teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (263) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +183 -0
  4. teradataml/__init__.py +6 -3
  5. teradataml/_version.py +2 -2
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +275 -40
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +1 -0
  11. teradataml/analytics/json_parser/utils.py +17 -21
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +10 -2
  15. teradataml/analytics/table_operator/__init__.py +3 -2
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +62 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1553 -319
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +276 -319
  22. teradataml/automl/data_transformation.py +163 -81
  23. teradataml/automl/feature_engineering.py +402 -239
  24. teradataml/automl/feature_exploration.py +9 -2
  25. teradataml/automl/model_evaluation.py +48 -51
  26. teradataml/automl/model_training.py +291 -189
  27. teradataml/catalog/byom.py +8 -8
  28. teradataml/catalog/model_cataloging_utils.py +1 -1
  29. teradataml/clients/auth_client.py +133 -0
  30. teradataml/clients/pkce_client.py +1 -1
  31. teradataml/common/aed_utils.py +3 -2
  32. teradataml/common/constants.py +48 -6
  33. teradataml/common/deprecations.py +13 -7
  34. teradataml/common/garbagecollector.py +156 -120
  35. teradataml/common/messagecodes.py +6 -1
  36. teradataml/common/messages.py +3 -1
  37. teradataml/common/sqlbundle.py +1 -1
  38. teradataml/common/utils.py +103 -11
  39. teradataml/common/wrapper_utils.py +1 -1
  40. teradataml/context/context.py +121 -31
  41. teradataml/data/advertising.csv +201 -0
  42. teradataml/data/bank_marketing.csv +11163 -0
  43. teradataml/data/bike_sharing.csv +732 -0
  44. teradataml/data/boston2cols.csv +721 -0
  45. teradataml/data/breast_cancer.csv +570 -0
  46. teradataml/data/complaints_test_tokenized.csv +353 -0
  47. teradataml/data/complaints_tokens_model.csv +348 -0
  48. teradataml/data/covid_confirm_sd.csv +83 -0
  49. teradataml/data/customer_segmentation_test.csv +2628 -0
  50. teradataml/data/customer_segmentation_train.csv +8069 -0
  51. teradataml/data/dataframe_example.json +10 -0
  52. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  53. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  54. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  55. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  56. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  57. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  58. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  59. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  60. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  61. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  62. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  63. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  64. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  65. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  66. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  67. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  68. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  69. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  70. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  71. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  72. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  73. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  74. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  75. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  76. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  77. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  78. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  79. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  80. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  81. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  82. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  83. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  84. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  85. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  86. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  87. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  88. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  89. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  90. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  91. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  92. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  93. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  94. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  95. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  96. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  97. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  98. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  99. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  100. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  101. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  102. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  103. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  104. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  105. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  106. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  107. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  108. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  109. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  110. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  111. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  112. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  113. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  114. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  115. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  116. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  117. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  118. teradataml/data/dwt2d_dataTable.csv +65 -0
  119. teradataml/data/dwt_dataTable.csv +8 -0
  120. teradataml/data/dwt_filterTable.csv +3 -0
  121. teradataml/data/finance_data4.csv +13 -0
  122. teradataml/data/glm_example.json +28 -1
  123. teradataml/data/grocery_transaction.csv +19 -0
  124. teradataml/data/housing_train_segment.csv +201 -0
  125. teradataml/data/idwt2d_dataTable.csv +5 -0
  126. teradataml/data/idwt_dataTable.csv +8 -0
  127. teradataml/data/idwt_filterTable.csv +3 -0
  128. teradataml/data/insect2Cols.csv +61 -0
  129. teradataml/data/interval_data.csv +5 -0
  130. teradataml/data/jsons/paired_functions.json +14 -0
  131. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  132. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  133. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  134. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  135. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  136. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  137. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  138. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  139. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  140. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  141. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  142. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  143. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  144. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  145. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  146. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  147. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  148. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  149. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  150. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  151. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  152. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  153. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  154. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  155. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  156. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  157. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  158. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  159. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  160. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  161. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  162. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  163. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  164. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  165. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  166. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  167. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  168. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  169. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  170. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  171. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  172. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  173. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  174. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  175. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  176. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  177. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  178. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  179. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  180. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  181. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  182. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  183. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  184. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  185. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  186. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  187. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  188. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  189. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  190. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  191. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  192. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  193. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  194. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  195. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  196. teradataml/data/kmeans_example.json +5 -0
  197. teradataml/data/kmeans_table.csv +10 -0
  198. teradataml/data/load_example_data.py +8 -2
  199. teradataml/data/naivebayestextclassifier_example.json +1 -1
  200. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  201. teradataml/data/onehot_encoder_train.csv +4 -0
  202. teradataml/data/openml_example.json +29 -0
  203. teradataml/data/peppers.png +0 -0
  204. teradataml/data/real_values.csv +14 -0
  205. teradataml/data/sax_example.json +8 -0
  206. teradataml/data/scale_attributes.csv +3 -0
  207. teradataml/data/scale_example.json +52 -1
  208. teradataml/data/scale_input_part_sparse.csv +31 -0
  209. teradataml/data/scale_input_partitioned.csv +16 -0
  210. teradataml/data/scale_input_sparse.csv +11 -0
  211. teradataml/data/scale_parameters.csv +3 -0
  212. teradataml/data/scripts/deploy_script.py +21 -2
  213. teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
  214. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
  215. teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
  216. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  217. teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
  218. teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
  219. teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
  220. teradataml/data/star_pivot.csv +8 -0
  221. teradataml/data/templates/open_source_ml.json +2 -1
  222. teradataml/data/teradataml_example.json +97 -1
  223. teradataml/data/timestamp_data.csv +4 -0
  224. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  225. teradataml/data/uaf_example.json +55 -1
  226. teradataml/data/unpivot_example.json +15 -0
  227. teradataml/data/url_data.csv +9 -0
  228. teradataml/data/windowdfft.csv +16 -0
  229. teradataml/data/ztest_example.json +16 -0
  230. teradataml/dataframe/copy_to.py +9 -4
  231. teradataml/dataframe/data_transfer.py +125 -64
  232. teradataml/dataframe/dataframe.py +575 -57
  233. teradataml/dataframe/dataframe_utils.py +47 -9
  234. teradataml/dataframe/fastload.py +273 -90
  235. teradataml/dataframe/functions.py +339 -0
  236. teradataml/dataframe/row.py +160 -0
  237. teradataml/dataframe/setop.py +2 -2
  238. teradataml/dataframe/sql.py +740 -18
  239. teradataml/dataframe/window.py +1 -1
  240. teradataml/dbutils/dbutils.py +324 -18
  241. teradataml/geospatial/geodataframe.py +1 -1
  242. teradataml/geospatial/geodataframecolumn.py +1 -1
  243. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  244. teradataml/lib/aed_0_1.dll +0 -0
  245. teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
  246. teradataml/options/__init__.py +16 -5
  247. teradataml/options/configure.py +39 -6
  248. teradataml/options/display.py +2 -2
  249. teradataml/plot/axis.py +4 -4
  250. teradataml/scriptmgmt/UserEnv.py +26 -19
  251. teradataml/scriptmgmt/lls_utils.py +120 -16
  252. teradataml/table_operators/Script.py +4 -5
  253. teradataml/table_operators/TableOperator.py +160 -26
  254. teradataml/table_operators/table_operator_util.py +88 -41
  255. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  256. teradataml/telemetry_utils/__init__.py +0 -0
  257. teradataml/telemetry_utils/queryband.py +52 -0
  258. teradataml/utils/validators.py +41 -3
  259. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
  260. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
  261. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  262. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  263. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -16,7 +16,7 @@ from sqlalchemy import desc, nullsfirst, nullslast
16
16
  from teradataml.common.exceptions import TeradataMlException
17
17
  from teradataml.common.utils import UtilFuncs
18
18
  from teradataml.utils.dtypes import _Dtypes
19
- from teradatasqlalchemy.telemetry.queryband import collect_queryband
19
+ from teradataml.telemetry_utils.queryband import collect_queryband
20
20
 
21
21
 
22
22
  class Window:
@@ -20,18 +20,20 @@ from teradataml.common.messagecodes import MessageCodes
20
20
  from teradataml.common.exceptions import TeradataMlException
21
21
  from teradataml.common.constants import TeradataTableKindConstants
22
22
  from teradataml.common.sqlbundle import SQLBundle
23
- from teradataml.common.constants import SQLConstants
23
+ from teradataml.common.constants import SQLConstants, SessionParamsSQL, SessionParamsPythonNames
24
24
  from teradataml.common.constants import TableOperatorConstants
25
25
  import teradataml.dataframe as tdmldf
26
26
  from teradataml.options.configure import configure
27
27
  from teradataml.utils.utils import execute_sql
28
28
  from teradataml.utils.validators import _Validators
29
+ from teradataml.utils.internal_buffer import _InternalBuffer
29
30
  from teradatasql import OperationalError
30
31
  from teradatasqlalchemy.dialect import preparer, dialect as td_dialect
31
32
  from teradatasqlalchemy.dialect import TDCreateTablePost as post
32
- from teradatasqlalchemy.telemetry.queryband import collect_queryband
33
+ from teradataml.telemetry_utils.queryband import collect_queryband
33
34
  from sqlalchemy import Table, Column, MetaData, CheckConstraint, \
34
35
  PrimaryKeyConstraint, ForeignKeyConstraint, UniqueConstraint
36
+ from teradataml.utils.internal_buffer import _InternalBuffer
35
37
 
36
38
 
37
39
  @collect_queryband(queryband='DrpTbl')
@@ -737,7 +739,7 @@ def _check_if_python_packages_installed():
737
739
  """
738
740
  # Check if Python interpreter and add-ons packages are installed or not.
739
741
  try:
740
- query = TableOperatorConstants.CHECK_PYTHON_INSTALLED.value
742
+ query = TableOperatorConstants.CHECK_PYTHON_INSTALLED.value.format(configure.indb_install_location)
741
743
  UtilFuncs._execute_query(query=query)
742
744
 
743
745
  # If query execution is successful, then Python and add-on packages are
@@ -841,7 +843,7 @@ def db_python_package_details(names=None):
841
843
  package_str = "grep -E \"{0}\" | ".format(package_str)
842
844
 
843
845
  query = TableOperatorConstants.PACKAGE_VERSION_QUERY.value. \
844
- format(package_str, configure.default_varchar_size)
846
+ format(configure.indb_install_location, package_str, configure.default_varchar_size)
845
847
 
846
848
  ret_val = tdmldf.dataframe.DataFrame.from_query(query)
847
849
 
@@ -1017,26 +1019,26 @@ def _create_table(table_name,
1017
1019
  def list_td_reserved_keywords(key=None, raise_error=False):
1018
1020
  """
1019
1021
  DESCRIPTION:
1020
- Function validates if the specified string is Teradata reserved keyword or not.
1021
- If key is not specified, list all the Teradata reserved keywords.
1022
+ Function validates if the specified string or the list of strings is Teradata reserved keyword or not.
1023
+ If key is not specified or is a empty list, list all the Teradata reserved keywords.
1022
1024
 
1023
1025
  PARAMETERS:
1024
1026
  key:
1025
1027
  Optional Argument.
1026
- Specifies a string to validate for Teradata reserved keyword.
1027
- Types: string
1028
+ Specifies a string or list of strings to validate for Teradata reserved keyword.
1029
+ Types: string or list of strings
1028
1030
 
1029
1031
  raise_error:
1030
1032
  Optional Argument.
1031
1033
  Specifies whether to raise exception or not.
1032
1034
  When set to True, an exception is raised,
1033
- if specified "key" is a Teradata reserved keyword, otherwise not.
1035
+ if specified "key" contains Teradata reserved keyword, otherwise not.
1034
1036
  Default Value: False
1035
1037
  Types: bool
1036
1038
 
1037
1039
  RETURNS:
1038
- teradataml DataFrame, if "key" is None.
1039
- True, if "key" is Teradata reserved keyword, False otherwise.
1040
+ teradataml DataFrame, if "key" is None or a empty list.
1041
+ True, if "key" contains Teradata reserved keyword, False otherwise.
1040
1042
 
1041
1043
  RAISES:
1042
1044
  TeradataMlException.
@@ -1065,21 +1067,38 @@ def list_td_reserved_keywords(key=None, raise_error=False):
1065
1067
 
1066
1068
  >>> # Example 3: Validate and raise exception if keyword "account" is a Teradata reserved keyword.
1067
1069
  >>> list_td_reserved_keywords("account", raise_error=True)
1068
- TeradataMlException: [Teradata][teradataml](TDML_2121) 'account' is a Teradata reserved keyword.
1070
+ TeradataMlException: [Teradata][teradataml](TDML_2121) '['ACCOUNT']' is a Teradata reserved keyword.
1071
+
1072
+ >>> # Example 4: Validate if the list of keywords contains Teradata reserved keyword or not.
1073
+ >>> list_td_reserved_keywords(["account", 'add', 'abc'])
1074
+ True
1075
+
1076
+ >>> # Example 5: Validate and raise exception if the list of keywords contains Teradata reserved keyword.
1077
+ >>> list_td_reserved_keywords(["account", 'add', 'abc'], raise_error=True)
1078
+ TeradataMlException: [Teradata][teradataml](TDML_2121) '['ADD', 'ACCOUNT']' is a Teradata reserved keyword.
1069
1079
  """
1080
+
1070
1081
  from teradataml.dataframe.dataframe import DataFrame, in_schema
1071
1082
  # Get the reserved keywords from the table
1072
1083
  reserved_keys = DataFrame(in_schema("SYSLIB", "SQLRestrictedWords"))
1073
1084
 
1074
- # If key is not passed, return the list of Teradata reserved keywords.
1075
- if key is None:
1085
+ # If key is not passed or is a empty list, return the list of Teradata reserved keywords.
1086
+ if key is None or len(key) == 0:
1076
1087
  return reserved_keys.select(['restricted_word'])
1077
1088
 
1078
- # Check if key is a Teradata reserved keyword or not.
1079
- num_rows = reserved_keys[reserved_keys.restricted_word == key.upper()].shape[0]
1080
- if num_rows > 0:
1089
+ key = [key] if isinstance(key, str) else key
1090
+
1091
+ # Store the reserved keywords in buffer.
1092
+ if _InternalBuffer.get("reservered_words") is None:
1093
+ _InternalBuffer.add(reservered_words={word_[0] for word_ in reserved_keys.itertuples(name=None)})
1094
+ reservered_words = _InternalBuffer.get("reservered_words")
1095
+
1096
+ # Check if key contains Teradata reserved keyword or not.
1097
+ res_key = (k.upper() for k in key if k.upper() in reservered_words)
1098
+ res_key = list(res_key)
1099
+ if len(res_key)>0:
1081
1100
  if raise_error:
1082
- raise TeradataMlException(Messages.get_message(MessageCodes.RESERVED_KEYWORD, key),
1101
+ raise TeradataMlException(Messages.get_message(MessageCodes.RESERVED_KEYWORD, res_key),
1083
1102
  MessageCodes.RESERVED_KEYWORD)
1084
1103
  return True
1085
1104
  return False
@@ -1150,6 +1169,10 @@ def _execute_query_and_generate_pandas_df(query, index=None, **kwargs):
1150
1169
  if cur is not None:
1151
1170
  cur.close()
1152
1171
 
1172
+ # Set coerce_float to True for Decimal type columns.
1173
+ if 'coerce_float' not in kwargs:
1174
+ kwargs['coerce_float'] = True
1175
+
1153
1176
  try:
1154
1177
  pandas_df = pd.DataFrame.from_records(data=list(tuple(row) for row in rows),
1155
1178
  columns=columns,
@@ -1165,3 +1188,286 @@ def _execute_query_and_generate_pandas_df(query, index=None, **kwargs):
1165
1188
  MessageCodes.TDMLDF_SELECT_DF_FAIL)
1166
1189
 
1167
1190
  return pandas_df
1191
+
1192
+ class _TDSessionParams:
1193
+ """
1194
+ A successfull connection through teradataml establishes a session with Vantage.
1195
+ Every session will have default parameters. For example one can set Offset value
1196
+ for parameter 'Session Time Zone'.
1197
+ This is an internal utility to store all session related parameters.
1198
+ """
1199
+ def __init__(self, data):
1200
+ """
1201
+ Constructor to store columns and rows of session params.
1202
+
1203
+ PARAMETERS:
1204
+ data:
1205
+ Required Argument.
1206
+ Specifies the Session parameters.
1207
+ Types: dict
1208
+ """
1209
+ self.__session_params = data
1210
+
1211
+ def __getitem__(self, parameter):
1212
+ """
1213
+ Return the value of Session parameter.
1214
+
1215
+ PARAMETERS:
1216
+ parameter:
1217
+ Required Argument.
1218
+ Specifies name of the session parameter.
1219
+ Types: str
1220
+ """
1221
+ if parameter in self.__session_params:
1222
+ return self.__session_params[parameter]
1223
+ raise AttributeError("'TDSessionParams' object has no attribute '{}'".format(parameter))
1224
+
1225
+ def set_session_param(name, value):
1226
+ """
1227
+ DESCRIPTION:
1228
+ Function to set the session parameter.
1229
+ Note:
1230
+ * Look at Vantage documentation for session parameters.
1231
+
1232
+ PARAMETERS:
1233
+ name:
1234
+ Required Argument.
1235
+ Specifies the name of the parameter to set.
1236
+ Permitted Values: timezone, calendar, account, character_set_unicode,
1237
+ collation, constraint, database, dateform, debug_function,
1238
+ dot_notation, isolated_loading, function_trace, json_ignore_errors,
1239
+ searchuifdbpath, transaction_isolation_level, query_band, udfsearchpath
1240
+ Types: str
1241
+
1242
+ value:
1243
+ Required Argument.
1244
+ Specifies the value for the parameter "name" to set.
1245
+ Permitted Values:
1246
+ 1. timezone: timezone strings
1247
+ 2. calendar: Teradata, ISO, Compatible
1248
+ 3. character_set_unicode: ON, OFF
1249
+ 4. account: should be a list in which first item should be "account string" second should be
1250
+ either SESSION or REQUEST.
1251
+ 5. collation: ASCII, CHARSET_COLL, EBCDIC, HOST, JIS_COLL, MULTINATIONAL
1252
+ 6. constraint: row_level_security_constraint_name {( level_name | category_name [,...] | NULL )}
1253
+ where,
1254
+ row_level_security_constraint_name:
1255
+ Name of an existing constraint.
1256
+ The specified constraint_name must be currently assigned to the user.
1257
+ User can specify a maximum of 6 hierarchical constraints and 2 non-hierarchical
1258
+ constraints per SET SESSION CONSTRAINT statement.
1259
+ level_name:
1260
+ Name of a hierarchical level, valid for the constraint_name, that is to replace the
1261
+ default level.
1262
+ The specified level_name must be currently assigned to the user. Otherwise, Vantage
1263
+ returns an error to the requestor.
1264
+ category_name:
1265
+ A set of one or more existing non-hierarchical category names valid for the
1266
+ constraint_name.
1267
+ Because all assigned category (non-hierarchical) constraint values assigned to a
1268
+ user are automatically active, "set_session_param" is only useful to specify a
1269
+ subset of the assigned categories for the constraint.
1270
+ For example, assume that User BOB has 3 country codes, and wants to load a table
1271
+ with data that is to be made available to User CARL who only has rights to see data
1272
+ for his own country. User BOB can use "set_session_param" to specify only the
1273
+ country code for User CARL when loading the data so Carl can access the data later.
1274
+ 7. database: Name of the new default database for the remainder of the current session.
1275
+ 8. dateform: ANSIDATE, INTEGERDATE
1276
+ 9. debug_function: should be a list in which first item should be "function_name" second should be
1277
+ either ON or OFF.
1278
+ 10. dot_notation: DEFAULT, LIST, NULL ERROR
1279
+ 11. isolated_loading: NO, '', CONCURRENT
1280
+ 12. function_trace: should be a list first item should be "mask_string" and second should be table name.
1281
+ 13. json_ignore_errors: ON, OFF
1282
+ 14. searchuifdbpath: string in format 'database_name, user_name'
1283
+ 15. transaction_isolation_level: READ UNCOMMITTED, RU, SERIALIZABLE, SR
1284
+ 16. query_band: should be a list first item should be "band_specification" and second should be either
1285
+ SESSION or TRANSACTION
1286
+ 17. udfsearchpath: should be a list first item should be "database_name" and second should be "udf_name"
1287
+ Types: str or list of strings
1288
+
1289
+ Returns:
1290
+ True, if session parameter is set successfully.
1291
+
1292
+ RAISES:
1293
+ ValueError, teradatasql.OperationalError
1294
+
1295
+ EXAMPLES:
1296
+ # Example 1: Set time zone offset for the session as the system default.
1297
+ >>> set_session_param('timezone', "'LOCAL'")
1298
+ True
1299
+
1300
+ # Example 2: Set time zone to "AMERICA PACIFIC".
1301
+ >>> set_session_param('timezone', "'AMERICA PACIFIC'")
1302
+ True
1303
+
1304
+ # Example 3: Set time zone to "-07:00".
1305
+ >>> set_session_param('timezone', "'-07:00'")
1306
+ True
1307
+
1308
+ # Example 4: Set time zone to 3 hours ahead of 'GMT'.
1309
+ >>> set_session_param('timezone', "3")
1310
+ True
1311
+
1312
+ # Example 6: Set calendar to 'COMPATIBLE'.
1313
+ >>> set_session_param('calendar', "COMPATIBLE")
1314
+ True
1315
+
1316
+ # Example 7: Dynamically changes your account to 'dbc' for the remainder of the session.
1317
+ >>> set_session_param('account', ['dbc', 'SESSION'])
1318
+ True
1319
+
1320
+ # Example 8: Enables Unicode Pass Through processing.
1321
+ >>> set_session_param('character_set_unicode', 'ON')
1322
+ True
1323
+
1324
+ # Example 9: Session set to ASCII collation.
1325
+ >>> set_session_param('collation', 'ASCII')
1326
+ True
1327
+
1328
+ # Example 10: The resulting session has a row-level security label consisting of an unclassified level
1329
+ # and nato category.
1330
+ >>> set_session_param('constraint', 'classification_category (norway)')
1331
+ True
1332
+
1333
+ # Example 11: Changes the default database for the session.
1334
+ >>> set_session_param('database', 'alice')
1335
+ True
1336
+
1337
+ # Example 12: Changes the DATE format to 'INTEGERDATE'.
1338
+ >>> set_session_param('dateform', 'INTEGERDATE')
1339
+ True
1340
+
1341
+ # Example 13: Enable Debugging for the Session.
1342
+ >>> set_session_param('debug_function', ['function_name', 'ON'])
1343
+ True
1344
+
1345
+ # Example 14: Sets the session response for dot notation query result.
1346
+ >>> set_session_param('dot_notation', 'DEFAULT')
1347
+ True
1348
+
1349
+ # Example 15: DML operations are not performed as concurrent load isolated operations.
1350
+ >>> set_session_param('isolated_loading', 'NO')
1351
+ True
1352
+
1353
+ # Example 16: Enables function trace output for debugging external user-defined functions and
1354
+ # external SQL procedures for the current session.
1355
+ >>> set_session_param('function_trace', ["'diag,3'", 'titanic'])
1356
+ True
1357
+
1358
+ # Example 17: Enables the validation of JSON data on INSERT operations.
1359
+ >>> set_session_param('json_ignore_errors', 'ON')
1360
+ True
1361
+
1362
+ # Example 18: Sets the database search path for the SCRIPT execution in the SessionTbl.SearchUIFDBPath column.
1363
+ >>> set_session_param('SEARCHUIFDBPATH', 'dbc, alice')
1364
+ True
1365
+
1366
+ # Example 19: Sets the read-only locking severity for all SELECT requests made against nontemporal tables,
1367
+ # whether they are outer SELECT requests or subqueries, in the current session to READ regardless
1368
+ # of the setting for the DBS Control parameter AccessLockForUncomRead.
1369
+ # Note: SR and SERIALIZABLE are synonyms.
1370
+ >>> set_session_param('TRANSACTION_ISOLATION_LEVEL', 'SR')
1371
+ True
1372
+
1373
+ # Example 20: This example uses the PROXYROLE name:value pair in a query band to set the proxy
1374
+ # role in a trusted session to a specific role.
1375
+ >>> set_session_param('query_band', ["'PROXYUSER=fred;PROXYROLE=administration;'", 'SESSION'])
1376
+ True
1377
+
1378
+ # Example 21: Allows you to specify a custom UDF search path. When you execute a UDF,
1379
+ # Vantage searches this path first, before looking in the default Vantage
1380
+ # search path for the UDF.
1381
+ >>> set_session_param('udfsearchpath', ["alice, SYSLIB, TD_SYSFNLIB", 'bitor'])
1382
+ True
1383
+ """
1384
+ # Validate argument types
1385
+ function_args = []
1386
+ function_args.append(["name", name, True, str, True])
1387
+ function_args.append(["value", value, True, (int, str, float, list), False])
1388
+ _Validators._validate_function_arguments(function_args)
1389
+
1390
+ if not isinstance(value, list):
1391
+ value = [value]
1392
+
1393
+ # Before setting the session, first extract the session parameters
1394
+ # and store it in buffer. This helps while unsetting the parameter.
1395
+ result = execute_sql('help session')
1396
+ data = dict(zip(
1397
+ [param[0] for param in result.description],
1398
+ [value for value in next(result)]
1399
+ ))
1400
+ _InternalBuffer.add(session_params = _TDSessionParams(data))
1401
+ # Store function name of 'DEBUG_FUNCTION' used.
1402
+ _InternalBuffer.add(function_name = value[0] if name.upper() == 'DEBUG_FUNCTION' else '')
1403
+
1404
+ # Set the session parameter.
1405
+ execute_sql(getattr(SessionParamsSQL, name.upper()).format(*value))
1406
+
1407
+ return True
1408
+
1409
+ def unset_session_param(name):
1410
+ """
1411
+ DESCRIPTION:
1412
+ Function to unset the session parameter.
1413
+
1414
+ PARAMETERS:
1415
+ name:
1416
+ Required Argument.
1417
+ Specifies the parameter to unset for the session.
1418
+ Permitted Values: timezone, account, calendar, collation,
1419
+ database, dataform, character_set_unicode,
1420
+ debug_function, isolated_loading, function_trace,
1421
+ json_ignore_errors, query_band
1422
+ Type: str
1423
+
1424
+ Returns:
1425
+ True, if successfully unsets the session parameter.
1426
+
1427
+ RAISES:
1428
+ ValueError, teradatasql.OperationalError
1429
+
1430
+ EXAMPLES:
1431
+ # Example 1: unset session to previous time zone.
1432
+ >>> set_session_param('timezone', "'GMT+1'")
1433
+ True
1434
+ >>> unset_session_param("timezone")
1435
+ True
1436
+
1437
+ """
1438
+ # Validate argument types
1439
+ function_args = []
1440
+ function_args.append(["name", name, True, str, True])
1441
+ _Validators._validate_function_arguments(function_args)
1442
+
1443
+ # Check whether session param is set or not first.
1444
+ session_params = _InternalBuffer.get('session_params')
1445
+ if session_params is None:
1446
+ msg_code = MessageCodes.FUNC_EXECUTION_FAILED
1447
+ error_msg = Messages.get_message(msg_code, "unset_session_param", "Set the parameter before unsetting it.")
1448
+ raise TeradataMlException(error_msg, msg_code)
1449
+ # unset_values stores params which are not available in _InternalBuffer, to unset create a dictionary
1450
+ # with param as key and unset param as value
1451
+ unset_values = {"CHARACTER_SET_UNICODE": "OFF", "DEBUG_FUNCTION": [_InternalBuffer.get('function_name'), "OFF"],
1452
+ "ISOLATED_LOADING":"NO", "FUNCTION_TRACE":"SET SESSION FUNCTION TRACE OFF",
1453
+ "JSON_IGNORE_ERRORS": "OFF", "QUERY_BAND": ["", "SESSION"]}
1454
+
1455
+ # If 'name' in unset_values unset the params
1456
+ if name.upper() in unset_values:
1457
+ # When name is 'FUNCTION_TRACE' unset_values already have query for that, use execute_sql on that.
1458
+ if name.upper() == "FUNCTION_TRACE":
1459
+ execute_sql(unset_values[name.upper()])
1460
+ # When name is other than 'FUNCTION_TRACE' use value and key of unset_values to unset param.
1461
+ else:
1462
+ set_session_param(name, unset_values[name.upper()])
1463
+ return True
1464
+
1465
+ previous_value = "{}".format(session_params[getattr(SessionParamsPythonNames, name.upper())]) \
1466
+ if name.upper() != 'TIMEZONE' else "'{}'".format(session_params[getattr(SessionParamsPythonNames, name.upper())])
1467
+
1468
+ if name.upper() == "ACCOUNT":
1469
+ previous_value = [previous_value, 'SESSION']
1470
+ set_session_param(name, previous_value)
1471
+
1472
+ return True
1473
+
@@ -22,7 +22,7 @@ from teradataml.geospatial.geodataframecolumn import GeoDataFrameColumn
22
22
  from teradataml.plot.plot import _Plot
23
23
  from teradataml.utils.validators import _Validators
24
24
  from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
25
- from teradatasqlalchemy.telemetry.queryband import collect_queryband
25
+ from teradataml.telemetry_utils.queryband import collect_queryband
26
26
 
27
27
  class GeoDataFrame(DataFrame):
28
28
  """
@@ -23,7 +23,7 @@ from teradataml.dataframe.vantage_function_types import \
23
23
  from teradataml.geospatial.geometry_types import GeometryType
24
24
  from teradataml.utils.validators import _Validators
25
25
  from teradatasqlalchemy import (GEOMETRY, MBR, MBB, BLOB, CLOB)
26
- from teradatasqlalchemy.telemetry.queryband import collect_queryband
26
+ from teradataml.telemetry_utils.queryband import collect_queryband
27
27
 
28
28
  # Geospatial Function name mappers
29
29
  geo_func_as_property = \
@@ -302,7 +302,7 @@ class _BaseSearch:
302
302
  'batch_size': 75, 'iter_max': 100, 'lambda1': 0.1, 'alpha': 0.5,
303
303
  'iter_num_no_change': 60, 'tolerance': 0.01, 'intercept': False,
304
304
  'learning_rate': 'INVTIME', 'initial_data': 0.5, 'decay_rate': 0.5,
305
- 'momentum': 0.6, 'nesterov_optimization': True, 'local_sgd_iterations': 1,
305
+ 'momentum': 0.6, 'nesterov': True, 'local_sgd_iterations': 1,
306
306
  'data': '"ALICE"."ml__select__1696593660430612"'},
307
307
  'data_id': 'DF_0'},
308
308
  {'param': {'input_columns': ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms',
@@ -311,7 +311,7 @@ class _BaseSearch:
311
311
  'batch_size': 75, 'iter_max': 100, 'lambda1': 0.1, 'alpha': 0.5,
312
312
  'iter_num_no_change': 60, 'tolerance': 0.01, 'intercept': False,
313
313
  'learning_rate': 'INVTIME', 'initial_data': 0.5, 'decay_rate': 0.5,
314
- 'momentum': 0.6, 'nesterov_optimization': True, 'local_sgd_iterations': 1,
314
+ 'momentum': 0.6, 'nesterov': True, 'local_sgd_iterations': 1,
315
315
  'data': '"ALICE"."ml__select__1696593660430612"'},
316
316
  'data_id': 'DF_1'}]
317
317
  """
@@ -450,7 +450,7 @@ class _BaseSearch:
450
450
  'batch_size': 50, 'iter_max': 301, 'lambda1': 0.1, 'alpha': 0.5,
451
451
  'iter_num_no_change': 60, 'tolerance': 0.01, 'intercept': False,
452
452
  'learning_rate': 'INVTIME', 'initial_data': 0.5, 'decay_rate': 0.5,
453
- 'momentum': 0.6, 'nesterov_optimization': True, 'local_sgd_iterations': 1,
453
+ 'momentum': 0.6, 'nesterov': True, 'local_sgd_iterations': 1,
454
454
  'data': '"ALICE"."ml__select__1696595493985650"'}
455
455
  """
456
456
  return self.__best_params_
@@ -858,7 +858,7 @@ class _BaseSearch:
858
858
  id_column=sample_id_column,
859
859
  seed=sample_seed)
860
860
  # Represent the sample. Otherwise, split consistency is lost.
861
- repr(train_test_sample)
861
+ train_test_sample.materialize()
862
862
 
863
863
  _sample_id = "sampleid"
864
864
  _split_value = [1, 2]
@@ -874,8 +874,8 @@ class _BaseSearch:
874
874
  _sample_id, axis = 1)
875
875
 
876
876
  # Represent train and test dataset.
877
- repr(_train_data)
878
- repr(_test_data)
877
+ _train_data.materialize()
878
+ _test_data.materialize()
879
879
 
880
880
  # Update train and test dataset using data id with train and test
881
881
  # arguments. Unique Data-structure to store train and test sampled
@@ -1206,7 +1206,7 @@ class _BaseSearch:
1206
1206
  "iter_max":(100, 301),
1207
1207
  "intercept":False,
1208
1208
  "learning_rate":"INVTIME",
1209
- "nesterov_optimization":True,
1209
+ "nesterov":True,
1210
1210
  "local_sgd_iterations":1}
1211
1211
 
1212
1212
  >>> # Create "optimizer_obj" using any search algorithm and perform
@@ -2344,7 +2344,7 @@ class GridSearch(_BaseSearch):
2344
2344
  "initial_data":0.5,
2345
2345
  "decay_rate":0.5,
2346
2346
  "momentum":0.6,
2347
- "nesterov_optimization":True,
2347
+ "nesterov":True,
2348
2348
  "local_sgd_iterations":1}
2349
2349
 
2350
2350
  >>> # Required argument for model prediction and evaluation.
@@ -2693,7 +2693,7 @@ class GridSearch(_BaseSearch):
2693
2693
  "initial_data":0.5,
2694
2694
  "decay_rate":0.5,
2695
2695
  "momentum":0.6,
2696
- "nesterov_optimization":True,
2696
+ "nesterov":True,
2697
2697
  "local_sgd_iterations":1}
2698
2698
 
2699
2699
  >>> # Initialize the GridSearch optimizer with model trainer
@@ -3084,7 +3084,7 @@ class GridSearch(_BaseSearch):
3084
3084
  "iter_max":(100, 301),
3085
3085
  "intercept":False,
3086
3086
  "learning_rate":"INVTIME",
3087
- "nesterov_optimization":True,
3087
+ "nesterov":True,
3088
3088
  "local_sgd_iterations":1}
3089
3089
 
3090
3090
  >>> # Create "optimizer_obj" using GridSearch algorithm and perform
@@ -3277,7 +3277,7 @@ class RandomSearch(_BaseSearch):
3277
3277
  "initial_data":0.5,
3278
3278
  "decay_rate":0.5,
3279
3279
  "momentum":0.6,
3280
- "nesterov_optimization":True,
3280
+ "nesterov":True,
3281
3281
  "local_sgd_iterations":1}
3282
3282
 
3283
3283
  >>> # Import trainer function and optimizer.
@@ -3374,7 +3374,7 @@ class RandomSearch(_BaseSearch):
3374
3374
  'batch_size': 50, 'iter_max': 301, 'lambda1': 0.1, 'alpha': 0.5,
3375
3375
  'iter_num_no_change': 60, 'tolerance': 0.01, 'intercept': False,
3376
3376
  'learning_rate': 'INVTIME', 'initial_data': 0.5, 'decay_rate': 0.5,
3377
- 'momentum': 0.6, 'nesterov_optimization': True, 'local_sgd_iterations': 1,
3377
+ 'momentum': 0.6, 'nesterov': True, 'local_sgd_iterations': 1,
3378
3378
  'data': '"ALICE"."ml__select__1696595493985650"'}
3379
3379
 
3380
3380
  >>> # Update the default model.
@@ -3697,7 +3697,7 @@ class RandomSearch(_BaseSearch):
3697
3697
  "iter_max":(100, 301),
3698
3698
  "intercept":False,
3699
3699
  "learning_rate":"INVTIME",
3700
- "nesterov_optimization":True,
3700
+ "nesterov":True,
3701
3701
  "local_sgd_iterations":1}
3702
3702
 
3703
3703
  >>> # Create "optimizer_obj" using RandomSearch algorithm and perform
Binary file