teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,721 @@
|
|
|
1
|
+
groupName,groupValue
|
|
2
|
+
NOX,-0.1467014463613322
|
|
3
|
+
RM,-0.2276075064596833
|
|
4
|
+
NOX,-0.1467014463613322
|
|
5
|
+
RM,-0.4401326616004303
|
|
6
|
+
NOX,1.1684487614362855
|
|
7
|
+
RM,-1.157224341531112
|
|
8
|
+
NOX,0.4217828370092509
|
|
9
|
+
RM,2.4224510607035037
|
|
10
|
+
NOX,1.1684487614362855
|
|
11
|
+
RM,0.12949258415095874
|
|
12
|
+
NOX,-1.0545793317442047
|
|
13
|
+
RM,0.26683877284735924
|
|
14
|
+
NOX,-0.7745796100840663
|
|
15
|
+
RM,-0.5745873515874332
|
|
16
|
+
NOX,1.3381455624424299
|
|
17
|
+
RM,0.09190310092878616
|
|
18
|
+
NOX,1.3381455624424299
|
|
19
|
+
RM,0.5805663828170335
|
|
20
|
+
NOX,0.2096618357515703
|
|
21
|
+
RM,-0.12495930227605782
|
|
22
|
+
NOX,-1.0800338518951265
|
|
23
|
+
RM,0.9304377266541809
|
|
24
|
+
NOX,0.2436011959527992
|
|
25
|
+
RM,0.2480440312362729
|
|
26
|
+
NOX,-0.5624586088263862
|
|
27
|
+
RM,-0.6801270544804563
|
|
28
|
+
NOX,-1.181003448493782
|
|
29
|
+
RM,1.2297078430768646
|
|
30
|
+
NOX,-1.3176093733037282
|
|
31
|
+
RM,0.8928482434320084
|
|
32
|
+
NOX,-0.1467014463613322
|
|
33
|
+
RM,0.3492464860652003
|
|
34
|
+
NOX,-0.3418527675183983
|
|
35
|
+
RM,-0.31290671838692197
|
|
36
|
+
NOX,-1.275185173052192
|
|
37
|
+
RM,0.08901160221938856
|
|
38
|
+
NOX,1.1684487614362855
|
|
39
|
+
RM,-2.507554238819937
|
|
40
|
+
NOX,0.15026795539941973
|
|
41
|
+
RM,0.7815255431201875
|
|
42
|
+
NOX,1.3381455624424299
|
|
43
|
+
RM,0.1772023128560248
|
|
44
|
+
NOX,0.2436011959527992
|
|
45
|
+
RM,0.8379097679534477
|
|
46
|
+
NOX,-1.2412458128509636
|
|
47
|
+
RM,-0.9533736825185593
|
|
48
|
+
NOX,2.678750290390971
|
|
49
|
+
RM,-0.1784520283999191
|
|
50
|
+
NOX,-1.2327609728006563
|
|
51
|
+
RM,0.18732255833891706
|
|
52
|
+
NOX,-0.3842769677699345
|
|
53
|
+
RM,0.08901160221938856
|
|
54
|
+
NOX,0.7781461191221543
|
|
55
|
+
RM,3.1005075080573143
|
|
56
|
+
NOX,-1.0970035319957407
|
|
57
|
+
RM,0.07021686060830097
|
|
58
|
+
NOX,-0.2654892070656333
|
|
59
|
+
RM,-0.5268776228823671
|
|
60
|
+
NOX,-0.1467014463613322
|
|
61
|
+
RM,-0.9461449357450644
|
|
62
|
+
NOX,-0.9357915710399036
|
|
63
|
+
RM,-0.130742299694853
|
|
64
|
+
NOX,1.0496610007319855
|
|
65
|
+
RM,0.7641765508638007
|
|
66
|
+
NOX,1.3381455624424299
|
|
67
|
+
RM,0.7164668221587346
|
|
68
|
+
NOX,0.4981463974620159
|
|
69
|
+
RM,-0.2174872609767911
|
|
70
|
+
NOX,2.678750290390971
|
|
71
|
+
RM,-1.9523864866155392
|
|
72
|
+
NOX,-0.19761048666317554
|
|
73
|
+
RM,-0.03532284228472213
|
|
74
|
+
NOX,0.2096618357515703
|
|
75
|
+
RM,0.2653930234926611
|
|
76
|
+
NOX,-0.4351860080717778
|
|
77
|
+
RM,1.3150070550041035
|
|
78
|
+
NOX,0.21814667580187752
|
|
79
|
+
RM,-0.5413351164293576
|
|
80
|
+
NOX,-0.4351860080717778
|
|
81
|
+
RM,1.6749986443241431
|
|
82
|
+
NOX,-0.7321554098325307
|
|
83
|
+
RM,1.3468135408074795
|
|
84
|
+
NOX,-0.1467014463613322
|
|
85
|
+
RM,-0.7813295093093837
|
|
86
|
+
NOX,-0.8679128506374457
|
|
87
|
+
RM,-0.4719391474038077
|
|
88
|
+
NOX,-0.910337050888982
|
|
89
|
+
RM,-0.8261477393050509
|
|
90
|
+
NOX,1.5672362438007252
|
|
91
|
+
RM,0.3000910080054361
|
|
92
|
+
NOX,0.9817822803295276
|
|
93
|
+
RM,0.18298531027481998
|
|
94
|
+
NOX,-0.2654892070656333
|
|
95
|
+
RM,0.17864806221072296
|
|
96
|
+
NOX,-0.4351860080717778
|
|
97
|
+
RM,2.5829292390750864
|
|
98
|
+
NOX,-0.29942856726686223
|
|
99
|
+
RM,-0.5818160983609278
|
|
100
|
+
NOX,-0.9357915710399036
|
|
101
|
+
RM,1.6807816417429395
|
|
102
|
+
NOX,1.3381455624424299
|
|
103
|
+
RM,0.6470708531331847
|
|
104
|
+
NOX,-1.2242761327503493
|
|
105
|
+
RM,-0.5341063696558618
|
|
106
|
+
NOX,-1.2836700131024992
|
|
107
|
+
RM,1.4754852333756872
|
|
108
|
+
NOX,1.3381455624424299
|
|
109
|
+
RM,-0.06568357873340007
|
|
110
|
+
NOX,-1.0800338518951265
|
|
111
|
+
RM,0.5097246644367841
|
|
112
|
+
NOX,-1.0545793317442047
|
|
113
|
+
RM,-0.03966009034881916
|
|
114
|
+
NOX,-0.5285192486251573
|
|
115
|
+
RM,-0.3071237209681255
|
|
116
|
+
NOX,1.2278426417884365
|
|
117
|
+
RM,-1.81214879920974
|
|
118
|
+
NOX,0.3539041166067931
|
|
119
|
+
RM,-0.9201214473604836
|
|
120
|
+
NOX,-0.4097314879208561
|
|
121
|
+
RM,0.6832145870006591
|
|
122
|
+
NOX,2.678750290390971
|
|
123
|
+
RM,-0.9490364344544622
|
|
124
|
+
NOX,-1.4448819740583363
|
|
125
|
+
RM,-0.03387709293002269
|
|
126
|
+
NOX,-1.0545793317442047
|
|
127
|
+
RM,-0.9548194318732586
|
|
128
|
+
NOX,-0.4097314879208561
|
|
129
|
+
RM,1.5969281791703993
|
|
130
|
+
NOX,0.15026795539941973
|
|
131
|
+
RM,0.7815255431201875
|
|
132
|
+
NOX,-0.2654892070656333
|
|
133
|
+
RM,-0.8998809563946979
|
|
134
|
+
NOX,-0.3418527675183983
|
|
135
|
+
RM,-0.5182031267541743
|
|
136
|
+
NOX,-0.5285192486251573
|
|
137
|
+
RM,-0.24640224807076966
|
|
138
|
+
NOX,-0.9536097351455486
|
|
139
|
+
RM,2.011858243969
|
|
140
|
+
NOX,-1.0036702914423614
|
|
141
|
+
RM,0.6138186179751091
|
|
142
|
+
NOX,-0.1467014463613322
|
|
143
|
+
RM,0.4649064344411169
|
|
144
|
+
NOX,0.5829947979650881
|
|
145
|
+
RM,-1.7846795614704594
|
|
146
|
+
NOX,0.4557221972104798
|
|
147
|
+
RM,-1.213608566364372
|
|
148
|
+
NOX,-0.5624586088263862
|
|
149
|
+
RM,-0.6454290699676813
|
|
150
|
+
NOX,-0.4351860080717778
|
|
151
|
+
RM,2.0711339675116567
|
|
152
|
+
NOX,1.2278426417884365
|
|
153
|
+
RM,-1.0603591347662829
|
|
154
|
+
NOX,0.7781461191221543
|
|
155
|
+
RM,1.552109949174732
|
|
156
|
+
NOX,-0.910337050888982
|
|
157
|
+
RM,-0.9418076876809676
|
|
158
|
+
NOX,-0.9188218909392892
|
|
159
|
+
RM,0.7294785663510257
|
|
160
|
+
NOX,-0.4351860080717778
|
|
161
|
+
RM,1.3150070550041035
|
|
162
|
+
NOX,-0.29942856726686223
|
|
163
|
+
RM,-0.12495930227605782
|
|
164
|
+
NOX,1.1684487614362855
|
|
165
|
+
RM,-1.0444558918645943
|
|
166
|
+
NOX,-0.1467014463613322
|
|
167
|
+
RM,-0.46037315256621597
|
|
168
|
+
NOX,-1.1903367725491203
|
|
169
|
+
RM,1.9612570165545369
|
|
170
|
+
NOX,0.4981463974620159
|
|
171
|
+
RM,-1.3726409953812566
|
|
172
|
+
NOX,1.3805697626939664
|
|
173
|
+
RM,-0.3577249483825892
|
|
174
|
+
NOX,-1.0206399715429757
|
|
175
|
+
RM,0.5516513957230538
|
|
176
|
+
NOX,-0.9536097351455486
|
|
177
|
+
RM,1.0330859308378064
|
|
178
|
+
NOX,-0.4351860080717778
|
|
179
|
+
RM,0.4316541992830401
|
|
180
|
+
NOX,-1.2327609728006563
|
|
181
|
+
RM,-0.5283233722370666
|
|
182
|
+
NOX,-1.2921548531528064
|
|
183
|
+
RM,1.274526073072532
|
|
184
|
+
NOX,1.3381455624424299
|
|
185
|
+
RM,0.06298811383480636
|
|
186
|
+
NOX,-0.8254886503859097
|
|
187
|
+
RM,1.0764584114787756
|
|
188
|
+
NOX,-0.2654892070656333
|
|
189
|
+
RM,-0.1177305555025632
|
|
190
|
+
NOX,0.4217828370092509
|
|
191
|
+
RM,3.0672552728992386
|
|
192
|
+
NOX,-1.3176093733037282
|
|
193
|
+
RM,1.138625633730831
|
|
194
|
+
NOX,-0.4776102083233139
|
|
195
|
+
RM,-0.4632646512756136
|
|
196
|
+
NOX,0.3539041166067931
|
|
197
|
+
RM,0.5834578815264312
|
|
198
|
+
NOX,0.7781461191221543
|
|
199
|
+
RM,-1.0025291605783246
|
|
200
|
+
NOX,0.3539041166067931
|
|
201
|
+
RM,-0.9201214473604836
|
|
202
|
+
NOX,0.4217828370092509
|
|
203
|
+
RM,0.2147917960781974
|
|
204
|
+
NOX,0.5829947979650881
|
|
205
|
+
RM,-0.11483905679316432
|
|
206
|
+
NOX,-1.0036702914423614
|
|
207
|
+
RM,1.0085081918079235
|
|
208
|
+
NOX,1.3805697626939664
|
|
209
|
+
RM,3.652783761552315
|
|
210
|
+
NOX,-0.09579240605948884
|
|
211
|
+
RM,-0.6815728038351557
|
|
212
|
+
NOX,-0.2654892070656333
|
|
213
|
+
RM,-0.3606164470919881
|
|
214
|
+
NOX,1.0496610007319855
|
|
215
|
+
RM,-1.3726409953812566
|
|
216
|
+
NOX,-0.9188218909392892
|
|
217
|
+
RM,1.465364987892795
|
|
218
|
+
NOX,-0.910337050888982
|
|
219
|
+
RM,-0.061346330669303034
|
|
220
|
+
NOX,0.4217828370092509
|
|
221
|
+
RM,-0.5471181138481528
|
|
222
|
+
NOX,1.8217814453099417
|
|
223
|
+
RM,-0.18278927646401613
|
|
224
|
+
NOX,0.3539041166067931
|
|
225
|
+
RM,-2.349967559157752
|
|
226
|
+
NOX,-0.4097314879208561
|
|
227
|
+
RM,0.5458683983042586
|
|
228
|
+
NOX,-0.5624586088263862
|
|
229
|
+
RM,-0.5239861241729695
|
|
230
|
+
NOX,0.21814667580187752
|
|
231
|
+
RM,-0.9259044447792788
|
|
232
|
+
NOX,-0.9960339353970848
|
|
233
|
+
RM,-0.3215812145151161
|
|
234
|
+
NOX,-0.5624586088263862
|
|
235
|
+
RM,-1.2280660599113615
|
|
236
|
+
NOX,-0.4097314879208561
|
|
237
|
+
RM,-0.12929655034015486
|
|
238
|
+
NOX,-0.09579240605948884
|
|
239
|
+
RM,0.01816988383913915
|
|
240
|
+
NOX,1.5672362438007252
|
|
241
|
+
RM,-0.46037315256621597
|
|
242
|
+
NOX,-0.9960339353970848
|
|
243
|
+
RM,-0.7914497547922759
|
|
244
|
+
NOX,-0.29942856726686223
|
|
245
|
+
RM,0.6846603363553585
|
|
246
|
+
NOX,-0.1467014463613322
|
|
247
|
+
RM,-0.4762763954679034
|
|
248
|
+
NOX,-0.7745796100840663
|
|
249
|
+
RM,-0.006407855190743613
|
|
250
|
+
NOX,0.4217828370092509
|
|
251
|
+
RM,1.7863213446359627
|
|
252
|
+
NOX,0.235116355902492
|
|
253
|
+
RM,0.08467435415529152
|
|
254
|
+
NOX,-0.1467014463613322
|
|
255
|
+
RM,-0.6367545738394885
|
|
256
|
+
NOX,1.8217814453099417
|
|
257
|
+
RM,0.2046715505953039
|
|
258
|
+
NOX,-0.910337050888982
|
|
259
|
+
RM,-1.235294806684856
|
|
260
|
+
NOX,-0.07033788590856717
|
|
261
|
+
RM,-0.5514553619122499
|
|
262
|
+
NOX,-0.7745796100840663
|
|
263
|
+
RM,0.4114137083172557
|
|
264
|
+
NOX,1.3381455624424299
|
|
265
|
+
RM,0.06877111125360283
|
|
266
|
+
NOX,0.9817822803295276
|
|
267
|
+
RM,0.4215339538001479
|
|
268
|
+
NOX,0.9563277601786059
|
|
269
|
+
RM,-0.5471181138481528
|
|
270
|
+
NOX,0.2096618357515703
|
|
271
|
+
RM,-0.4733848967585058
|
|
272
|
+
NOX,-0.1467014463613322
|
|
273
|
+
RM,-0.988071667031334
|
|
274
|
+
NOX,-0.07033788590856717
|
|
275
|
+
RM,-0.23339050387847984
|
|
276
|
+
NOX,-0.4776102083233139
|
|
277
|
+
RM,-0.4155549225705476
|
|
278
|
+
NOX,-0.07033788590856717
|
|
279
|
+
RM,0.000820891582751
|
|
280
|
+
NOX,-0.4097314879208561
|
|
281
|
+
RM,-0.2420650000066726
|
|
282
|
+
NOX,1.2278426417884365
|
|
283
|
+
RM,-2.72586239137948
|
|
284
|
+
NOX,0.6423886783172387
|
|
285
|
+
RM,-1.8555212798507088
|
|
286
|
+
NOX,-1.2921548531528064
|
|
287
|
+
RM,1.0432061763206988
|
|
288
|
+
NOX,-0.07033788590856717
|
|
289
|
+
RM,0.6673113440989704
|
|
290
|
+
NOX,-1.0036702914423614
|
|
291
|
+
RM,0.7641765508638007
|
|
292
|
+
NOX,-0.5709434488766933
|
|
293
|
+
RM,0.4475574421847288
|
|
294
|
+
NOX,-0.3418527675183983
|
|
295
|
+
RM,-0.5557926099763469
|
|
296
|
+
NOX,-0.3418527675183983
|
|
297
|
+
RM,-0.41266342386115
|
|
298
|
+
NOX,-0.19761048666317554
|
|
299
|
+
RM,1.1675406208248094
|
|
300
|
+
NOX,-0.7067008896816089
|
|
301
|
+
RM,0.5241821579837734
|
|
302
|
+
NOX,-1.0800338518951265
|
|
303
|
+
RM,0.4938214215350954
|
|
304
|
+
NOX,-0.4776102083233139
|
|
305
|
+
RM,-0.5962735919079171
|
|
306
|
+
NOX,-1.0545793317442047
|
|
307
|
+
RM,1.017182687936118
|
|
308
|
+
NOX,-1.3685184136055717
|
|
309
|
+
RM,1.735720117221499
|
|
310
|
+
NOX,-0.5709434488766933
|
|
311
|
+
RM,-0.15821153743413338
|
|
312
|
+
NOX,-1.2073064526497348
|
|
313
|
+
RM,-0.27242573645535056
|
|
314
|
+
NOX,1.3381455624424299
|
|
315
|
+
RM,-0.2492937467801672
|
|
316
|
+
NOX,-1.2327609728006563
|
|
317
|
+
RM,0.6861060857100566
|
|
318
|
+
NOX,-0.5624586088263862
|
|
319
|
+
RM,-1.3148110211932982
|
|
320
|
+
NOX,2.678750290390971
|
|
321
|
+
RM,-0.14664554259654172
|
|
322
|
+
NOX,-1.0545793317442047
|
|
323
|
+
RM,0.25961002607386463
|
|
324
|
+
NOX,0.21814667580187752
|
|
325
|
+
RM,-0.5745873515874332
|
|
326
|
+
NOX,0.2096618357515703
|
|
327
|
+
RM,-0.7813295093093837
|
|
328
|
+
NOX,-0.910337050888982
|
|
329
|
+
RM,-0.2666427390365554
|
|
330
|
+
NOX,1.1684487614362855
|
|
331
|
+
RM,-0.08736981905388523
|
|
332
|
+
NOX,0.6423886783172387
|
|
333
|
+
RM,0.6210473647486037
|
|
334
|
+
NOX,-1.2921548531528064
|
|
335
|
+
RM,1.4393414995082128
|
|
336
|
+
NOX,1.3381455624424299
|
|
337
|
+
RM,0.26394727413796165
|
|
338
|
+
NOX,-0.4097314879208561
|
|
339
|
+
RM,1.0085081918079235
|
|
340
|
+
NOX,1.2278426417884365
|
|
341
|
+
RM,-1.985638721773615
|
|
342
|
+
NOX,-0.8679128506374457
|
|
343
|
+
RM,-0.4155549225705476
|
|
344
|
+
NOX,0.6423886783172387
|
|
345
|
+
RM,-0.05411758389580842
|
|
346
|
+
NOX,0.235116355902492
|
|
347
|
+
RM,-0.5529011112669481
|
|
348
|
+
NOX,-1.2073064526497348
|
|
349
|
+
RM,0.2364780363986813
|
|
350
|
+
NOX,0.3539041166067931
|
|
351
|
+
RM,-1.5880576492314011
|
|
352
|
+
NOX,-1.0970035319957407
|
|
353
|
+
RM,-0.12495930227605782
|
|
354
|
+
NOX,0.9563277601786059
|
|
355
|
+
RM,-1.948049238551442
|
|
356
|
+
NOX,0.4217828370092509
|
|
357
|
+
RM,-0.2709799871006524
|
|
358
|
+
NOX,0.9817822803295276
|
|
359
|
+
RM,1.531869458208946
|
|
360
|
+
NOX,0.7781461191221543
|
|
361
|
+
RM,0.8509215121457375
|
|
362
|
+
NOX,-0.04488336575764549
|
|
363
|
+
RM,-0.5283233722370666
|
|
364
|
+
NOX,1.1684487614362855
|
|
365
|
+
RM,-1.3075822744198036
|
|
366
|
+
NOX,-1.0036702914423614
|
|
367
|
+
RM,0.4273169512189444
|
|
368
|
+
NOX,-0.1467014463613322
|
|
369
|
+
RM,-0.6063938373908105
|
|
370
|
+
NOX,-1.2242761327503493
|
|
371
|
+
RM,0.8133320289235649
|
|
372
|
+
NOX,-0.4351860080717778
|
|
373
|
+
RM,-0.3938686822500637
|
|
374
|
+
NOX,-0.1467014463613322
|
|
375
|
+
RM,-0.29844922483993275
|
|
376
|
+
NOX,-1.275185173052192
|
|
377
|
+
RM,-0.06423782937870193
|
|
378
|
+
NOX,0.5829947979650881
|
|
379
|
+
RM,-0.6237428296471974
|
|
380
|
+
NOX,0.5829947979650881
|
|
381
|
+
RM,-0.4502529070833225
|
|
382
|
+
NOX,-1.2073064526497348
|
|
383
|
+
RM,-0.8536169770443313
|
|
384
|
+
NOX,2.678750290390971
|
|
385
|
+
RM,-0.17989777775461854
|
|
386
|
+
NOX,-1.0036702914423614
|
|
387
|
+
RM,0.7020093286117454
|
|
388
|
+
NOX,-1.0545793317442047
|
|
389
|
+
RM,2.8995483477541604
|
|
390
|
+
NOX,-0.9867006113417468
|
|
391
|
+
RM,-0.41989217063464457
|
|
392
|
+
NOX,-0.07033788590856717
|
|
393
|
+
RM,-0.4704933980491082
|
|
394
|
+
NOX,0.8460248395246122
|
|
395
|
+
RM,-0.4357954135363333
|
|
396
|
+
NOX,-0.9188218909392892
|
|
397
|
+
RM,0.8682705044021256
|
|
398
|
+
NOX,1.3381455624424299
|
|
399
|
+
RM,0.39261896670616936
|
|
400
|
+
NOX,-0.04488336575764549
|
|
401
|
+
RM,0.1728650647919278
|
|
402
|
+
NOX,-0.5624586088263862
|
|
403
|
+
RM,-0.4242294186987416
|
|
404
|
+
NOX,-1.2836700131024992
|
|
405
|
+
RM,1.4942799749867737
|
|
406
|
+
NOX,1.3381455624424299
|
|
407
|
+
RM,0.3752699744497812
|
|
408
|
+
NOX,-0.4097314879208561
|
|
409
|
+
RM,0.9044142382695988
|
|
410
|
+
NOX,0.4557221972104798
|
|
411
|
+
RM,-1.155778592176414
|
|
412
|
+
NOX,0.7781461191221543
|
|
413
|
+
RM,1.0995904011539588
|
|
414
|
+
NOX,1.3381455624424299
|
|
415
|
+
RM,-0.0989358138914769
|
|
416
|
+
NOX,0.2436011959527992
|
|
417
|
+
RM,-1.1948138247532858
|
|
418
|
+
NOX,-0.5709434488766933
|
|
419
|
+
RM,1.3034410601665118
|
|
420
|
+
NOX,0.21814667580187752
|
|
421
|
+
RM,-0.3606164470919881
|
|
422
|
+
NOX,-0.3842769677699345
|
|
423
|
+
RM,-0.5702501035233362
|
|
424
|
+
NOX,-1.0376096516435902
|
|
425
|
+
RM,1.0533264218035925
|
|
426
|
+
NOX,-0.5624586088263862
|
|
427
|
+
RM,-0.10327306195557266
|
|
428
|
+
NOX,0.5829947979650881
|
|
429
|
+
RM,-0.8102444964033635
|
|
430
|
+
NOX,-0.04488336575764549
|
|
431
|
+
RM,0.5617716412059472
|
|
432
|
+
NOX,0.6423886783172387
|
|
433
|
+
RM,-3.4559658155024526
|
|
434
|
+
NOX,-0.9867006113417468
|
|
435
|
+
RM,0.3723784757403836
|
|
436
|
+
NOX,1.5672362438007252
|
|
437
|
+
RM,-0.6295258270659939
|
|
438
|
+
NOX,0.21814667580187752
|
|
439
|
+
RM,-0.5543468606216475
|
|
440
|
+
NOX,-1.0800338518951265
|
|
441
|
+
RM,-0.2290532558143828
|
|
442
|
+
NOX,0.4981463974620159
|
|
443
|
+
RM,0.3333432431635116
|
|
444
|
+
NOX,-0.9867006113417468
|
|
445
|
+
RM,-0.3692909432201809
|
|
446
|
+
NOX,-0.7745796100840663
|
|
447
|
+
RM,-0.4820593928866999
|
|
448
|
+
NOX,1.5672362438007252
|
|
449
|
+
RM,0.22057479349699255
|
|
450
|
+
NOX,-0.9188218909392892
|
|
451
|
+
RM,0.8277895224705542
|
|
452
|
+
NOX,-0.7745796100840663
|
|
453
|
+
RM,2.078362714285152
|
|
454
|
+
NOX,0.5829947979650881
|
|
455
|
+
RM,-0.8912064602665051
|
|
456
|
+
NOX,0.4557221972104798
|
|
457
|
+
RM,-0.3909771835406661
|
|
458
|
+
NOX,1.8217814453099417
|
|
459
|
+
RM,0.20900879865940086
|
|
460
|
+
NOX,0.2520860360031064
|
|
461
|
+
RM,-0.843496731561439
|
|
462
|
+
NOX,2.678750290390971
|
|
463
|
+
RM,-1.1355381012106285
|
|
464
|
+
NOX,-1.0715490118448192
|
|
465
|
+
RM,0.37960722251387824
|
|
466
|
+
NOX,0.5829947979650881
|
|
467
|
+
RM,0.10491484512107598
|
|
468
|
+
NOX,1.2278426417884365
|
|
469
|
+
RM,-0.2926662274211363
|
|
470
|
+
NOX,1.5672362438007252
|
|
471
|
+
RM,-0.5774788502968308
|
|
472
|
+
NOX,-1.2073064526497348
|
|
473
|
+
RM,-0.42278366934404216
|
|
474
|
+
NOX,-1.0036702914423614
|
|
475
|
+
RM,0.43743719670183656
|
|
476
|
+
NOX,-0.1467014463613322
|
|
477
|
+
RM,-0.4386869122457309
|
|
478
|
+
NOX,0.4981463974620159
|
|
479
|
+
RM,-0.03532284228472213
|
|
480
|
+
NOX,-1.309124533253421
|
|
481
|
+
RM,0.5068331657273866
|
|
482
|
+
NOX,0.9817822803295276
|
|
483
|
+
RM,-0.043997338412916184
|
|
484
|
+
NOX,-0.9018522108386746
|
|
485
|
+
RM,-0.3447132041902994
|
|
486
|
+
NOX,-0.9018522108386746
|
|
487
|
+
RM,-0.19146377259220893
|
|
488
|
+
NOX,1.3381455624424299
|
|
489
|
+
RM,-0.4589274032115166
|
|
490
|
+
NOX,-0.5624586088263862
|
|
491
|
+
RM,1.0894701556710653
|
|
492
|
+
NOX,0.21814667580187752
|
|
493
|
+
RM,-0.38663993547656894
|
|
494
|
+
NOX,-0.29942856726686223
|
|
495
|
+
RM,0.6846603363553585
|
|
496
|
+
NOX,1.1684487614362855
|
|
497
|
+
RM,-0.8247019899503527
|
|
498
|
+
NOX,0.2520860360031064
|
|
499
|
+
RM,-0.9895174163860336
|
|
500
|
+
NOX,-0.09579240605948884
|
|
501
|
+
RM,-1.851184031786612
|
|
502
|
+
NOX,-0.5624586088263862
|
|
503
|
+
RM,0.10491484512107598
|
|
504
|
+
NOX,0.4981463974620159
|
|
505
|
+
RM,-0.8753032173648164
|
|
506
|
+
NOX,0.2436011959527992
|
|
507
|
+
RM,-1.1948138247532858
|
|
508
|
+
NOX,1.2278426417884365
|
|
509
|
+
RM,-0.7813295093093837
|
|
510
|
+
NOX,2.678750290390971
|
|
511
|
+
RM,-1.7947998069533528
|
|
512
|
+
NOX,-0.3842769677699345
|
|
513
|
+
RM,-0.3374844574168048
|
|
514
|
+
NOX,2.678750290390971
|
|
515
|
+
RM,-0.7871125067281801
|
|
516
|
+
NOX,-0.9612460911908252
|
|
517
|
+
RM,-0.5138658786900773
|
|
518
|
+
NOX,-0.9612460911908252
|
|
519
|
+
RM,1.4277755046706209
|
|
520
|
+
NOX,0.2520860360031064
|
|
521
|
+
RM,-0.32736421193391124
|
|
522
|
+
NOX,-0.9018522108386746
|
|
523
|
+
RM,0.1959970544671111
|
|
524
|
+
NOX,-0.07033788590856717
|
|
525
|
+
RM,-0.11194755808376672
|
|
526
|
+
NOX,-1.0800338518951265
|
|
527
|
+
RM,0.2017800518859063
|
|
528
|
+
NOX,-1.2836700131024992
|
|
529
|
+
RM,1.2340450911409615
|
|
530
|
+
NOX,0.3539041166067931
|
|
531
|
+
RM,0.8653790056927281
|
|
532
|
+
NOX,-0.9867006113417468
|
|
533
|
+
RM,-0.3692909432201809
|
|
534
|
+
NOX,-1.0036702914423614
|
|
535
|
+
RM,-0.16399453485292986
|
|
536
|
+
NOX,-0.8679128506374457
|
|
537
|
+
RM,0.7352615637698209
|
|
538
|
+
NOX,0.8460248395246122
|
|
539
|
+
RM,-0.06423782937870193
|
|
540
|
+
NOX,2.678750290390971
|
|
541
|
+
RM,-1.5432394192357342
|
|
542
|
+
NOX,0.4217828370092509
|
|
543
|
+
RM,-0.5442266151387553
|
|
544
|
+
NOX,-1.0545793317442047
|
|
545
|
+
RM,0.6716485921630674
|
|
546
|
+
NOX,0.8460248395246122
|
|
547
|
+
RM,-0.7148250389932312
|
|
548
|
+
NOX,-0.1467014463613322
|
|
549
|
+
RM,-0.761089018343598
|
|
550
|
+
NOX,-1.0036702914423614
|
|
551
|
+
RM,-0.5485638632028523
|
|
552
|
+
NOX,-0.3842769677699345
|
|
553
|
+
RM,0.8769450005303198
|
|
554
|
+
NOX,-1.0036702914423614
|
|
555
|
+
RM,0.028290129322031368
|
|
556
|
+
NOX,1.5672362438007252
|
|
557
|
+
RM,-0.14664554259654172
|
|
558
|
+
NOX,1.8217814453099417
|
|
559
|
+
RM,-0.6512120673864777
|
|
560
|
+
NOX,-0.5624586088263862
|
|
561
|
+
RM,0.17575656350132535
|
|
562
|
+
NOX,-0.9536097351455486
|
|
563
|
+
RM,2.2648643810413183
|
|
564
|
+
NOX,-0.09579240605948884
|
|
565
|
+
RM,-0.20302976742980056
|
|
566
|
+
NOX,0.2520860360031064
|
|
567
|
+
RM,-0.7900040054375778
|
|
568
|
+
NOX,0.5829947979650881
|
|
569
|
+
RM,-0.7177165377026302
|
|
570
|
+
NOX,-0.1467014463613322
|
|
571
|
+
RM,-0.7986785015657718
|
|
572
|
+
NOX,-1.0036702914423614
|
|
573
|
+
RM,0.04708487093311766
|
|
574
|
+
NOX,-0.9357915710399036
|
|
575
|
+
RM,2.2648643810413183
|
|
576
|
+
NOX,-0.5624586088263862
|
|
577
|
+
RM,0.2191290441422944
|
|
578
|
+
NOX,-1.1309428921969698
|
|
579
|
+
RM,2.34438059554976
|
|
580
|
+
NOX,-1.309124533253421
|
|
581
|
+
RM,0.7902000392483816
|
|
582
|
+
NOX,-0.29942856726686223
|
|
583
|
+
RM,0.31888574961652233
|
|
584
|
+
NOX,-0.07033788590856717
|
|
585
|
+
RM,-0.4921796383695921
|
|
586
|
+
NOX,-1.0376096516435902
|
|
587
|
+
RM,0.3492464860652003
|
|
588
|
+
NOX,-1.3854880937061862
|
|
589
|
+
RM,-0.2102585142032965
|
|
590
|
+
NOX,-0.1467014463613322
|
|
591
|
+
RM,-0.16110303614353094
|
|
592
|
+
NOX,1.2278426417884365
|
|
593
|
+
RM,-1.0372271450910997
|
|
594
|
+
NOX,-0.3842769677699345
|
|
595
|
+
RM,0.4229797031548473
|
|
596
|
+
NOX,1.5672362438007252
|
|
597
|
+
RM,-0.04978033583171138
|
|
598
|
+
NOX,-0.5709434488766933
|
|
599
|
+
RM,-0.93891618897157
|
|
600
|
+
NOX,1.5672362438007252
|
|
601
|
+
RM,0.2971995092960372
|
|
602
|
+
NOX,-1.0036702914423614
|
|
603
|
+
RM,0.036964625450225434
|
|
604
|
+
NOX,-1.2412458128509636
|
|
605
|
+
RM,-0.5326606203011636
|
|
606
|
+
NOX,1.0496610007319855
|
|
607
|
+
RM,-0.4285666667628386
|
|
608
|
+
NOX,2.678750290390971
|
|
609
|
+
RM,-0.1900180232375108
|
|
610
|
+
NOX,-0.5624586088263862
|
|
611
|
+
RM,-0.27387148581005
|
|
612
|
+
NOX,-0.4776102083233139
|
|
613
|
+
RM,-0.5832618477156273
|
|
614
|
+
NOX,-0.9536097351455486
|
|
615
|
+
RM,0.8075490315047698
|
|
616
|
+
NOX,-0.8679128506374457
|
|
617
|
+
RM,-0.7408485273778135
|
|
618
|
+
NOX,1.1684487614362855
|
|
619
|
+
RM,-0.3851941861218696
|
|
620
|
+
NOX,-0.9867006113417468
|
|
621
|
+
RM,-0.20013826872040302
|
|
622
|
+
NOX,-0.7321554098325307
|
|
623
|
+
RM,0.24226103381747774
|
|
624
|
+
NOX,1.1684487614362855
|
|
625
|
+
RM,0.21768329478759502
|
|
626
|
+
NOX,0.5829947979650881
|
|
627
|
+
RM,0.28997076252254256
|
|
628
|
+
NOX,-0.9188218909392892
|
|
629
|
+
RM,0.330451744454114
|
|
630
|
+
NOX,0.4217828370092509
|
|
631
|
+
RM,-0.5398893670746582
|
|
632
|
+
NOX,2.678750290390971
|
|
633
|
+
RM,-1.2280660599113615
|
|
634
|
+
NOX,-0.09579240605948884
|
|
635
|
+
RM,0.5516513957230538
|
|
636
|
+
NOX,-0.5709434488766933
|
|
637
|
+
RM,2.2807676239430066
|
|
638
|
+
NOX,1.0496610007319855
|
|
639
|
+
RM,0.2610557754285641
|
|
640
|
+
NOX,-1.3176093733037282
|
|
641
|
+
RM,1.2065758534016815
|
|
642
|
+
NOX,1.3805697626939664
|
|
643
|
+
RM,-3.892582120621538
|
|
644
|
+
NOX,1.3381455624424299
|
|
645
|
+
RM,1.647529406584863
|
|
646
|
+
NOX,1.1684487614362855
|
|
647
|
+
RM,0.3145485015524253
|
|
648
|
+
NOX,-1.309124533253421
|
|
649
|
+
RM,2.41377656457531
|
|
650
|
+
NOX,0.235116355902492
|
|
651
|
+
RM,-0.5037456332071838
|
|
652
|
+
NOX,1.1684487614362855
|
|
653
|
+
RM,0.2191290441422944
|
|
654
|
+
NOX,-0.9357915710399036
|
|
655
|
+
RM,2.624855970361359
|
|
656
|
+
NOX,-0.3418527675183983
|
|
657
|
+
RM,-0.2811002325835446
|
|
658
|
+
NOX,0.4217828370092509
|
|
659
|
+
RM,0.9969421969703319
|
|
660
|
+
NOX,1.8217814453099417
|
|
661
|
+
RM,-0.059900581314604885
|
|
662
|
+
NOX,-0.09579240605948884
|
|
663
|
+
RM,-0.490733889014894
|
|
664
|
+
NOX,0.5829947979650881
|
|
665
|
+
RM,-0.5731416022327338
|
|
666
|
+
NOX,-0.09579240605948884
|
|
667
|
+
RM,-0.4068804264423535
|
|
668
|
+
NOX,-0.5285192486251573
|
|
669
|
+
RM,0.1772023128560248
|
|
670
|
+
NOX,-1.2073064526497348
|
|
671
|
+
RM,-0.012190852609538802
|
|
672
|
+
NOX,0.3539041166067931
|
|
673
|
+
RM,-0.7177165377026302
|
|
674
|
+
NOX,-0.29942856726686223
|
|
675
|
+
RM,-0.03532284228472213
|
|
676
|
+
NOX,1.8217814453099417
|
|
677
|
+
RM,-0.2044755167845
|
|
678
|
+
NOX,-1.3854880937061862
|
|
679
|
+
RM,-0.5456723644934534
|
|
680
|
+
NOX,-0.5285192486251573
|
|
681
|
+
RM,-0.7885582560828783
|
|
682
|
+
NOX,-0.19761048666317554
|
|
683
|
+
RM,-0.01652810067363584
|
|
684
|
+
NOX,0.2520860360031064
|
|
685
|
+
RM,-1.2483065508771471
|
|
686
|
+
NOX,0.5829947979650881
|
|
687
|
+
RM,0.29575375994133896
|
|
688
|
+
NOX,-1.0545793317442047
|
|
689
|
+
RM,0.3376804912276086
|
|
690
|
+
NOX,0.9817822803295276
|
|
691
|
+
RM,0.7815255431201875
|
|
692
|
+
NOX,-0.7745796100840663
|
|
693
|
+
RM,-0.01941959938303343
|
|
694
|
+
NOX,2.678750290390971
|
|
695
|
+
RM,-1.4189049747316231
|
|
696
|
+
NOX,-0.3418527675183983
|
|
697
|
+
RM,0.09045735157408673
|
|
698
|
+
NOX,1.5672362438007252
|
|
699
|
+
RM,-0.9056639538134944
|
|
700
|
+
NOX,-1.0715490118448192
|
|
701
|
+
RM,0.9911591995515368
|
|
702
|
+
NOX,0.15026795539941973
|
|
703
|
+
RM,-0.3230269638698142
|
|
704
|
+
NOX,-1.0376096516435902
|
|
705
|
+
RM,0.4865926747616008
|
|
706
|
+
NOX,0.7781461191221543
|
|
707
|
+
RM,1.3771742772561588
|
|
708
|
+
NOX,-1.0036702914423614
|
|
709
|
+
RM,-0.6700068089975639
|
|
710
|
+
NOX,-0.1467014463613322
|
|
711
|
+
RM,-0.41700067192524704
|
|
712
|
+
NOX,1.0496610007319855
|
|
713
|
+
RM,0.18298531027481998
|
|
714
|
+
NOX,-0.5624586088263862
|
|
715
|
+
RM,1.1935641092093905
|
|
716
|
+
NOX,0.9563277601786059
|
|
717
|
+
RM,-3.05838474296024
|
|
718
|
+
NOX,-1.181003448493782
|
|
719
|
+
RM,2.3125741097463828
|
|
720
|
+
NOX,-0.29942856726686223
|
|
721
|
+
RM,-0.16833178291702688
|