vllm-cpu-avx512bf16 0.9.0.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1175) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1742 -0
  4. vllm/_ipex_ops.py +243 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +15 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +44 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +33 -0
  16. vllm/assets/video.py +114 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +305 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1494 -0
  23. vllm/attention/backends/flash_attn.py +999 -0
  24. vllm/attention/backends/flashinfer.py +1100 -0
  25. vllm/attention/backends/flashmla.py +242 -0
  26. vllm/attention/backends/hpu_attn.py +309 -0
  27. vllm/attention/backends/ipex_attn.py +394 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1381 -0
  30. vllm/attention/backends/pallas.py +347 -0
  31. vllm/attention/backends/placeholder_attn.py +399 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +970 -0
  34. vllm/attention/backends/torch_sdpa.py +691 -0
  35. vllm/attention/backends/triton_mla.py +113 -0
  36. vllm/attention/backends/utils.py +609 -0
  37. vllm/attention/backends/xformers.py +798 -0
  38. vllm/attention/layer.py +452 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +245 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +367 -0
  45. vllm/attention/ops/flashmla.py +115 -0
  46. vllm/attention/ops/hpu_paged_attn.py +87 -0
  47. vllm/attention/ops/ipex_attn.py +194 -0
  48. vllm/attention/ops/merge_attn_states.py +42 -0
  49. vllm/attention/ops/nki_flash_attn.py +905 -0
  50. vllm/attention/ops/paged_attn.py +255 -0
  51. vllm/attention/ops/prefix_prefill.py +901 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +99 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  54. vllm/attention/ops/triton_decode_attention.py +673 -0
  55. vllm/attention/ops/triton_flash_attention.py +1374 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  57. vllm/attention/ops/triton_unified_attention.py +337 -0
  58. vllm/attention/selector.py +186 -0
  59. vllm/attention/utils/fa_utils.py +54 -0
  60. vllm/beam_search.py +82 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +921 -0
  63. vllm/benchmarks/endpoint_request_func.py +160 -0
  64. vllm/benchmarks/latency.py +184 -0
  65. vllm/benchmarks/serve.py +925 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +69 -0
  68. vllm/collect_env.py +818 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +88 -0
  71. vllm/compilation/backends.py +560 -0
  72. vllm/compilation/base_piecewise_backend.py +71 -0
  73. vllm/compilation/collective_fusion.py +126 -0
  74. vllm/compilation/compiler_interface.py +533 -0
  75. vllm/compilation/counter.py +33 -0
  76. vllm/compilation/cuda_piecewise_backend.py +213 -0
  77. vllm/compilation/decorators.py +249 -0
  78. vllm/compilation/fix_functionalization.py +190 -0
  79. vllm/compilation/fusion.py +617 -0
  80. vllm/compilation/fx_utils.py +61 -0
  81. vllm/compilation/inductor_pass.py +114 -0
  82. vllm/compilation/monitor.py +38 -0
  83. vllm/compilation/multi_output_match.py +108 -0
  84. vllm/compilation/noop_elimination.py +136 -0
  85. vllm/compilation/pass_manager.py +77 -0
  86. vllm/compilation/sequence_parallelism.py +267 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  88. vllm/compilation/vllm_inductor_pass.py +66 -0
  89. vllm/compilation/wrapper.py +129 -0
  90. vllm/config.py +4600 -0
  91. vllm/connections.py +173 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +398 -0
  95. vllm/core/block/common.py +370 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  97. vllm/core/block/interfaces.py +318 -0
  98. vllm/core/block/naive_block.py +465 -0
  99. vllm/core/block/prefix_caching_block.py +1134 -0
  100. vllm/core/block/utils.py +27 -0
  101. vllm/core/block_manager.py +520 -0
  102. vllm/core/evictor.py +156 -0
  103. vllm/core/interfaces.py +134 -0
  104. vllm/core/placeholder_block_space_manager.py +99 -0
  105. vllm/core/scheduler.py +2092 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +280 -0
  108. vllm/distributed/__init__.py +5 -0
  109. vllm/distributed/communication_op.py +40 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +126 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +144 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +167 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +303 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +258 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  120. vllm/distributed/device_communicators/pynccl.py +217 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +541 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  125. vllm/distributed/kv_events.py +296 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +11 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +126 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +202 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +91 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +5 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +259 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +189 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +851 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  152. vllm/distributed/parallel_state.py +1294 -0
  153. vllm/distributed/utils.py +520 -0
  154. vllm/engine/__init__.py +0 -0
  155. vllm/engine/arg_utils.py +1649 -0
  156. vllm/engine/async_llm_engine.py +1274 -0
  157. vllm/engine/async_timeout.py +191 -0
  158. vllm/engine/llm_engine.py +2153 -0
  159. vllm/engine/metrics.py +717 -0
  160. vllm/engine/metrics_types.py +96 -0
  161. vllm/engine/multiprocessing/__init__.py +188 -0
  162. vllm/engine/multiprocessing/client.py +755 -0
  163. vllm/engine/multiprocessing/engine.py +459 -0
  164. vllm/engine/output_processor/__init__.py +0 -0
  165. vllm/engine/output_processor/interfaces.py +74 -0
  166. vllm/engine/output_processor/multi_step.py +215 -0
  167. vllm/engine/output_processor/single_step.py +144 -0
  168. vllm/engine/output_processor/stop_checker.py +130 -0
  169. vllm/engine/output_processor/util.py +27 -0
  170. vllm/engine/protocol.py +310 -0
  171. vllm/entrypoints/__init__.py +0 -0
  172. vllm/entrypoints/api_server.py +177 -0
  173. vllm/entrypoints/chat_utils.py +1298 -0
  174. vllm/entrypoints/cli/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/base.py +38 -0
  177. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  178. vllm/entrypoints/cli/benchmark/main.py +53 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  180. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  181. vllm/entrypoints/cli/collect_env.py +34 -0
  182. vllm/entrypoints/cli/main.py +62 -0
  183. vllm/entrypoints/cli/openai.py +204 -0
  184. vllm/entrypoints/cli/serve.py +141 -0
  185. vllm/entrypoints/cli/types.py +24 -0
  186. vllm/entrypoints/launcher.py +146 -0
  187. vllm/entrypoints/llm.py +1503 -0
  188. vllm/entrypoints/logger.py +49 -0
  189. vllm/entrypoints/openai/__init__.py +0 -0
  190. vllm/entrypoints/openai/api_server.py +1376 -0
  191. vllm/entrypoints/openai/cli_args.py +306 -0
  192. vllm/entrypoints/openai/logits_processors.py +89 -0
  193. vllm/entrypoints/openai/protocol.py +1890 -0
  194. vllm/entrypoints/openai/run_batch.py +439 -0
  195. vllm/entrypoints/openai/serving_chat.py +1192 -0
  196. vllm/entrypoints/openai/serving_classification.py +159 -0
  197. vllm/entrypoints/openai/serving_completion.py +590 -0
  198. vllm/entrypoints/openai/serving_embedding.py +200 -0
  199. vllm/entrypoints/openai/serving_engine.py +985 -0
  200. vllm/entrypoints/openai/serving_models.py +314 -0
  201. vllm/entrypoints/openai/serving_pooling.py +231 -0
  202. vllm/entrypoints/openai/serving_score.py +432 -0
  203. vllm/entrypoints/openai/serving_tokenization.py +151 -0
  204. vllm/entrypoints/openai/serving_transcription.py +421 -0
  205. vllm/entrypoints/openai/tool_parsers/__init__.py +22 -0
  206. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  207. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +369 -0
  208. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +258 -0
  209. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +236 -0
  210. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  211. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +215 -0
  212. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +307 -0
  213. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +302 -0
  214. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +266 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  216. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +111 -0
  217. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +296 -0
  218. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  219. vllm/entrypoints/score_utils.py +49 -0
  220. vllm/entrypoints/ssl.py +74 -0
  221. vllm/entrypoints/utils.py +219 -0
  222. vllm/env_override.py +34 -0
  223. vllm/envs.py +896 -0
  224. vllm/executor/__init__.py +0 -0
  225. vllm/executor/executor_base.py +400 -0
  226. vllm/executor/mp_distributed_executor.py +243 -0
  227. vllm/executor/msgspec_utils.py +29 -0
  228. vllm/executor/multiproc_worker_utils.py +312 -0
  229. vllm/executor/ray_distributed_executor.py +700 -0
  230. vllm/executor/ray_utils.py +398 -0
  231. vllm/executor/uniproc_executor.py +138 -0
  232. vllm/forward_context.py +147 -0
  233. vllm/inputs/__init__.py +40 -0
  234. vllm/inputs/data.py +330 -0
  235. vllm/inputs/parse.py +150 -0
  236. vllm/inputs/preprocess.py +908 -0
  237. vllm/inputs/registry.py +214 -0
  238. vllm/jsontree.py +79 -0
  239. vllm/logger.py +211 -0
  240. vllm/logging_utils/__init__.py +7 -0
  241. vllm/logging_utils/dump_input.py +84 -0
  242. vllm/logging_utils/formatter.py +17 -0
  243. vllm/logits_process.py +118 -0
  244. vllm/lora/__init__.py +0 -0
  245. vllm/lora/fully_sharded_layers.py +354 -0
  246. vllm/lora/layers.py +1284 -0
  247. vllm/lora/lora.py +198 -0
  248. vllm/lora/models.py +817 -0
  249. vllm/lora/ops/__init__.py +0 -0
  250. vllm/lora/ops/torch_ops/__init__.py +15 -0
  251. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  252. vllm/lora/ops/triton_ops/__init__.py +11 -0
  253. vllm/lora/ops/triton_ops/kernel_utils.py +242 -0
  254. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  255. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  256. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  257. vllm/lora/ops/triton_ops/utils.py +119 -0
  258. vllm/lora/ops/xla_ops/__init__.py +6 -0
  259. vllm/lora/ops/xla_ops/lora_ops.py +106 -0
  260. vllm/lora/ops/xla_ops/pallas.py +133 -0
  261. vllm/lora/peft_helper.py +135 -0
  262. vllm/lora/punica_wrapper/__init__.py +9 -0
  263. vllm/lora/punica_wrapper/punica_base.py +484 -0
  264. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  265. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  266. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  267. vllm/lora/punica_wrapper/punica_selector.py +19 -0
  268. vllm/lora/punica_wrapper/punica_tpu.py +325 -0
  269. vllm/lora/punica_wrapper/utils.py +163 -0
  270. vllm/lora/request.py +98 -0
  271. vllm/lora/resolver.py +84 -0
  272. vllm/lora/utils.py +239 -0
  273. vllm/lora/worker_manager.py +253 -0
  274. vllm/model_executor/__init__.py +15 -0
  275. vllm/model_executor/custom_op.py +151 -0
  276. vllm/model_executor/guided_decoding/__init__.py +180 -0
  277. vllm/model_executor/guided_decoding/guidance_decoding.py +62 -0
  278. vllm/model_executor/guided_decoding/guidance_logits_processors.py +103 -0
  279. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  280. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  281. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  282. vllm/model_executor/guided_decoding/outlines_logits_processors.py +283 -0
  283. vllm/model_executor/guided_decoding/utils.py +241 -0
  284. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  285. vllm/model_executor/layers/__init__.py +0 -0
  286. vllm/model_executor/layers/activation.py +368 -0
  287. vllm/model_executor/layers/fused_moe/__init__.py +53 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  449. vllm/model_executor/layers/fused_moe/cutlass_moe.py +382 -0
  450. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +227 -0
  451. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +755 -0
  452. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +231 -0
  453. vllm/model_executor/layers/fused_moe/fused_moe.py +1722 -0
  454. vllm/model_executor/layers/fused_moe/layer.py +1366 -0
  455. vllm/model_executor/layers/fused_moe/modular_kernel.py +364 -0
  456. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +242 -0
  457. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  458. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +188 -0
  459. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  460. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +146 -0
  461. vllm/model_executor/layers/fused_moe/prepare_finalize.py +60 -0
  462. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +372 -0
  463. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +112 -0
  464. vllm/model_executor/layers/fused_moe/utils.py +97 -0
  465. vllm/model_executor/layers/layernorm.py +287 -0
  466. vllm/model_executor/layers/lightning_attn.py +651 -0
  467. vllm/model_executor/layers/linear.py +1523 -0
  468. vllm/model_executor/layers/logits_processor.py +196 -0
  469. vllm/model_executor/layers/mamba/__init__.py +0 -0
  470. vllm/model_executor/layers/mamba/mamba2_metadata.py +124 -0
  471. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  472. vllm/model_executor/layers/mamba/mamba_mixer2.py +615 -0
  473. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  474. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  475. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +413 -0
  476. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  477. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  478. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  479. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  480. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  481. vllm/model_executor/layers/pooler.py +343 -0
  482. vllm/model_executor/layers/quantization/__init__.py +156 -0
  483. vllm/model_executor/layers/quantization/aqlm.py +375 -0
  484. vllm/model_executor/layers/quantization/auto_round.py +308 -0
  485. vllm/model_executor/layers/quantization/awq.py +185 -0
  486. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  487. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  488. vllm/model_executor/layers/quantization/base_config.py +150 -0
  489. vllm/model_executor/layers/quantization/bitblas.py +460 -0
  490. vllm/model_executor/layers/quantization/bitsandbytes.py +397 -0
  491. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  492. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +644 -0
  493. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1252 -0
  494. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +21 -0
  495. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  496. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  497. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  498. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +92 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +120 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +214 -0
  505. vllm/model_executor/layers/quantization/deepspeedfp.py +194 -0
  506. vllm/model_executor/layers/quantization/experts_int8.py +195 -0
  507. vllm/model_executor/layers/quantization/fbgemm_fp8.py +171 -0
  508. vllm/model_executor/layers/quantization/fp8.py +876 -0
  509. vllm/model_executor/layers/quantization/gguf.py +564 -0
  510. vllm/model_executor/layers/quantization/gptq.py +277 -0
  511. vllm/model_executor/layers/quantization/gptq_bitblas.py +444 -0
  512. vllm/model_executor/layers/quantization/gptq_marlin.py +647 -0
  513. vllm/model_executor/layers/quantization/gptq_marlin_24.py +296 -0
  514. vllm/model_executor/layers/quantization/hqq_marlin.py +331 -0
  515. vllm/model_executor/layers/quantization/ipex_quant.py +249 -0
  516. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  517. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  518. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  519. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  520. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  521. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  522. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  523. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +130 -0
  524. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  525. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  526. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  527. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  528. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  529. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  530. vllm/model_executor/layers/quantization/kv_cache.py +138 -0
  531. vllm/model_executor/layers/quantization/marlin.py +260 -0
  532. vllm/model_executor/layers/quantization/modelopt.py +734 -0
  533. vllm/model_executor/layers/quantization/moe_wna16.py +448 -0
  534. vllm/model_executor/layers/quantization/neuron_quant.py +68 -0
  535. vllm/model_executor/layers/quantization/ptpc_fp8.py +126 -0
  536. vllm/model_executor/layers/quantization/qqq.py +274 -0
  537. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  538. vllm/model_executor/layers/quantization/quark/quark.py +440 -0
  539. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  540. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +8 -0
  541. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  542. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +125 -0
  543. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +145 -0
  544. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  545. vllm/model_executor/layers/quantization/quark/utils.py +104 -0
  546. vllm/model_executor/layers/quantization/schema.py +85 -0
  547. vllm/model_executor/layers/quantization/torchao.py +143 -0
  548. vllm/model_executor/layers/quantization/tpu_int8.py +120 -0
  549. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  550. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  551. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +207 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  754. vllm/model_executor/layers/quantization/utils/fp8_utils.py +611 -0
  755. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  756. vllm/model_executor/layers/quantization/utils/int8_utils.py +484 -0
  757. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  758. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  759. vllm/model_executor/layers/quantization/utils/marlin_utils.py +475 -0
  760. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +277 -0
  761. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +324 -0
  762. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  763. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +463 -0
  764. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +125 -0
  765. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +44 -0
  766. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +61 -0
  767. vllm/model_executor/layers/quantization/utils/quant_utils.py +572 -0
  768. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  769. vllm/model_executor/layers/rejection_sampler.py +405 -0
  770. vllm/model_executor/layers/resampler.py +269 -0
  771. vllm/model_executor/layers/rotary_embedding.py +1861 -0
  772. vllm/model_executor/layers/sampler.py +1203 -0
  773. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  774. vllm/model_executor/layers/typical_acceptance_sampler.py +165 -0
  775. vllm/model_executor/layers/utils.py +99 -0
  776. vllm/model_executor/layers/vocab_parallel_embedding.py +486 -0
  777. vllm/model_executor/model_loader/__init__.py +75 -0
  778. vllm/model_executor/model_loader/base_loader.py +24 -0
  779. vllm/model_executor/model_loader/bitsandbytes_loader.py +582 -0
  780. vllm/model_executor/model_loader/default_loader.py +295 -0
  781. vllm/model_executor/model_loader/dummy_loader.py +37 -0
  782. vllm/model_executor/model_loader/gguf_loader.py +113 -0
  783. vllm/model_executor/model_loader/neuron.py +475 -0
  784. vllm/model_executor/model_loader/neuronx_distributed.py +622 -0
  785. vllm/model_executor/model_loader/runai_streamer_loader.py +120 -0
  786. vllm/model_executor/model_loader/sharded_state_loader.py +211 -0
  787. vllm/model_executor/model_loader/tensorizer.py +632 -0
  788. vllm/model_executor/model_loader/tensorizer_loader.py +122 -0
  789. vllm/model_executor/model_loader/utils.py +301 -0
  790. vllm/model_executor/model_loader/weight_utils.py +781 -0
  791. vllm/model_executor/models/__init__.py +27 -0
  792. vllm/model_executor/models/adapters.py +247 -0
  793. vllm/model_executor/models/aimv2.py +199 -0
  794. vllm/model_executor/models/arctic.py +558 -0
  795. vllm/model_executor/models/aria.py +656 -0
  796. vllm/model_executor/models/aya_vision.py +461 -0
  797. vllm/model_executor/models/baichuan.py +473 -0
  798. vllm/model_executor/models/bamba.py +542 -0
  799. vllm/model_executor/models/bart.py +937 -0
  800. vllm/model_executor/models/bert.py +517 -0
  801. vllm/model_executor/models/bert_with_rope.py +714 -0
  802. vllm/model_executor/models/blip.py +338 -0
  803. vllm/model_executor/models/blip2.py +717 -0
  804. vllm/model_executor/models/bloom.py +372 -0
  805. vllm/model_executor/models/chameleon.py +1135 -0
  806. vllm/model_executor/models/chatglm.py +477 -0
  807. vllm/model_executor/models/clip.py +411 -0
  808. vllm/model_executor/models/commandr.py +471 -0
  809. vllm/model_executor/models/constant_size_cache.py +136 -0
  810. vllm/model_executor/models/dbrx.py +471 -0
  811. vllm/model_executor/models/deepseek.py +485 -0
  812. vllm/model_executor/models/deepseek_mtp.py +268 -0
  813. vllm/model_executor/models/deepseek_v2.py +842 -0
  814. vllm/model_executor/models/deepseek_vl2.py +647 -0
  815. vllm/model_executor/models/eagle.py +259 -0
  816. vllm/model_executor/models/exaone.py +550 -0
  817. vllm/model_executor/models/fairseq2_llama.py +153 -0
  818. vllm/model_executor/models/falcon.py +509 -0
  819. vllm/model_executor/models/falcon_h1.py +684 -0
  820. vllm/model_executor/models/florence2.py +1102 -0
  821. vllm/model_executor/models/fuyu.py +388 -0
  822. vllm/model_executor/models/gemma.py +424 -0
  823. vllm/model_executor/models/gemma2.py +424 -0
  824. vllm/model_executor/models/gemma3.py +532 -0
  825. vllm/model_executor/models/gemma3_mm.py +708 -0
  826. vllm/model_executor/models/glm.py +22 -0
  827. vllm/model_executor/models/glm4.py +304 -0
  828. vllm/model_executor/models/glm4v.py +647 -0
  829. vllm/model_executor/models/gpt2.py +327 -0
  830. vllm/model_executor/models/gpt_bigcode.py +334 -0
  831. vllm/model_executor/models/gpt_j.py +338 -0
  832. vllm/model_executor/models/gpt_neox.py +331 -0
  833. vllm/model_executor/models/granite.py +492 -0
  834. vllm/model_executor/models/granite_speech.py +778 -0
  835. vllm/model_executor/models/granitemoe.py +436 -0
  836. vllm/model_executor/models/granitemoehybrid.py +585 -0
  837. vllm/model_executor/models/granitemoeshared.py +340 -0
  838. vllm/model_executor/models/gritlm.py +223 -0
  839. vllm/model_executor/models/grok1.py +545 -0
  840. vllm/model_executor/models/h2ovl.py +545 -0
  841. vllm/model_executor/models/idefics2_vision_model.py +388 -0
  842. vllm/model_executor/models/idefics3.py +767 -0
  843. vllm/model_executor/models/interfaces.py +571 -0
  844. vllm/model_executor/models/interfaces_base.py +163 -0
  845. vllm/model_executor/models/intern_vit.py +475 -0
  846. vllm/model_executor/models/internlm2.py +454 -0
  847. vllm/model_executor/models/internlm2_ve.py +146 -0
  848. vllm/model_executor/models/internvl.py +1405 -0
  849. vllm/model_executor/models/jais.py +372 -0
  850. vllm/model_executor/models/jamba.py +591 -0
  851. vllm/model_executor/models/kimi_vl.py +576 -0
  852. vllm/model_executor/models/llama.py +643 -0
  853. vllm/model_executor/models/llama4.py +531 -0
  854. vllm/model_executor/models/llama_eagle.py +166 -0
  855. vllm/model_executor/models/llama_eagle3.py +257 -0
  856. vllm/model_executor/models/llava.py +865 -0
  857. vllm/model_executor/models/llava_next.py +585 -0
  858. vllm/model_executor/models/llava_next_video.py +470 -0
  859. vllm/model_executor/models/llava_onevision.py +955 -0
  860. vllm/model_executor/models/mamba.py +272 -0
  861. vllm/model_executor/models/mamba2.py +302 -0
  862. vllm/model_executor/models/mamba_cache.py +75 -0
  863. vllm/model_executor/models/medusa.py +218 -0
  864. vllm/model_executor/models/mimo.py +191 -0
  865. vllm/model_executor/models/mimo_mtp.py +284 -0
  866. vllm/model_executor/models/minicpm.py +590 -0
  867. vllm/model_executor/models/minicpm3.py +229 -0
  868. vllm/model_executor/models/minicpmo.py +758 -0
  869. vllm/model_executor/models/minicpmv.py +1286 -0
  870. vllm/model_executor/models/minimax_cache.py +35 -0
  871. vllm/model_executor/models/minimax_text_01.py +1303 -0
  872. vllm/model_executor/models/minimax_vl_01.py +363 -0
  873. vllm/model_executor/models/mistral3.py +603 -0
  874. vllm/model_executor/models/mixtral.py +487 -0
  875. vllm/model_executor/models/mixtral_quant.py +452 -0
  876. vllm/model_executor/models/mllama.py +1623 -0
  877. vllm/model_executor/models/mllama4.py +838 -0
  878. vllm/model_executor/models/mlp_speculator.py +205 -0
  879. vllm/model_executor/models/modernbert.py +329 -0
  880. vllm/model_executor/models/module_mapping.py +71 -0
  881. vllm/model_executor/models/molmo.py +1567 -0
  882. vllm/model_executor/models/moonvit.py +629 -0
  883. vllm/model_executor/models/mpt.py +330 -0
  884. vllm/model_executor/models/nemotron.py +507 -0
  885. vllm/model_executor/models/nemotron_nas.py +483 -0
  886. vllm/model_executor/models/nvlm_d.py +215 -0
  887. vllm/model_executor/models/olmo.py +388 -0
  888. vllm/model_executor/models/olmo2.py +413 -0
  889. vllm/model_executor/models/olmoe.py +446 -0
  890. vllm/model_executor/models/opt.py +411 -0
  891. vllm/model_executor/models/orion.py +348 -0
  892. vllm/model_executor/models/ovis.py +554 -0
  893. vllm/model_executor/models/paligemma.py +397 -0
  894. vllm/model_executor/models/persimmon.py +343 -0
  895. vllm/model_executor/models/phi.py +355 -0
  896. vllm/model_executor/models/phi3.py +18 -0
  897. vllm/model_executor/models/phi3_small.py +464 -0
  898. vllm/model_executor/models/phi3v.py +722 -0
  899. vllm/model_executor/models/phi4mm.py +1245 -0
  900. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  901. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  902. vllm/model_executor/models/phimoe.py +664 -0
  903. vllm/model_executor/models/pixtral.py +1315 -0
  904. vllm/model_executor/models/plamo2.py +737 -0
  905. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  906. vllm/model_executor/models/qwen.py +361 -0
  907. vllm/model_executor/models/qwen2.py +567 -0
  908. vllm/model_executor/models/qwen2_5_omni_thinker.py +903 -0
  909. vllm/model_executor/models/qwen2_5_vl.py +1171 -0
  910. vllm/model_executor/models/qwen2_audio.py +409 -0
  911. vllm/model_executor/models/qwen2_moe.py +539 -0
  912. vllm/model_executor/models/qwen2_rm.py +131 -0
  913. vllm/model_executor/models/qwen2_vl.py +1410 -0
  914. vllm/model_executor/models/qwen3.py +320 -0
  915. vllm/model_executor/models/qwen3_moe.py +534 -0
  916. vllm/model_executor/models/qwen_vl.py +784 -0
  917. vllm/model_executor/models/registry.py +618 -0
  918. vllm/model_executor/models/roberta.py +273 -0
  919. vllm/model_executor/models/siglip.py +523 -0
  920. vllm/model_executor/models/skyworkr1v.py +950 -0
  921. vllm/model_executor/models/smolvlm.py +51 -0
  922. vllm/model_executor/models/solar.py +505 -0
  923. vllm/model_executor/models/stablelm.py +342 -0
  924. vllm/model_executor/models/starcoder2.py +355 -0
  925. vllm/model_executor/models/telechat2.py +139 -0
  926. vllm/model_executor/models/teleflm.py +78 -0
  927. vllm/model_executor/models/transformers.py +507 -0
  928. vllm/model_executor/models/ultravox.py +655 -0
  929. vllm/model_executor/models/utils.py +730 -0
  930. vllm/model_executor/models/vision.py +146 -0
  931. vllm/model_executor/models/whisper.py +746 -0
  932. vllm/model_executor/models/zamba2.py +1008 -0
  933. vllm/model_executor/parameter.py +458 -0
  934. vllm/model_executor/pooling_metadata.py +71 -0
  935. vllm/model_executor/sampling_metadata.py +596 -0
  936. vllm/model_executor/utils.py +53 -0
  937. vllm/multimodal/__init__.py +32 -0
  938. vllm/multimodal/audio.py +105 -0
  939. vllm/multimodal/base.py +218 -0
  940. vllm/multimodal/hasher.py +117 -0
  941. vllm/multimodal/image.py +96 -0
  942. vllm/multimodal/inputs.py +872 -0
  943. vllm/multimodal/parse.py +460 -0
  944. vllm/multimodal/processing.py +1894 -0
  945. vllm/multimodal/profiling.py +273 -0
  946. vllm/multimodal/registry.py +330 -0
  947. vllm/multimodal/utils.py +392 -0
  948. vllm/multimodal/video.py +197 -0
  949. vllm/outputs.py +525 -0
  950. vllm/platforms/__init__.py +290 -0
  951. vllm/platforms/cpu.py +205 -0
  952. vllm/platforms/cuda.py +461 -0
  953. vllm/platforms/hpu.py +105 -0
  954. vllm/platforms/interface.py +492 -0
  955. vllm/platforms/neuron.py +152 -0
  956. vllm/platforms/rocm.py +388 -0
  957. vllm/platforms/tpu.py +215 -0
  958. vllm/platforms/xpu.py +155 -0
  959. vllm/plugins/__init__.py +86 -0
  960. vllm/plugins/lora_resolvers/README.md +15 -0
  961. vllm/plugins/lora_resolvers/__init__.py +0 -0
  962. vllm/plugins/lora_resolvers/filesystem_resolver.py +49 -0
  963. vllm/pooling_params.py +53 -0
  964. vllm/profiler/__init__.py +0 -0
  965. vllm/profiler/layerwise_profile.py +374 -0
  966. vllm/profiler/utils.py +147 -0
  967. vllm/prompt_adapter/__init__.py +0 -0
  968. vllm/prompt_adapter/layers.py +82 -0
  969. vllm/prompt_adapter/models.py +357 -0
  970. vllm/prompt_adapter/request.py +36 -0
  971. vllm/prompt_adapter/utils.py +97 -0
  972. vllm/prompt_adapter/worker_manager.py +178 -0
  973. vllm/py.typed +2 -0
  974. vllm/reasoning/__init__.py +14 -0
  975. vllm/reasoning/abs_reasoning_parsers.py +191 -0
  976. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  977. vllm/reasoning/granite_reasoning_parser.py +362 -0
  978. vllm/reasoning/qwen3_reasoning_parser.py +150 -0
  979. vllm/sampling_params.py +590 -0
  980. vllm/scalar_type.py +346 -0
  981. vllm/scripts.py +14 -0
  982. vllm/sequence.py +1567 -0
  983. vllm/spec_decode/__init__.py +0 -0
  984. vllm/spec_decode/batch_expansion.py +505 -0
  985. vllm/spec_decode/draft_model_runner.py +349 -0
  986. vllm/spec_decode/interfaces.py +98 -0
  987. vllm/spec_decode/medusa_worker.py +137 -0
  988. vllm/spec_decode/metrics.py +212 -0
  989. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  990. vllm/spec_decode/mqa_scorer.py +159 -0
  991. vllm/spec_decode/multi_step_worker.py +422 -0
  992. vllm/spec_decode/ngram_worker.py +195 -0
  993. vllm/spec_decode/proposer_worker_base.py +58 -0
  994. vllm/spec_decode/smaller_tp_proposer_worker.py +195 -0
  995. vllm/spec_decode/spec_decode_worker.py +1325 -0
  996. vllm/spec_decode/target_model_runner.py +44 -0
  997. vllm/spec_decode/top1_proposer.py +274 -0
  998. vllm/spec_decode/util.py +276 -0
  999. vllm/test_utils.py +129 -0
  1000. vllm/third_party/__init__.py +0 -0
  1001. vllm/third_party/pynvml.py +6139 -0
  1002. vllm/tracing.py +130 -0
  1003. vllm/transformers_utils/__init__.py +23 -0
  1004. vllm/transformers_utils/chat_templates/__init__.py +4 -0
  1005. vllm/transformers_utils/chat_templates/registry.py +59 -0
  1006. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1007. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1008. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1009. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1010. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1011. vllm/transformers_utils/config.py +835 -0
  1012. vllm/transformers_utils/configs/__init__.py +58 -0
  1013. vllm/transformers_utils/configs/arctic.py +206 -0
  1014. vllm/transformers_utils/configs/chatglm.py +71 -0
  1015. vllm/transformers_utils/configs/cohere2.py +194 -0
  1016. vllm/transformers_utils/configs/dbrx.py +279 -0
  1017. vllm/transformers_utils/configs/deepseek_vl2.py +215 -0
  1018. vllm/transformers_utils/configs/eagle.py +84 -0
  1019. vllm/transformers_utils/configs/exaone.py +189 -0
  1020. vllm/transformers_utils/configs/falcon.py +89 -0
  1021. vllm/transformers_utils/configs/h2ovl.py +15 -0
  1022. vllm/transformers_utils/configs/internvl.py +53 -0
  1023. vllm/transformers_utils/configs/jais.py +237 -0
  1024. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  1025. vllm/transformers_utils/configs/medusa.py +62 -0
  1026. vllm/transformers_utils/configs/minimax_text_01.py +69 -0
  1027. vllm/transformers_utils/configs/minimax_vl_01.py +70 -0
  1028. vllm/transformers_utils/configs/mllama.py +30 -0
  1029. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  1030. vllm/transformers_utils/configs/moonvit.py +32 -0
  1031. vllm/transformers_utils/configs/mpt.py +179 -0
  1032. vllm/transformers_utils/configs/nemotron.py +204 -0
  1033. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  1034. vllm/transformers_utils/configs/ovis.py +183 -0
  1035. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  1036. vllm/transformers_utils/configs/solar.py +246 -0
  1037. vllm/transformers_utils/configs/telechat2.py +63 -0
  1038. vllm/transformers_utils/configs/ultravox.py +107 -0
  1039. vllm/transformers_utils/detokenizer.py +167 -0
  1040. vllm/transformers_utils/detokenizer_utils.py +188 -0
  1041. vllm/transformers_utils/processor.py +220 -0
  1042. vllm/transformers_utils/processors/__init__.py +7 -0
  1043. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1044. vllm/transformers_utils/processors/ovis.py +419 -0
  1045. vllm/transformers_utils/s3_utils.py +161 -0
  1046. vllm/transformers_utils/tokenizer.py +301 -0
  1047. vllm/transformers_utils/tokenizer_base.py +148 -0
  1048. vllm/transformers_utils/tokenizer_group.py +119 -0
  1049. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  1050. vllm/transformers_utils/tokenizers/mistral.py +490 -0
  1051. vllm/transformers_utils/utils.py +98 -0
  1052. vllm/triton_utils/__init__.py +13 -0
  1053. vllm/triton_utils/importing.py +49 -0
  1054. vllm/usage/__init__.py +0 -0
  1055. vllm/usage/usage_lib.py +255 -0
  1056. vllm/utils.py +2844 -0
  1057. vllm/v1/__init__.py +0 -0
  1058. vllm/v1/attention/__init__.py +0 -0
  1059. vllm/v1/attention/backends/__init__.py +0 -0
  1060. vllm/v1/attention/backends/flash_attn.py +833 -0
  1061. vllm/v1/attention/backends/flashinfer.py +639 -0
  1062. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1063. vllm/v1/attention/backends/mla/common.py +926 -0
  1064. vllm/v1/attention/backends/mla/flashmla.py +150 -0
  1065. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +221 -0
  1066. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1067. vllm/v1/attention/backends/pallas.py +235 -0
  1068. vllm/v1/attention/backends/triton_attn.py +279 -0
  1069. vllm/v1/attention/backends/utils.py +18 -0
  1070. vllm/v1/core/__init__.py +0 -0
  1071. vllm/v1/core/block_pool.py +328 -0
  1072. vllm/v1/core/encoder_cache_manager.py +149 -0
  1073. vllm/v1/core/kv_cache_manager.py +372 -0
  1074. vllm/v1/core/kv_cache_utils.py +748 -0
  1075. vllm/v1/core/sched/__init__.py +0 -0
  1076. vllm/v1/core/sched/interface.py +143 -0
  1077. vllm/v1/core/sched/output.py +153 -0
  1078. vllm/v1/core/sched/scheduler.py +1015 -0
  1079. vllm/v1/core/sched/utils.py +22 -0
  1080. vllm/v1/core/single_type_kv_cache_manager.py +358 -0
  1081. vllm/v1/engine/__init__.py +171 -0
  1082. vllm/v1/engine/async_llm.py +546 -0
  1083. vllm/v1/engine/core.py +801 -0
  1084. vllm/v1/engine/core_client.py +1020 -0
  1085. vllm/v1/engine/detokenizer.py +260 -0
  1086. vllm/v1/engine/exceptions.py +16 -0
  1087. vllm/v1/engine/llm_engine.py +316 -0
  1088. vllm/v1/engine/logprobs.py +198 -0
  1089. vllm/v1/engine/mm_input_cache.py +90 -0
  1090. vllm/v1/engine/output_processor.py +427 -0
  1091. vllm/v1/engine/parallel_sampling.py +132 -0
  1092. vllm/v1/engine/processor.py +398 -0
  1093. vllm/v1/executor/__init__.py +0 -0
  1094. vllm/v1/executor/abstract.py +112 -0
  1095. vllm/v1/executor/multiproc_executor.py +532 -0
  1096. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1097. vllm/v1/kv_cache_interface.py +208 -0
  1098. vllm/v1/metrics/__init__.py +0 -0
  1099. vllm/v1/metrics/loggers.py +511 -0
  1100. vllm/v1/metrics/ray_wrappers.py +120 -0
  1101. vllm/v1/metrics/reader.py +245 -0
  1102. vllm/v1/metrics/stats.py +238 -0
  1103. vllm/v1/outputs.py +115 -0
  1104. vllm/v1/request.py +191 -0
  1105. vllm/v1/sample/__init__.py +0 -0
  1106. vllm/v1/sample/metadata.py +43 -0
  1107. vllm/v1/sample/ops/__init__.py +0 -0
  1108. vllm/v1/sample/ops/bad_words.py +38 -0
  1109. vllm/v1/sample/ops/penalties.py +58 -0
  1110. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1111. vllm/v1/sample/rejection_sampler.py +630 -0
  1112. vllm/v1/sample/sampler.py +270 -0
  1113. vllm/v1/sample/tpu/__init__.py +0 -0
  1114. vllm/v1/sample/tpu/metadata.py +123 -0
  1115. vllm/v1/sample/tpu/sampler.py +144 -0
  1116. vllm/v1/serial_utils.py +313 -0
  1117. vllm/v1/spec_decode/__init__.py +0 -0
  1118. vllm/v1/spec_decode/eagle.py +424 -0
  1119. vllm/v1/spec_decode/medusa.py +61 -0
  1120. vllm/v1/spec_decode/metadata.py +61 -0
  1121. vllm/v1/spec_decode/metrics.py +177 -0
  1122. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1123. vllm/v1/spec_decode/utils.py +45 -0
  1124. vllm/v1/structured_output/__init__.py +215 -0
  1125. vllm/v1/structured_output/backend_guidance.py +244 -0
  1126. vllm/v1/structured_output/backend_types.py +133 -0
  1127. vllm/v1/structured_output/backend_xgrammar.py +317 -0
  1128. vllm/v1/structured_output/request.py +85 -0
  1129. vllm/v1/structured_output/utils.py +174 -0
  1130. vllm/v1/utils.py +294 -0
  1131. vllm/v1/worker/__init__.py +0 -0
  1132. vllm/v1/worker/block_table.py +139 -0
  1133. vllm/v1/worker/gpu_input_batch.py +680 -0
  1134. vllm/v1/worker/gpu_model_runner.py +2084 -0
  1135. vllm/v1/worker/gpu_worker.py +373 -0
  1136. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1137. vllm/v1/worker/tpu_model_runner.py +1510 -0
  1138. vllm/v1/worker/tpu_worker.py +276 -0
  1139. vllm/v1/worker/utils.py +74 -0
  1140. vllm/v1/worker/worker_base.py +64 -0
  1141. vllm/version.py +40 -0
  1142. vllm/vllm_flash_attn/.gitkeep +0 -0
  1143. vllm/worker/__init__.py +0 -0
  1144. vllm/worker/cache_engine.py +144 -0
  1145. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1146. vllm/worker/cpu_model_runner.py +671 -0
  1147. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1148. vllm/worker/cpu_worker.py +400 -0
  1149. vllm/worker/enc_dec_model_runner.py +555 -0
  1150. vllm/worker/hpu_model_runner.py +2319 -0
  1151. vllm/worker/hpu_worker.py +483 -0
  1152. vllm/worker/model_runner.py +2178 -0
  1153. vllm/worker/model_runner_base.py +281 -0
  1154. vllm/worker/multi_step_hpu_worker.py +122 -0
  1155. vllm/worker/multi_step_model_runner.py +910 -0
  1156. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1157. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1158. vllm/worker/multi_step_tpu_worker.py +107 -0
  1159. vllm/worker/multi_step_worker.py +196 -0
  1160. vllm/worker/neuron_model_runner.py +418 -0
  1161. vllm/worker/neuron_worker.py +158 -0
  1162. vllm/worker/neuronx_distributed_model_runner.py +136 -0
  1163. vllm/worker/pooling_model_runner.py +211 -0
  1164. vllm/worker/tpu_model_runner.py +908 -0
  1165. vllm/worker/tpu_worker.py +336 -0
  1166. vllm/worker/utils.py +52 -0
  1167. vllm/worker/worker.py +574 -0
  1168. vllm/worker/worker_base.py +644 -0
  1169. vllm/worker/xpu_model_runner.py +606 -0
  1170. vllm/worker/xpu_worker.py +185 -0
  1171. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/METADATA +335 -0
  1172. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/RECORD +1175 -0
  1173. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/WHEEL +5 -0
  1174. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/entry_points.txt +5 -0
  1175. vllm_cpu_avx512bf16-0.9.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2319 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ ###############################################################################
4
+ # Copyright (C) 2024 Habana Labs, Ltd. an Intel Company
5
+ ###############################################################################
6
+
7
+ import collections
8
+ import contextlib
9
+ import dataclasses
10
+ import functools
11
+ import gc
12
+ import itertools
13
+ import math
14
+ import os
15
+ import time
16
+ from array import array
17
+ from enum import Enum, IntEnum
18
+ from typing import (TYPE_CHECKING, Any, Callable, Dict, List, NamedTuple,
19
+ Optional, Set, Tuple, Type, TypeVar, Union)
20
+
21
+ import habana_frameworks.torch as htorch
22
+ import habana_frameworks.torch.internal.bridge_config as bc
23
+ import torch
24
+ import torch.nn as nn
25
+ import vllm_hpu_extension.environment as environment
26
+ from vllm_hpu_extension.bucketing.common import get_bucketing_context
27
+ from vllm_hpu_extension.ops import LoraMask as LoraMask
28
+ from vllm_hpu_extension.profiler import (HabanaHighLevelProfiler,
29
+ HabanaMemoryProfiler, format_bytes)
30
+
31
+ import vllm.envs as envs
32
+ from vllm.attention import AttentionMetadata, get_attn_backend
33
+ from vllm.config import DeviceConfig, VllmConfig
34
+ from vllm.distributed import broadcast_tensor_dict
35
+ from vllm.distributed.parallel_state import get_world_group
36
+ from vllm.forward_context import set_forward_context
37
+ from vllm.logger import init_logger
38
+ from vllm.lora.layers import LoRAMapping
39
+ from vllm.lora.request import LoRARequest
40
+ from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
41
+ from vllm.model_executor import SamplingMetadata
42
+ from vllm.model_executor.layers.layernorm import RMSNorm
43
+ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
44
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
45
+ VocabParallelEmbedding)
46
+ from vllm.model_executor.model_loader import get_model
47
+ from vllm.model_executor.sampling_metadata import SequenceGroupToSample
48
+ from vllm.multimodal import BatchedTensorInputs, MultiModalKwargs
49
+ from vllm.sampling_params import SamplingParams
50
+ from vllm.sequence import (CompletionSequenceGroupOutput, IntermediateTensors,
51
+ Logprob, SequenceData, SequenceGroupMetadata,
52
+ SequenceOutput)
53
+ from vllm.utils import (bind_kv_cache, is_pin_memory_available,
54
+ make_tensor_with_pad)
55
+ from vllm.worker.model_runner_base import (
56
+ ModelRunnerBase, ModelRunnerInputBase,
57
+ _add_attn_metadata_broadcastable_dict,
58
+ _add_sampling_metadata_broadcastable_dict,
59
+ _init_attn_metadata_from_tensor_dict,
60
+ _init_sampling_metadata_from_tensor_dict)
61
+
62
+ if TYPE_CHECKING:
63
+ from vllm.attention.backends.abstract import AttentionBackend
64
+
65
+ logger = init_logger(__name__)
66
+
67
+ _TYPE_CACHE = {}
68
+ # These values are assumed to be zero in several places.
69
+ # Use caution when updating them!
70
+ _PAD_SLOT_ID = 0
71
+ _PAD_BLOCK_ID = 0
72
+
73
+ LORA_WARMUP_RANK = 8
74
+
75
+ DUMMY_TOKEN_ID = -1
76
+
77
+
78
+ class PhaseType(Enum):
79
+ PREFILL = 'prefill'
80
+ PREFIX_PREFILL = 'prefix_prefill'
81
+ DECODE = 'decode'
82
+
83
+
84
+ def subtuple(obj: object,
85
+ typename: str,
86
+ to_copy: List[str],
87
+ to_override: Optional[Dict[str, object]] = None):
88
+ if obj is None:
89
+ return None
90
+ if to_override is None:
91
+ to_override = {}
92
+ fields = set(to_copy) | set(to_override.keys())
93
+ if type(obj) is dict:
94
+ values = {key: obj[key] for key in fields if key in obj}
95
+ else:
96
+ values = {f: to_override.get(f, getattr(obj, f)) for f in fields}
97
+ if typename not in _TYPE_CACHE:
98
+ _TYPE_CACHE[typename] = collections.namedtuple(typename,
99
+ ' '.join(fields))
100
+ return _TYPE_CACHE[typename](**values)
101
+
102
+
103
+ def round_up(value: int, k: int):
104
+ return (value + k - 1) // k * k
105
+
106
+
107
+ def align_workers(value, op):
108
+ group = get_world_group().cpu_group
109
+ world_size = torch.distributed.get_world_size()
110
+ if world_size <= 1:
111
+ return value
112
+ value_t = torch.tensor(value, device='cpu')
113
+ torch.distributed.all_reduce(value_t, op=op, group=group)
114
+ return value_t.item()
115
+
116
+
117
+ def setup_profiler():
118
+ schedule = torch.profiler.schedule(wait=0, warmup=2, active=1, repeat=1)
119
+ DEVICE = 'hpu'
120
+ activities = [torch.profiler.ProfilerActivity.CPU]
121
+ activities.extend([torch.profiler.ProfilerActivity.HPU] if DEVICE ==
122
+ 'hpu' else [])
123
+ #from habana_frameworks.torch.activity_profiler import DebugActivity
124
+ #debug_activities=[DebugActivity.BRIDGE_FUNCTION_CALLS]
125
+
126
+ profiler = torch.profiler.profile(
127
+ schedule=schedule,
128
+ activities=activities,
129
+ #debug_activities=debug_activities,
130
+ on_trace_ready=torch.profiler.tensorboard_trace_handler('.',
131
+ use_gzip=True),
132
+ record_shapes=False,
133
+ with_stack=True)
134
+ return profiler
135
+
136
+
137
+ def pad_list(input, k, v):
138
+ input_len = len(input)
139
+ target_len = round_up(input_len, k)
140
+ padding = target_len - input_len
141
+ return input + [v] * padding
142
+
143
+
144
+ def gather_list(input, indices, v):
145
+ return [input[i] if i is not None else v for i in indices]
146
+
147
+
148
+ def flatten(in_list):
149
+ return list(itertools.chain(*in_list))
150
+
151
+
152
+ def precompute_indices_and_offsets(block_size, slot_mapping, is_prompt):
153
+ slot_mapping = slot_mapping.flatten()
154
+ indices = torch.div(slot_mapping, block_size, rounding_mode="floor")
155
+ if is_prompt:
156
+ indices = indices.unflatten(0, (-1, block_size))[:, 0]
157
+ offsets = None
158
+ else:
159
+ offsets = torch.fmod(slot_mapping, block_size)
160
+ return indices, offsets
161
+
162
+
163
+ def modify_decoder_layer(module: torch.nn.Module, suffix="DecoderLayer"):
164
+ if module.__class__.__name__.endswith(suffix):
165
+
166
+ def forward_hook(module, args, output):
167
+ htorch.core.mark_step()
168
+ return output
169
+
170
+ module.register_forward_hook(forward_hook)
171
+
172
+ for child_name, child_module in module.named_children():
173
+ modify_decoder_layer(child_module)
174
+
175
+
176
+ class HpuModelAdapter:
177
+
178
+ def __init__(self, model, vllm_config):
179
+ self.model = model
180
+ self.sampler = get_sampler()
181
+ self.prefill_use_fusedsdpa = os.getenv('VLLM_PROMPT_USE_FUSEDSDPA',
182
+ '0').lower() in ['1', 'true']
183
+ self.vllm_config = vllm_config
184
+ self.block_size = vllm_config.cache_config.block_size
185
+ self.dtype = vllm_config.model_config.dtype
186
+ enforce_eager = vllm_config.model_config.enforce_eager
187
+
188
+ if not htorch.utils.internal.is_lazy() and not enforce_eager:
189
+ if os.getenv('VLLM_REGIONAL_COMPILATION',
190
+ 'true').lower() == 'true':
191
+ self.regional_compilation_layers_list = [
192
+ RMSNorm, VocabParallelEmbedding
193
+ ]
194
+ self._regional_compilation(self.model)
195
+ else:
196
+ self.model = torch.compile(self.model,
197
+ backend='hpu_backend',
198
+ dynamic=False)
199
+
200
+ def _regional_compilation(self,
201
+ module,
202
+ parent_module=None,
203
+ module_name=None):
204
+ if isinstance(module, torch.nn.ModuleList):
205
+ for children_name, children_module in module.named_children():
206
+ self._compile_region(module, children_name, children_module)
207
+ elif any(
208
+ isinstance(module, layer)
209
+ for layer in self.regional_compilation_layers_list):
210
+ self._compile_region(parent_module, module_name, module)
211
+ else:
212
+ for children_name, children_module in module.named_children():
213
+ self._regional_compilation(children_module, module,
214
+ children_name)
215
+
216
+ def _compile_region(self, model, name, module):
217
+ module = torch.compile(module, backend='hpu_backend', dynamic=False)
218
+ setattr(model, name, module)
219
+
220
+ def _set_attn_bias(self, attn_metadata, batch_size, seq_len, device,
221
+ dtype):
222
+ if (attn_metadata is None
223
+ or (self.prefill_use_fusedsdpa \
224
+ and attn_metadata.block_list is None)
225
+ or not attn_metadata.is_prompt):
226
+ return attn_metadata
227
+
228
+ prefill_metadata = attn_metadata
229
+
230
+ seq_lens_t = prefill_metadata.seq_lens_tensor
231
+ context_lens_t = prefill_metadata.context_lens_tensor
232
+ query_lens_t = seq_lens_t - context_lens_t
233
+
234
+ block_list = attn_metadata.block_list
235
+ max_context_len = (block_list.size(-1) //
236
+ batch_size if block_list is not None else 0)
237
+ max_context_len = max_context_len * self.block_size
238
+ past_mask = torch.arange(0,
239
+ max_context_len,
240
+ dtype=torch.int32,
241
+ device=device)
242
+ past_mask = (past_mask.view(1, -1).expand(batch_size, -1).ge(
243
+ context_lens_t.view(-1, 1)).view(batch_size, 1, -1).expand(
244
+ batch_size, seq_len, -1).view(batch_size, 1, seq_len, -1))
245
+
246
+ len_mask = (torch.arange(0, seq_len, device=device,
247
+ dtype=torch.int32).view(1, seq_len).ge(
248
+ query_lens_t.unsqueeze(-1)).view(
249
+ batch_size, 1, 1, seq_len))
250
+ causal_mask = torch.triu(torch.ones((batch_size, 1, seq_len, seq_len),
251
+ device=device,
252
+ dtype=torch.bool),
253
+ diagonal=1)
254
+ mask = causal_mask.logical_or(len_mask)
255
+ mask = torch.concat((past_mask, mask), dim=-1)
256
+ attn_bias = (torch.zeros_like(mask, dtype=dtype).masked_fill_(
257
+ mask, -math.inf))
258
+ attn_metadata = prefill_metadata._replace(attn_bias=attn_bias)
259
+ return attn_metadata
260
+
261
+ def _set_block_mapping(self, metadata, batch_size, device, dtype):
262
+ mask = torch.arange(0,
263
+ self.block_size,
264
+ device=device,
265
+ dtype=torch.int32).unsqueeze(0)
266
+ mask = mask >= metadata.block_usage.unsqueeze(-1)
267
+ attn_bias = (torch.zeros_like(mask, dtype=dtype).masked_fill_(
268
+ mask, -math.inf))
269
+ if os.environ.get('VLLM_USE_FAKE_HPU',
270
+ '0') == '0' and htorch.utils.internal.is_lazy():
271
+ block_mapping = torch.nn.functional.one_hot(metadata.block_groups,
272
+ num_classes=batch_size)
273
+ else:
274
+ # Unfortunately one_hot on CPU/torch.compile mode/eager mode
275
+ # doesn't handle out of bounds classes so we need to convert
276
+ # all negative values to 0 (block_mapping) or bs (block_groups)
277
+ block_groups = metadata.block_groups.to(torch.long)
278
+ block_mapping = torch.nn.functional.relu(block_groups)
279
+ block_mapping = torch.nn.functional.one_hot(block_mapping,
280
+ num_classes=batch_size)
281
+ oob_values = block_groups.lt(0)
282
+ block_mapping.masked_fill_(oob_values.unsqueeze(-1), 0)
283
+ block_groups.masked_fill_(oob_values, batch_size)
284
+ metadata = metadata._replace(block_groups=block_groups)
285
+ block_mapping = block_mapping.to(dtype)
286
+ metadata = metadata._replace(block_mapping=block_mapping,
287
+ attn_bias=attn_bias)
288
+ return metadata
289
+
290
+ def _update_metadata(self, attn_metadata, batch_size, seq_len, device,
291
+ dtype):
292
+ if attn_metadata.is_prompt:
293
+ meta = attn_metadata
294
+ attn_metadata = self._set_attn_bias(meta, batch_size, seq_len,
295
+ device, dtype)
296
+ else:
297
+ meta = attn_metadata
298
+ attn_metadata = self._set_block_mapping(meta, batch_size, device,
299
+ dtype)
300
+ return attn_metadata
301
+
302
+ def forward(self, *args, **kwargs):
303
+ kwargs = kwargs.copy()
304
+ selected_token_indices = kwargs.pop('selected_token_indices')
305
+ if 'warmup_mode' in kwargs:
306
+ kwargs.pop('warmup_mode')
307
+ virtual_engine = 0
308
+ if 'virtual_engine' in kwargs:
309
+ virtual_engine = kwargs.pop('virtual_engine')
310
+ input_ids = kwargs['input_ids']
311
+ attn_metadata = self._update_metadata(kwargs.pop('attn_metadata'),
312
+ input_ids.size(0),
313
+ input_ids.size(1),
314
+ input_ids.device, self.dtype)
315
+ LoraMask.setLoraMask(kwargs.pop('lora_mask'))
316
+ with set_forward_context(attn_metadata, self.vllm_config,
317
+ virtual_engine):
318
+ hidden_states = self.model(*args, **kwargs)
319
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
320
+ hidden_states = hidden_states.index_select(0,
321
+ selected_token_indices)
322
+ return hidden_states
323
+
324
+ def compute_logits(self, *args, **kwargs):
325
+ return self.model.compute_logits(*args, **kwargs)
326
+
327
+ def sample(self, *args, **kwargs):
328
+ return self.sampler(*args, **kwargs)
329
+
330
+
331
+ class PreparePromptMetadata(NamedTuple):
332
+ input_tokens: torch.Tensor
333
+ input_positions: List[List[int]]
334
+ attn_metadata: Optional[AttentionMetadata]
335
+ seq_lens: List[int]
336
+ query_lens: List[int]
337
+ lora_index_mapping: List[List[int]]
338
+ lora_prompt_mapping: List[List[int]]
339
+ lora_requests: Set[LoRARequest]
340
+ multi_modal_kwargs: Optional[Dict[str, BatchedTensorInputs]]
341
+ slot_mapping: List[List[int]]
342
+ lora_ids: List[int]
343
+
344
+ @classmethod
345
+ def empty(cls):
346
+ return PreparePromptMetadata(input_tokens=[],
347
+ input_positions=[],
348
+ attn_metadata=None,
349
+ seq_lens=[],
350
+ query_lens=[],
351
+ lora_index_mapping=[],
352
+ lora_prompt_mapping=[],
353
+ lora_requests=set(),
354
+ multi_modal_kwargs=None,
355
+ slot_mapping=[],
356
+ lora_ids=[])
357
+
358
+
359
+ class PrepareDecodeMetadata(NamedTuple):
360
+ input_tokens: torch.Tensor
361
+ input_positions: List[List[int]]
362
+ attn_metadata: Optional[AttentionMetadata]
363
+ lora_index_mapping: List[List[int]]
364
+ lora_prompt_mapping: List[List[int]]
365
+ lora_requests: Set[LoRARequest]
366
+ slot_mapping: List[List[int]]
367
+ lora_ids: List[int]
368
+
369
+ @classmethod
370
+ def empty(cls):
371
+ return PrepareDecodeMetadata(input_tokens=[],
372
+ input_positions=[],
373
+ attn_metadata=None,
374
+ lora_index_mapping=[],
375
+ lora_prompt_mapping=[],
376
+ lora_requests=set(),
377
+ slot_mapping=[],
378
+ lora_ids=[])
379
+
380
+
381
+ # How batches are constructed.
382
+ class BatchType(IntEnum):
383
+ # Every batch is prefill.
384
+ PREFILL = 0
385
+ # Every batch is decode.
386
+ DECODE = 1
387
+ # Batch is a mixture of prefill and decode.
388
+ MIXED = 2
389
+
390
+
391
+ TModelInputForHPU = TypeVar('TModelInputForHPU', bound="ModelInputForHPU")
392
+
393
+
394
+ @dataclasses.dataclass(frozen=True)
395
+ class ModelInputForHPU(ModelRunnerInputBase):
396
+ """
397
+ This base class contains metadata needed for the base model forward pass
398
+ but not metadata for possible additional steps, e.g., sampling. Model
399
+ runners that run additional steps should subclass this method to add
400
+ additional fields.
401
+ """
402
+ input_tokens: Optional[torch.Tensor] = None
403
+ input_positions: Optional[torch.Tensor] = None
404
+ seq_lens: Optional[List[int]] = None
405
+ query_lens: Optional[List[int]] = None
406
+ lora_mapping: Optional["LoRAMapping"] = None
407
+ lora_requests: Optional[Set[LoRARequest]] = None
408
+ attn_metadata: Optional["AttentionMetadata"] = None
409
+ multi_modal_kwargs: Optional[Dict[str, torch.Tensor]] = None
410
+ real_batch_size: Optional[int] = None
411
+ batch_size_padded: Optional[int] = None
412
+ virtual_engine: int = 0
413
+ lora_ids: Optional[List[int]] = None
414
+ async_callback: Optional[Callable] = None
415
+ is_first_multi_step: bool = True
416
+ is_last_step: bool = True
417
+
418
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
419
+ tensor_dict = {
420
+ "input_tokens": self.input_tokens,
421
+ "input_positions": self.input_positions,
422
+ "lora_requests": self.lora_requests,
423
+ "lora_mapping": self.lora_mapping,
424
+ "multi_modal_kwargs": self.multi_modal_kwargs,
425
+ "real_batch_size": self.real_batch_size,
426
+ "batch_size_padded": self.batch_size_padded,
427
+ "virtual_engine": self.virtual_engine,
428
+ "lora_ids": self.lora_ids,
429
+ "is_first_multi_step": self.is_first_multi_step,
430
+ "is_last_step": self.is_last_step,
431
+ }
432
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
433
+ return tensor_dict
434
+
435
+ @classmethod
436
+ def from_broadcasted_tensor_dict(
437
+ cls: Type[TModelInputForHPU],
438
+ tensor_dict: Dict[str, Any],
439
+ attn_backend: Optional["AttentionBackend"] = None,
440
+ ) -> TModelInputForHPU:
441
+ if attn_backend is not None:
442
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
443
+ attn_backend, tensor_dict)
444
+ return cls(**tensor_dict)
445
+
446
+
447
+ @dataclasses.dataclass(frozen=True)
448
+ class ModelInputForHPUWithSamplingMetadata(ModelInputForHPU):
449
+ """
450
+ Used by the ModelRunner.
451
+ """
452
+ sampling_metadata: Optional["SamplingMetadata"] = None
453
+ # Used for speculative decoding. We do not broadcast it because it is only
454
+ # used by the driver worker.
455
+ is_prompt: Optional[bool] = None
456
+
457
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
458
+ tensor_dict = {
459
+ "input_tokens": self.input_tokens,
460
+ "input_positions": self.input_positions,
461
+ "lora_requests": self.lora_requests,
462
+ "lora_mapping": self.lora_mapping,
463
+ "multi_modal_kwargs": self.multi_modal_kwargs,
464
+ "lora_ids": self.lora_ids,
465
+ }
466
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
467
+ _add_sampling_metadata_broadcastable_dict(tensor_dict,
468
+ self.sampling_metadata)
469
+ return tensor_dict
470
+
471
+ @classmethod
472
+ def from_broadcasted_tensor_dict(
473
+ cls,
474
+ tensor_dict: Dict[str, Any],
475
+ attn_backend: Optional["AttentionBackend"] = None,
476
+ ) -> "ModelInputForHPUWithSamplingMetadata":
477
+ tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
478
+ # FIXME(kzawora): this fails for whatever reason - why?
479
+ if attn_backend is not None:
480
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
481
+ attn_backend, tensor_dict)
482
+ return cls(**tensor_dict)
483
+
484
+
485
+ class HPUModelRunnerBase(ModelRunnerBase[TModelInputForHPU]):
486
+ """
487
+ Helper class for shared methods between GPU model runners.
488
+ """
489
+ _model_input_cls: Type[TModelInputForHPU]
490
+
491
+ def __init__(
492
+ self,
493
+ vllm_config: VllmConfig,
494
+ is_driver_worker: bool = False,
495
+ return_hidden_states: bool = False,
496
+ ):
497
+ ModelRunnerBase.__init__(self, vllm_config=vllm_config)
498
+ environment.set_model_config(self.model_config)
499
+ self.is_driver_worker = is_driver_worker
500
+ self.return_hidden_states = return_hidden_states
501
+
502
+ self.sliding_window = (self.model_config.get_sliding_window()
503
+ if self.model_config is not None else None)
504
+ self.device_config = (self.device_config if self.device_config
505
+ is not None else DeviceConfig())
506
+ self.device = self.device_config.device
507
+ self.enforce_eager = self.model_config.enforce_eager
508
+ self.max_num_seqs = self.scheduler_config.max_num_seqs
509
+ # NOTE(kzawora): Change that to scheduler_config.max_num_prefill_seqs
510
+ # once padding-aware scheduling gets merged
511
+ self.max_num_prefill_seqs = 64
512
+ self.max_model_len = self.scheduler_config.max_model_len
513
+ self.max_num_batched_tokens = \
514
+ self.scheduler_config.max_num_batched_tokens
515
+ self.block_size = self.cache_config.block_size
516
+
517
+ self.pin_memory = is_pin_memory_available()
518
+ self.kv_cache_dtype = self.cache_config.cache_dtype
519
+
520
+ self.attn_backend = get_attn_backend(
521
+ self.model_config.get_head_size(),
522
+ self.model_config.dtype,
523
+ self.kv_cache_dtype,
524
+ self.block_size,
525
+ self.model_config.is_attention_free,
526
+ )
527
+
528
+ # Lazy initialization
529
+ self.lora_manager: LRUCacheWorkerLoRAManager = None
530
+ self.model: torch.nn.Module = None
531
+ self.inc_initialized_successfully = False
532
+
533
+ # Profiler stats
534
+ self.profiler = HabanaHighLevelProfiler()
535
+ self.profiler_counter_helper = HabanaProfilerCounterHelper()
536
+ self.seen_configs: set = set()
537
+ self._mem_margin: Optional[int] = None
538
+ HPUBucketingContext = get_bucketing_context()
539
+ self.bucketing_ctx = HPUBucketingContext(self.max_num_seqs,
540
+ self.max_num_prefill_seqs,
541
+ self.block_size,
542
+ self.max_num_batched_tokens,
543
+ False, self.max_model_len)
544
+ self.graphed_buckets: Set[Any] = set()
545
+ self._set_gc_threshold()
546
+ if self.vllm_config.cache_config.enable_prefix_caching:
547
+ os.environ.setdefault("VLLM_CONTIGUOUS_PA", "False")
548
+ assert os.environ.get(
549
+ "VLLM_CONTIGUOUS_PA",
550
+ "").lower() != "true", "Contiguous PA doesn't support APC"
551
+ self.use_contiguous_pa = envs.VLLM_USE_HPU_CONTIGUOUS_CACHE_FETCH
552
+
553
+ # For multi-step scheduling
554
+ self.cached_step_outputs: List[torch.Tensor] = []
555
+ # For delayed sampling
556
+ self.cached_step_inputs: List[
557
+ ModelInputForHPUWithSamplingMetadata] = []
558
+
559
+ def _set_gc_threshold(self) -> None:
560
+ # Read https://docs.python.org/3/library/gc.html#gc.set_threshold
561
+ # for comprehensive description of gc generations.
562
+ # We can either use VLLM_GC_THR_GEN[0-2] (this has higher priority)
563
+ # to set particular generation threshold or use simpler
564
+ # VLLM_GC_THR_MULTIPLIER to multiply default values.
565
+ default_gc_thrs = list(gc.get_threshold())
566
+ requested_gc_thrs = [0] * len(default_gc_thrs)
567
+ for i in range(len(default_gc_thrs)):
568
+ requested_gc_thrs[i] = int(
569
+ os.environ.get(f'VLLM_GC_THR_GEN{i}', default_gc_thrs[i]))
570
+ if requested_gc_thrs == default_gc_thrs:
571
+ gc_thr_multiplier = int(os.environ.get('VLLM_GC_THR_MULTIPLIER',
572
+ 2))
573
+ requested_gc_thrs = [
574
+ t * gc_thr_multiplier for t in default_gc_thrs
575
+ ]
576
+ gc.set_threshold(*requested_gc_thrs)
577
+
578
+ self.skip_warmup = os.environ.get('VLLM_SKIP_WARMUP',
579
+ 'false').lower() == 'true'
580
+
581
+ def load_model(self) -> None:
582
+ import habana_frameworks.torch.core as htcore
583
+ if self.model_config.quantization == 'inc' or \
584
+ self.model_config.quantization == 'fp8':
585
+ htcore.hpu_set_env()
586
+ with HabanaMemoryProfiler() as m:
587
+ with HabanaMemoryProfiler() as m_getmodel:
588
+ self.model = get_model(vllm_config=self.vllm_config)
589
+ msg = ("Pre-loading model weights on "
590
+ f"{next(self.model.parameters()).device} "
591
+ f"took {m_getmodel.get_summary_string()}")
592
+ logger.info(msg)
593
+
594
+ if self.lora_config:
595
+ assert hasattr(self.model, "embedding_modules"
596
+ ), "Model does not have embedding_modules"
597
+ assert hasattr(
598
+ self.model, "embedding_padding_modules"
599
+ ), "Model does not have embedding_padding_modules"
600
+ assert not self.lora_config.bias_enabled, \
601
+ "Bias support in LoRA is not enabled in HPU yet."
602
+ assert not self.lora_config.fully_sharded_loras, \
603
+ "Fully sharded LoRAs is not enabled in HPU yet."
604
+
605
+ # Use get_text_config() in case of multimodal models
606
+ text_config = self.model_config.hf_config.get_text_config()
607
+
608
+ self.lora_manager = LRUCacheWorkerLoRAManager(
609
+ self.scheduler_config.max_num_seqs,
610
+ self.scheduler_config.max_num_batched_tokens,
611
+ self.vocab_size,
612
+ self.lora_config,
613
+ self.device,
614
+ self.model.embedding_modules,
615
+ self.model.embedding_padding_modules,
616
+ max_position_embeddings=text_config.
617
+ max_position_embeddings,
618
+ )
619
+ self.model = self.lora_manager.create_lora_manager(self.model)
620
+
621
+ if self.model_config.quantization == 'inc':
622
+ logger.info("Preparing model with INC..")
623
+ with HabanaMemoryProfiler() as m_inc:
624
+ from neural_compressor.torch.quantization import (
625
+ FP8Config, convert, prepare)
626
+ config = FP8Config.from_json_file(
627
+ os.getenv("QUANT_CONFIG", ""))
628
+ if config.measure:
629
+ self.model = prepare(self.model, config)
630
+ elif config.quantize:
631
+ self.model = convert(self.model, config)
632
+ htcore.hpu_initialize(self.model,
633
+ mark_only_scales_as_const=True)
634
+ self.inc_initialized_successfully = True
635
+ logger.info("Preparing model with INC took %s",
636
+ m_inc.get_summary_string())
637
+ else:
638
+ self.model = self.model.to("hpu")
639
+ htcore.mark_step()
640
+ modify_decoder_layer(self.model)
641
+ torch.hpu.synchronize()
642
+
643
+ with HabanaMemoryProfiler() as m_wrap:
644
+ self.model = _maybe_wrap_in_hpu_graph(
645
+ self.model, vllm_config=self.vllm_config)
646
+ msg = f"Wrapping in HPU Graph took {m_wrap.get_summary_string()}"
647
+ logger.info(msg)
648
+
649
+ self.model_memory_usage = m.consumed_device_memory
650
+ msg = f"Loading model weights took in total {m.get_summary_string()}"
651
+ logger.info(msg)
652
+
653
+ def _add_dummy_seq(self, seq_group_metadata_list, is_prompt):
654
+ real_batch_size = len(seq_group_metadata_list)
655
+ batch_size_padded = self.bucketing_ctx.get_padded_batch_size(
656
+ real_batch_size, is_prompt)
657
+ batch_size_padding = batch_size_padded - real_batch_size
658
+
659
+ seq_group_metadata_list = seq_group_metadata_list.copy()
660
+
661
+ if batch_size_padding > 0:
662
+ dummy_seq_group_metadata = self.create_dummy_seq_group_metadata(
663
+ 0, 0, is_prompt)
664
+ seq_group_metadata_list.extend(dummy_seq_group_metadata
665
+ for _ in range(batch_size_padding))
666
+ return seq_group_metadata_list, real_batch_size, batch_size_padded
667
+
668
+ def _maybe_wrap_in_hpu_graph(self, *args, **kwargs):
669
+ return htorch.hpu.wrap_in_hpu_graph(
670
+ HpuModelAdapter(*args, **kwargs), disable_tensor_cache=True
671
+ ) if htorch.utils.internal.is_lazy() else HpuModelAdapter(
672
+ *args, **kwargs)
673
+
674
+ def get_model(self) -> nn.Module:
675
+ return self.model
676
+
677
+ def _use_graphs(self, batch_size, seq_len, is_prompt):
678
+ if self.enforce_eager:
679
+ return False
680
+ if self.skip_warmup:
681
+ return True
682
+ return (batch_size, seq_len, is_prompt) in self.graphed_buckets
683
+
684
+ def _is_valid_bucket(self, bucket):
685
+ return bucket[0] * bucket[1] <= self.max_num_batched_tokens
686
+
687
+ def _prepare_prompt(
688
+ self,
689
+ seq_group_metadata_list: List[SequenceGroupMetadata],
690
+ ) -> PreparePromptMetadata:
691
+ input_tokens: List[List[int]] = []
692
+ input_positions: List[List[int]] = []
693
+ slot_mapping: List[List[int]] = []
694
+ lora_index_mapping: List[List[int]] = []
695
+ lora_prompt_mapping: List[List[int]] = []
696
+ lora_requests: Set[LoRARequest] = set()
697
+
698
+ seq_lens: List[int] = []
699
+ context_lens: List[int] = []
700
+ query_lens: List[int] = []
701
+ prefix_block_tables: List[List[int]] = []
702
+ multi_modal_kwargs_list: List[MultiModalKwargs] = []
703
+
704
+ if len(seq_group_metadata_list) == 0:
705
+ return PreparePromptMetadata.empty()
706
+
707
+ for seq_group_metadata in seq_group_metadata_list:
708
+ assert seq_group_metadata.is_prompt
709
+ seq_ids = list(seq_group_metadata.seq_data.keys())
710
+ assert len(seq_ids) == 1
711
+ seq_id = seq_ids[0]
712
+
713
+ computed_block_nums = seq_group_metadata.computed_block_nums
714
+ if (self.scheduler_config is not None
715
+ and self.scheduler_config.chunked_prefill_enabled
716
+ and not (computed_block_nums is None
717
+ or computed_block_nums == [])):
718
+ raise RuntimeError(
719
+ "chunked prefill cannot be used with prefix caching "
720
+ "now.")
721
+
722
+ token_chunk_size = seq_group_metadata.token_chunk_size
723
+ seq_data = seq_group_metadata.seq_data[seq_id]
724
+ context_len = seq_data.get_num_computed_tokens()
725
+ # We should use get_len here because in case of preemption
726
+ # it contains output tokens.
727
+ seq_len = min(seq_data.get_len(), context_len + token_chunk_size)
728
+ prompt_tokens = seq_data.get_token_ids()[context_len:seq_len]
729
+ seq_lens.append(seq_len)
730
+
731
+ # NOTE: This only works for oooooooxxx style attention.
732
+ if computed_block_nums is not None and len(
733
+ computed_block_nums) > 0 and self.sliding_window is None:
734
+ # Prefix is not supported with sliding_window
735
+ context_len = len(computed_block_nums) * self.block_size
736
+ if context_len == seq_len \
737
+ and self.vllm_config.cache_config.enable_prefix_caching:
738
+ # Fully cached prompt - compute only last token
739
+ context_len = context_len - 1
740
+ prompt_tokens = prompt_tokens[context_len:]
741
+ prefix_block_tables.append(computed_block_nums)
742
+ elif self.scheduler_config.chunked_prefill_enabled:
743
+ if seq_group_metadata.block_tables is not None:
744
+ # Prefill has chunked before.
745
+ block_table = seq_group_metadata.block_tables[seq_id]
746
+ prefix_block_tables.append(block_table)
747
+ else:
748
+ # The first prefill.
749
+ prefix_block_tables.append([])
750
+ else:
751
+ prefix_block_tables.append([])
752
+ # Right now, prefill start is always 0. However, this
753
+ # assumption can be changed once chunked prefill is introduced.
754
+ assert context_len == 0
755
+
756
+ # actual prompt lens
757
+ context_lens.append(context_len)
758
+ query_lens.append(seq_len - context_len)
759
+ input_tokens.append(prompt_tokens)
760
+ # NOTE(woosuk): Here we assume that the first token in the prompt
761
+ # is always the first token in the sequence.
762
+ input_positions.append(list(range(context_len, seq_len)))
763
+
764
+ mm_kwargs = seq_group_metadata.multi_modal_data
765
+ if mm_kwargs:
766
+ multi_modal_kwargs_list.append(mm_kwargs)
767
+
768
+ if seq_group_metadata.block_tables is None:
769
+ # During memory profiling, the block tables are not initialized
770
+ # yet. In this case, we just use a dummy slot mapping.
771
+ slot_mapping.append([_PAD_SLOT_ID] * seq_len)
772
+ continue
773
+
774
+ # Compute the slot mapping.
775
+ slot_mapping.append([])
776
+ block_table = seq_group_metadata.block_tables[seq_id]
777
+
778
+ # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
779
+ # where start_idx is max(0, seq_len - sliding_window).
780
+ # For example, if the prompt len is 10, sliding window is 8, and
781
+ # block size is 4, the first two tokens are masked and the slot
782
+ # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
783
+ start_idx = 0
784
+ if self.sliding_window is not None:
785
+ assert context_len == 0, (
786
+ "Prefix caching is currently not supported with "
787
+ "sliding window attention")
788
+ start_idx = max(0, seq_len - self.sliding_window)
789
+ for i in range(context_len, seq_len):
790
+ if i < start_idx:
791
+ slot_mapping[-1].append(_PAD_SLOT_ID)
792
+ continue
793
+
794
+ block_number = block_table[i // self.block_size]
795
+ block_offset = i % self.block_size
796
+ slot = block_number * self.block_size + block_offset
797
+ slot_mapping[-1].append(slot)
798
+
799
+ max_query_len = max(query_lens)
800
+ sum_query_len = sum(query_lens)
801
+ real_num_seqs = len(query_lens)
802
+ assert max_query_len > 0
803
+
804
+ max_prompt_len = max(
805
+ self.bucketing_ctx.get_padded_prompt_seq_len(max_query_len),
806
+ self.block_size)
807
+
808
+ lora_ids: List[int] = []
809
+ for seq_group_metadata, context_len in zip(seq_group_metadata_list,
810
+ context_lens):
811
+ lora_id = seq_group_metadata.lora_int_id
812
+ lora_ids.append(lora_id)
813
+
814
+ if lora_id > 0:
815
+ lora_requests.add(seq_group_metadata.lora_request)
816
+
817
+ lora_index_mapping += [lora_id] * max_prompt_len
818
+ lora_prompt_mapping.extend(
819
+ [lora_id] *
820
+ (max_prompt_len
821
+ if seq_group_metadata.sampling_params.prompt_logprobs else 1))
822
+
823
+ if any(context_lens):
824
+ assert not self.scheduler_config.chunked_prefill_enabled
825
+ # prefix caching
826
+
827
+ max_num_block = max(len(bt) for bt in prefix_block_tables)
828
+ prefix_block_list = list(
829
+ itertools.chain.from_iterable(
830
+ bt if len(bt) == max_num_block else bt +
831
+ ([_PAD_BLOCK_ID] * (max_num_block - len(bt)))
832
+ for bt in prefix_block_tables))
833
+
834
+ pad_len = len(prefix_block_list)
835
+ prefix_block_list = pad_list(prefix_block_list, pad_len,
836
+ _PAD_BLOCK_ID)
837
+
838
+ prefix_block_list_tensor = torch.tensor(prefix_block_list,
839
+ dtype=torch.long,
840
+ device=self.device)
841
+ else:
842
+ prefix_block_list_tensor = None
843
+
844
+ input_tokens = make_tensor_with_pad(input_tokens,
845
+ max_len=max_prompt_len,
846
+ pad=0,
847
+ dtype=torch.long,
848
+ device=self.device)
849
+
850
+ input_positions = make_tensor_with_pad(input_positions,
851
+ max_len=max_prompt_len,
852
+ pad=0,
853
+ dtype=torch.long,
854
+ device=self.device)
855
+
856
+ slot_mapping = make_tensor_with_pad(slot_mapping,
857
+ max_len=max_prompt_len,
858
+ pad=_PAD_SLOT_ID,
859
+ dtype=torch.long,
860
+ device=self.device)
861
+
862
+ seq_lens_tensor = torch.tensor(seq_lens,
863
+ dtype=torch.long,
864
+ device=self.device)
865
+
866
+ context_lens_tensor = torch.tensor(context_lens,
867
+ dtype=torch.long,
868
+ device=self.device)
869
+
870
+ block_indices, block_offsets = precompute_indices_and_offsets(
871
+ self.block_size, slot_mapping, True)
872
+ attn_metadata = self.attn_backend.make_metadata(
873
+ is_prompt=True,
874
+ block_list=prefix_block_list_tensor,
875
+ block_mapping=None,
876
+ block_usage=None,
877
+ block_indices=block_indices,
878
+ block_offsets=block_offsets,
879
+ block_groups=None,
880
+ attn_bias=None,
881
+ seq_lens_tensor=seq_lens_tensor,
882
+ context_lens_tensor=context_lens_tensor,
883
+ num_prefills=real_num_seqs,
884
+ num_prefill_tokens=sum_query_len,
885
+ num_decode_tokens=0,
886
+ slot_mapping=slot_mapping,
887
+ multi_modal_placeholder_index_maps=
888
+ None, # FIXME(kzawora): mutli-modality will not work here
889
+ enable_kv_scales_calculation=False,
890
+ )
891
+ multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
892
+
893
+ return PreparePromptMetadata(input_tokens=input_tokens,
894
+ input_positions=input_positions,
895
+ attn_metadata=attn_metadata,
896
+ seq_lens=seq_lens,
897
+ query_lens=query_lens,
898
+ lora_index_mapping=lora_index_mapping,
899
+ lora_prompt_mapping=lora_prompt_mapping,
900
+ lora_requests=lora_requests,
901
+ multi_modal_kwargs=multi_modal_kwargs,
902
+ slot_mapping=slot_mapping,
903
+ lora_ids=lora_ids)
904
+
905
+ def _prepare_decode(
906
+ self,
907
+ seq_group_metadata_list: List[SequenceGroupMetadata],
908
+ output=None,
909
+ ) -> PrepareDecodeMetadata:
910
+ input_tokens: List[List[int]] = []
911
+ input_positions: List[List[int]] = []
912
+ slot_mapping: List[List[int]] = []
913
+ seq_lens: List[int] = []
914
+ block_tables: List[List[int]] = []
915
+ lora_index_mapping: List[List[int]] = []
916
+ lora_prompt_mapping: List[List[int]] = []
917
+ lora_requests: Set[LoRARequest] = set()
918
+
919
+ if len(seq_group_metadata_list) == 0:
920
+ return PrepareDecodeMetadata.empty()
921
+ lora_ids: List[int] = []
922
+
923
+ dummy_slots = itertools.cycle(
924
+ range(_PAD_SLOT_ID, _PAD_SLOT_ID + self.block_size))
925
+
926
+ for seq_group_metadata in seq_group_metadata_list:
927
+ assert not seq_group_metadata.is_prompt
928
+ assert seq_group_metadata.token_chunk_size == 1
929
+
930
+ seq_ids = list(seq_group_metadata.seq_data.keys())
931
+ lora_id = seq_group_metadata.lora_int_id
932
+ lora_ids.append(lora_id)
933
+
934
+ if lora_id > 0:
935
+ lora_requests.add(seq_group_metadata.lora_request)
936
+
937
+ for seq_id in seq_ids:
938
+ seq_data = seq_group_metadata.seq_data[seq_id]
939
+ if output is None:
940
+ generation_token = seq_data.get_last_token_id()
941
+ input_tokens.append([generation_token])
942
+
943
+ seq_len = seq_data.get_len()
944
+ position = seq_len - 1
945
+ input_positions.append([position])
946
+
947
+ seq_len = seq_len if self.sliding_window is None else min(
948
+ seq_len, self.sliding_window)
949
+ seq_lens.append(seq_len)
950
+
951
+ block_table = seq_group_metadata.block_tables[seq_id]
952
+ num_fully_occupied_blocks = position // self.block_size
953
+ block_table = block_table[:num_fully_occupied_blocks + 1]
954
+
955
+ if len(block_table) == 0:
956
+ block_number = _PAD_BLOCK_ID
957
+ else:
958
+ block_number = block_table[position // self.block_size]
959
+ if block_number == _PAD_BLOCK_ID:
960
+ slot = next(dummy_slots)
961
+ else:
962
+ block_offset = position % self.block_size
963
+ slot = block_number * self.block_size + block_offset
964
+ slot_mapping.append([slot])
965
+ lora_index_mapping.append(lora_id)
966
+ lora_prompt_mapping.append(lora_id)
967
+
968
+ if self.sliding_window is not None:
969
+ sliding_window_blocks = (self.sliding_window //
970
+ self.block_size)
971
+ block_table = block_table[-sliding_window_blocks:]
972
+ block_tables.append(block_table)
973
+
974
+ if output is None:
975
+ input_tokens = torch.tensor(input_tokens,
976
+ dtype=torch.long,
977
+ device=self.device)
978
+ else:
979
+ real_batch_size = len(seq_group_metadata_list)
980
+ input_tokens = output[:real_batch_size]
981
+
982
+ input_positions = torch.tensor(input_positions,
983
+ dtype=torch.long,
984
+ device=self.device)
985
+
986
+ num_decode_tokens = sum(seq_lens)
987
+
988
+ last_block_usage = [
989
+ slot[0] % self.block_size + 1 for slot in slot_mapping
990
+ ]
991
+ block_groups = [[i] * len(bt) for i, bt in enumerate(block_tables)]
992
+ block_usage = [[self.block_size] * (len(bt) - 1) + [lbu]
993
+ for bt, lbu in zip(block_tables, last_block_usage)
994
+ if bt]
995
+
996
+ block_list = flatten(block_tables)
997
+ block_groups = flatten(block_groups)
998
+ block_usage = flatten(block_usage)
999
+
1000
+ assert len(block_list) == len(block_groups)
1001
+ assert len(block_list) == len(block_usage)
1002
+
1003
+ padding_fn = None
1004
+ if self.use_contiguous_pa:
1005
+ block_bucket_size = max(max(block_list) + 1, len(block_list))
1006
+ block_bucket_size = self.bucketing_ctx.get_padded_decode_num_blocks(
1007
+ block_bucket_size)
1008
+ indices: List[Any]
1009
+ indices = [None] * block_bucket_size
1010
+ for i, bid in enumerate(block_list):
1011
+ indices[bid] = i
1012
+ padding_fn = lambda tensor, pad_value: gather_list(
1013
+ tensor, indices, pad_value)
1014
+ else:
1015
+ block_bucket_size = \
1016
+ self.bucketing_ctx.get_padded_decode_num_blocks(
1017
+ len(block_list))
1018
+ padding_fn = lambda tensor, pad_value: pad_list(
1019
+ tensor, block_bucket_size, pad_value)
1020
+
1021
+ block_list = padding_fn(block_list, _PAD_BLOCK_ID)
1022
+ block_groups = padding_fn(block_groups, -1)
1023
+ block_usage = padding_fn(block_usage, 1)
1024
+
1025
+ block_list = torch.tensor(block_list,
1026
+ dtype=torch.int,
1027
+ device=self.device)
1028
+ block_groups = torch.tensor(block_groups,
1029
+ dtype=torch.int,
1030
+ device=self.device)
1031
+ block_usage = torch.tensor(block_usage,
1032
+ dtype=self.model_config.dtype,
1033
+ device=self.device)
1034
+ slot_mapping = torch.tensor(slot_mapping,
1035
+ dtype=torch.long,
1036
+ device=self.device)
1037
+
1038
+ block_indices, block_offsets = precompute_indices_and_offsets(
1039
+ self.block_size, slot_mapping, False)
1040
+
1041
+ attn_metadata = self.attn_backend.make_metadata(
1042
+ is_prompt=False,
1043
+ block_list=block_list,
1044
+ block_mapping=None,
1045
+ block_usage=block_usage,
1046
+ block_indices=block_indices,
1047
+ block_offsets=block_offsets,
1048
+ block_groups=block_groups,
1049
+ attn_bias=None,
1050
+ seq_lens_tensor=None,
1051
+ context_lens_tensor=None,
1052
+ num_prefills=0,
1053
+ num_prefill_tokens=0,
1054
+ num_decode_tokens=num_decode_tokens,
1055
+ slot_mapping=slot_mapping,
1056
+ multi_modal_placeholder_index_maps=None,
1057
+ enable_kv_scales_calculation=False,
1058
+ )
1059
+ return PrepareDecodeMetadata(input_tokens=input_tokens,
1060
+ input_positions=input_positions,
1061
+ attn_metadata=attn_metadata,
1062
+ lora_index_mapping=lora_index_mapping,
1063
+ lora_prompt_mapping=lora_prompt_mapping,
1064
+ lora_requests=lora_requests,
1065
+ slot_mapping=slot_mapping,
1066
+ lora_ids=lora_ids)
1067
+
1068
+ def prepare_input_tensors(
1069
+ self,
1070
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1071
+ ) -> Tuple[TModelInputForHPU, SamplingMetadata]:
1072
+ if len(seq_group_metadata_list) == 0:
1073
+ return self._model_input_cls(), None
1074
+
1075
+ input_tokens = None
1076
+ input_positions = None
1077
+ lora_mapping = None
1078
+ lora_requests = None
1079
+ multi_modal_kwargs = None
1080
+ batch_type = None
1081
+ seq_lens = None
1082
+ query_lens = None
1083
+ real_batch_size = None
1084
+ batch_size_padded = None
1085
+
1086
+ self.event_start = self.profiler.get_timestamp_us()
1087
+ is_prompt = seq_group_metadata_list[0].is_prompt
1088
+ base_event_name = 'prompt' if is_prompt else 'decode'
1089
+ self.profiler.start('internal', base_event_name)
1090
+
1091
+ seq_group_metadata_list, real_batch_size, batch_size_padded = (
1092
+ self._add_dummy_seq(seq_group_metadata_list, is_prompt))
1093
+
1094
+ prefill_reqs = []
1095
+ decode_reqs = []
1096
+ for seq_group_meta in seq_group_metadata_list:
1097
+ if seq_group_meta.is_prompt:
1098
+ prefill_reqs.append(seq_group_meta)
1099
+ else:
1100
+ decode_reqs.append(seq_group_meta)
1101
+
1102
+ # Prepare input tensors.
1103
+ (
1104
+ input_tokens,
1105
+ input_positions,
1106
+ prefill_attn_metadata,
1107
+ seq_lens,
1108
+ query_lens,
1109
+ lora_index_mapping,
1110
+ lora_prompt_mapping,
1111
+ lora_requests,
1112
+ multi_modal_kwargs,
1113
+ slot_mapping,
1114
+ lora_ids,
1115
+ ) = self._prepare_prompt(prefill_reqs)
1116
+ (
1117
+ decode_input_tokens,
1118
+ decode_input_positions,
1119
+ decode_attn_metadata,
1120
+ decode_lora_index_mapping,
1121
+ decode_lora_prompt_mapping,
1122
+ decode_lora_requests,
1123
+ decode_slot_mapping,
1124
+ decode_lora_ids,
1125
+ ) = self._prepare_decode(decode_reqs)
1126
+ sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
1127
+ seq_lens, query_lens,
1128
+ self.device,
1129
+ self.pin_memory)
1130
+
1131
+ if not self.scheduler_config.chunked_prefill_enabled:
1132
+ assert (len(prefill_reqs) and len(decode_reqs)) == 0
1133
+
1134
+ num_prefills = len(seq_lens)
1135
+ num_prefill_tokens = len(input_tokens)
1136
+ num_decode_tokens = len(decode_input_tokens)
1137
+
1138
+ # NOTE(kzawora): Here we diverge from GPU code - we don't
1139
+ # support mixed batches, so we either use decode or prefill
1140
+ # inputs, without coalescing.
1141
+ assert (num_prefills == 0 and num_decode_tokens > 0) or (
1142
+ num_prefills > 0
1143
+ and num_decode_tokens == 0), "HPU does not support mixed batches!"
1144
+ if num_decode_tokens > 0:
1145
+ input_tokens = decode_input_tokens
1146
+ input_positions = decode_input_positions
1147
+ slot_mapping = decode_slot_mapping
1148
+ lora_index_mapping = decode_lora_index_mapping
1149
+ lora_prompt_mapping = decode_lora_prompt_mapping
1150
+ lora_requests = decode_lora_requests
1151
+ lora_ids = decode_lora_ids
1152
+
1153
+ # FIXME: We need to adjust selected_token_indices to accommodate
1154
+ # for padding
1155
+ max_len = input_tokens.size(1)
1156
+ paddings = [max_len - q for q in query_lens]
1157
+ paddings = [0] + paddings[:-1]
1158
+ paddings = list(itertools.accumulate(paddings))
1159
+ paddings_prompt_logprobs = []
1160
+ for i, seq_group_metadata in enumerate(seq_group_metadata_list):
1161
+ if seq_group_metadata.sampling_params.prompt_logprobs is not None \
1162
+ and seq_group_metadata.is_prompt:
1163
+ paddings_prompt_logprobs += ([paddings[i]] * seq_lens[i])
1164
+ paddings = torch.tensor(
1165
+ paddings_prompt_logprobs if paddings_prompt_logprobs else paddings,
1166
+ dtype=sampling_metadata.selected_token_indices.dtype,
1167
+ device=sampling_metadata.selected_token_indices.device)
1168
+ sampling_metadata.selected_token_indices.add_(paddings)
1169
+
1170
+ if self.lora_config:
1171
+ lora_mapping = LoRAMapping(
1172
+ **dict(index_mapping=lora_index_mapping,
1173
+ prompt_mapping=lora_prompt_mapping,
1174
+ is_prefill=(num_prefills > 0)))
1175
+ else:
1176
+ lora_mapping = None
1177
+
1178
+ if (prefill_attn_metadata is not None
1179
+ and decode_attn_metadata is not None):
1180
+ batch_type = BatchType.MIXED
1181
+ raise NotImplementedError("Mixed batch is not supported on HPU")
1182
+ elif prefill_attn_metadata is not None:
1183
+ batch_type = BatchType.PREFILL
1184
+ else:
1185
+ batch_type = BatchType.DECODE
1186
+
1187
+ metadata_dict = {
1188
+ "input_tokens": input_tokens,
1189
+ "input_positions": input_positions,
1190
+ "selected_token_indices": sampling_metadata.selected_token_indices,
1191
+ "lora_requests": lora_requests,
1192
+ "lora_mapping": lora_mapping,
1193
+ "multi_modal_kwargs": multi_modal_kwargs,
1194
+ "num_prefill_tokens": num_prefill_tokens,
1195
+ "num_decode_tokens": num_decode_tokens,
1196
+ "slot_mapping": slot_mapping,
1197
+ "num_prefills": num_prefills,
1198
+ "batch_type": batch_type,
1199
+ "seq_lens": seq_lens,
1200
+ "query_lens": query_lens
1201
+ }
1202
+ if prefill_attn_metadata is not None:
1203
+ metadata_dict.update(prefill_attn_metadata.asdict_zerocopy())
1204
+ else:
1205
+ assert decode_attn_metadata is not None
1206
+ metadata_dict.update(decode_attn_metadata.asdict_zerocopy())
1207
+
1208
+ attn_metadata = prefill_attn_metadata if \
1209
+ prefill_attn_metadata is not None else decode_attn_metadata
1210
+
1211
+ return self._model_input_cls(input_tokens=input_tokens,
1212
+ seq_lens=seq_lens,
1213
+ query_lens=query_lens,
1214
+ input_positions=input_positions,
1215
+ attn_metadata=attn_metadata,
1216
+ lora_requests=lora_requests,
1217
+ lora_mapping=lora_mapping,
1218
+ multi_modal_kwargs=multi_modal_kwargs,
1219
+ real_batch_size=real_batch_size,
1220
+ batch_size_padded=batch_size_padded,
1221
+ lora_ids=lora_ids), \
1222
+ sampling_metadata
1223
+
1224
+ def _seq_len(self, attn_metadata):
1225
+ if attn_metadata.num_prefills != 0:
1226
+ return attn_metadata.slot_mapping.size(1)
1227
+ else:
1228
+ return attn_metadata.block_list.numel()
1229
+
1230
+ def trim_attn_metadata(self, metadata: AttentionMetadata) -> object:
1231
+ # NOTE(kzawora): To anyone working on this in the future:
1232
+ # Trimming metadata is required when using HPUGraphs.
1233
+ # Attention metadata is going to be hashed by PT bridge, and
1234
+ # appropriate HPUGraphs will be matched based on all inputs' hash.
1235
+
1236
+ # Before you put more keys in here, make sure you know their
1237
+ # value type and make sure you know how it's going to be hashed.
1238
+ # You can find that information in input_hash function
1239
+ # in habana_frameworks/torch/hpu/graphs.py. You can also hash
1240
+ # it manually with torch.hpu.graphs.input_hash(attention_metadata)
1241
+
1242
+ # If you use primitive types here - they will get hashed based
1243
+ # on their value. You *will* get lots of excessive graph captures
1244
+ # (and an OOM eventually) if you decide to put something like
1245
+ # seq_len int here.
1246
+ # If you absolutely need a scalar, put it in a tensor. Tensors
1247
+ # get hashed using their metadata, not their values:
1248
+ # input_hash(torch.tensor(123)) == input_hash(torch.tensor(321))
1249
+ # input_hash(123) != input_hash(321)
1250
+ # input_hash("abc") != input_hash("cba")
1251
+ attention_metadata = subtuple(metadata, 'TrimmedAttentionMetadata', [
1252
+ 'attn_bias',
1253
+ 'seq_lens_tensor',
1254
+ 'context_lens_tensor',
1255
+ 'block_list',
1256
+ 'block_mapping',
1257
+ 'block_usage',
1258
+ 'slot_mapping',
1259
+ 'is_prompt',
1260
+ 'block_indices',
1261
+ 'block_offsets',
1262
+ 'block_groups',
1263
+ ])
1264
+ return attention_metadata
1265
+
1266
+ def create_dummy_seq_group_metadata(self,
1267
+ group_id,
1268
+ seq_len,
1269
+ is_prompt,
1270
+ lora_request=None):
1271
+ sampling_params = SamplingParams(temperature=0)
1272
+ num_blocks = math.ceil(seq_len / self.block_size)
1273
+ seq_len = max(seq_len, 1)
1274
+ if is_prompt:
1275
+ input_len = seq_len
1276
+ output_len = 0
1277
+ block_tables = None
1278
+ else:
1279
+ input_len = seq_len - 1
1280
+ output_len = 1
1281
+ block_tables = {group_id: [_PAD_BLOCK_ID] * num_blocks}
1282
+ prompt_token_ids = [0] * input_len
1283
+ output_token_ids = [1] * output_len
1284
+ prompt_token_ids_array = array('l', prompt_token_ids) # noqa: F821
1285
+ seq_data = SequenceData(prompt_token_ids_array)
1286
+ seq_data.output_token_ids = output_token_ids
1287
+ return SequenceGroupMetadata(request_id=str(group_id),
1288
+ is_prompt=(output_len == 0),
1289
+ seq_data={group_id: seq_data},
1290
+ sampling_params=sampling_params,
1291
+ block_tables=block_tables,
1292
+ lora_request=lora_request)
1293
+
1294
+ def profile_run(self) -> None:
1295
+ num_layers = self.model_config.get_num_layers(self.parallel_config)
1296
+ kv_caches = [None] * num_layers
1297
+ bind_kv_cache(
1298
+ self.vllm_config.compilation_config.static_forward_context,
1299
+ [kv_caches])
1300
+ _, max_seq_len = self.bucketing_ctx.get_max_prompt_shape()
1301
+ max_batch_size = min(self.max_num_seqs,
1302
+ self.max_num_batched_tokens // max_seq_len)
1303
+ self.warmup_scenario(max_batch_size, max_seq_len, True, kv_caches,
1304
+ False, True)
1305
+ return
1306
+
1307
+ def warmup_scenario(self,
1308
+ batch_size,
1309
+ seq_len,
1310
+ is_prompt,
1311
+ kv_caches,
1312
+ is_pt_profiler_run=False,
1313
+ is_lora_profile_run=False) -> None:
1314
+ use_graphs = self._use_graphs(batch_size, seq_len, is_prompt)
1315
+ scenario_name = ("warmup_"
1316
+ f"{'prompt' if is_prompt else 'decode'}_"
1317
+ f"bs{batch_size}_"
1318
+ f"seq{seq_len}_"
1319
+ f"graphs{'T' if use_graphs else 'F'}")
1320
+ # This represents the maximum number of different requests
1321
+ # that will have unique loras, an therefore the max amount of memory
1322
+ # consumption create dummy lora request copies from the lora request
1323
+ # passed in, which contains a lora from the lora warmup path.
1324
+ dummy_lora_requests: List[LoRARequest] = []
1325
+ dummy_lora_requests_per_seq: List[LoRARequest] = []
1326
+ if self.lora_config and is_lora_profile_run:
1327
+ assert self.lora_manager is not None
1328
+ with self.lora_manager.dummy_lora_cache():
1329
+ for idx in range(self.lora_config.max_loras):
1330
+ lora_id = idx + 1
1331
+ dummy_lora_request = LoRARequest(
1332
+ lora_name=f"warmup_{lora_id}",
1333
+ lora_int_id=lora_id,
1334
+ lora_local_path="/not/a/real/path",
1335
+ )
1336
+ self.lora_manager.add_dummy_lora(dummy_lora_request,
1337
+ rank=LORA_WARMUP_RANK)
1338
+ dummy_lora_requests.append(dummy_lora_request)
1339
+ dummy_lora_requests_per_seq = [
1340
+ dummy_lora_requests[idx % len(dummy_lora_requests)]
1341
+ for idx in range(batch_size)
1342
+ ]
1343
+ self.profiler.start('internal', scenario_name)
1344
+ times = 3 if use_graphs or is_pt_profiler_run else 1
1345
+ if is_prompt:
1346
+ seqs = [
1347
+ self.create_dummy_seq_group_metadata(
1348
+ i,
1349
+ seq_len,
1350
+ is_prompt,
1351
+ lora_request=dummy_lora_requests_per_seq[i]
1352
+ if dummy_lora_requests_per_seq else None)
1353
+ for i in range(batch_size)
1354
+ ]
1355
+ else:
1356
+ # FIXME: seq_len is actually number of blocks
1357
+ blocks = [seq_len // batch_size for _ in range(batch_size)]
1358
+ blocks[0] += seq_len % batch_size
1359
+ seqs = [
1360
+ self.create_dummy_seq_group_metadata(
1361
+ i,
1362
+ b * self.block_size - 1,
1363
+ is_prompt,
1364
+ lora_request=dummy_lora_requests_per_seq[i]
1365
+ if dummy_lora_requests_per_seq else None)
1366
+ for i, b in enumerate(blocks)
1367
+ ]
1368
+ torch.hpu.synchronize()
1369
+ profiler = None
1370
+ if is_pt_profiler_run and self.is_driver_worker:
1371
+ profiler = setup_profiler()
1372
+ profiler.start()
1373
+ for _ in range(times):
1374
+ inputs = self.prepare_model_input(seqs)
1375
+ is_single_step = \
1376
+ self.vllm_config.scheduler_config.num_scheduler_steps == 1
1377
+ if is_prompt or is_single_step:
1378
+ self.execute_model(inputs, None, warmup_mode=True)
1379
+ else: # decode with multi-step
1380
+ inputs = dataclasses.replace(inputs,
1381
+ is_first_multi_step=True,
1382
+ is_last_step=False)
1383
+ self.execute_model(inputs,
1384
+ None,
1385
+ warmup_mode=True,
1386
+ num_steps=2,
1387
+ seqs=seqs)
1388
+ inputs = dataclasses.replace(inputs,
1389
+ is_first_multi_step=False,
1390
+ is_last_step=True)
1391
+ self.execute_model(inputs,
1392
+ None,
1393
+ warmup_mode=True,
1394
+ num_steps=2,
1395
+ seqs=seqs)
1396
+ torch.hpu.synchronize()
1397
+ if profiler:
1398
+ profiler.step()
1399
+ if profiler:
1400
+ profiler.stop()
1401
+ self.profiler.end()
1402
+ gc.collect()
1403
+
1404
+ def remove_all_loras(self):
1405
+ if not self.lora_manager:
1406
+ raise RuntimeError("LoRA is not enabled.")
1407
+ self.lora_manager.remove_all_adapters()
1408
+
1409
+ def set_active_loras(self, lora_requests: Set[LoRARequest],
1410
+ lora_mapping: LoRAMapping) -> None:
1411
+ if not self.lora_manager:
1412
+ raise RuntimeError("LoRA is not enabled.")
1413
+ self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
1414
+
1415
+ def add_lora(self, lora_request: LoRARequest) -> bool:
1416
+ if not self.lora_manager:
1417
+ raise RuntimeError("LoRA is not enabled.")
1418
+ return self.lora_manager.add_adapter(lora_request)
1419
+
1420
+ def remove_lora(self, lora_id: int) -> bool:
1421
+ if not self.lora_manager:
1422
+ raise RuntimeError("LoRA is not enabled.")
1423
+ return self.lora_manager.remove_adapter(lora_id)
1424
+
1425
+ def pin_lora(self, lora_id: int) -> bool:
1426
+ if not self.lora_manager:
1427
+ raise RuntimeError("LoRA is not enabled.")
1428
+ return self.lora_manager.pin_adapter(lora_id)
1429
+
1430
+ def list_loras(self) -> Set[int]:
1431
+ if not self.lora_manager:
1432
+ raise RuntimeError("LoRA is not enabled.")
1433
+ return self.lora_manager.list_adapters()
1434
+
1435
+ def log_warmup(self, phase, i, max_i, batch_size, seq_len):
1436
+ free_mem = format_bytes(
1437
+ HabanaMemoryProfiler.current_free_device_memory())
1438
+ dim = "num_blocks"
1439
+ if phase == "Prompt":
1440
+ dim = "seq_len"
1441
+ msg = (f"[Warmup][{phase}][{i+1}/{max_i}] "
1442
+ f"batch_size:{batch_size} "
1443
+ f"{dim}:{seq_len} "
1444
+ f"free_mem:{free_mem}")
1445
+ logger.info(msg)
1446
+
1447
+ def warmup_all_buckets(self, buckets, is_prompt, kv_caches):
1448
+ for i, (batch_size, seq_len) in enumerate(reversed(buckets)):
1449
+ self.log_warmup('Prompt' if is_prompt else 'Decode', i,
1450
+ len(buckets), batch_size, seq_len)
1451
+ self.warmup_scenario(batch_size, seq_len, is_prompt, kv_caches)
1452
+
1453
+ def warmup_graphs(self,
1454
+ strategy,
1455
+ buckets,
1456
+ is_prompt,
1457
+ kv_caches,
1458
+ available_mem,
1459
+ starting_mem=0,
1460
+ total_batch_seq=0.001):
1461
+ total_mem = starting_mem
1462
+ idx = 0
1463
+ phase = f'Graph/{"Prompt" if is_prompt else "Decode"}'
1464
+ num_candidates = len(buckets)
1465
+ ordering : Union[Callable[[Any], Tuple[Any, Any]], \
1466
+ Callable[[Any], Tuple[Any, Any, Any]]]
1467
+ if strategy == 'min_tokens':
1468
+ ordering = lambda b: (b[0] * b[1], b[1], b[0])
1469
+ elif strategy == 'max_bs':
1470
+ ordering = lambda b: (-b[0], b[1])
1471
+ else:
1472
+ raise NotImplementedError(
1473
+ f'Unsupported graph allocation strategy: {strategy}')
1474
+ buckets = list(sorted(buckets, key=ordering))
1475
+ captured_all = True
1476
+ for idx, (batch_size, seq_len) in enumerate(buckets):
1477
+ # Graph memory usage is proportional to seq dimension in a batch
1478
+ batch_seq = batch_size * seq_len if is_prompt else batch_size
1479
+ mem_estimate = batch_seq / total_batch_seq * total_mem
1480
+ if mem_estimate >= available_mem:
1481
+ captured_all = False
1482
+ continue
1483
+ graphed_bucket = (batch_size, seq_len, is_prompt)
1484
+ if graphed_bucket in self.graphed_buckets:
1485
+ continue
1486
+ self.graphed_buckets.add(graphed_bucket)
1487
+ self.log_warmup(phase, idx, num_candidates, batch_size, seq_len)
1488
+ with HabanaMemoryProfiler() as mem_prof:
1489
+ self.warmup_scenario(batch_size, seq_len, is_prompt, kv_caches)
1490
+ used_mem = align_workers(mem_prof.consumed_device_memory,
1491
+ torch.distributed.ReduceOp.MAX)
1492
+ available_mem -= used_mem
1493
+ total_mem += used_mem
1494
+ total_batch_seq += batch_seq
1495
+
1496
+ return total_mem, total_batch_seq, captured_all
1497
+
1498
+ def log_graph_warmup_summary(self, buckets, is_prompt, total_mem):
1499
+ num_candidates = len(buckets)
1500
+ phase = f'Graph/{"Prompt" if is_prompt else "Decode"}'
1501
+ graphed = list(c[:2] for c in self.graphed_buckets
1502
+ if c[2] == is_prompt)
1503
+ if num_candidates == 0:
1504
+ num_candidates = 1
1505
+ msg = (f'{phase} captured:{len(graphed)} '
1506
+ f'({100 * len(graphed) / num_candidates:.1f}%) '
1507
+ f'used_mem:{format_bytes(total_mem)} '
1508
+ f'buckets:{sorted(list(graphed))}')
1509
+ logger.info(msg)
1510
+
1511
+ @torch.inference_mode()
1512
+ def warmup_model(self, kv_caches: List[torch.Tensor]) -> None:
1513
+ max_blocks = kv_caches[0][0].size(0)
1514
+ self.bucketing_ctx.generate_decode_buckets(max_blocks)
1515
+ if profile := os.environ.get('VLLM_PT_PROFILE', None):
1516
+ phase, bs, seq_len, graph = profile.split('_')
1517
+ is_prompt = phase == 'prompt'
1518
+ graphs = graph == 't'
1519
+ if graphs:
1520
+ self.graphed_buckets.add((int(bs), int(seq_len), is_prompt))
1521
+ self.warmup_scenario(int(bs), int(seq_len), is_prompt, kv_caches,
1522
+ True)
1523
+ raise AssertionError("Finished profiling")
1524
+ if not htorch.utils.internal.is_lazy() and not self.enforce_eager:
1525
+ cache_size_limit = 1 + 3 * (
1526
+ len(self.bucketing_ctx.prompt_buckets) +
1527
+ len(self.bucketing_ctx.decode_buckets))
1528
+ torch._dynamo.config.cache_size_limit = max(
1529
+ cache_size_limit, torch._dynamo.config.cache_size_limit)
1530
+ # Multiply by 8 to follow the original default ratio between
1531
+ # the cache_size_limit and accumulated_cache_size_limit
1532
+ torch._dynamo.config.accumulated_cache_size_limit = max(
1533
+ cache_size_limit * 8,
1534
+ torch._dynamo.config.accumulated_cache_size_limit)
1535
+ if self.skip_warmup:
1536
+ logger.info("Skipping warmup...")
1537
+ return
1538
+ self.profiler.start('internal', 'warmup')
1539
+ start_mem = HabanaMemoryProfiler.current_device_memory_usage()
1540
+ start_time = time.perf_counter()
1541
+
1542
+ compile_only_mode_context = functools.partial(bc.env_setting,
1543
+ "PT_COMPILE_ONLY_MODE",
1544
+ True)
1545
+ can_use_compile_only_mode = True
1546
+ try:
1547
+ with compile_only_mode_context():
1548
+ pass
1549
+ logger.debug("Using PT_COMPILE_ONLY_MODE.")
1550
+ except KeyError:
1551
+ can_use_compile_only_mode = False
1552
+ logger.warning('Cannot use PT_COMPILE_ONLY_MODE. '
1553
+ 'Warmup time will be negatively impacted. '
1554
+ 'Please update Gaudi Software Suite.')
1555
+ with compile_only_mode_context(
1556
+ ) if can_use_compile_only_mode else contextlib.nullcontext():
1557
+ self.warmup_all_buckets(self.bucketing_ctx.prompt_buckets, True,
1558
+ kv_caches)
1559
+ self.warmup_all_buckets(self.bucketing_ctx.decode_buckets, False,
1560
+ kv_caches)
1561
+
1562
+ if not self.enforce_eager and htorch.utils.internal.is_lazy():
1563
+ assert self.mem_margin is not None, \
1564
+ ("HabanaWorker.determine_num_available_blocks needs "
1565
+ "to be called before warming up the model.")
1566
+ free_mem = HabanaMemoryProfiler.current_free_device_memory()
1567
+ graph_free_mem = free_mem - self.mem_margin
1568
+ graph_free_mem = align_workers(graph_free_mem,
1569
+ torch.distributed.ReduceOp.MIN)
1570
+ prompt_graph_mem_ratio = float(
1571
+ os.environ.get('VLLM_GRAPH_PROMPT_RATIO', '0.3'))
1572
+ prompt_available_memory = (prompt_graph_mem_ratio *
1573
+ graph_free_mem)
1574
+ decode_available_memory = (graph_free_mem -
1575
+ prompt_available_memory)
1576
+ msg = (
1577
+ f"Using {format_bytes(graph_free_mem)}"
1578
+ f"/{format_bytes(free_mem)} "
1579
+ "of free device memory for HPUGraphs, "
1580
+ f"{format_bytes(prompt_available_memory)} for prompt and "
1581
+ f"{format_bytes(decode_available_memory)} for decode "
1582
+ f"(VLLM_GRAPH_PROMPT_RATIO={prompt_graph_mem_ratio})")
1583
+ logger.info(msg)
1584
+ prompt_strategy = os.environ.get('VLLM_GRAPH_PROMPT_STRATEGY',
1585
+ 'min_tokens')
1586
+ decode_strategy = os.environ.get('VLLM_GRAPH_DECODE_STRATEGY',
1587
+ 'max_bs')
1588
+ mem_post_prompt, prompt_batch_seq, prompt_captured_all = \
1589
+ self.warmup_graphs(
1590
+ prompt_strategy, self.bucketing_ctx.prompt_buckets,
1591
+ True, kv_caches, prompt_available_memory)
1592
+ mem_post_decode, decode_batch_seq, decode_captured_all = \
1593
+ self.warmup_graphs(
1594
+ decode_strategy, self.bucketing_ctx.decode_buckets,
1595
+ False, kv_caches, decode_available_memory)
1596
+
1597
+ # Not all prompt buckets were captured, but all decode buckets
1598
+ # were captured and we have some free graph-allocated space
1599
+ # left. Let's try to use it for capturing more prompt buckets.
1600
+ if (mem_post_decode + mem_post_prompt < graph_free_mem
1601
+ and not prompt_captured_all and decode_captured_all):
1602
+ mem_post_prompt, _, prompt_captured_all = (
1603
+ self.warmup_graphs(
1604
+ prompt_strategy, self.bucketing_ctx.prompt_buckets,
1605
+ True, kv_caches,
1606
+ graph_free_mem - mem_post_prompt - mem_post_decode,
1607
+ mem_post_prompt, prompt_batch_seq))
1608
+
1609
+ # Not all decode buckets were captured, but all prompt buckets
1610
+ # were captured and we have some free graph-allocated space
1611
+ # left. Let's try to use it for capturing more decode buckets.
1612
+ if mem_post_decode + mem_post_prompt < graph_free_mem \
1613
+ and not decode_captured_all \
1614
+ and prompt_captured_all:
1615
+ mem_post_decode, _, _ = self.warmup_graphs(
1616
+ decode_strategy, self.bucketing_ctx.decode_buckets,
1617
+ False, kv_caches,
1618
+ graph_free_mem - mem_post_prompt - mem_post_decode,
1619
+ mem_post_decode, decode_batch_seq)
1620
+
1621
+ self.log_graph_warmup_summary(
1622
+ self.bucketing_ctx.prompt_buckets, True, mem_post_prompt)
1623
+ self.log_graph_warmup_summary(
1624
+ self.bucketing_ctx.decode_buckets, False, mem_post_decode)
1625
+
1626
+ end_time = time.perf_counter()
1627
+ end_mem = HabanaMemoryProfiler.current_device_memory_usage()
1628
+ elapsed_time = end_time - start_time
1629
+ msg = (
1630
+ f"Warmup finished in {elapsed_time:.0f} secs, "
1631
+ f"allocated {format_bytes(end_mem - start_mem)} of device memory")
1632
+ logger.info(msg)
1633
+ self.profiler.end()
1634
+
1635
+ @property
1636
+ def vocab_size(self) -> int:
1637
+ return self.model_config.get_vocab_size()
1638
+
1639
+ @property
1640
+ def mem_margin(self) -> Optional[int]:
1641
+ return self._mem_margin
1642
+
1643
+ @mem_margin.setter
1644
+ def mem_margin(self, value):
1645
+ self._mem_margin = value
1646
+
1647
+
1648
+ def _maybe_wrap_in_hpu_graph(*args, **kwargs):
1649
+ return htorch.hpu.wrap_in_hpu_graph(
1650
+ HpuModelAdapter(*args, **kwargs), disable_tensor_cache=True
1651
+ ) if htorch.utils.internal.is_lazy() else HpuModelAdapter(*args, **kwargs)
1652
+
1653
+
1654
+ class HabanaProfilerCounterHelper:
1655
+
1656
+ def __init__(self):
1657
+ self.niter = 0
1658
+ self.average_real_throughput = None
1659
+ self.logged_once = False
1660
+ self.real_seq_lens = []
1661
+ self.prompt_seq_lens = []
1662
+
1663
+ def capture_seq_group_metadata_stats(self, seq_group_metadata_list):
1664
+ self.real_seq_lens = [
1665
+ len(seq_data.prompt_token_ids) + len(seq_data.output_token_ids)
1666
+ for seq_group_metadata in seq_group_metadata_list
1667
+ for seq_data in seq_group_metadata.seq_data.values()
1668
+ ]
1669
+ self.prompt_seq_lens = [
1670
+ len(seq_data.prompt_token_ids)
1671
+ for seq_group_metadata in seq_group_metadata_list
1672
+ for seq_data in seq_group_metadata.seq_data.values()
1673
+ ]
1674
+
1675
+ def get_counter_dict(self, cache_config, duration, seq_len,
1676
+ batch_size_padded, real_batch_size, is_prompt):
1677
+ throughput = batch_size_padded / (duration / 1e6)
1678
+ throughput_effective = real_batch_size / (duration / 1e6)
1679
+
1680
+ real_max_seq_len = max(self.real_seq_lens)
1681
+ real_num_tokens = sum(self.real_seq_lens)
1682
+ padded_num_tokens = batch_size_padded * seq_len
1683
+ batch_token_utilization = real_num_tokens / padded_num_tokens
1684
+ if self.average_real_throughput is None:
1685
+ self.average_real_throughput = throughput_effective
1686
+ else: # https://www.heikohoffmann.de/htmlthesis/node134.html
1687
+ self.average_real_throughput = self.average_real_throughput + 1 / (
1688
+ self.niter + 1) * (throughput_effective -
1689
+ self.average_real_throughput)
1690
+ phase = "prompt" if is_prompt else "decode"
1691
+ counters = {
1692
+ f'{phase}_bucket_batch_size': batch_size_padded,
1693
+ f'{phase}_batch_size': real_batch_size,
1694
+ f'{phase}_bucket_seq_len': seq_len,
1695
+ f'{phase}_seq_len': real_max_seq_len,
1696
+ f'{phase}_bucket_gen_throughput': throughput,
1697
+ f'{phase}_real_gen_throughput': throughput_effective,
1698
+ f'{phase}_batch_token_utilization': batch_token_utilization,
1699
+ 'average_real_throughput': self.average_real_throughput,
1700
+ 'engine_iteration': self.niter,
1701
+ }
1702
+ self.niter += 1
1703
+ if is_prompt:
1704
+ prompt_bucket_in_throughput = (seq_len * batch_size_padded) / (
1705
+ duration / 1e6)
1706
+ prompt_real_in_throughput = sum(
1707
+ self.prompt_seq_lens) / (duration / 1e6)
1708
+ counters[
1709
+ f'{phase}_bucket_in_throughput'] = prompt_bucket_in_throughput
1710
+ counters[f'{phase}_real_in_throughput'] = prompt_real_in_throughput
1711
+
1712
+ # KV cache might not be created yet (e.g. for profiling run)
1713
+ if cache_config.num_gpu_blocks is not None and \
1714
+ cache_config.num_gpu_blocks != 0:
1715
+ cache_num_blocks_used = [
1716
+ math.ceil(sl / cache_config.block_size)
1717
+ for sl in self.real_seq_lens
1718
+ ]
1719
+ cache_total_num_blocks_used = sum(cache_num_blocks_used)
1720
+ num_cache_blocks = cache_config.num_gpu_blocks
1721
+ cache_total_num_free_blocks = \
1722
+ num_cache_blocks - cache_total_num_blocks_used
1723
+ cache_computed_utilization = \
1724
+ cache_total_num_blocks_used / num_cache_blocks
1725
+ max_blocks_per_seq = math.ceil(seq_len / cache_config.block_size)
1726
+ batch_block_utilization = cache_total_num_blocks_used / (
1727
+ batch_size_padded * max_blocks_per_seq)
1728
+ counters['cache_num_blocks_used'] = cache_total_num_blocks_used
1729
+ counters['cache_num_free_blocks'] = cache_total_num_free_blocks
1730
+ counters['cache_computed_utilization'] = cache_computed_utilization
1731
+ counters[
1732
+ f'{phase}_batch_block_utilization'] = batch_block_utilization
1733
+ if not self.logged_once:
1734
+ counters['const_cache_num_blocks'] = cache_config.num_gpu_blocks
1735
+ counters[
1736
+ 'const_gpu_memory_utilization'] = \
1737
+ cache_config.gpu_memory_utilization
1738
+ counters['const_block_size'] = cache_config.block_size
1739
+ self.logged_once = True
1740
+ return counters
1741
+
1742
+
1743
+ def unwrap_model(model):
1744
+ if isinstance(model, torch._dynamo.eval_frame.OptimizedModule):
1745
+ return unwrap_model(model._orig_mod)
1746
+ else:
1747
+ model = list(vars(model)['_modules'].values())[0]
1748
+ modules = list(vars(model)['_modules'].values())
1749
+ return modules
1750
+
1751
+
1752
+ class HPUModelRunner(HPUModelRunnerBase[ModelInputForHPUWithSamplingMetadata]):
1753
+ """
1754
+ GPU model runner with sampling step.
1755
+ """
1756
+ _model_input_cls: Type[ModelInputForHPUWithSamplingMetadata] = (
1757
+ ModelInputForHPUWithSamplingMetadata)
1758
+
1759
+ def make_model_input_from_broadcasted_tensor_dict(
1760
+ self,
1761
+ tensor_dict: Dict[str, Any],
1762
+ ) -> ModelInputForHPUWithSamplingMetadata:
1763
+ return (
1764
+ ModelInputForHPUWithSamplingMetadata.from_broadcasted_tensor_dict(
1765
+ tensor_dict,
1766
+ attn_backend=self.attn_backend,
1767
+ ))
1768
+
1769
+ @torch.inference_mode()
1770
+ def prepare_model_input(
1771
+ self,
1772
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1773
+ virtual_engine: int = 0,
1774
+ finished_requests_ids: Optional[List[str]] = None
1775
+ ) -> ModelInputForHPUWithSamplingMetadata:
1776
+ """Prepare the model input based on a given sequence group, including
1777
+ metadata for the sampling step.
1778
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1779
+ The result tensors and data structure also batches input in prefill
1780
+ -> decode order. For example,
1781
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1782
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1783
+ If cuda graph is required, this API automatically pads inputs.
1784
+ """
1785
+ with self.profiler.record_event('internal', 'prepare_input_tensors'):
1786
+ assert seq_group_metadata_list is not None
1787
+ if self.profiler.enabled:
1788
+ self.profiler_counter_helper.capture_seq_group_metadata_stats(
1789
+ seq_group_metadata_list=seq_group_metadata_list)
1790
+ model_input, sampling_metadata = self.prepare_input_tensors(
1791
+ seq_group_metadata_list)
1792
+ assert model_input.attn_metadata is not None
1793
+ is_prompt = model_input.attn_metadata.is_prompt
1794
+
1795
+ return dataclasses.replace(model_input,
1796
+ sampling_metadata=sampling_metadata,
1797
+ is_prompt=is_prompt,
1798
+ virtual_engine=virtual_engine)
1799
+
1800
+ def finish_measurements(self):
1801
+ from neural_compressor.torch.quantization import finalize_calibration
1802
+ finalize_calibration(self.model.model)
1803
+
1804
+ def _num_blocks(self, attn_metadata):
1805
+ if attn_metadata.block_list is None:
1806
+ return 0
1807
+ return attn_metadata.block_list.numel()
1808
+
1809
+ def _phase(self, attn_metadata):
1810
+ phase_type: PhaseType
1811
+ is_prompt = attn_metadata.is_prompt
1812
+ is_prefix_prefill = is_prompt and attn_metadata.block_list is not None
1813
+ if is_prompt and is_prefix_prefill:
1814
+ phase_type = PhaseType.PREFIX_PREFILL
1815
+ elif is_prompt and not is_prefix_prefill:
1816
+ phase_type = PhaseType.PREFILL
1817
+ elif not is_prompt:
1818
+ phase_type = PhaseType.DECODE
1819
+ else:
1820
+ raise ValueError("Unrecognized pass type, likely due to malformed "
1821
+ "attention metadata")
1822
+ return phase_type
1823
+
1824
+ def _check_config(self, batch_size, seq_len, attn_metadata, warmup_mode):
1825
+ is_prefix_caching = self.vllm_config.cache_config.enable_prefix_caching
1826
+ cfg: Optional[tuple] = None
1827
+ assert cfg is None, "Configs changed between 2D and 3D"
1828
+ if is_prefix_caching:
1829
+ phase = self._phase(attn_metadata)
1830
+ num_blocks = self._num_blocks(attn_metadata)
1831
+ cfg = (batch_size, seq_len, num_blocks, phase)
1832
+ else:
1833
+ phase = 'prompt' if attn_metadata.is_prompt else 'decode'
1834
+ cfg = (batch_size, seq_len, phase)
1835
+ seen = cfg in self.seen_configs
1836
+ self.seen_configs.add(cfg)
1837
+ if not seen and not warmup_mode:
1838
+ logger.warning("Configuration: %s was not warmed-up!",
1839
+ (phase.value, batch_size, seq_len,
1840
+ num_blocks) if is_prefix_caching else
1841
+ (phase, batch_size, seq_len))
1842
+
1843
+ def create_lora_mask(self, input_tokens: torch.Tensor, lora_ids: List[int],
1844
+ is_prompt: bool):
1845
+ '''
1846
+ This is a helper function to create the mask for lora computations.
1847
+ Lora Mask is needed to ensure we match the correct lora weights for the
1848
+ for the request.
1849
+ For Prompt phase we have
1850
+ lora_mask with shape (batch_size * seq_len, max_loras * max_rank)
1851
+ lora_logits_mask with shape (batch_size, max_loras * max_rank)
1852
+ For Decode phase we have both
1853
+ lora_mask and lora_logits_mask with shape
1854
+ (batch_size, max_loras * max_rank)
1855
+ '''
1856
+ lora_mask: torch.Tensor = None
1857
+ lora_logits_mask: torch.Tensor = None
1858
+ lora_index = 0
1859
+
1860
+ if self.lora_config:
1861
+ if is_prompt:
1862
+ lora_mask = torch.zeros(
1863
+ input_tokens.shape[0] * input_tokens.shape[1],
1864
+ (self.lora_config.max_loras) *\
1865
+ self.lora_config.max_lora_rank,
1866
+ dtype=self.lora_config.lora_dtype)
1867
+ lora_logits_mask = torch.zeros(
1868
+ input_tokens.shape[0], (self.lora_config.max_loras) *
1869
+ self.lora_config.max_lora_rank,
1870
+ dtype=self.lora_config.lora_dtype)
1871
+
1872
+ ones = torch.ones(input_tokens.shape[1],
1873
+ self.lora_config.max_lora_rank,
1874
+ dtype=self.lora_config.lora_dtype)
1875
+ logit_ones = torch.ones(1,
1876
+ self.lora_config.max_lora_rank,
1877
+ dtype=self.lora_config.lora_dtype)
1878
+
1879
+ for i in range(len(lora_ids)):
1880
+ if lora_ids[i] == 0:
1881
+ continue
1882
+ lora_index = self.lora_manager._adapter_manager.\
1883
+ lora_index_to_id.index(lora_ids[i])
1884
+ start_row = i * input_tokens.shape[1]
1885
+ end_row = start_row + input_tokens.shape[1]
1886
+ start_col = lora_index * self.lora_config.max_lora_rank
1887
+ end_col = start_col + self.lora_config.max_lora_rank
1888
+ lora_mask[start_row:end_row, start_col:end_col] = ones
1889
+ lora_logits_mask[i, start_col:end_col] = logit_ones
1890
+ lora_mask = lora_mask.to('hpu')
1891
+ lora_logits_mask = lora_logits_mask.to('hpu')
1892
+ else:
1893
+ lora_mask = torch.zeros(input_tokens.shape[0],
1894
+ (self.lora_config.max_loras) *
1895
+ self.lora_config.max_lora_rank,
1896
+ dtype=self.lora_config.lora_dtype)
1897
+ ones = torch.ones(1,
1898
+ self.lora_config.max_lora_rank,
1899
+ dtype=self.lora_config.lora_dtype)
1900
+ for i in range(len(lora_ids)):
1901
+ if lora_ids[i] == 0:
1902
+ continue
1903
+ lora_index = self.lora_manager._adapter_manager.\
1904
+ lora_index_to_id.index(lora_ids[i])
1905
+ start_pos = lora_index * self.lora_config.max_lora_rank
1906
+ end_pos = start_pos + self.lora_config.max_lora_rank
1907
+ lora_mask[i, start_pos:end_pos] = ones
1908
+ lora_mask = lora_mask.to('hpu')
1909
+ lora_logits_mask = lora_mask
1910
+
1911
+ return lora_mask, lora_logits_mask
1912
+
1913
+ def _get_seq_ids(self, model_input):
1914
+ return ([
1915
+ sg.seq_ids[0] for sg in model_input.sampling_metadata.seq_groups
1916
+ ])
1917
+
1918
+ def _pad_to_max_num_seqs(self, tensor, value):
1919
+ padding_needed = self.max_num_seqs - tensor.size(0)
1920
+ if padding_needed:
1921
+ padding = torch.full((padding_needed, *tensor.shape[1:]),
1922
+ value,
1923
+ device=tensor.device,
1924
+ dtype=tensor.dtype)
1925
+ tensor = torch.cat([tensor, padding])
1926
+ return tensor
1927
+
1928
+ @torch.inference_mode()
1929
+ def execute_model(
1930
+ self,
1931
+ model_input: ModelInputForHPUWithSamplingMetadata,
1932
+ kv_caches: List[torch.Tensor],
1933
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1934
+ num_steps: int = 1,
1935
+ warmup_mode=False,
1936
+ seqs=None,
1937
+ ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
1938
+ VLLM_DELAYED_SAMPLING = envs.VLLM_HPU_USE_DELAYED_SAMPLING
1939
+ use_delayed_sampling = VLLM_DELAYED_SAMPLING and not warmup_mode
1940
+ assert not (use_delayed_sampling and num_steps != 1), \
1941
+ 'Delayed sampling is not compatible with MSS!'
1942
+ assert model_input.input_tokens is not None
1943
+ if use_delayed_sampling and not model_input.is_prompt and \
1944
+ self.is_driver_worker:
1945
+ num_cached = len(self.cached_step_outputs)
1946
+ assert num_cached > 0
1947
+ cur_seq_ids = self._get_seq_ids(model_input)
1948
+ cur_seq_id_pos = {
1949
+ sid: idx
1950
+ for idx, sid in enumerate(cur_seq_ids) if sid >= 0
1951
+ }
1952
+ htorch.core.mark_step()
1953
+ for i in range(num_cached):
1954
+ prev_seq_ids = self._get_seq_ids(self.cached_step_inputs[i])
1955
+ target_indices = [
1956
+ cur_seq_id_pos.get(psi, -1) for psi in prev_seq_ids
1957
+ ]
1958
+ padding = self.cached_step_outputs[i].size(0) - len(
1959
+ target_indices)
1960
+ target_indices.extend([-1] * padding)
1961
+ target_indices = torch.tensor(
1962
+ target_indices,
1963
+ device=model_input.input_tokens.device,
1964
+ dtype=model_input.input_tokens.dtype)
1965
+ model_input.input_tokens.index_copy_(
1966
+ 0, target_indices, self.cached_step_outputs[i])
1967
+ htorch.core.mark_step()
1968
+
1969
+ if not model_input.is_first_multi_step:
1970
+ if not model_input.is_last_step:
1971
+ # not first or last multi-step
1972
+ return []
1973
+ # last multi-step
1974
+ output = self._decode_sampler_outputs(
1975
+ model_input) if self.is_driver_worker else []
1976
+ torch.hpu.synchronize()
1977
+ if model_input.is_first_multi_step:
1978
+ # first multi-step
1979
+ if self.lora_config:
1980
+ assert model_input.lora_requests is not None
1981
+ assert model_input.lora_mapping is not None
1982
+ self.set_active_loras(model_input.lora_requests,
1983
+ model_input.lora_mapping)
1984
+ # Rank!=0 workers has is_prompt==None
1985
+ if use_delayed_sampling and not model_input.is_prompt and \
1986
+ model_input.input_tokens.size(1) == 1:
1987
+ if self.is_driver_worker:
1988
+ model_kwargs_broadcast_data = {
1989
+ "input_tokens": model_input.input_tokens
1990
+ }
1991
+ broadcast_tensor_dict(model_kwargs_broadcast_data, src=0)
1992
+ input_tokens = model_input.input_tokens
1993
+
1994
+ else:
1995
+ model_kwargs_broadcast_data = broadcast_tensor_dict(src=0)
1996
+ input_tokens = model_kwargs_broadcast_data["input_tokens"]
1997
+ else:
1998
+ input_tokens = model_input.input_tokens
1999
+ input_positions = model_input.input_positions
2000
+ attn_metadata = model_input.attn_metadata
2001
+ sampling_metadata = model_input.sampling_metadata
2002
+ real_batch_size = model_input.real_batch_size
2003
+ batch_size_padded = model_input.batch_size_padded
2004
+ assert input_tokens is not None
2005
+ assert input_positions is not None
2006
+ assert sampling_metadata is not None
2007
+ assert attn_metadata is not None
2008
+ is_prompt = attn_metadata.is_prompt
2009
+ assert is_prompt is not None
2010
+ batch_size = input_tokens.size(0)
2011
+ seq_len = self._seq_len(attn_metadata)
2012
+ use_graphs = self._use_graphs(batch_size, seq_len, is_prompt)
2013
+ self._check_config(batch_size, seq_len, attn_metadata, warmup_mode)
2014
+
2015
+ lora_mask: torch.Tensor = None
2016
+ lora_logits_mask: torch.Tensor = None
2017
+ if self.lora_config:
2018
+ assert model_input.lora_ids is not None
2019
+ lora_mask, lora_logits_mask = self.create_lora_mask(
2020
+ input_tokens, model_input.lora_ids,
2021
+ attn_metadata.is_prompt)
2022
+
2023
+ execute_model_kwargs = {
2024
+ "input_ids": input_tokens,
2025
+ "positions": input_positions,
2026
+ "attn_metadata": self.trim_attn_metadata(attn_metadata),
2027
+ "intermediate_tensors": intermediate_tensors,
2028
+ "lora_mask": lora_mask,
2029
+ "virtual_engine": model_input.virtual_engine,
2030
+ **(model_input.multi_modal_kwargs or {}),
2031
+ }
2032
+ if htorch.utils.internal.is_lazy():
2033
+ execute_model_kwargs.update(
2034
+ {"bypass_hpu_graphs": not use_graphs})
2035
+
2036
+ htorch.core.mark_step()
2037
+ if self.is_driver_worker:
2038
+ model_event_name = ("model_"
2039
+ f"{'prompt' if is_prompt else 'decode'}_"
2040
+ f"bs{batch_size}_"
2041
+ f"seq{seq_len}_"
2042
+ f"graphs{'T' if use_graphs else 'F'}")
2043
+ else:
2044
+ model_event_name = 'model_executable'
2045
+ if num_steps > 1 or use_delayed_sampling:
2046
+ # in case of multi-step scheduling
2047
+ # we only want to pythonize in the last step
2048
+ sampling_metadata.skip_sampler_cpu_output = True
2049
+ self.model.sampler.include_gpu_probs_tensor = True
2050
+ cache_orig_output_tokens_len: List[Dict] = []
2051
+
2052
+ def try_revert_dummy_output_tokens():
2053
+ if len(cache_orig_output_tokens_len) > 0:
2054
+ # Reuse the original output token ids length
2055
+ for i, seq_group_metadata in enumerate(
2056
+ seq_group_metadata_list):
2057
+ for j, data in seq_group_metadata.seq_data.items():
2058
+ orig_output_tokens_len = \
2059
+ cache_orig_output_tokens_len[i][j]
2060
+ data.output_token_ids = \
2061
+ data.output_token_ids[:orig_output_tokens_len]
2062
+
2063
+ for i in range(num_steps):
2064
+ if i != 0 and not self.is_driver_worker:
2065
+ broadcast_data = broadcast_tensor_dict(src=0)
2066
+ if 'early_exit' in broadcast_data and broadcast_data[
2067
+ 'early_exit']:
2068
+ return [output] if num_steps == 1 else []
2069
+ execute_model_kwargs.update({
2070
+ "input_ids":
2071
+ broadcast_data["input_ids"],
2072
+ "positions":
2073
+ broadcast_data["positions"],
2074
+ "attn_metadata":
2075
+ self.trim_attn_metadata(
2076
+ broadcast_data["attn_metadata"])
2077
+ })
2078
+ with self.profiler.record_event('internal', model_event_name):
2079
+ hidden_states = self.model.forward(
2080
+ **execute_model_kwargs,
2081
+ selected_token_indices=sampling_metadata.
2082
+ selected_token_indices)
2083
+
2084
+ if self.lora_config:
2085
+ LoraMask.setLoraMask(
2086
+ lora_logits_mask.index_select(
2087
+ 0, sampling_metadata.selected_token_indices))
2088
+
2089
+ # Compute the logits.
2090
+ with self.profiler.record_event(
2091
+ 'internal',
2092
+ ('compute_logits_'
2093
+ f'{"prompt" if is_prompt else "decode"}_bs'
2094
+ f'{batch_size}_'
2095
+ f'seq{seq_len}')):
2096
+ if num_steps == 1:
2097
+ sampling_metadata.selected_token_indices = None
2098
+ logits = self.model.compute_logits(hidden_states,
2099
+ sampling_metadata)
2100
+ htorch.core.mark_step()
2101
+ # Only perform sampling in the driver worker.
2102
+ if not self.is_driver_worker:
2103
+ continue
2104
+
2105
+ if use_delayed_sampling:
2106
+ fake_output = self._delayed_sampler_outputs(model_input)
2107
+
2108
+ with self.profiler.record_event(
2109
+ 'internal', ('sample_'
2110
+ f'{"prompt" if is_prompt else "decode"}_'
2111
+ f'bs{batch_size}_'
2112
+ f'seq{seq_len}')):
2113
+ output = self.model.sample(
2114
+ logits=logits,
2115
+ sampling_metadata=sampling_metadata,
2116
+ )
2117
+ if num_steps > 1:
2118
+ output = output.sampled_token_ids
2119
+ self.cached_step_outputs.append(output)
2120
+ if use_delayed_sampling and self.is_driver_worker:
2121
+ self._patch_prev_output()
2122
+ output = self._pad_to_max_num_seqs(
2123
+ output.sampled_token_ids, DUMMY_TOKEN_ID)
2124
+ self.cached_step_outputs.append(output)
2125
+ self.cached_step_inputs.append(model_input)
2126
+ htorch.core.mark_step()
2127
+ if model_input.async_callback is not None:
2128
+ model_input.async_callback()
2129
+ if i < num_steps - 1:
2130
+ if i == 0:
2131
+ if model_input.async_callback is not None:
2132
+ ctx = model_input.async_callback.keywords[ # type: ignore
2133
+ "ctx"]
2134
+ seq_group_metadata_list = \
2135
+ ctx.seq_group_metadata_list
2136
+ elif seqs is not None:
2137
+ seq_group_metadata_list = seqs
2138
+ else:
2139
+ raise RuntimeError(
2140
+ "seq_group_metadata_list is uninitialized")
2141
+ for i, seq_group_metadata in enumerate(
2142
+ seq_group_metadata_list):
2143
+ # Skip empty steps
2144
+ seq_group_metadata.state.current_step += (
2145
+ num_steps - 2)
2146
+ # Cache the original output token ids
2147
+ cache_orig_output_tokens_len.append({})
2148
+ for j, data in seq_group_metadata.seq_data.items():
2149
+ cache_orig_output_tokens_len[i][j] = \
2150
+ len(data.output_token_ids)
2151
+ for seq_group_metadata in seq_group_metadata_list:
2152
+ for data in seq_group_metadata.seq_data.values():
2153
+ max_output_len = sampling_metadata.seq_groups[
2154
+ 0].sampling_params.max_tokens
2155
+ if len(data.output_token_ids) < max_output_len - 1:
2156
+ # add a place holder for prepare_decode
2157
+ # arbitrary value, this could be any token
2158
+ dummy_token = (540, )
2159
+ data.output_token_ids += (dummy_token)
2160
+ else:
2161
+ broadcast_tensor_dict({'early_exit': True},
2162
+ src=0)
2163
+ if num_steps == 1:
2164
+ return [output]
2165
+ else:
2166
+ try_revert_dummy_output_tokens()
2167
+ return []
2168
+
2169
+ result = self._prepare_decode(seq_group_metadata_list,
2170
+ output=output)
2171
+ execute_model_kwargs.update({
2172
+ "input_ids":
2173
+ result.input_tokens,
2174
+ "positions":
2175
+ result.input_positions,
2176
+ "attn_metadata":
2177
+ self.trim_attn_metadata(result.attn_metadata)
2178
+ })
2179
+ model_kwargs_broadcast_data = {
2180
+ "input_ids": result.input_tokens,
2181
+ "positions": result.input_positions,
2182
+ "attn_metadata": vars(result.attn_metadata)
2183
+ }
2184
+ broadcast_tensor_dict(model_kwargs_broadcast_data, src=0)
2185
+ else:
2186
+ try_revert_dummy_output_tokens()
2187
+
2188
+ if self.is_driver_worker and self.profiler.enabled:
2189
+ # Stop recording 'execute_model' event
2190
+ self.profiler.end()
2191
+ event_end = self.profiler.get_timestamp_us()
2192
+ counters = self.profiler_counter_helper.get_counter_dict(
2193
+ cache_config=self.cache_config,
2194
+ duration=event_end - self.event_start,
2195
+ seq_len=seq_len,
2196
+ batch_size_padded=batch_size_padded,
2197
+ real_batch_size=real_batch_size,
2198
+ is_prompt=is_prompt)
2199
+ self.profiler.record_counter(self.event_start, counters)
2200
+ if num_steps == 1:
2201
+ if self.return_hidden_states:
2202
+ # we only need to pass hidden states of most recent token
2203
+ assert model_input.sampling_metadata is not None
2204
+ if model_input.is_prompt:
2205
+ output.prefill_hidden_states = hidden_states
2206
+ output.hidden_states = hidden_states
2207
+ if use_delayed_sampling:
2208
+ if self.is_driver_worker:
2209
+ return [fake_output]
2210
+ else:
2211
+ return []
2212
+
2213
+ return [output] if self.is_driver_worker else []
2214
+ else:
2215
+ return []
2216
+ return output if type(output) is list else [output]
2217
+
2218
+ def _delayed_sampler_outputs(self, model_input):
2219
+ next_token_ids = [[DUMMY_TOKEN_ID]] * len(
2220
+ model_input.sampling_metadata.seq_groups)
2221
+ sampler_output = self._make_decode_output(
2222
+ next_token_ids, model_input.sampling_metadata.seq_groups)
2223
+ return sampler_output
2224
+
2225
+ def _decode_sampler_outputs(self, model_input):
2226
+ use_async_out_proc = model_input.async_callback is not None
2227
+ sampler_outputs = []
2228
+ num_outputs = len(self.cached_step_outputs)
2229
+ for i in range(num_outputs):
2230
+ next_token_ids = self.cached_step_outputs.pop(0)
2231
+ next_token_ids = next_token_ids.cpu().tolist()
2232
+ sampler_output = self._make_decode_output(
2233
+ next_token_ids, model_input.sampling_metadata.seq_groups)
2234
+ sampler_outputs.append(sampler_output)
2235
+
2236
+ if i < num_outputs - 1 and use_async_out_proc:
2237
+ assert model_input.async_callback is not None
2238
+ ctx = model_input.async_callback.keywords[ # type: ignore
2239
+ "ctx"]
2240
+ ctx.append_output(
2241
+ outputs=[sampler_output],
2242
+ seq_group_metadata_list=ctx.seq_group_metadata_list,
2243
+ scheduler_outputs=ctx.scheduler_outputs,
2244
+ is_async=False,
2245
+ is_last_step=False,
2246
+ is_first_step_output=False)
2247
+ model_input.async_callback()
2248
+
2249
+ if use_async_out_proc:
2250
+ return [sampler_outputs[-1]]
2251
+ else:
2252
+ return sampler_outputs
2253
+
2254
+ def _make_decode_output(
2255
+ self,
2256
+ next_token_ids: List[List[int]],
2257
+ seq_groups: List[SequenceGroupToSample],
2258
+ ) -> SamplerOutput:
2259
+ zero_logprob = Logprob(0.0)
2260
+ sampler_outputs = []
2261
+ batch_idx = 0
2262
+ for seq_group in seq_groups:
2263
+ seq_ids = seq_group.seq_ids
2264
+ seq_outputs = []
2265
+ for seq_id in seq_ids:
2266
+ next_token_id = next_token_ids[batch_idx][0]
2267
+ seq_outputs.append(
2268
+ SequenceOutput(seq_id, next_token_id,
2269
+ {next_token_id: zero_logprob}))
2270
+ batch_idx += 1
2271
+ sampler_outputs.append(
2272
+ CompletionSequenceGroupOutput(seq_outputs, None))
2273
+ return SamplerOutput(sampler_outputs)
2274
+
2275
+ def shutdown_inc(self):
2276
+ can_finalize_inc = False
2277
+ from contextlib import suppress
2278
+ with suppress(AttributeError):
2279
+ can_finalize_inc = (self.model_config.quantization == 'inc') and \
2280
+ (self.model.model is not None) and \
2281
+ self.inc_initialized_successfully and \
2282
+ not getattr(self, "_is_inc_finalized", False)
2283
+ if can_finalize_inc:
2284
+ from neural_compressor.torch.quantization import (
2285
+ finalize_calibration)
2286
+ finalize_calibration(self.model.model)
2287
+ self._is_inc_finalized = True
2288
+
2289
+ def __del__(self):
2290
+ self.shutdown_inc()
2291
+
2292
+ def _patch_prev_output(self):
2293
+ assert len(self.cached_step_inputs) == len(self.cached_step_outputs), \
2294
+ f'''Inputs and outputs are out of sync!
2295
+ {len(self.cached_step_inputs)} vs {len(self.cached_step_outputs)}'''
2296
+ if len(self.cached_step_inputs) == 0:
2297
+ return
2298
+ model_input = self.cached_step_inputs.pop(0)
2299
+ delayed_output = self.cached_step_outputs.pop(0).cpu().squeeze(
2300
+ -1).tolist()
2301
+ ctx = model_input.async_callback.keywords["ctx"] # type: ignore
2302
+ # If there's no output to patch with, which is usually the case when
2303
+ # we're starting a new request after all requests are completed.
2304
+ if len(ctx.output_queue) == 0:
2305
+ return
2306
+ assert len(
2307
+ ctx.output_queue) == 1, 'There should be exactly 1 output waiting!'
2308
+ output_data = ctx.output_queue[0]
2309
+ assert len(output_data.outputs) == 1
2310
+ for fake_out, real_out in zip(output_data.outputs[0], delayed_output):
2311
+ fake_out.samples[0].output_token = real_out
2312
+ for sg, real_out in zip(output_data.seq_group_metadata_list,
2313
+ delayed_output):
2314
+ assert len(sg.seq_data) == 1
2315
+ seq_data = list(sg.seq_data.values())[0]
2316
+ # This is a hack. Assigning output_token_ids triggers
2317
+ # a cache recomputation and we only need to update the last token
2318
+ seq_data.output_token_ids_array[-1] = real_out
2319
+ seq_data._cached_all_token_ids[-1] = real_out