teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (263) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +183 -0
  4. teradataml/__init__.py +6 -3
  5. teradataml/_version.py +2 -2
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +275 -40
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +1 -0
  11. teradataml/analytics/json_parser/utils.py +17 -21
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +10 -2
  15. teradataml/analytics/table_operator/__init__.py +3 -2
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +62 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1553 -319
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +276 -319
  22. teradataml/automl/data_transformation.py +163 -81
  23. teradataml/automl/feature_engineering.py +402 -239
  24. teradataml/automl/feature_exploration.py +9 -2
  25. teradataml/automl/model_evaluation.py +48 -51
  26. teradataml/automl/model_training.py +291 -189
  27. teradataml/catalog/byom.py +8 -8
  28. teradataml/catalog/model_cataloging_utils.py +1 -1
  29. teradataml/clients/auth_client.py +133 -0
  30. teradataml/clients/pkce_client.py +1 -1
  31. teradataml/common/aed_utils.py +3 -2
  32. teradataml/common/constants.py +48 -6
  33. teradataml/common/deprecations.py +13 -7
  34. teradataml/common/garbagecollector.py +156 -120
  35. teradataml/common/messagecodes.py +6 -1
  36. teradataml/common/messages.py +3 -1
  37. teradataml/common/sqlbundle.py +1 -1
  38. teradataml/common/utils.py +103 -11
  39. teradataml/common/wrapper_utils.py +1 -1
  40. teradataml/context/context.py +121 -31
  41. teradataml/data/advertising.csv +201 -0
  42. teradataml/data/bank_marketing.csv +11163 -0
  43. teradataml/data/bike_sharing.csv +732 -0
  44. teradataml/data/boston2cols.csv +721 -0
  45. teradataml/data/breast_cancer.csv +570 -0
  46. teradataml/data/complaints_test_tokenized.csv +353 -0
  47. teradataml/data/complaints_tokens_model.csv +348 -0
  48. teradataml/data/covid_confirm_sd.csv +83 -0
  49. teradataml/data/customer_segmentation_test.csv +2628 -0
  50. teradataml/data/customer_segmentation_train.csv +8069 -0
  51. teradataml/data/dataframe_example.json +10 -0
  52. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  53. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  54. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  55. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  56. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  57. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  58. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  59. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  60. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  61. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  62. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  63. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  64. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  65. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  66. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  67. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  68. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  69. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  70. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  71. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  72. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  73. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  74. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  75. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  76. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  77. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  78. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  79. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  80. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  81. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  82. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  83. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  84. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  85. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  86. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  87. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  88. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  89. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  90. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  91. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  92. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  93. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  94. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  95. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  96. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  97. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  98. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  99. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  100. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  101. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  102. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  103. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  104. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  105. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  106. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  107. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  108. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  109. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  110. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  111. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  112. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  113. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  114. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  115. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  116. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  117. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  118. teradataml/data/dwt2d_dataTable.csv +65 -0
  119. teradataml/data/dwt_dataTable.csv +8 -0
  120. teradataml/data/dwt_filterTable.csv +3 -0
  121. teradataml/data/finance_data4.csv +13 -0
  122. teradataml/data/glm_example.json +28 -1
  123. teradataml/data/grocery_transaction.csv +19 -0
  124. teradataml/data/housing_train_segment.csv +201 -0
  125. teradataml/data/idwt2d_dataTable.csv +5 -0
  126. teradataml/data/idwt_dataTable.csv +8 -0
  127. teradataml/data/idwt_filterTable.csv +3 -0
  128. teradataml/data/insect2Cols.csv +61 -0
  129. teradataml/data/interval_data.csv +5 -0
  130. teradataml/data/jsons/paired_functions.json +14 -0
  131. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  132. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  133. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  134. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  135. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  136. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  137. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  138. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  139. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  140. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  141. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  142. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  143. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  144. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  145. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  146. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  147. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  148. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  149. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  150. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  151. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  152. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  153. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  154. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  155. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  156. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  157. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  158. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  159. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  160. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  161. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  162. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  163. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  164. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  165. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  166. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  167. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  168. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  169. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  170. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  171. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  172. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  173. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  174. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  175. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  176. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  177. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  178. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  179. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  180. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  181. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  182. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  183. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  184. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  185. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  186. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  187. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  188. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  189. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  190. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  191. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  192. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  193. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  194. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  195. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  196. teradataml/data/kmeans_example.json +5 -0
  197. teradataml/data/kmeans_table.csv +10 -0
  198. teradataml/data/load_example_data.py +8 -2
  199. teradataml/data/naivebayestextclassifier_example.json +1 -1
  200. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  201. teradataml/data/onehot_encoder_train.csv +4 -0
  202. teradataml/data/openml_example.json +29 -0
  203. teradataml/data/peppers.png +0 -0
  204. teradataml/data/real_values.csv +14 -0
  205. teradataml/data/sax_example.json +8 -0
  206. teradataml/data/scale_attributes.csv +3 -0
  207. teradataml/data/scale_example.json +52 -1
  208. teradataml/data/scale_input_part_sparse.csv +31 -0
  209. teradataml/data/scale_input_partitioned.csv +16 -0
  210. teradataml/data/scale_input_sparse.csv +11 -0
  211. teradataml/data/scale_parameters.csv +3 -0
  212. teradataml/data/scripts/deploy_script.py +21 -2
  213. teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
  214. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
  215. teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
  216. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  217. teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
  218. teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
  219. teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
  220. teradataml/data/star_pivot.csv +8 -0
  221. teradataml/data/templates/open_source_ml.json +2 -1
  222. teradataml/data/teradataml_example.json +97 -1
  223. teradataml/data/timestamp_data.csv +4 -0
  224. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  225. teradataml/data/uaf_example.json +55 -1
  226. teradataml/data/unpivot_example.json +15 -0
  227. teradataml/data/url_data.csv +9 -0
  228. teradataml/data/windowdfft.csv +16 -0
  229. teradataml/data/ztest_example.json +16 -0
  230. teradataml/dataframe/copy_to.py +9 -4
  231. teradataml/dataframe/data_transfer.py +125 -64
  232. teradataml/dataframe/dataframe.py +575 -57
  233. teradataml/dataframe/dataframe_utils.py +47 -9
  234. teradataml/dataframe/fastload.py +273 -90
  235. teradataml/dataframe/functions.py +339 -0
  236. teradataml/dataframe/row.py +160 -0
  237. teradataml/dataframe/setop.py +2 -2
  238. teradataml/dataframe/sql.py +740 -18
  239. teradataml/dataframe/window.py +1 -1
  240. teradataml/dbutils/dbutils.py +324 -18
  241. teradataml/geospatial/geodataframe.py +1 -1
  242. teradataml/geospatial/geodataframecolumn.py +1 -1
  243. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  244. teradataml/lib/aed_0_1.dll +0 -0
  245. teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
  246. teradataml/options/__init__.py +16 -5
  247. teradataml/options/configure.py +39 -6
  248. teradataml/options/display.py +2 -2
  249. teradataml/plot/axis.py +4 -4
  250. teradataml/scriptmgmt/UserEnv.py +26 -19
  251. teradataml/scriptmgmt/lls_utils.py +120 -16
  252. teradataml/table_operators/Script.py +4 -5
  253. teradataml/table_operators/TableOperator.py +160 -26
  254. teradataml/table_operators/table_operator_util.py +88 -41
  255. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  256. teradataml/telemetry_utils/__init__.py +0 -0
  257. teradataml/telemetry_utils/queryband.py +52 -0
  258. teradataml/utils/validators.py +41 -3
  259. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
  260. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
  261. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  262. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  263. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -0,0 +1,354 @@
1
+ def AutoArima(data=None, data_filter_expr=None, max_pq_nonseasonal=[5,5],
2
+ max_pq_seasonal=[2,2], start_pq_nonseasonal=[0,0],
3
+ start_pq_seasonal=[0,0], d=-1, ds=-1, max_d=2, max_ds=1,
4
+ period=1, stationary=False, seasonal=True, constant=True,
5
+ algorithm="MLE", fit_percentage=100,
6
+ infor_criteria="AIC", stepwise=False, nmodels=94,
7
+ max_iterations=100, coeff_stats=False,
8
+ fit_metrics=False, residuals=False, arma_roots=False,
9
+ test_nonseasonal="ADF", test_seasonal="OCSB",
10
+ output_fmt_index_style="NUMERICAL_SEQUENCE",
11
+ **generic_arguments):
12
+ """
13
+ DESCRIPTION:
14
+ AutoArima() function searches the possible models within the order
15
+ constrains in the function parameters, and returns the best ARIMA
16
+ model based on the criterion provided by the "infor_criteria"
17
+ parameter. AutoArima() function creates a six-layered ART table.
18
+
19
+ PARAMETERS:
20
+ data:
21
+ Required Argument.
22
+ Specifies the time series whose value can be REAL.
23
+ Types: TDSeries
24
+
25
+ data_filter_expr:
26
+ Optional Argument.
27
+ Specifies the filter expression for "data".
28
+ Types: ColumnExpression
29
+
30
+ max_pq_nonseasonal:
31
+ Optional Argument.
32
+ Specifies the (p,q) order of the maximum autoregression (AR) and
33
+ moving average (MA) parameters.
34
+ Default Value: [5,5]
35
+ Types: list
36
+
37
+ max_pq_seasonal:
38
+ Optional Argument.
39
+ Specifies the (P,Q) order of the max seasonal AR and MA
40
+ parameters.
41
+ Default Value: [2,2]
42
+ Types: list
43
+
44
+ start_pq_nonseasonal:
45
+ Optional Argument.
46
+ Specifies the start value of (p,q). Only used when "stepwise"=1.
47
+ Default Value: [0,0]
48
+ Types: list
49
+
50
+ start_pq_seasonal:
51
+ Optional Argument.
52
+ Specifies the start value of seasonal (P,Q). Only used when
53
+ "stepwise"=1.
54
+ Default Value: [0,0]
55
+ Types: list
56
+
57
+ d:
58
+ Optional Argument.
59
+ Specifies the order of first-differencing.
60
+ Default Value: -1 (auto search d).
61
+ Types: int
62
+
63
+ ds:
64
+ Optional Argument.
65
+ Specifies the order of seasonal-differencing.
66
+ Default Value: -1 (auto search Ds).
67
+ Types: int
68
+
69
+ max_d:
70
+ Optional Argument.
71
+ Specifies the maximum number of non-seasonal differences.
72
+ Default Value: 2
73
+ Types: int
74
+
75
+ max_ds:
76
+ Optional Argument.
77
+ Specifies the maximum number of seasonal differences.
78
+ Default Value: 1
79
+ Types: int
80
+
81
+ period:
82
+ Optional Argument.
83
+ Specifies the number of periods per season. For non-seasonal
84
+ data, period is 1.
85
+ Default Value: 1
86
+ Types: int
87
+
88
+ stationary:
89
+ Optional Argument.
90
+ Specifies whether to restrict search to stationary models.
91
+ If True, the function restricts search to stationary models.
92
+ Default Value: False
93
+ Types: bool
94
+
95
+ seasonal:
96
+ Optional Argument.
97
+ Specifies whether to restrict search to non-seasonal models.
98
+ If False, then the function restricts search to non-seasonal
99
+ models.
100
+ Default Value: True
101
+ Types: bool
102
+
103
+ constant:
104
+ Optional Argument.
105
+ Specifies whether an indicator that AutoArima() function includes
106
+ an intercept. If True, means CONSTANT/intercept
107
+ should be included. If False, means
108
+ CONSTANT/intercept should not be included.
109
+ Default Value: True
110
+ Types: bool
111
+
112
+ algorithm:
113
+ Optional Argument.
114
+ Specifies the approach used by TD_AUTOARIMA to estimate the
115
+ coefficients.
116
+ Permitted Values:
117
+ * MLE: Use maximum likelihood approach.
118
+ * CSS_MLE: Use the conditional sum-of-squares to determine a
119
+ start value and then do maximum likelihood.
120
+ * CSS: Use the conditional sum-of squares approach.
121
+ Default Value: MLE
122
+ Types: str
123
+
124
+ fit_percentage:
125
+ Optional Argument.
126
+ Specifies the percentage of passed-in sample points used for the
127
+ model fitting (parameter estimation).
128
+ Default Value: 100
129
+ Types: int
130
+
131
+ infor_criteria:
132
+ Optional Argument.
133
+ Specifies the information criterion to be used in model selection.
134
+ Permitted Values: AIC, AICC, BIC
135
+ Default Value: AIC
136
+ Types: str
137
+
138
+ stepwise:
139
+ Optional Argument.
140
+ Specifies whether the function does stepwise selection or not.
141
+ If True, then the function does stepwise selection otherwise the
142
+ function selects all models.
143
+ Default Value: False
144
+ Types: bool
145
+
146
+ nmodels:
147
+ Optional Argument.
148
+ Specifies the maximum number of models considered in the stepwise
149
+ search.
150
+ Default Value: 94
151
+ Types: int
152
+
153
+ max_iterations:
154
+ Optional Argument.
155
+ Specifies the maximum number of iterations that can be employed
156
+ to non-linear optimization procedure.
157
+ Default Value: 100
158
+ Types: int
159
+
160
+ coeff_stats:
161
+ Optional Argument.
162
+ Specifies the indicator to return coefficient statistical columns
163
+ TSTAT_VALUE and TSTAT_PROB. If True, means return
164
+ the columns otherwise do not return the
165
+ columns.
166
+ Default Value: False
167
+ Types: bool
168
+
169
+ fit_metrics:
170
+ Optional Argument.
171
+ Specifies the indicator to generate the secondary result set that
172
+ contains the model metadata statistics. If True,
173
+ means generate the secondary result set otherwise
174
+ do not generate the secondary result set.
175
+ Default Value: False
176
+ Types: bool
177
+
178
+ residuals:
179
+ Optional Argument.
180
+ Specifies the indicator to generate the tertiary result set that
181
+ contains the model residuals. If True, means
182
+ generate the tertiary result set, otherwise
183
+ do not generate the tertiary result set.
184
+ Default Value: False
185
+ Types: bool
186
+
187
+ arma_roots:
188
+ Optional Argument.
189
+ Specifies the indicator to generate the senary result set that
190
+ contains the inverse AR and MA roots of result best
191
+ model that AutoArima() selected (the model in the
192
+ primary output layer). There should be no inverse
193
+ roots showing outside of the unit circle. If True,
194
+ means generate result set otherwise do not
195
+ generate a result set.
196
+ Default Value: False
197
+ Types: bool
198
+
199
+ test_nonseasonal:
200
+ Optional Argument.
201
+ Specifies the nonseasonal unit root test used to choose
202
+ differencing number "d".
203
+ AutoArima() function only uses ADF test for
204
+ nonseasonal unit root test.
205
+ Permitted Values: ADF
206
+ Default Value: ADF
207
+ Types: str
208
+
209
+ test_seasonal:
210
+ Optional Argument.
211
+ Specifies the seasonal unit root test used to choose differencing
212
+ number "d". AutoArima() function only uses OCSB test for
213
+ seasonal unit root test.
214
+ Permitted Values: OCSB
215
+ Default Value: OCSB
216
+ Types: str
217
+
218
+ output_fmt_index_style:
219
+ Optional Argument.
220
+ Specifies the index style of the output format.
221
+ Permitted Values: NUMERICAL_SEQUENCE, FLOW_THROUGH
222
+ Default Value: NUMERICAL_SEQUENCE
223
+ Types: str
224
+
225
+ **generic_arguments:
226
+ Specifies the generic keyword arguments of UAF functions.
227
+ Below are the generic keyword arguments:
228
+ persist:
229
+ Optional Argument.
230
+ Specifies whether to persist the results of the
231
+ function in a table or not. When set to True,
232
+ results are persisted in a table; otherwise,
233
+ results are garbage collected at the end of the
234
+ session.
235
+ Note that, when UAF function is executed, an
236
+ analytic result table (ART) is created.
237
+ Default Value: False
238
+ Types: bool
239
+
240
+ volatile:
241
+ Optional Argument.
242
+ Specifies whether to put the results of the
243
+ function in a volatile ART or not. When set to
244
+ True, results are stored in a volatile ART,
245
+ otherwise not.
246
+ Default Value: False
247
+ Types: bool
248
+
249
+ output_table_name:
250
+ Optional Argument.
251
+ Specifies the name of the table to store results.
252
+ If not specified, a unique table name is internally
253
+ generated.
254
+ Types: str
255
+
256
+ output_db_name:
257
+ Optional Argument.
258
+ Specifies the name of the database to create output
259
+ table into. If not specified, table is created into
260
+ database specified by the user at the time of context
261
+ creation or configuration parameter. Argument is ignored,
262
+ if "output_table_name" is not specified.
263
+ Types: str
264
+
265
+
266
+ RETURNS:
267
+ Instance of AutoArima.
268
+ Output teradataml DataFrames can be accessed using attribute
269
+ references, such as AutoArima_obj.<attribute_name>.
270
+ Output teradataml DataFrame attribute names are:
271
+ 1. result
272
+ 2. fitmetadata
273
+ 3. fitresiduals
274
+ 4. model
275
+ 5. icandorder
276
+ 6. armaroots
277
+
278
+
279
+ RAISES:
280
+ TeradataMlException, TypeError, ValueError
281
+
282
+
283
+ EXAMPLES:
284
+ # Notes:
285
+ # 1. Get the connection to Vantage, before importing the
286
+ # function in user space.
287
+ # 2. User can import the function, if it is available on
288
+ # Vantage user is connected to.
289
+ # 3. To check the list of UAF analytic functions available
290
+ # on Vantage user connected to, use
291
+ # "display_analytic_functions()".
292
+
293
+ # Check the list of available UAF analytic functions.
294
+ display_analytic_functions(type="UAF")
295
+
296
+ # Import function AutoArima.
297
+ from teradataml import AutoArima
298
+
299
+ # Load the example data.
300
+ load_example_data("uaf", ["blood2ageandweight", "covid_confirm_sd"])
301
+
302
+ # Create teradataml DataFrame object.
303
+ data = DataFrame.from_table("blood2ageandweight")
304
+
305
+ # Create teradataml TDSeries object.
306
+ data_series_df = TDSeries(data=data,
307
+ id="PatientID",
308
+ row_index="SeqNo",
309
+ row_index_style="SEQUENCE",
310
+ payload_field="BloodFat",
311
+ payload_content="REAL")
312
+
313
+ # Example 1: Execute AutoArima with start_pq_nonseasonal as [1,1], algorithm = "MLE" and
314
+ # fit_percentage=80 to find the best ARIMA model.
315
+ uaf_out = AutoArima(data=data_series_df,
316
+ start_pq_nonseasonal=[1, 1],
317
+ seasonal=False,
318
+ constant=True,
319
+ algorithm="MLE",
320
+ fit_percentage=80,
321
+ stepwise=True,
322
+ nmodels=7,
323
+ fit_metrics=True,
324
+ residuals=True)
325
+
326
+ # Print the result DataFrames.
327
+ print(uaf_out.result)
328
+
329
+ # Example 2: Execute AutoArima with max_pq_nonseasonal as [3,3], arma_roots = True,
330
+ # to find thhe best ARIMA model.
331
+ covid_confirm_sd = DataFrame("covid_confirm_sd")
332
+ data_series_df = TDSeries(data=covid_confirm_sd,
333
+ id="city",
334
+ row_index="row_axis",
335
+ row_index_style="SEQUENCE",
336
+ payload_field="cnumber",
337
+ payload_content="REAL")
338
+
339
+ uaf_out = AutoArima(data=data_series_df,
340
+ max_pq_nonseasonal=[3, 3],
341
+ stationary=False,
342
+ stepwise=False,
343
+ arma_roots=True,
344
+ residuals=True)
345
+
346
+ # Print the result DataFrames.
347
+ print(uaf_out.result)
348
+ print(uaf_out.fitresiduals)
349
+ print(uaf_out.model)
350
+ print(uaf_out.icandorder)
351
+ print(uaf_out.armaroots)
352
+
353
+ """
354
+
@@ -1,5 +1,5 @@
1
1
  def BreuschGodfrey(data=None, data_filter_expr=None, residual_max_lags=None,
2
- explanatory_count=None, significance_level=None,
2
+ explanatory_count=None, significance_level=0.05,
3
3
  **generic_arguments):
4
4
  """
5
5
  DESCRIPTION:
@@ -46,6 +46,7 @@ def BreuschGodfrey(data=None, data_filter_expr=None, residual_max_lags=None,
46
46
  significance_level:
47
47
  Optional Argument.
48
48
  Specifies the desired significance level for the test.
49
+ Default Value: 0.05
49
50
  Types: float
50
51
 
51
52
  **generic_arguments:
@@ -163,7 +164,7 @@ def BreuschGodfrey(data=None, data_filter_expr=None, residual_max_lags=None,
163
164
  id="cityid",
164
165
  row_index="ROW_I",
165
166
  row_index_style= "SEQUENCE",
166
- payload_field=["ACTUAL_VALUE","CALC_VALUE"],
167
+ payload_field=["RESIDUAL","ACTUAL_VALUE","CALC_VALUE"],
167
168
  payload_content="MULTIVAR_REAL")
168
169
 
169
170
  uaf_out = BreuschGodfrey(data=data_series_bg,
@@ -149,7 +149,7 @@ def BreuschPaganGodfrey(data=None, data_filter_expr=None, variables_count=None,
149
149
  id="cityid",
150
150
  row_index="ROW_I",
151
151
  row_index_style= "SEQUENCE",
152
- payload_field=["ACTUAL_VALUE","CALC_VALUE"],
152
+ payload_field=["RESIDUAL","ACTUAL_VALUE","CALC_VALUE"],
153
153
  payload_content="MULTIVAR_REAL")
154
154
  uaf_out = BreuschPaganGodfrey(data=data_series_bg,
155
155
  variables_count=2,
@@ -41,7 +41,7 @@ def Convolve(data1=None, data1_filter_expr=None, data2=None,
41
41
  data2:
42
42
  Required Argument.
43
43
  Specifies the actual filter kernel.
44
- Two time series have the following TDSeries characteristics.
44
+ The time series have the following TDSeries characteristics.
45
45
  1. "payload_content" must have one of these values:
46
46
  * REAL
47
47
  * COMPLEX
@@ -64,18 +64,21 @@ def Convolve(data1=None, data1_filter_expr=None, data2=None,
64
64
 
65
65
  algorithm:
66
66
  Optional Argument.
67
- Specifies the options to use for convolving. Options
68
- are 'CONV_SUMMATION' and 'CONV_DFFT'. If the
69
- 'CONV_SUMMATION' approach is used when one of the two
70
- series has greater than 64 entries, then an error
71
- is returned. When this parameter is not present,
72
- the function selects the option based on the number
73
- of entries in the source input series.
67
+ Specifies the options to use for convolving.
68
+ By default, the function selects the best option based
69
+ on the number of entries present in the two inputs,
70
+ and their types ( REAL, COMPLEX, and so on.)
71
+ CONV_SUMMATION only supports:
72
+ * REAL, REAL
73
+ * REAL, MULTIVAR_REAL
74
+ * MULTIVAR_REAL, REAL
75
+ * MULTIVAR_REAL, MULTIVAR_REAL
74
76
  Note:
75
77
  * This parameter is usually used for testing.
76
78
  If this parameter is not included, the internal
77
- planning logic selects the best option based
78
- on the number of entries in the source input series.
79
+ planning logic selects the best option based on
80
+ the number of entries present in the two inputs,
81
+ and their types ( REAL, COMPLEX, and so on.)
79
82
  Permitted Values: CONV_SUMMATION, CONV_DFFT
80
83
  Types: str
81
84
 
@@ -154,7 +154,6 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
154
154
  data3 = DataFrame.from_table("Convolve2RealsLeft")
155
155
  data4 = DataFrame.from_table("Convolve2RealsLeft")
156
156
 
157
-
158
157
  # Example 1: Apply the Convolve2() function when payload fields of two matrices
159
158
  # are the different to convolve two matrices into a new source
160
159
  # image matrix.
@@ -168,6 +167,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
168
167
  column_index='column_i',
169
168
  payload_field=["B"],
170
169
  payload_content="REAL")
170
+
171
171
  data2_matrix_df = TDMatrix(data=data2,
172
172
  id='id',
173
173
  row_index_style="sequence",
@@ -176,6 +176,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
176
176
  column_index='column_i',
177
177
  payload_field=["A"],
178
178
  payload_content="REAL")
179
+
179
180
  # Convolve the "data1_matrix_df" and "data2_matrix_df" matrices using the Convolve2() function.
180
181
  uaf_out1 = Convolve2(data1=data1_matrix_df,
181
182
  data2=data2_matrix_df,
@@ -196,6 +197,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
196
197
  column_index='col_seq',
197
198
  payload_field=["A"],
198
199
  payload_content="REAL")
200
+
199
201
  data4_matrix_df = TDMatrix(data=data4,
200
202
  id='id',
201
203
  row_index_style="sequence",
@@ -204,6 +206,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
204
206
  column_index='col_seq',
205
207
  payload_field=["A"],
206
208
  payload_content="REAL")
209
+
207
210
  # Convolve the "data3_matrix_df" and "data4_matrix_df" matrices using the Convolve2() function.
208
211
  uaf_out2 = Convolve2(data1=data3_matrix_df,
209
212
  data2=data4_matrix_df,
@@ -21,7 +21,7 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
21
21
  2. Use ArimaValidate() to validate spectral candidates.
22
22
  4. Execute CumulPeriodogram() using the residuals.
23
23
  5. See the null hypothesis result from CumulPeriodogram().
24
- 6. Use Plot() to plot the results.
24
+ 6. Use DataFrame.plot() to plot the results.
25
25
 
26
26
  PARAMETERS:
27
27
  data:
@@ -143,7 +143,6 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
143
143
  fit_metrics=True,
144
144
  residuals=True)
145
145
 
146
-
147
146
  # Example 1: Perform statistical test using CumulPeriodogram()
148
147
  # with input as TDSeries object created over the 'fitresiduals'
149
148
  # attribute of arima_validate generated by running ArimaValidate() and
@@ -158,7 +157,8 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
158
157
  payload_field="RESIDUAL",
159
158
  payload_content="REAL")
160
159
 
161
- uaf_out = CumulPeriodogram(data=data_series_df, significance_level=0.05)
160
+ uaf_out = CumulPeriodogram(data=data_series_df,
161
+ significance_level=0.05)
162
162
 
163
163
  # Print the result DataFrames.
164
164
  print(uaf_out.result)
@@ -174,7 +174,8 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
174
174
  # generated by ArimaValidate() function with layer as 'ARTFITRESIDUALS'.
175
175
  art_df = TDAnalyticResult(data=arima_validate.result, layer="ARTFITRESIDUALS")
176
176
 
177
- uaf_out = CumulPeriodogram(data=art_df, significance_level=0.05)
177
+ uaf_out = CumulPeriodogram(data=art_df,
178
+ significance_level=0.05)
178
179
 
179
180
  # Print the result DataFrames.
180
181
  print(uaf_out.result)
@@ -174,10 +174,10 @@ def DFFT2Conv(data=None, data_filter_expr=None, conv=None,
174
174
  # input matrix with real numbers only for the matrix id 33.
175
175
  filter_expr = td_matrix.id==33
176
176
  dfft2_out = DFFT2(data=td_matrix,
177
- data_filter_expr=filter_expr,
178
- freq_style="K_INTEGRAL",
179
- human_readable=False,
180
- output_fmt_content="COMPLEX")
177
+ data_filter_expr=filter_expr,
178
+ freq_style="K_INTEGRAL",
179
+ human_readable=False,
180
+ output_fmt_content="COMPLEX")
181
181
 
182
182
  # Example 1: Convert the complex(REAL,IMAGINARY) output of DFFT2() to
183
183
  # polar(AMPLITUDE,PHASE) in RADIAN format using TDMatrix