a: torch.Tensor, b_q_weights: torch.Tensor,
1501
+ sorted_ids: torch.Tensor,
1502
+ topk_weights: torch.Tensor,
1503
+ topk_ids: torch.Tensor, b_scales: torch.Tensor,
1504
+ b_zero_points: torch.Tensor, g_idx: torch.Tensor,
1505
+ perm: torch.Tensor, workspace: torch.Tensor,
1506
+ b_q_type: ScalarType, size_m: torch.SymInt,
1507
+ size_n: torch.SymInt, size_k: torch.SymInt,
1508
+ is_k_full: bool, num_experts: int, topk: int,
1509
+ moe_block_size: int, replicate_input: bool,
1510
+ apply_weights: bool) -> torch.Tensor:
1511
+ return torch.empty((size_m, topk, size_n),
1512
+ dtype=a.dtype,
1513
+ device=a.device)
1514
+
1515
+ @register_fake("_moe_C::moe_wna16_marlin_gemm")
1516
+ def moe_wna16_marlin_gemm_fake(input: torch.Tensor,
1517
+ output: Optional[torch.Tensor],
1518
+ b_qweight: torch.Tensor,
1519
+ b_scales: torch.Tensor,
1520
+ b_qzeros: Optional[torch.Tensor],
1521
+ g_idx: Optional[torch.Tensor],
1522
+ perm: Optional[torch.Tensor],
1523
+ workspace: torch.Tensor,
1524
+ sorted_token_ids: torch.Tensor,
1525
+ expert_ids: torch.Tensor,
1526
+ num_tokens_past_padded: torch.Tensor,
1527
+ topk_weights: torch.Tensor,
1528
+ moe_block_size: int, top_k: int,
1529
+ mul_topk_weights: bool, is_ep: bool,
1530
+ b_q_type: ScalarType, size_m: int,
1531
+ size_n: int, size_k: int, is_k_full: bool,
1532
+ use_atomic_add: bool, use_fp32_reduce: bool,
1533
+ is_zp_float: bool) -> torch.Tensor:
1534
+ return torch.empty((size_m * top_k, size_n),
1535
+ dtype=input.dtype,
1536
+ device=input.device)
1537
+
1538
+
1539
+ def reshape_and_cache(
1540
+ key: torch.Tensor,
1541
+ value: torch.Tensor,
1542
+ key_cache: torch.Tensor,
1543
+ value_cache: torch.Tensor,
1544
+ slot_mapping: torch.Tensor,
1545
+ kv_cache_dtype: str,
1546
+ k_scale: torch.Tensor,
1547
+ v_scale: torch.Tensor,
1548
+ ) -> None:
1549
+ torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
1550
+ value_cache, slot_mapping,
1551
+ kv_cache_dtype, k_scale, v_scale)
1552
+
1553
+
1554
+ def reshape_and_cache_flash(
1555
+ key: torch.Tensor,
1556
+ value: torch.Tensor,
1557
+ key_cache: torch.Tensor,
1558
+ value_cache: torch.Tensor,
1559
+ slot_mapping: torch.Tensor,
1560
+ kv_cache_dtype: str,
1561
+ k_scale: torch.Tensor,
1562
+ v_scale: torch.Tensor,
1563
+ ) -> None:
1564
+ torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
1565
+ value_cache, slot_mapping,
1566
+ kv_cache_dtype, k_scale,
1567
+ v_scale)
1568
+
1569
+
1570
+ def concat_and_cache_mla(
1571
+ kv_c: torch.Tensor,
1572
+ k_pe: torch.Tensor,
1573
+ kv_cache: torch.Tensor,
1574
+ slot_mapping: torch.Tensor,
1575
+ kv_cache_dtype: str,
1576
+ scale: torch.Tensor,
1577
+ ) -> None:
1578
+ torch.ops._C_cache_ops.concat_and_cache_mla(kv_c, k_pe, kv_cache,
1579
+ slot_mapping, kv_cache_dtype,
1580
+ scale)
1581
+
1582
+
1583
+ def copy_blocks(key_caches: list[torch.Tensor],
1584
+ value_caches: list[torch.Tensor],
1585
+ block_mapping: torch.Tensor) -> None:
1586
+ torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
1587
+
1588
+
1589
+ def copy_blocks_mla(kv_caches: list[torch.Tensor],
1590
+ block_mapping: torch.Tensor) -> None:
1591
+ torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
1592
+
1593
+
1594
+ def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
1595
+ block_mapping: torch.Tensor) -> None:
1596
+ torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
1597
+
1598
+
1599
+ def convert_fp8(output: torch.Tensor,
1600
+ input: torch.Tensor,
1601
+ scale: float = 1.0,
1602
+ kv_dtype: str = "fp8") -> None:
1603
+ torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
1604
+
1605
+
1606
+ def gather_cache(src_cache: torch.Tensor,
1607
+ dst: torch.Tensor,
1608
+ block_table: torch.Tensor,
1609
+ cu_seq_lens: torch.Tensor,
1610
+ batch_size: int,
1611
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1612
+ torch.ops._C_cache_ops.gather_cache(src_cache, dst, block_table,
1613
+ cu_seq_lens, batch_size, seq_starts)
1614
+
1615
+
1616
+ def get_device_attribute(attribute: int, device: int) -> int:
1617
+ return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
1618
+
1619
+
1620
+ def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
1621
+ # ruff: noqa: E501
1622
+ return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
1623
+ device)
1624
+
1625
+
1626
+ # custom ar
1627
+ def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
1628
+ rank: int, fully_connected: bool) -> int:
1629
+ return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
1630
+ fully_connected)
1631
+
1632
+
1633
+ def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
1634
+ reg_buffer_sz_bytes: int) -> None:
1635
+ torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
1636
+ reg_buffer_sz_bytes)
1637
+
1638
+
1639
+ def dispose(fa: int) -> None:
1640
+ torch.ops._C_custom_ar.dispose(fa)
1641
+
1642
+
1643
+ def meta_size() -> int:
1644
+ return torch.ops._C_custom_ar.meta_size()
1645
+
1646
+
1647
+ def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
1648
+ return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
1649
+
1650
+
1651
+ def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
1652
+ return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
1653
+
1654
+
1655
+ def register_graph_buffers(fa: int, handles: list[list[int]],
1656
+ offsets: list[list[int]]) -> None:
1657
+ torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
1658
+
1659
+
1660
+ def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
1661
+ return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
1662
+
1663
+
1664
+ def open_mem_handle(mem_handle: torch.Tensor):
1665
+ return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
1666
+
1667
+
1668
+ def free_shared_buffer(ptr: int) -> None:
1669
+ torch.ops._C_custom_ar.free_shared_buffer(ptr)
1670
+
1671
+
1672
+ def get_flash_mla_metadata(
1673
+ cache_seqlens: torch.Tensor,
1674
+ num_heads_per_head_k: int,
1675
+ num_heads_k: int,
1676
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1677
+ """
1678
+ Arguments:
1679
+ cache_seqlens: (batch_size), dtype torch.int32.
1680
+ num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
1681
+ num_heads_k: num_heads_k.
1682
+
1683
+ Return:
1684
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
1685
+ num_splits: (batch_size + 1), dtype torch.int32.
1686
+ """
1687
+ return torch.ops._C.get_flash_mla_metadata(cache_seqlens,
1688
+ num_heads_per_head_k,
1689
+ num_heads_k)
1690
+
1691
+
1692
+ def flash_mla_with_kvcache(
1693
+ q: torch.Tensor,
1694
+ k_cache: torch.Tensor,
1695
+ block_table: torch.Tensor,
1696
+ cache_seqlens: torch.Tensor,
1697
+ head_dim_v: int,
1698
+ tile_scheduler_metadata: torch.Tensor,
1699
+ num_splits: torch.Tensor,
1700
+ softmax_scale: Optional[float] = None,
1701
+ causal: bool = False,
1702
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1703
+ """
1704
+ Arguments:
1705
+ q: (batch_size, seq_len_q, num_heads_q, head_dim).
1706
+ k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
1707
+ block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
1708
+ cache_seqlens: (batch_size), torch.int32.
1709
+ head_dim_v: Head_dim of v.
1710
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
1711
+ num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
1712
+ softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
1713
+ causal: bool. Whether to apply causal attention mask.
1714
+
1715
+ Return:
1716
+ out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
1717
+ softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
1718
+ """
1719
+ if softmax_scale is None:
1720
+ softmax_scale = q.shape[-1]**(-0.5)
1721
+ out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
1722
+ q,
1723
+ k_cache,
1724
+ None,
1725
+ head_dim_v,
1726
+ cache_seqlens,
1727
+ block_table,
1728
+ softmax_scale,
1729
+ causal,
1730
+ tile_scheduler_metadata,
1731
+ num_splits,
1732
+ )
1733
+ return out, softmax_lse
1734
+
1735
+
1736
+ def cutlass_mla_decode(out: torch.Tensor, q_nope: torch.Tensor,
1737
+ q_pe: torch.Tensor, kv_c_and_k_pe_cache: torch.Tensor,
1738
+ seq_lens: torch.Tensor, page_table: torch.Tensor,
1739
+ scale: float) -> torch.Tensor:
1740
+ torch.ops._C.cutlass_mla_decode(out, q_nope, q_pe, kv_c_and_k_pe_cache,
1741
+ seq_lens, page_table, scale)
1742
+ return out