teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (263) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +183 -0
  4. teradataml/__init__.py +6 -3
  5. teradataml/_version.py +2 -2
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +275 -40
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +1 -0
  11. teradataml/analytics/json_parser/utils.py +17 -21
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +10 -2
  15. teradataml/analytics/table_operator/__init__.py +3 -2
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +62 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1553 -319
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +276 -319
  22. teradataml/automl/data_transformation.py +163 -81
  23. teradataml/automl/feature_engineering.py +402 -239
  24. teradataml/automl/feature_exploration.py +9 -2
  25. teradataml/automl/model_evaluation.py +48 -51
  26. teradataml/automl/model_training.py +291 -189
  27. teradataml/catalog/byom.py +8 -8
  28. teradataml/catalog/model_cataloging_utils.py +1 -1
  29. teradataml/clients/auth_client.py +133 -0
  30. teradataml/clients/pkce_client.py +1 -1
  31. teradataml/common/aed_utils.py +3 -2
  32. teradataml/common/constants.py +48 -6
  33. teradataml/common/deprecations.py +13 -7
  34. teradataml/common/garbagecollector.py +156 -120
  35. teradataml/common/messagecodes.py +6 -1
  36. teradataml/common/messages.py +3 -1
  37. teradataml/common/sqlbundle.py +1 -1
  38. teradataml/common/utils.py +103 -11
  39. teradataml/common/wrapper_utils.py +1 -1
  40. teradataml/context/context.py +121 -31
  41. teradataml/data/advertising.csv +201 -0
  42. teradataml/data/bank_marketing.csv +11163 -0
  43. teradataml/data/bike_sharing.csv +732 -0
  44. teradataml/data/boston2cols.csv +721 -0
  45. teradataml/data/breast_cancer.csv +570 -0
  46. teradataml/data/complaints_test_tokenized.csv +353 -0
  47. teradataml/data/complaints_tokens_model.csv +348 -0
  48. teradataml/data/covid_confirm_sd.csv +83 -0
  49. teradataml/data/customer_segmentation_test.csv +2628 -0
  50. teradataml/data/customer_segmentation_train.csv +8069 -0
  51. teradataml/data/dataframe_example.json +10 -0
  52. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  53. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  54. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  55. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  56. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  57. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  58. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  59. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  60. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  61. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  62. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  63. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  64. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  65. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  66. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  67. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  68. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  69. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  70. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  71. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  72. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  73. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  74. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  75. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  76. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  77. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  78. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  79. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  80. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  81. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  82. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  83. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  84. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  85. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  86. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  87. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  88. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  89. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  90. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  91. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  92. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  93. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  94. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  95. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  96. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  97. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  98. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  99. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  100. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  101. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  102. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  103. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  104. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  105. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  106. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  107. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  108. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  109. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  110. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  111. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  112. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  113. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  114. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  115. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  116. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  117. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  118. teradataml/data/dwt2d_dataTable.csv +65 -0
  119. teradataml/data/dwt_dataTable.csv +8 -0
  120. teradataml/data/dwt_filterTable.csv +3 -0
  121. teradataml/data/finance_data4.csv +13 -0
  122. teradataml/data/glm_example.json +28 -1
  123. teradataml/data/grocery_transaction.csv +19 -0
  124. teradataml/data/housing_train_segment.csv +201 -0
  125. teradataml/data/idwt2d_dataTable.csv +5 -0
  126. teradataml/data/idwt_dataTable.csv +8 -0
  127. teradataml/data/idwt_filterTable.csv +3 -0
  128. teradataml/data/insect2Cols.csv +61 -0
  129. teradataml/data/interval_data.csv +5 -0
  130. teradataml/data/jsons/paired_functions.json +14 -0
  131. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  132. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  133. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  134. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  135. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  136. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  137. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  138. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  139. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  140. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  141. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  142. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  143. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  144. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  145. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  146. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  147. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  148. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  149. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  150. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  151. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  152. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  153. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  154. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  155. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  156. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  157. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  158. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  159. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  160. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  161. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  162. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  163. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  164. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  165. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  166. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  167. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  168. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  169. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  170. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  171. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  172. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  173. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  174. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  175. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  176. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  177. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  178. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  179. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  180. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  181. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  182. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  183. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  184. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  185. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  186. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  187. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  188. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  189. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  190. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  191. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  192. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  193. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  194. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  195. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  196. teradataml/data/kmeans_example.json +5 -0
  197. teradataml/data/kmeans_table.csv +10 -0
  198. teradataml/data/load_example_data.py +8 -2
  199. teradataml/data/naivebayestextclassifier_example.json +1 -1
  200. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  201. teradataml/data/onehot_encoder_train.csv +4 -0
  202. teradataml/data/openml_example.json +29 -0
  203. teradataml/data/peppers.png +0 -0
  204. teradataml/data/real_values.csv +14 -0
  205. teradataml/data/sax_example.json +8 -0
  206. teradataml/data/scale_attributes.csv +3 -0
  207. teradataml/data/scale_example.json +52 -1
  208. teradataml/data/scale_input_part_sparse.csv +31 -0
  209. teradataml/data/scale_input_partitioned.csv +16 -0
  210. teradataml/data/scale_input_sparse.csv +11 -0
  211. teradataml/data/scale_parameters.csv +3 -0
  212. teradataml/data/scripts/deploy_script.py +21 -2
  213. teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
  214. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
  215. teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
  216. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  217. teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
  218. teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
  219. teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
  220. teradataml/data/star_pivot.csv +8 -0
  221. teradataml/data/templates/open_source_ml.json +2 -1
  222. teradataml/data/teradataml_example.json +97 -1
  223. teradataml/data/timestamp_data.csv +4 -0
  224. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  225. teradataml/data/uaf_example.json +55 -1
  226. teradataml/data/unpivot_example.json +15 -0
  227. teradataml/data/url_data.csv +9 -0
  228. teradataml/data/windowdfft.csv +16 -0
  229. teradataml/data/ztest_example.json +16 -0
  230. teradataml/dataframe/copy_to.py +9 -4
  231. teradataml/dataframe/data_transfer.py +125 -64
  232. teradataml/dataframe/dataframe.py +575 -57
  233. teradataml/dataframe/dataframe_utils.py +47 -9
  234. teradataml/dataframe/fastload.py +273 -90
  235. teradataml/dataframe/functions.py +339 -0
  236. teradataml/dataframe/row.py +160 -0
  237. teradataml/dataframe/setop.py +2 -2
  238. teradataml/dataframe/sql.py +740 -18
  239. teradataml/dataframe/window.py +1 -1
  240. teradataml/dbutils/dbutils.py +324 -18
  241. teradataml/geospatial/geodataframe.py +1 -1
  242. teradataml/geospatial/geodataframecolumn.py +1 -1
  243. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  244. teradataml/lib/aed_0_1.dll +0 -0
  245. teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
  246. teradataml/options/__init__.py +16 -5
  247. teradataml/options/configure.py +39 -6
  248. teradataml/options/display.py +2 -2
  249. teradataml/plot/axis.py +4 -4
  250. teradataml/scriptmgmt/UserEnv.py +26 -19
  251. teradataml/scriptmgmt/lls_utils.py +120 -16
  252. teradataml/table_operators/Script.py +4 -5
  253. teradataml/table_operators/TableOperator.py +160 -26
  254. teradataml/table_operators/table_operator_util.py +88 -41
  255. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  256. teradataml/telemetry_utils/__init__.py +0 -0
  257. teradataml/telemetry_utils/queryband.py +52 -0
  258. teradataml/utils/validators.py +41 -3
  259. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
  260. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
  261. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  262. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  263. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -0,0 +1,721 @@
1
+ groupName,groupValue
2
+ NOX,-0.1467014463613322
3
+ RM,-0.2276075064596833
4
+ NOX,-0.1467014463613322
5
+ RM,-0.4401326616004303
6
+ NOX,1.1684487614362855
7
+ RM,-1.157224341531112
8
+ NOX,0.4217828370092509
9
+ RM,2.4224510607035037
10
+ NOX,1.1684487614362855
11
+ RM,0.12949258415095874
12
+ NOX,-1.0545793317442047
13
+ RM,0.26683877284735924
14
+ NOX,-0.7745796100840663
15
+ RM,-0.5745873515874332
16
+ NOX,1.3381455624424299
17
+ RM,0.09190310092878616
18
+ NOX,1.3381455624424299
19
+ RM,0.5805663828170335
20
+ NOX,0.2096618357515703
21
+ RM,-0.12495930227605782
22
+ NOX,-1.0800338518951265
23
+ RM,0.9304377266541809
24
+ NOX,0.2436011959527992
25
+ RM,0.2480440312362729
26
+ NOX,-0.5624586088263862
27
+ RM,-0.6801270544804563
28
+ NOX,-1.181003448493782
29
+ RM,1.2297078430768646
30
+ NOX,-1.3176093733037282
31
+ RM,0.8928482434320084
32
+ NOX,-0.1467014463613322
33
+ RM,0.3492464860652003
34
+ NOX,-0.3418527675183983
35
+ RM,-0.31290671838692197
36
+ NOX,-1.275185173052192
37
+ RM,0.08901160221938856
38
+ NOX,1.1684487614362855
39
+ RM,-2.507554238819937
40
+ NOX,0.15026795539941973
41
+ RM,0.7815255431201875
42
+ NOX,1.3381455624424299
43
+ RM,0.1772023128560248
44
+ NOX,0.2436011959527992
45
+ RM,0.8379097679534477
46
+ NOX,-1.2412458128509636
47
+ RM,-0.9533736825185593
48
+ NOX,2.678750290390971
49
+ RM,-0.1784520283999191
50
+ NOX,-1.2327609728006563
51
+ RM,0.18732255833891706
52
+ NOX,-0.3842769677699345
53
+ RM,0.08901160221938856
54
+ NOX,0.7781461191221543
55
+ RM,3.1005075080573143
56
+ NOX,-1.0970035319957407
57
+ RM,0.07021686060830097
58
+ NOX,-0.2654892070656333
59
+ RM,-0.5268776228823671
60
+ NOX,-0.1467014463613322
61
+ RM,-0.9461449357450644
62
+ NOX,-0.9357915710399036
63
+ RM,-0.130742299694853
64
+ NOX,1.0496610007319855
65
+ RM,0.7641765508638007
66
+ NOX,1.3381455624424299
67
+ RM,0.7164668221587346
68
+ NOX,0.4981463974620159
69
+ RM,-0.2174872609767911
70
+ NOX,2.678750290390971
71
+ RM,-1.9523864866155392
72
+ NOX,-0.19761048666317554
73
+ RM,-0.03532284228472213
74
+ NOX,0.2096618357515703
75
+ RM,0.2653930234926611
76
+ NOX,-0.4351860080717778
77
+ RM,1.3150070550041035
78
+ NOX,0.21814667580187752
79
+ RM,-0.5413351164293576
80
+ NOX,-0.4351860080717778
81
+ RM,1.6749986443241431
82
+ NOX,-0.7321554098325307
83
+ RM,1.3468135408074795
84
+ NOX,-0.1467014463613322
85
+ RM,-0.7813295093093837
86
+ NOX,-0.8679128506374457
87
+ RM,-0.4719391474038077
88
+ NOX,-0.910337050888982
89
+ RM,-0.8261477393050509
90
+ NOX,1.5672362438007252
91
+ RM,0.3000910080054361
92
+ NOX,0.9817822803295276
93
+ RM,0.18298531027481998
94
+ NOX,-0.2654892070656333
95
+ RM,0.17864806221072296
96
+ NOX,-0.4351860080717778
97
+ RM,2.5829292390750864
98
+ NOX,-0.29942856726686223
99
+ RM,-0.5818160983609278
100
+ NOX,-0.9357915710399036
101
+ RM,1.6807816417429395
102
+ NOX,1.3381455624424299
103
+ RM,0.6470708531331847
104
+ NOX,-1.2242761327503493
105
+ RM,-0.5341063696558618
106
+ NOX,-1.2836700131024992
107
+ RM,1.4754852333756872
108
+ NOX,1.3381455624424299
109
+ RM,-0.06568357873340007
110
+ NOX,-1.0800338518951265
111
+ RM,0.5097246644367841
112
+ NOX,-1.0545793317442047
113
+ RM,-0.03966009034881916
114
+ NOX,-0.5285192486251573
115
+ RM,-0.3071237209681255
116
+ NOX,1.2278426417884365
117
+ RM,-1.81214879920974
118
+ NOX,0.3539041166067931
119
+ RM,-0.9201214473604836
120
+ NOX,-0.4097314879208561
121
+ RM,0.6832145870006591
122
+ NOX,2.678750290390971
123
+ RM,-0.9490364344544622
124
+ NOX,-1.4448819740583363
125
+ RM,-0.03387709293002269
126
+ NOX,-1.0545793317442047
127
+ RM,-0.9548194318732586
128
+ NOX,-0.4097314879208561
129
+ RM,1.5969281791703993
130
+ NOX,0.15026795539941973
131
+ RM,0.7815255431201875
132
+ NOX,-0.2654892070656333
133
+ RM,-0.8998809563946979
134
+ NOX,-0.3418527675183983
135
+ RM,-0.5182031267541743
136
+ NOX,-0.5285192486251573
137
+ RM,-0.24640224807076966
138
+ NOX,-0.9536097351455486
139
+ RM,2.011858243969
140
+ NOX,-1.0036702914423614
141
+ RM,0.6138186179751091
142
+ NOX,-0.1467014463613322
143
+ RM,0.4649064344411169
144
+ NOX,0.5829947979650881
145
+ RM,-1.7846795614704594
146
+ NOX,0.4557221972104798
147
+ RM,-1.213608566364372
148
+ NOX,-0.5624586088263862
149
+ RM,-0.6454290699676813
150
+ NOX,-0.4351860080717778
151
+ RM,2.0711339675116567
152
+ NOX,1.2278426417884365
153
+ RM,-1.0603591347662829
154
+ NOX,0.7781461191221543
155
+ RM,1.552109949174732
156
+ NOX,-0.910337050888982
157
+ RM,-0.9418076876809676
158
+ NOX,-0.9188218909392892
159
+ RM,0.7294785663510257
160
+ NOX,-0.4351860080717778
161
+ RM,1.3150070550041035
162
+ NOX,-0.29942856726686223
163
+ RM,-0.12495930227605782
164
+ NOX,1.1684487614362855
165
+ RM,-1.0444558918645943
166
+ NOX,-0.1467014463613322
167
+ RM,-0.46037315256621597
168
+ NOX,-1.1903367725491203
169
+ RM,1.9612570165545369
170
+ NOX,0.4981463974620159
171
+ RM,-1.3726409953812566
172
+ NOX,1.3805697626939664
173
+ RM,-0.3577249483825892
174
+ NOX,-1.0206399715429757
175
+ RM,0.5516513957230538
176
+ NOX,-0.9536097351455486
177
+ RM,1.0330859308378064
178
+ NOX,-0.4351860080717778
179
+ RM,0.4316541992830401
180
+ NOX,-1.2327609728006563
181
+ RM,-0.5283233722370666
182
+ NOX,-1.2921548531528064
183
+ RM,1.274526073072532
184
+ NOX,1.3381455624424299
185
+ RM,0.06298811383480636
186
+ NOX,-0.8254886503859097
187
+ RM,1.0764584114787756
188
+ NOX,-0.2654892070656333
189
+ RM,-0.1177305555025632
190
+ NOX,0.4217828370092509
191
+ RM,3.0672552728992386
192
+ NOX,-1.3176093733037282
193
+ RM,1.138625633730831
194
+ NOX,-0.4776102083233139
195
+ RM,-0.4632646512756136
196
+ NOX,0.3539041166067931
197
+ RM,0.5834578815264312
198
+ NOX,0.7781461191221543
199
+ RM,-1.0025291605783246
200
+ NOX,0.3539041166067931
201
+ RM,-0.9201214473604836
202
+ NOX,0.4217828370092509
203
+ RM,0.2147917960781974
204
+ NOX,0.5829947979650881
205
+ RM,-0.11483905679316432
206
+ NOX,-1.0036702914423614
207
+ RM,1.0085081918079235
208
+ NOX,1.3805697626939664
209
+ RM,3.652783761552315
210
+ NOX,-0.09579240605948884
211
+ RM,-0.6815728038351557
212
+ NOX,-0.2654892070656333
213
+ RM,-0.3606164470919881
214
+ NOX,1.0496610007319855
215
+ RM,-1.3726409953812566
216
+ NOX,-0.9188218909392892
217
+ RM,1.465364987892795
218
+ NOX,-0.910337050888982
219
+ RM,-0.061346330669303034
220
+ NOX,0.4217828370092509
221
+ RM,-0.5471181138481528
222
+ NOX,1.8217814453099417
223
+ RM,-0.18278927646401613
224
+ NOX,0.3539041166067931
225
+ RM,-2.349967559157752
226
+ NOX,-0.4097314879208561
227
+ RM,0.5458683983042586
228
+ NOX,-0.5624586088263862
229
+ RM,-0.5239861241729695
230
+ NOX,0.21814667580187752
231
+ RM,-0.9259044447792788
232
+ NOX,-0.9960339353970848
233
+ RM,-0.3215812145151161
234
+ NOX,-0.5624586088263862
235
+ RM,-1.2280660599113615
236
+ NOX,-0.4097314879208561
237
+ RM,-0.12929655034015486
238
+ NOX,-0.09579240605948884
239
+ RM,0.01816988383913915
240
+ NOX,1.5672362438007252
241
+ RM,-0.46037315256621597
242
+ NOX,-0.9960339353970848
243
+ RM,-0.7914497547922759
244
+ NOX,-0.29942856726686223
245
+ RM,0.6846603363553585
246
+ NOX,-0.1467014463613322
247
+ RM,-0.4762763954679034
248
+ NOX,-0.7745796100840663
249
+ RM,-0.006407855190743613
250
+ NOX,0.4217828370092509
251
+ RM,1.7863213446359627
252
+ NOX,0.235116355902492
253
+ RM,0.08467435415529152
254
+ NOX,-0.1467014463613322
255
+ RM,-0.6367545738394885
256
+ NOX,1.8217814453099417
257
+ RM,0.2046715505953039
258
+ NOX,-0.910337050888982
259
+ RM,-1.235294806684856
260
+ NOX,-0.07033788590856717
261
+ RM,-0.5514553619122499
262
+ NOX,-0.7745796100840663
263
+ RM,0.4114137083172557
264
+ NOX,1.3381455624424299
265
+ RM,0.06877111125360283
266
+ NOX,0.9817822803295276
267
+ RM,0.4215339538001479
268
+ NOX,0.9563277601786059
269
+ RM,-0.5471181138481528
270
+ NOX,0.2096618357515703
271
+ RM,-0.4733848967585058
272
+ NOX,-0.1467014463613322
273
+ RM,-0.988071667031334
274
+ NOX,-0.07033788590856717
275
+ RM,-0.23339050387847984
276
+ NOX,-0.4776102083233139
277
+ RM,-0.4155549225705476
278
+ NOX,-0.07033788590856717
279
+ RM,0.000820891582751
280
+ NOX,-0.4097314879208561
281
+ RM,-0.2420650000066726
282
+ NOX,1.2278426417884365
283
+ RM,-2.72586239137948
284
+ NOX,0.6423886783172387
285
+ RM,-1.8555212798507088
286
+ NOX,-1.2921548531528064
287
+ RM,1.0432061763206988
288
+ NOX,-0.07033788590856717
289
+ RM,0.6673113440989704
290
+ NOX,-1.0036702914423614
291
+ RM,0.7641765508638007
292
+ NOX,-0.5709434488766933
293
+ RM,0.4475574421847288
294
+ NOX,-0.3418527675183983
295
+ RM,-0.5557926099763469
296
+ NOX,-0.3418527675183983
297
+ RM,-0.41266342386115
298
+ NOX,-0.19761048666317554
299
+ RM,1.1675406208248094
300
+ NOX,-0.7067008896816089
301
+ RM,0.5241821579837734
302
+ NOX,-1.0800338518951265
303
+ RM,0.4938214215350954
304
+ NOX,-0.4776102083233139
305
+ RM,-0.5962735919079171
306
+ NOX,-1.0545793317442047
307
+ RM,1.017182687936118
308
+ NOX,-1.3685184136055717
309
+ RM,1.735720117221499
310
+ NOX,-0.5709434488766933
311
+ RM,-0.15821153743413338
312
+ NOX,-1.2073064526497348
313
+ RM,-0.27242573645535056
314
+ NOX,1.3381455624424299
315
+ RM,-0.2492937467801672
316
+ NOX,-1.2327609728006563
317
+ RM,0.6861060857100566
318
+ NOX,-0.5624586088263862
319
+ RM,-1.3148110211932982
320
+ NOX,2.678750290390971
321
+ RM,-0.14664554259654172
322
+ NOX,-1.0545793317442047
323
+ RM,0.25961002607386463
324
+ NOX,0.21814667580187752
325
+ RM,-0.5745873515874332
326
+ NOX,0.2096618357515703
327
+ RM,-0.7813295093093837
328
+ NOX,-0.910337050888982
329
+ RM,-0.2666427390365554
330
+ NOX,1.1684487614362855
331
+ RM,-0.08736981905388523
332
+ NOX,0.6423886783172387
333
+ RM,0.6210473647486037
334
+ NOX,-1.2921548531528064
335
+ RM,1.4393414995082128
336
+ NOX,1.3381455624424299
337
+ RM,0.26394727413796165
338
+ NOX,-0.4097314879208561
339
+ RM,1.0085081918079235
340
+ NOX,1.2278426417884365
341
+ RM,-1.985638721773615
342
+ NOX,-0.8679128506374457
343
+ RM,-0.4155549225705476
344
+ NOX,0.6423886783172387
345
+ RM,-0.05411758389580842
346
+ NOX,0.235116355902492
347
+ RM,-0.5529011112669481
348
+ NOX,-1.2073064526497348
349
+ RM,0.2364780363986813
350
+ NOX,0.3539041166067931
351
+ RM,-1.5880576492314011
352
+ NOX,-1.0970035319957407
353
+ RM,-0.12495930227605782
354
+ NOX,0.9563277601786059
355
+ RM,-1.948049238551442
356
+ NOX,0.4217828370092509
357
+ RM,-0.2709799871006524
358
+ NOX,0.9817822803295276
359
+ RM,1.531869458208946
360
+ NOX,0.7781461191221543
361
+ RM,0.8509215121457375
362
+ NOX,-0.04488336575764549
363
+ RM,-0.5283233722370666
364
+ NOX,1.1684487614362855
365
+ RM,-1.3075822744198036
366
+ NOX,-1.0036702914423614
367
+ RM,0.4273169512189444
368
+ NOX,-0.1467014463613322
369
+ RM,-0.6063938373908105
370
+ NOX,-1.2242761327503493
371
+ RM,0.8133320289235649
372
+ NOX,-0.4351860080717778
373
+ RM,-0.3938686822500637
374
+ NOX,-0.1467014463613322
375
+ RM,-0.29844922483993275
376
+ NOX,-1.275185173052192
377
+ RM,-0.06423782937870193
378
+ NOX,0.5829947979650881
379
+ RM,-0.6237428296471974
380
+ NOX,0.5829947979650881
381
+ RM,-0.4502529070833225
382
+ NOX,-1.2073064526497348
383
+ RM,-0.8536169770443313
384
+ NOX,2.678750290390971
385
+ RM,-0.17989777775461854
386
+ NOX,-1.0036702914423614
387
+ RM,0.7020093286117454
388
+ NOX,-1.0545793317442047
389
+ RM,2.8995483477541604
390
+ NOX,-0.9867006113417468
391
+ RM,-0.41989217063464457
392
+ NOX,-0.07033788590856717
393
+ RM,-0.4704933980491082
394
+ NOX,0.8460248395246122
395
+ RM,-0.4357954135363333
396
+ NOX,-0.9188218909392892
397
+ RM,0.8682705044021256
398
+ NOX,1.3381455624424299
399
+ RM,0.39261896670616936
400
+ NOX,-0.04488336575764549
401
+ RM,0.1728650647919278
402
+ NOX,-0.5624586088263862
403
+ RM,-0.4242294186987416
404
+ NOX,-1.2836700131024992
405
+ RM,1.4942799749867737
406
+ NOX,1.3381455624424299
407
+ RM,0.3752699744497812
408
+ NOX,-0.4097314879208561
409
+ RM,0.9044142382695988
410
+ NOX,0.4557221972104798
411
+ RM,-1.155778592176414
412
+ NOX,0.7781461191221543
413
+ RM,1.0995904011539588
414
+ NOX,1.3381455624424299
415
+ RM,-0.0989358138914769
416
+ NOX,0.2436011959527992
417
+ RM,-1.1948138247532858
418
+ NOX,-0.5709434488766933
419
+ RM,1.3034410601665118
420
+ NOX,0.21814667580187752
421
+ RM,-0.3606164470919881
422
+ NOX,-0.3842769677699345
423
+ RM,-0.5702501035233362
424
+ NOX,-1.0376096516435902
425
+ RM,1.0533264218035925
426
+ NOX,-0.5624586088263862
427
+ RM,-0.10327306195557266
428
+ NOX,0.5829947979650881
429
+ RM,-0.8102444964033635
430
+ NOX,-0.04488336575764549
431
+ RM,0.5617716412059472
432
+ NOX,0.6423886783172387
433
+ RM,-3.4559658155024526
434
+ NOX,-0.9867006113417468
435
+ RM,0.3723784757403836
436
+ NOX,1.5672362438007252
437
+ RM,-0.6295258270659939
438
+ NOX,0.21814667580187752
439
+ RM,-0.5543468606216475
440
+ NOX,-1.0800338518951265
441
+ RM,-0.2290532558143828
442
+ NOX,0.4981463974620159
443
+ RM,0.3333432431635116
444
+ NOX,-0.9867006113417468
445
+ RM,-0.3692909432201809
446
+ NOX,-0.7745796100840663
447
+ RM,-0.4820593928866999
448
+ NOX,1.5672362438007252
449
+ RM,0.22057479349699255
450
+ NOX,-0.9188218909392892
451
+ RM,0.8277895224705542
452
+ NOX,-0.7745796100840663
453
+ RM,2.078362714285152
454
+ NOX,0.5829947979650881
455
+ RM,-0.8912064602665051
456
+ NOX,0.4557221972104798
457
+ RM,-0.3909771835406661
458
+ NOX,1.8217814453099417
459
+ RM,0.20900879865940086
460
+ NOX,0.2520860360031064
461
+ RM,-0.843496731561439
462
+ NOX,2.678750290390971
463
+ RM,-1.1355381012106285
464
+ NOX,-1.0715490118448192
465
+ RM,0.37960722251387824
466
+ NOX,0.5829947979650881
467
+ RM,0.10491484512107598
468
+ NOX,1.2278426417884365
469
+ RM,-0.2926662274211363
470
+ NOX,1.5672362438007252
471
+ RM,-0.5774788502968308
472
+ NOX,-1.2073064526497348
473
+ RM,-0.42278366934404216
474
+ NOX,-1.0036702914423614
475
+ RM,0.43743719670183656
476
+ NOX,-0.1467014463613322
477
+ RM,-0.4386869122457309
478
+ NOX,0.4981463974620159
479
+ RM,-0.03532284228472213
480
+ NOX,-1.309124533253421
481
+ RM,0.5068331657273866
482
+ NOX,0.9817822803295276
483
+ RM,-0.043997338412916184
484
+ NOX,-0.9018522108386746
485
+ RM,-0.3447132041902994
486
+ NOX,-0.9018522108386746
487
+ RM,-0.19146377259220893
488
+ NOX,1.3381455624424299
489
+ RM,-0.4589274032115166
490
+ NOX,-0.5624586088263862
491
+ RM,1.0894701556710653
492
+ NOX,0.21814667580187752
493
+ RM,-0.38663993547656894
494
+ NOX,-0.29942856726686223
495
+ RM,0.6846603363553585
496
+ NOX,1.1684487614362855
497
+ RM,-0.8247019899503527
498
+ NOX,0.2520860360031064
499
+ RM,-0.9895174163860336
500
+ NOX,-0.09579240605948884
501
+ RM,-1.851184031786612
502
+ NOX,-0.5624586088263862
503
+ RM,0.10491484512107598
504
+ NOX,0.4981463974620159
505
+ RM,-0.8753032173648164
506
+ NOX,0.2436011959527992
507
+ RM,-1.1948138247532858
508
+ NOX,1.2278426417884365
509
+ RM,-0.7813295093093837
510
+ NOX,2.678750290390971
511
+ RM,-1.7947998069533528
512
+ NOX,-0.3842769677699345
513
+ RM,-0.3374844574168048
514
+ NOX,2.678750290390971
515
+ RM,-0.7871125067281801
516
+ NOX,-0.9612460911908252
517
+ RM,-0.5138658786900773
518
+ NOX,-0.9612460911908252
519
+ RM,1.4277755046706209
520
+ NOX,0.2520860360031064
521
+ RM,-0.32736421193391124
522
+ NOX,-0.9018522108386746
523
+ RM,0.1959970544671111
524
+ NOX,-0.07033788590856717
525
+ RM,-0.11194755808376672
526
+ NOX,-1.0800338518951265
527
+ RM,0.2017800518859063
528
+ NOX,-1.2836700131024992
529
+ RM,1.2340450911409615
530
+ NOX,0.3539041166067931
531
+ RM,0.8653790056927281
532
+ NOX,-0.9867006113417468
533
+ RM,-0.3692909432201809
534
+ NOX,-1.0036702914423614
535
+ RM,-0.16399453485292986
536
+ NOX,-0.8679128506374457
537
+ RM,0.7352615637698209
538
+ NOX,0.8460248395246122
539
+ RM,-0.06423782937870193
540
+ NOX,2.678750290390971
541
+ RM,-1.5432394192357342
542
+ NOX,0.4217828370092509
543
+ RM,-0.5442266151387553
544
+ NOX,-1.0545793317442047
545
+ RM,0.6716485921630674
546
+ NOX,0.8460248395246122
547
+ RM,-0.7148250389932312
548
+ NOX,-0.1467014463613322
549
+ RM,-0.761089018343598
550
+ NOX,-1.0036702914423614
551
+ RM,-0.5485638632028523
552
+ NOX,-0.3842769677699345
553
+ RM,0.8769450005303198
554
+ NOX,-1.0036702914423614
555
+ RM,0.028290129322031368
556
+ NOX,1.5672362438007252
557
+ RM,-0.14664554259654172
558
+ NOX,1.8217814453099417
559
+ RM,-0.6512120673864777
560
+ NOX,-0.5624586088263862
561
+ RM,0.17575656350132535
562
+ NOX,-0.9536097351455486
563
+ RM,2.2648643810413183
564
+ NOX,-0.09579240605948884
565
+ RM,-0.20302976742980056
566
+ NOX,0.2520860360031064
567
+ RM,-0.7900040054375778
568
+ NOX,0.5829947979650881
569
+ RM,-0.7177165377026302
570
+ NOX,-0.1467014463613322
571
+ RM,-0.7986785015657718
572
+ NOX,-1.0036702914423614
573
+ RM,0.04708487093311766
574
+ NOX,-0.9357915710399036
575
+ RM,2.2648643810413183
576
+ NOX,-0.5624586088263862
577
+ RM,0.2191290441422944
578
+ NOX,-1.1309428921969698
579
+ RM,2.34438059554976
580
+ NOX,-1.309124533253421
581
+ RM,0.7902000392483816
582
+ NOX,-0.29942856726686223
583
+ RM,0.31888574961652233
584
+ NOX,-0.07033788590856717
585
+ RM,-0.4921796383695921
586
+ NOX,-1.0376096516435902
587
+ RM,0.3492464860652003
588
+ NOX,-1.3854880937061862
589
+ RM,-0.2102585142032965
590
+ NOX,-0.1467014463613322
591
+ RM,-0.16110303614353094
592
+ NOX,1.2278426417884365
593
+ RM,-1.0372271450910997
594
+ NOX,-0.3842769677699345
595
+ RM,0.4229797031548473
596
+ NOX,1.5672362438007252
597
+ RM,-0.04978033583171138
598
+ NOX,-0.5709434488766933
599
+ RM,-0.93891618897157
600
+ NOX,1.5672362438007252
601
+ RM,0.2971995092960372
602
+ NOX,-1.0036702914423614
603
+ RM,0.036964625450225434
604
+ NOX,-1.2412458128509636
605
+ RM,-0.5326606203011636
606
+ NOX,1.0496610007319855
607
+ RM,-0.4285666667628386
608
+ NOX,2.678750290390971
609
+ RM,-0.1900180232375108
610
+ NOX,-0.5624586088263862
611
+ RM,-0.27387148581005
612
+ NOX,-0.4776102083233139
613
+ RM,-0.5832618477156273
614
+ NOX,-0.9536097351455486
615
+ RM,0.8075490315047698
616
+ NOX,-0.8679128506374457
617
+ RM,-0.7408485273778135
618
+ NOX,1.1684487614362855
619
+ RM,-0.3851941861218696
620
+ NOX,-0.9867006113417468
621
+ RM,-0.20013826872040302
622
+ NOX,-0.7321554098325307
623
+ RM,0.24226103381747774
624
+ NOX,1.1684487614362855
625
+ RM,0.21768329478759502
626
+ NOX,0.5829947979650881
627
+ RM,0.28997076252254256
628
+ NOX,-0.9188218909392892
629
+ RM,0.330451744454114
630
+ NOX,0.4217828370092509
631
+ RM,-0.5398893670746582
632
+ NOX,2.678750290390971
633
+ RM,-1.2280660599113615
634
+ NOX,-0.09579240605948884
635
+ RM,0.5516513957230538
636
+ NOX,-0.5709434488766933
637
+ RM,2.2807676239430066
638
+ NOX,1.0496610007319855
639
+ RM,0.2610557754285641
640
+ NOX,-1.3176093733037282
641
+ RM,1.2065758534016815
642
+ NOX,1.3805697626939664
643
+ RM,-3.892582120621538
644
+ NOX,1.3381455624424299
645
+ RM,1.647529406584863
646
+ NOX,1.1684487614362855
647
+ RM,0.3145485015524253
648
+ NOX,-1.309124533253421
649
+ RM,2.41377656457531
650
+ NOX,0.235116355902492
651
+ RM,-0.5037456332071838
652
+ NOX,1.1684487614362855
653
+ RM,0.2191290441422944
654
+ NOX,-0.9357915710399036
655
+ RM,2.624855970361359
656
+ NOX,-0.3418527675183983
657
+ RM,-0.2811002325835446
658
+ NOX,0.4217828370092509
659
+ RM,0.9969421969703319
660
+ NOX,1.8217814453099417
661
+ RM,-0.059900581314604885
662
+ NOX,-0.09579240605948884
663
+ RM,-0.490733889014894
664
+ NOX,0.5829947979650881
665
+ RM,-0.5731416022327338
666
+ NOX,-0.09579240605948884
667
+ RM,-0.4068804264423535
668
+ NOX,-0.5285192486251573
669
+ RM,0.1772023128560248
670
+ NOX,-1.2073064526497348
671
+ RM,-0.012190852609538802
672
+ NOX,0.3539041166067931
673
+ RM,-0.7177165377026302
674
+ NOX,-0.29942856726686223
675
+ RM,-0.03532284228472213
676
+ NOX,1.8217814453099417
677
+ RM,-0.2044755167845
678
+ NOX,-1.3854880937061862
679
+ RM,-0.5456723644934534
680
+ NOX,-0.5285192486251573
681
+ RM,-0.7885582560828783
682
+ NOX,-0.19761048666317554
683
+ RM,-0.01652810067363584
684
+ NOX,0.2520860360031064
685
+ RM,-1.2483065508771471
686
+ NOX,0.5829947979650881
687
+ RM,0.29575375994133896
688
+ NOX,-1.0545793317442047
689
+ RM,0.3376804912276086
690
+ NOX,0.9817822803295276
691
+ RM,0.7815255431201875
692
+ NOX,-0.7745796100840663
693
+ RM,-0.01941959938303343
694
+ NOX,2.678750290390971
695
+ RM,-1.4189049747316231
696
+ NOX,-0.3418527675183983
697
+ RM,0.09045735157408673
698
+ NOX,1.5672362438007252
699
+ RM,-0.9056639538134944
700
+ NOX,-1.0715490118448192
701
+ RM,0.9911591995515368
702
+ NOX,0.15026795539941973
703
+ RM,-0.3230269638698142
704
+ NOX,-1.0376096516435902
705
+ RM,0.4865926747616008
706
+ NOX,0.7781461191221543
707
+ RM,1.3771742772561588
708
+ NOX,-1.0036702914423614
709
+ RM,-0.6700068089975639
710
+ NOX,-0.1467014463613322
711
+ RM,-0.41700067192524704
712
+ NOX,1.0496610007319855
713
+ RM,0.18298531027481998
714
+ NOX,-0.5624586088263862
715
+ RM,1.1935641092093905
716
+ NOX,0.9563277601786059
717
+ RM,-3.05838474296024
718
+ NOX,-1.181003448493782
719
+ RM,2.3125741097463828
720
+ NOX,-0.29942856726686223
721
+ RM,-0.16833178291702688