teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (263) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +183 -0
  4. teradataml/__init__.py +6 -3
  5. teradataml/_version.py +2 -2
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +275 -40
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +1 -0
  11. teradataml/analytics/json_parser/utils.py +17 -21
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +10 -2
  15. teradataml/analytics/table_operator/__init__.py +3 -2
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +62 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1553 -319
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +276 -319
  22. teradataml/automl/data_transformation.py +163 -81
  23. teradataml/automl/feature_engineering.py +402 -239
  24. teradataml/automl/feature_exploration.py +9 -2
  25. teradataml/automl/model_evaluation.py +48 -51
  26. teradataml/automl/model_training.py +291 -189
  27. teradataml/catalog/byom.py +8 -8
  28. teradataml/catalog/model_cataloging_utils.py +1 -1
  29. teradataml/clients/auth_client.py +133 -0
  30. teradataml/clients/pkce_client.py +1 -1
  31. teradataml/common/aed_utils.py +3 -2
  32. teradataml/common/constants.py +48 -6
  33. teradataml/common/deprecations.py +13 -7
  34. teradataml/common/garbagecollector.py +156 -120
  35. teradataml/common/messagecodes.py +6 -1
  36. teradataml/common/messages.py +3 -1
  37. teradataml/common/sqlbundle.py +1 -1
  38. teradataml/common/utils.py +103 -11
  39. teradataml/common/wrapper_utils.py +1 -1
  40. teradataml/context/context.py +121 -31
  41. teradataml/data/advertising.csv +201 -0
  42. teradataml/data/bank_marketing.csv +11163 -0
  43. teradataml/data/bike_sharing.csv +732 -0
  44. teradataml/data/boston2cols.csv +721 -0
  45. teradataml/data/breast_cancer.csv +570 -0
  46. teradataml/data/complaints_test_tokenized.csv +353 -0
  47. teradataml/data/complaints_tokens_model.csv +348 -0
  48. teradataml/data/covid_confirm_sd.csv +83 -0
  49. teradataml/data/customer_segmentation_test.csv +2628 -0
  50. teradataml/data/customer_segmentation_train.csv +8069 -0
  51. teradataml/data/dataframe_example.json +10 -0
  52. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  53. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  54. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  55. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  56. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  57. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  58. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  59. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  60. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  61. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  62. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  63. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  64. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  65. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  66. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  67. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  68. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  69. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  70. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  71. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  72. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  73. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  74. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  75. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  76. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  77. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  78. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  79. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  80. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  81. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  82. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  83. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  84. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  85. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  86. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  87. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  88. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  89. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  90. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  91. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  92. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  93. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  94. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  95. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  96. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  97. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  98. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  99. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  100. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  101. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  102. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  103. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  104. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  105. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  106. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  107. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  108. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  109. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  110. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  111. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  112. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  113. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  114. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  115. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  116. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  117. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  118. teradataml/data/dwt2d_dataTable.csv +65 -0
  119. teradataml/data/dwt_dataTable.csv +8 -0
  120. teradataml/data/dwt_filterTable.csv +3 -0
  121. teradataml/data/finance_data4.csv +13 -0
  122. teradataml/data/glm_example.json +28 -1
  123. teradataml/data/grocery_transaction.csv +19 -0
  124. teradataml/data/housing_train_segment.csv +201 -0
  125. teradataml/data/idwt2d_dataTable.csv +5 -0
  126. teradataml/data/idwt_dataTable.csv +8 -0
  127. teradataml/data/idwt_filterTable.csv +3 -0
  128. teradataml/data/insect2Cols.csv +61 -0
  129. teradataml/data/interval_data.csv +5 -0
  130. teradataml/data/jsons/paired_functions.json +14 -0
  131. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  132. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  133. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  134. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  135. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  136. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  137. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  138. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  139. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  140. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  141. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  142. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  143. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  144. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  145. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  146. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  147. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  148. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  149. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  150. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  151. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  152. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  153. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  154. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  155. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  156. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  157. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  158. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  159. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  160. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  161. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  162. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  163. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  164. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  165. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  166. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  167. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  168. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  169. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  170. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  171. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  172. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  173. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  174. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  175. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  176. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  177. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  178. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  179. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  180. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  181. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  182. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  183. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  184. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  185. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  186. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  187. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  188. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  189. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  190. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  191. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  192. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  193. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  194. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  195. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  196. teradataml/data/kmeans_example.json +5 -0
  197. teradataml/data/kmeans_table.csv +10 -0
  198. teradataml/data/load_example_data.py +8 -2
  199. teradataml/data/naivebayestextclassifier_example.json +1 -1
  200. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  201. teradataml/data/onehot_encoder_train.csv +4 -0
  202. teradataml/data/openml_example.json +29 -0
  203. teradataml/data/peppers.png +0 -0
  204. teradataml/data/real_values.csv +14 -0
  205. teradataml/data/sax_example.json +8 -0
  206. teradataml/data/scale_attributes.csv +3 -0
  207. teradataml/data/scale_example.json +52 -1
  208. teradataml/data/scale_input_part_sparse.csv +31 -0
  209. teradataml/data/scale_input_partitioned.csv +16 -0
  210. teradataml/data/scale_input_sparse.csv +11 -0
  211. teradataml/data/scale_parameters.csv +3 -0
  212. teradataml/data/scripts/deploy_script.py +21 -2
  213. teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
  214. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
  215. teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
  216. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  217. teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
  218. teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
  219. teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
  220. teradataml/data/star_pivot.csv +8 -0
  221. teradataml/data/templates/open_source_ml.json +2 -1
  222. teradataml/data/teradataml_example.json +97 -1
  223. teradataml/data/timestamp_data.csv +4 -0
  224. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  225. teradataml/data/uaf_example.json +55 -1
  226. teradataml/data/unpivot_example.json +15 -0
  227. teradataml/data/url_data.csv +9 -0
  228. teradataml/data/windowdfft.csv +16 -0
  229. teradataml/data/ztest_example.json +16 -0
  230. teradataml/dataframe/copy_to.py +9 -4
  231. teradataml/dataframe/data_transfer.py +125 -64
  232. teradataml/dataframe/dataframe.py +575 -57
  233. teradataml/dataframe/dataframe_utils.py +47 -9
  234. teradataml/dataframe/fastload.py +273 -90
  235. teradataml/dataframe/functions.py +339 -0
  236. teradataml/dataframe/row.py +160 -0
  237. teradataml/dataframe/setop.py +2 -2
  238. teradataml/dataframe/sql.py +740 -18
  239. teradataml/dataframe/window.py +1 -1
  240. teradataml/dbutils/dbutils.py +324 -18
  241. teradataml/geospatial/geodataframe.py +1 -1
  242. teradataml/geospatial/geodataframecolumn.py +1 -1
  243. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  244. teradataml/lib/aed_0_1.dll +0 -0
  245. teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
  246. teradataml/options/__init__.py +16 -5
  247. teradataml/options/configure.py +39 -6
  248. teradataml/options/display.py +2 -2
  249. teradataml/plot/axis.py +4 -4
  250. teradataml/scriptmgmt/UserEnv.py +26 -19
  251. teradataml/scriptmgmt/lls_utils.py +120 -16
  252. teradataml/table_operators/Script.py +4 -5
  253. teradataml/table_operators/TableOperator.py +160 -26
  254. teradataml/table_operators/table_operator_util.py +88 -41
  255. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  256. teradataml/telemetry_utils/__init__.py +0 -0
  257. teradataml/telemetry_utils/queryband.py +52 -0
  258. teradataml/utils/validators.py +41 -3
  259. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
  260. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
  261. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  262. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  263. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -0,0 +1,189 @@
1
+ def TDNaiveBayesPredict(data = None, object = None, id_column = None,
2
+ numeric_inputs = None, categorical_inputs = None,
3
+ attribute_name_column = None, attribute_value_column = None,
4
+ responses = None, output_prob = False, accumulate = None,
5
+ **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ Function predicts classification label using model generated by NaiveBayes function
9
+ for a test set of data.
10
+
11
+ PARAMETERS:
12
+ data:
13
+ Required Argument.
14
+ Specifies the input teradataml DataFrame.
15
+ Types: teradataml DataFrame
16
+
17
+ object:
18
+ Required Argument.
19
+ Specifies the teradataml DataFrame containing the model data
20
+ or instance of NaiveBayes.
21
+ Types: teradataml DataFrame or NaiveBayes
22
+
23
+ id_column:
24
+ Required Argument.
25
+ Specifies the name of the column that uniquely identifies an
26
+ observation in the "data".
27
+ Types: str
28
+
29
+ numeric_inputs:
30
+ Optional Argument.
31
+ Specifies the name of the columns in "data" containing numeric attributes values.
32
+ Types: str OR list of Strings (str)
33
+
34
+ categorical_inputs:
35
+ Optional Argument.
36
+ Specifies the name of the columns in "data" containing categorical attributes values.
37
+ Types: str OR list of Strings (str)
38
+
39
+ attribute_name_column:
40
+ Optional Argument.
41
+ Specifies the name of the columns in "data" containing attributes names.
42
+ Types: str
43
+
44
+ attribute_value_column:
45
+ Optional Argument.
46
+ Specifies the name of the columns in "data" containing attributes values.
47
+ Types: str
48
+
49
+ responses:
50
+ Optional Argument.
51
+ Specifies a list of responses to output.
52
+ Types: str OR list of strs
53
+
54
+ output_prob:
55
+ Optional Argument.
56
+ Specifies whether to output the probability for each response.
57
+ Default Value: False
58
+ Types: bool
59
+
60
+ accumulate:
61
+ Optional Argument.
62
+ Specify the names of the columns in "data" that need to be copied
63
+ from the input to output teradataml DataFrame.
64
+ Types: str OR list of Strings (str)
65
+
66
+ **generic_arguments:
67
+ Specifies the generic keyword arguments SQLE functions accept. Below
68
+ are the generic keyword arguments:
69
+ persist:
70
+ Optional Argument.
71
+ Specifies whether to persist the results of the
72
+ function in a table or not. When set to True,
73
+ results are persisted in a table; otherwise,
74
+ results are garbage collected at the end of the
75
+ session.
76
+ Default Value: False
77
+ Types: bool
78
+
79
+ volatile:
80
+ Optional Argument.
81
+ Specifies whether to put the results of the
82
+ function in a volatile table or not. When set to
83
+ True, results are stored in a volatile table,
84
+ otherwise not.
85
+ Default Value: False
86
+ Types: bool
87
+
88
+ Function allows the user to partition, hash, order or local
89
+ order the input data. These generic arguments are available
90
+ for each argument that accepts teradataml DataFrame as
91
+ input and can be accessed as:
92
+ * "<input_data_arg_name>_partition_column" accepts str or
93
+ list of str (Strings)
94
+ * "<input_data_arg_name>_hash_column" accepts str or list
95
+ of str (Strings)
96
+ * "<input_data_arg_name>_order_column" accepts str or list
97
+ of str (Strings)
98
+ * "local_order_<input_data_arg_name>" accepts boolean
99
+ Note:
100
+ These generic arguments are supported by teradataml if
101
+ the underlying SQL Engine function supports, else an
102
+ exception is raised.
103
+
104
+ RETURNS:
105
+ Instance of NaiveBayesPredict.
106
+ Output teradataml DataFrames can be accessed using attribute
107
+ references, such as NaiveBayesPredictObj.<attribute_name>.
108
+ Output teradataml DataFrame attribute name is:
109
+ result
110
+
111
+
112
+ RAISES:
113
+ TeradataMlException, TypeError, ValueError
114
+
115
+
116
+ EXAMPLES:
117
+ # Notes:
118
+ # 1. Get the connection to Vantage, before importing the
119
+ # function in user space.
120
+ # 2. User can import the function, if it is available on
121
+ # Vantage user is connected to.
122
+ # 3. To check the list of analytic functions available on
123
+ # Vantage user connected to, use
124
+ # "display_analytic_functions()".
125
+
126
+ # Load the example data.
127
+ load_example_data("decisionforestpredict", ["housing_train", "housing_test"])
128
+
129
+ # Create teradataml DataFrame objects.
130
+ housing_train = DataFrame.from_table("housing_train")
131
+ housing_test = DataFrame.from_table("housing_test")
132
+
133
+ # Check the list of available analytic functions.
134
+ display_analytic_functions()
135
+
136
+ # Import function NaiveBayesPredict.
137
+ from teradataml import NaiveBayesPredict
138
+
139
+ # Example 1: NaiveBayesPredict function to predict the classification label using Dense input.
140
+ NaiveBayes_out = NaiveBayes(data=housing_train, response_column='homestyle',
141
+ numeric_inputs=['price','lotsize','bedrooms','bathrms','stories','garagepl'],
142
+ categorical_inputs=['driveway','recroom','fullbase','gashw','airco','prefarea'])
143
+
144
+ NaiveBayesPredict_out = TDNaiveBayesPredict(data=housing_test, object=NaiveBayes_out.result, id_column='sn',
145
+ numeric_inputs=['price','lotsize','bedrooms','bathrms','stories','garagepl'],
146
+ categorical_inputs=['driveway','recroom','fullbase','gashw','airco','prefarea'],
147
+ responses=['Classic', 'Eclectic', 'bungalow'],
148
+ accumulate='homestyle',
149
+ output_prob=True
150
+ )
151
+
152
+ # Print the result DataFrame.
153
+ print( NaiveBayesPredict_out.result)
154
+
155
+ # Example 2: NaiveBayesPredict function to predict the classification label using Sparse input.
156
+
157
+ # Unpivoting the data for sparse input to naive bayes.
158
+ upvt_train = Unpivoting(data = housing_train, id_column = 'sn',
159
+ target_columns = ['price','lotsize','bedrooms','bathrms','stories','garagepl',
160
+ 'driveway','recroom','fullbase','gashw','airco','prefarea'],
161
+ attribute_column = "AttributeName",
162
+ value_column = "AttributeValue",
163
+ accumulate = 'homestyle')
164
+
165
+ upvt_test = Unpivoting(data = housing_test, id_column = 'sn',
166
+ target_columns = ['price','lotsize','bedrooms','bathrms','stories','garagepl','driveway',
167
+ 'recroom','fullbase','gashw','airco','prefarea'],
168
+ attribute_column = "AttributeName", value_column = "AttributeValue",
169
+ accumulate = 'homestyle')
170
+
171
+ NaiveBayes_out1 = NaiveBayes(data=upvt_train.result,
172
+ response_column='homestyle',
173
+ attribute_name_column='AttributeName',
174
+ attribute_value_column='AttributeValue',
175
+ numeric_attributes=['price','lotsize','bedrooms','bathrms','stories','garagepl'],
176
+ categorical_attributes=['driveway','recroom','fullbase','gashw','airco','prefarea'])
177
+
178
+ NaiveBayesPredict_out1 = TDNaiveBayesPredict(data=upvt_test.result, object=NaiveBayes_out1, id_column='sn',
179
+ attribute_name_column='AttributeName',
180
+ attribute_value_column='AttributeValue',
181
+ responses=['Classic', 'Eclectic', 'bungalow'],
182
+ accumulate='homestyle',
183
+ output_prob=True
184
+ )
185
+
186
+ # Print the result DataFrame.
187
+ print( NaiveBayesPredict_out1.result)
188
+
189
+ """
@@ -0,0 +1,142 @@
1
+ def TFIDF(data = None, doc_id_column = None, token_column = None,
2
+ tf_normalization = "NORMAL", idf_normalization = "LOG",
3
+ regularization = "NONE", accumulate = None,
4
+ **generic_arguments):
5
+
6
+ """
7
+ DESCRIPTION:
8
+ Function takes any document set and computes the Term Frequency (TF),
9
+ Inverse Document Frequency (IDF), and Term Frequency Inverse Document
10
+ Frequency (TF-IDF) scores for each term.
11
+
12
+ PARAMETERS:
13
+ data:
14
+ Required Argument.
15
+ Specifies the input teradataml DataFrame that contains
16
+ the document id and the term.
17
+ Types: teradataml DataFrame
18
+
19
+ doc_id_column:
20
+ Required Argument.
21
+ Specifies the name of the column in "data" that contains the
22
+ document identifier.
23
+ Types: str
24
+
25
+ token_column:
26
+ Required Argument.
27
+ Specifies the name of the column in "data" that contains the tokens.
28
+ Types: str
29
+
30
+ tf_normalization:
31
+ Optional Argument.
32
+ Specifies the normalization method for calculating the term frequency (TF).
33
+ Default Value: "NORMAL"
34
+ Permitted Values: BOOL, COUNT, NORMAL, LOG, AUGMENT
35
+ Types: str
36
+
37
+ idf_normalization:
38
+ Optional Argument.
39
+ Specifies the normalization method for calculating the inverse
40
+ document frequency (IDF).
41
+ Default Value: "LOG"
42
+ Permitted Values: UNARY, LOG, LOGNORM, SMOOTH
43
+ Types: str
44
+
45
+ regularization:
46
+ Optional Argument.
47
+ Specifies the regularization method for calculating the TF-IDF score.
48
+ Default Value: "NONE"
49
+ Permitted Values: L2, L1, NONE
50
+ Types: str
51
+
52
+ accumulate:
53
+ Optional Argument.
54
+ Specifies the name(s) of input teradataml DataFrame column(s) to copy to the
55
+ output.
56
+ Types: str OR list of Strings (str)
57
+
58
+ **generic_arguments:
59
+ Specifies the generic keyword arguments SQLE functions accept. Below
60
+ are the generic keyword arguments:
61
+ persist:
62
+ Optional Argument.
63
+ Specifies whether to persist the results of the
64
+ function in a table or not. When set to True,
65
+ results are persisted in a table; otherwise,
66
+ results are garbage collected at the end of the
67
+ session.
68
+ Default Value: False
69
+ Types: bool
70
+
71
+ volatile:
72
+ Optional Argument.
73
+ Specifies whether to put the results of the
74
+ function in a volatile table or not. When set to
75
+ True, results are stored in a volatile table,
76
+ otherwise not.
77
+ Default Value: False
78
+ Types: bool
79
+
80
+ Function allows the user to partition, hash, order or local
81
+ order the input data. These generic arguments are available
82
+ for each argument that accepts teradataml DataFrame as
83
+ input and can be accessed as:
84
+ * "<input_data_arg_name>_partition_column" accepts str or
85
+ list of str (Strings)
86
+ * "<input_data_arg_name>_hash_column" accepts str or list
87
+ of str (Strings)
88
+ * "<input_data_arg_name>_order_column" accepts str or list
89
+ of str (Strings)
90
+ * "local_order_<input_data_arg_name>" accepts boolean
91
+ Note:
92
+ These generic arguments are supported by teradataml if
93
+ the underlying SQL Engine function supports, else an
94
+ exception is raised.
95
+
96
+ RETURNS:
97
+ Instance of TFIDF.
98
+ Output teradataml DataFrames can be accessed using attribute
99
+ references, such as TFIDFObj.<attribute_name>.
100
+ Output teradataml DataFrame attribute name is:
101
+ result
102
+
103
+
104
+ RAISES:
105
+ TeradataMlException, TypeError, ValueError
106
+
107
+
108
+ EXAMPLES:
109
+ # Notes:
110
+ # 1. Get the connection to Vantage, before importing the
111
+ # function in user space.
112
+ # 2. User can import the function, if it is available on
113
+ # Vantage user is connected to.
114
+ # 3. To check the list of analytic functions available on
115
+ # Vantage user connected to, use
116
+ # "display_analytic_functions()".
117
+
118
+ # Load the example data.
119
+ load_example_data('naivebayestextclassifier',"token_table")
120
+
121
+ # Create teradataml DataFrame objects.
122
+ inp = DataFrame.from_table('token_table')
123
+
124
+ # Check the list of available analytic functions.
125
+ display_analytic_functions()
126
+
127
+ # Import function TFIDF.
128
+ from teradataml import TFIDF
129
+
130
+ # Example 1 : Compute the TF, IDF and TF-IDF scores
131
+ # for each term in the input data.
132
+ TFIDF_out = TFIDF(data=inp,
133
+ doc_id_column='doc_id',
134
+ token_column='token',
135
+ tf_normalization = "LOG",
136
+ idf_normalization = "SMOOTH",
137
+ regularization = "L2",
138
+ accumulate=['category'])
139
+
140
+ # Print the result DataFrame.
141
+ print(TFIDF_out.result)
142
+ """
@@ -0,0 +1,216 @@
1
+ def Unpivoting(data = None, id_column = None, target_columns = None,
2
+ alias_names = None, attribute_column = "AttributeName", value_column = "AttributeValue",
3
+ accumulate = None, include_nulls = False, input_types = False, output_varchar = False,
4
+ indexed_attribute = False, include_datatypes = False,
5
+ **generic_arguments):
6
+
7
+ """
8
+ DESCRIPTION:
9
+ Function unpivots the data, that is, changes the data from
10
+ dense format to sparse format.
11
+
12
+ PARAMETERS:
13
+ data:
14
+ Required Argument.
15
+ Specifies the input teradataml DataFrame.
16
+ Types: teradataml DataFrame
17
+
18
+ id_column:
19
+ Required Argument.
20
+ Specifies the name of the column in "data" which contains the input data identifier.
21
+ Types: str
22
+
23
+ target_columns:
24
+ Required Argument.
25
+ Specifies the name(s) of input teradataml DataFrame column(s) which contains the data for
26
+ unpivoting.
27
+ Types: str OR list of Strings (str)
28
+
29
+ Optional Argument.
30
+ Specifies alternate names for the values in the 'attribute_column'.
31
+ Types: str OR list of strs
32
+
33
+ alias_names:
34
+ Optional Argument.
35
+ Specifies alternate names for the values in the 'attribute_column'.
36
+ column.
37
+ Types: str OR list of strs
38
+
39
+ attribute_column:
40
+ Optional Argument.
41
+ Specifies the name of the column in the output DataFrame, which holds the names of pivoted columns.
42
+ Default Value: "AttributeName"
43
+ Types: str
44
+
45
+ value_column:
46
+ Optional Argument.
47
+ Specifies the name of the column in the output DataFrame, which holds the values of pivoted columns.
48
+ Default Value: "AttributeValue"
49
+ Types: str
50
+
51
+ accumulate:
52
+ Optional Argument.
53
+ Specifies the name(s) of input teradataml DataFrame column(s) to copy to the output.
54
+ By default, the function copies no input teradataml DataFrame columns to the output.
55
+ Types: str OR list of Strings (str)
56
+
57
+ include_nulls:
58
+ Optional Argument.
59
+ Specifies whether or not to include nulls in the transformation.
60
+ Default Value: False
61
+ Types: bool
62
+
63
+ input_types:
64
+ Optional Argument.
65
+ Specifies whether attribute values should be organized into multiple columns based on data type groups.
66
+ Note:
67
+ * 'input_types' argument cannot be used when output_varchar is set to True.
68
+ Default Value: False
69
+ Types: bool
70
+
71
+ output_varchar:
72
+ Optional Argument.
73
+ Specifies whether to output the 'value_column' in varchar format regardless of its data type.
74
+ Note:
75
+ * 'output_varchar' argument cannot be used when input_types is set to True.
76
+ Default Value: False
77
+ Types: bool
78
+
79
+ indexed_attribute:
80
+ Optional Argument.
81
+ Specifies whether to output the column indexes instead of column names in AttributeName column.
82
+ When set to True, outputs the column indexes instead of column names.
83
+ Default Value: False
84
+ Types: bool
85
+
86
+ include_datatypes:
87
+ Optional Argument.
88
+ Specifies whether to output the original datatype name. When set to True,
89
+ outputs the original datatype name.
90
+ Default Value: False
91
+ Types: bool
92
+
93
+ **generic_arguments:
94
+ Specifies the generic keyword arguments SQLE functions accept. Below
95
+ are the generic keyword arguments:
96
+ persist:
97
+ Optional Argument.
98
+ Specifies whether to persist the results of the
99
+ function in a table or not. When set to True,
100
+ results are persisted in a table; otherwise,
101
+ results are garbage collected at the end of the
102
+ session.
103
+ Default Value: False
104
+ Types: bool
105
+
106
+ volatile:
107
+ Optional Argument.
108
+ Specifies whether to put the results of the
109
+ function in a volatile table or not. When set to
110
+ True, results are stored in a volatile table,
111
+ otherwise not.
112
+ Default Value: False
113
+ Types: bool
114
+
115
+ Function allows the user to partition, hash, order or local
116
+ order the input data. These generic arguments are available
117
+ for each argument that accepts teradataml DataFrame as
118
+ input and can be accessed as:
119
+ * "<input_data_arg_name>_partition_column" accepts str or
120
+ list of str (Strings)
121
+ * "<input_data_arg_name>_hash_column" accepts str or list
122
+ of str (Strings)
123
+ * "<input_data_arg_name>_order_column" accepts str or list
124
+ of str (Strings)
125
+ * "local_order_<input_data_arg_name>" accepts boolean
126
+ Note:
127
+ These generic arguments are supported by teradataml if
128
+ the underlying SQL Engine function supports, else an
129
+ exception is raised.
130
+
131
+ RETURNS:
132
+ Instance of Unpivoting.
133
+ Output teradataml DataFrames can be accessed using attribute
134
+ references, such as UnpivotingObj.<attribute_name>.
135
+ Output teradataml DataFrame attribute name is:
136
+ result
137
+
138
+
139
+ RAISES:
140
+ TeradataMlException, TypeError, ValueError
141
+
142
+
143
+ EXAMPLES:
144
+ # Notes:
145
+ # 1. Get the connection to Vantage, before importing the
146
+ # function in user space.
147
+ # 2. User can import the function, if it is available on
148
+ # Vantage user is connected to.
149
+ # 3. To check the list of analytic functions available on
150
+ # Vantage user connected to, use
151
+ # "display_analytic_functions()".
152
+
153
+ # Load the example data.
154
+ load_example_data('unpivot', 'unpivot_input')
155
+
156
+ # Create teradataml DataFrame objects.
157
+ upvt_inp = DataFrame('unpivot_input')
158
+
159
+ # Check the list of available analytic functions.
160
+ display_analytic_functions()
161
+
162
+ # Import function Unpivoting.
163
+ from teradataml import Unpivoting
164
+
165
+ # Example 1 : Unpivot the data.
166
+ upvt1 = Unpivoting(data = upvt_inp,
167
+ id_column = 'sn',
168
+ target_columns = 'city',
169
+ accumulate = 'week',
170
+ include_nulls = True)
171
+
172
+ # Print the result DataFrame.
173
+ print( upvt1.result)
174
+
175
+ # Example 2 : Unpivot the data with alternate names for the values in
176
+ # the AttributeName output column.
177
+ upvt2= Unpivoting(data = upvt_inp,
178
+ id_column = 'sn',
179
+ target_columns = 'city',
180
+ alias_names = 'city_us',
181
+ attribute_column = "Attribute",
182
+ value_column = "value",
183
+ accumulate = 'week',
184
+ include_nulls = True)
185
+
186
+ # Print the result DataFrame.
187
+ print( upvt2.result)
188
+
189
+ # Example 3 : Unpivot the data with multiple target columns and output
190
+ # data types.
191
+ upvt3 = Unpivoting(data = upvt_inp,
192
+ id_column = 'sn',
193
+ target_columns = ['city','pressure'],
194
+ attribute_column = "Attribute",
195
+ value_column = "value",
196
+ accumulate = 'week',
197
+ include_nulls = True,
198
+ indexed_attribute = True,
199
+ include_datatypes = True)
200
+
201
+ # Print the result DataFrame.
202
+ print( upvt3.result)
203
+
204
+ # Example 4 : Unpivot the data with multiple target columns and output
205
+ # the input types.
206
+ upvt4 = Unpivoting(data = upvt_inp,
207
+ id_column = 'sn',
208
+ target_columns = ['city','temp'],
209
+ accumulate = 'week',
210
+ include_nulls = True,
211
+ input_types = True)
212
+
213
+ # Print the result DataFrame.
214
+ print( upvt4.result)
215
+
216
+ """
@@ -1,7 +1,7 @@
1
1
  def XGBoost(formula=None, data=None, input_columns=None, response_column=None, max_depth=5,
2
2
  num_boosted_trees=-1, min_node_size=1, seed=1, model_type='REGRESSION',
3
- coverage_factor=1.0, min_impurity=0.0, lambda1=100000,
4
- shrinkage_factor=0.1, column_sampling=1.0, iter_num=10, tree_size=-1,
3
+ coverage_factor=1.0, min_impurity=0.0, lambda1=1, shrinkage_factor=0.5,
4
+ column_sampling=1.0, iter_num=10, tree_size=-1, base_score=0.0,
5
5
  **generic_arguments):
6
6
  """
7
7
  DESCRIPTION:
@@ -174,7 +174,7 @@ def XGBoost(formula=None, data=None, input_columns=None, response_column=None, m
174
174
  Notes:
175
175
  * The "lambda1" must be in the range [0, 100000].
176
176
  * The value 0 specifies no regularization.
177
- Default Value: 100000
177
+ Default Value: 1
178
178
  Types: float OR int
179
179
 
180
180
  shrinkage_factor:
@@ -185,7 +185,7 @@ def XGBoost(formula=None, data=None, input_columns=None, response_column=None, m
185
185
  Notes:
186
186
  * The "shrinkage_factor" is a DOUBLE PRECISION value in the range (0, 1].
187
187
  * The value 1 specifies no shrinkage.
188
- Default Value: 0.1
188
+ Default Value: 0.5
189
189
  Types: float
190
190
 
191
191
  column_sampling:
@@ -217,6 +217,14 @@ def XGBoost(formula=None, data=None, input_columns=None, response_column=None, m
217
217
  Default Value: -1
218
218
  Types: int
219
219
 
220
+ base_score:
221
+ Optional Argument.
222
+ Specifies the initial prediction value for all data points.
223
+ Note:
224
+ * The "base_score" must be in the range [-1e50, 1e50].
225
+ Default Value: 0.0
226
+ Types: float
227
+
220
228
  **generic_arguments:
221
229
  Specifies the generic keyword arguments SQLE functions accept. Below
222
230
  are the generic keyword arguments:
@@ -1,6 +1,6 @@
1
1
  def XGBoostPredict(newdata=None, object=None, id_column=None, num_boosted_tree=1000,
2
2
  iter_num=3, accumulate=None, output_prob=False, model_type="REGRESSION",
3
- output_responses=None, **generic_arguments):
3
+ output_responses=None, detailed=False, **generic_arguments):
4
4
  """
5
5
  DESCRIPTION:
6
6
  The XGBoostPredict() function runs the predictive algorithm based on the model generated
@@ -123,6 +123,12 @@ def XGBoostPredict(newdata=None, object=None, id_column=None, num_boosted_tree=1
123
123
  'Classification'.
124
124
  Types: str OR list of str(s)
125
125
 
126
+ detailed:
127
+ Optional Argument.
128
+ Specifies whether to output detailed information of each prediction.
129
+ Default Value: False
130
+ Types: bool
131
+
126
132
  **generic_arguments:
127
133
  Specifies the generic keyword arguments SQLE functions accept. Below
128
134
  are the generic keyword arguments: