teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (263) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +183 -0
  4. teradataml/__init__.py +6 -3
  5. teradataml/_version.py +2 -2
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +275 -40
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +1 -0
  11. teradataml/analytics/json_parser/utils.py +17 -21
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +10 -2
  15. teradataml/analytics/table_operator/__init__.py +3 -2
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +62 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1553 -319
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +276 -319
  22. teradataml/automl/data_transformation.py +163 -81
  23. teradataml/automl/feature_engineering.py +402 -239
  24. teradataml/automl/feature_exploration.py +9 -2
  25. teradataml/automl/model_evaluation.py +48 -51
  26. teradataml/automl/model_training.py +291 -189
  27. teradataml/catalog/byom.py +8 -8
  28. teradataml/catalog/model_cataloging_utils.py +1 -1
  29. teradataml/clients/auth_client.py +133 -0
  30. teradataml/clients/pkce_client.py +1 -1
  31. teradataml/common/aed_utils.py +3 -2
  32. teradataml/common/constants.py +48 -6
  33. teradataml/common/deprecations.py +13 -7
  34. teradataml/common/garbagecollector.py +156 -120
  35. teradataml/common/messagecodes.py +6 -1
  36. teradataml/common/messages.py +3 -1
  37. teradataml/common/sqlbundle.py +1 -1
  38. teradataml/common/utils.py +103 -11
  39. teradataml/common/wrapper_utils.py +1 -1
  40. teradataml/context/context.py +121 -31
  41. teradataml/data/advertising.csv +201 -0
  42. teradataml/data/bank_marketing.csv +11163 -0
  43. teradataml/data/bike_sharing.csv +732 -0
  44. teradataml/data/boston2cols.csv +721 -0
  45. teradataml/data/breast_cancer.csv +570 -0
  46. teradataml/data/complaints_test_tokenized.csv +353 -0
  47. teradataml/data/complaints_tokens_model.csv +348 -0
  48. teradataml/data/covid_confirm_sd.csv +83 -0
  49. teradataml/data/customer_segmentation_test.csv +2628 -0
  50. teradataml/data/customer_segmentation_train.csv +8069 -0
  51. teradataml/data/dataframe_example.json +10 -0
  52. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  53. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  54. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  55. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  56. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  57. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  58. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  59. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  60. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  61. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  62. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  63. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  64. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  65. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  66. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  67. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  68. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  69. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  70. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  71. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  72. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  73. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  74. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  75. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  76. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  77. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  78. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  79. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  80. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  81. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  82. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  83. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  84. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  85. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  86. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  87. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  88. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  89. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  90. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  91. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  92. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  93. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  94. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  95. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  96. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  97. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  98. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  99. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  100. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  101. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  102. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  103. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  104. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  105. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  106. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  107. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  108. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  109. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  110. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  111. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  112. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  113. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  114. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  115. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  116. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  117. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  118. teradataml/data/dwt2d_dataTable.csv +65 -0
  119. teradataml/data/dwt_dataTable.csv +8 -0
  120. teradataml/data/dwt_filterTable.csv +3 -0
  121. teradataml/data/finance_data4.csv +13 -0
  122. teradataml/data/glm_example.json +28 -1
  123. teradataml/data/grocery_transaction.csv +19 -0
  124. teradataml/data/housing_train_segment.csv +201 -0
  125. teradataml/data/idwt2d_dataTable.csv +5 -0
  126. teradataml/data/idwt_dataTable.csv +8 -0
  127. teradataml/data/idwt_filterTable.csv +3 -0
  128. teradataml/data/insect2Cols.csv +61 -0
  129. teradataml/data/interval_data.csv +5 -0
  130. teradataml/data/jsons/paired_functions.json +14 -0
  131. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  132. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  133. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  134. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  135. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  136. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  137. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  138. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  139. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  140. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  141. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  142. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  143. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  144. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  145. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  146. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  147. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  148. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  149. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  150. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  151. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  152. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  153. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  154. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  155. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  156. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  157. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  158. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  159. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  160. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  161. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  162. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  163. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  164. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  165. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  166. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  167. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  168. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  169. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  170. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  171. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  172. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  173. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  174. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  175. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  176. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  177. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  178. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  179. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  180. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  181. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  182. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  183. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  184. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  185. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  186. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  187. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  188. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  189. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  190. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  191. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  192. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  193. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  194. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  195. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  196. teradataml/data/kmeans_example.json +5 -0
  197. teradataml/data/kmeans_table.csv +10 -0
  198. teradataml/data/load_example_data.py +8 -2
  199. teradataml/data/naivebayestextclassifier_example.json +1 -1
  200. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  201. teradataml/data/onehot_encoder_train.csv +4 -0
  202. teradataml/data/openml_example.json +29 -0
  203. teradataml/data/peppers.png +0 -0
  204. teradataml/data/real_values.csv +14 -0
  205. teradataml/data/sax_example.json +8 -0
  206. teradataml/data/scale_attributes.csv +3 -0
  207. teradataml/data/scale_example.json +52 -1
  208. teradataml/data/scale_input_part_sparse.csv +31 -0
  209. teradataml/data/scale_input_partitioned.csv +16 -0
  210. teradataml/data/scale_input_sparse.csv +11 -0
  211. teradataml/data/scale_parameters.csv +3 -0
  212. teradataml/data/scripts/deploy_script.py +21 -2
  213. teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
  214. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
  215. teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
  216. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  217. teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
  218. teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
  219. teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
  220. teradataml/data/star_pivot.csv +8 -0
  221. teradataml/data/templates/open_source_ml.json +2 -1
  222. teradataml/data/teradataml_example.json +97 -1
  223. teradataml/data/timestamp_data.csv +4 -0
  224. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  225. teradataml/data/uaf_example.json +55 -1
  226. teradataml/data/unpivot_example.json +15 -0
  227. teradataml/data/url_data.csv +9 -0
  228. teradataml/data/windowdfft.csv +16 -0
  229. teradataml/data/ztest_example.json +16 -0
  230. teradataml/dataframe/copy_to.py +9 -4
  231. teradataml/dataframe/data_transfer.py +125 -64
  232. teradataml/dataframe/dataframe.py +575 -57
  233. teradataml/dataframe/dataframe_utils.py +47 -9
  234. teradataml/dataframe/fastload.py +273 -90
  235. teradataml/dataframe/functions.py +339 -0
  236. teradataml/dataframe/row.py +160 -0
  237. teradataml/dataframe/setop.py +2 -2
  238. teradataml/dataframe/sql.py +740 -18
  239. teradataml/dataframe/window.py +1 -1
  240. teradataml/dbutils/dbutils.py +324 -18
  241. teradataml/geospatial/geodataframe.py +1 -1
  242. teradataml/geospatial/geodataframecolumn.py +1 -1
  243. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  244. teradataml/lib/aed_0_1.dll +0 -0
  245. teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
  246. teradataml/options/__init__.py +16 -5
  247. teradataml/options/configure.py +39 -6
  248. teradataml/options/display.py +2 -2
  249. teradataml/plot/axis.py +4 -4
  250. teradataml/scriptmgmt/UserEnv.py +26 -19
  251. teradataml/scriptmgmt/lls_utils.py +120 -16
  252. teradataml/table_operators/Script.py +4 -5
  253. teradataml/table_operators/TableOperator.py +160 -26
  254. teradataml/table_operators/table_operator_util.py +88 -41
  255. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  256. teradataml/telemetry_utils/__init__.py +0 -0
  257. teradataml/telemetry_utils/queryband.py +52 -0
  258. teradataml/utils/validators.py +41 -3
  259. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
  260. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
  261. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  262. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  263. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -0,0 +1,2628 @@
1
+ ID,Gender,Ever_Married,Age,Graduated,Profession,Work_Experience,Spending_Score,Family_Size,Var_1
2
+ 458989,Female,Yes,36,Yes,Engineer,0,Low,1,Cat_6
3
+ 458994,Male,Yes,37,Yes,Healthcare,8,Average,4,Cat_6
4
+ 458996,Female,Yes,69,No,,0,Low,1,Cat_6
5
+ 459000,Male,Yes,59,No,Executive,11,High,2,Cat_6
6
+ 459001,Female,No,19,No,Marketing,,Low,4,Cat_6
7
+ 459003,Male,Yes,47,Yes,Doctor,0,High,5,Cat_4
8
+ 459005,Male,Yes,61,Yes,Doctor,5,Low,3,Cat_6
9
+ 459008,Female,Yes,47,Yes,Artist,1,Average,3,Cat_6
10
+ 459013,Male,Yes,50,Yes,Artist,2,Average,4,Cat_6
11
+ 459014,Male,No,19,No,Healthcare,0,Low,4,Cat_6
12
+ 459015,Male,No,22,No,Healthcare,0,Low,3,Cat_6
13
+ 459016,Female,No,22,No,Healthcare,0,Low,6,Cat_6
14
+ 459024,Male,Yes,50,Yes,Artist,1,Average,5,Cat_6
15
+ 459026,Male,No,27,No,Healthcare,8,Low,3,Cat_3
16
+ 459032,Male,No,18,No,Doctor,0,Low,3,Cat_6
17
+ 459033,Female,Yes,61,Yes,Artist,0,Low,1,Cat_6
18
+ 459036,Female,Yes,20,Yes,Lawyer,1,Average,3,Cat_3
19
+ 459039,Male,Yes,45,Yes,Artist,1,Average,2,Cat_6
20
+ 459041,Male,Yes,55,Yes,Artist,8,Low,1,Cat_6
21
+ 459045,Female,Yes,88,Yes,Lawyer,1,Average,4,Cat_6
22
+ 459056,Male,Yes,63,No,Executive,,High,3,Cat_6
23
+ 459057,Male,Yes,69,No,Lawyer,,High,,Cat_6
24
+ 459058,Male,No,42,Yes,Artist,0,Low,4,Cat_3
25
+ 459059,Male,Yes,79,No,Executive,,High,2,Cat_6
26
+ 459061,Female,Yes,35,Yes,Healthcare,9,High,3,Cat_6
27
+ 459064,Male,Yes,27,No,Executive,5,High,4,Cat_6
28
+ 459065,Male,Yes,52,Yes,Engineer,,Low,2,Cat_6
29
+ 459074,Female,No,29,Yes,Healthcare,0,Low,4,Cat_4
30
+ 459077,Female,Yes,79,No,Lawyer,1,High,2,Cat_6
31
+ 459079,Male,Yes,87,Yes,Lawyer,,High,2,Cat_6
32
+ 459080,Male,Yes,89,No,Lawyer,1,Low,2,Cat_6
33
+ 459083,Male,Yes,63,Yes,Artist,9,Average,3,
34
+ 459090,Male,No,31,No,Artist,1,Low,2,Cat_6
35
+ 459091,Male,Yes,72,Yes,Artist,1,Average,6,Cat_1
36
+ 459093,Female,Yes,41,Yes,Doctor,9,Average,2,
37
+ 459100,Female,No,61,Yes,Artist,11,Low,1,Cat_6
38
+ 459106,Male,Yes,62,Yes,Artist,0,Low,2,Cat_6
39
+ 459114,Male,Yes,56,Yes,Artist,1,Average,2,Cat_6
40
+ 459116,Male,Yes,60,Yes,Artist,2,Average,5,Cat_6
41
+ 459117,Male,Yes,68,Yes,Artist,0,High,2,Cat_6
42
+ 459118,Male,No,19,No,Healthcare,,Low,8,Cat_6
43
+ 459119,Male,Yes,57,Yes,Executive,8,High,3,Cat_6
44
+ 459120,Male,No,19,No,Healthcare,5,Low,5,Cat_2
45
+ 459121,Female,Yes,51,Yes,Artist,3,Average,6,Cat_6
46
+ 459123,Female,Yes,86,No,Artist,1,High,2,Cat_6
47
+ 459130,Female,Yes,74,No,Lawyer,1,High,2,Cat_6
48
+ 459132,Male,No,23,No,Entertainment,6,Low,2,Cat_6
49
+ 459136,Male,Yes,47,Yes,Artist,0,Average,2,Cat_6
50
+ 459140,Female,No,19,No,Healthcare,7,Low,6,Cat_6
51
+ 459143,Male,Yes,50,No,Artist,0,High,4,Cat_6
52
+ 459144,Male,Yes,80,Yes,Lawyer,,High,2,Cat_6
53
+ 459145,Male,Yes,78,No,Lawyer,,Low,1,Cat_2
54
+ 459150,Female,No,48,Yes,Doctor,0,Low,1,Cat_6
55
+ 459160,Male,Yes,70,Yes,Doctor,1,Average,2,Cat_6
56
+ 459161,Male,Yes,50,Yes,Executive,3,High,5,Cat_6
57
+ 459162,Female,Yes,83,Yes,Lawyer,0,High,2,Cat_6
58
+ 459163,Male,No,35,Yes,Entertainment,0,Low,1,Cat_6
59
+ 459167,Female,No,36,Yes,Artist,0,Low,2,Cat_5
60
+ 459170,Female,No,35,Yes,Artist,1,Low,1,Cat_6
61
+ 459171,Male,Yes,35,Yes,Artist,0,Average,2,Cat_6
62
+ 459172,Male,No,18,No,Healthcare,3,Low,3,Cat_2
63
+ 459175,Female,Yes,73,Yes,Artist,1,Average,2,Cat_6
64
+ 459181,Male,Yes,62,No,Artist,1,High,3,Cat_6
65
+ 459182,Female,Yes,46,Yes,Artist,1,Average,2,Cat_6
66
+ 459184,Male,Yes,43,Yes,Entertainment,0,Low,4,Cat_4
67
+ 459185,Female,No,32,Yes,Entertainment,7,Low,1,Cat_6
68
+ 459193,Male,No,39,Yes,Artist,0,Low,1,Cat_6
69
+ 459194,Female,Yes,89,Yes,Lawyer,0,High,2,Cat_6
70
+ 459196,Female,No,18,No,Healthcare,0,Low,3,Cat_4
71
+ 459208,Female,Yes,57,Yes,Artist,0,High,2,Cat_3
72
+ 459209,Female,No,18,No,Entertainment,0,Low,4,Cat_6
73
+ 459210,Female,Yes,71,Yes,Artist,1,High,2,Cat_6
74
+ 459212,Female,Yes,69,Yes,Artist,0,Average,2,Cat_6
75
+ 459213,Female,No,42,Yes,Healthcare,0,Low,4,Cat_6
76
+ 459216,Female,No,36,Yes,Artist,0,Low,2,Cat_6
77
+ 459220,Female,Yes,80,Yes,Lawyer,1,High,2,Cat_6
78
+ 459221,Male,Yes,69,No,Entertainment,,Low,1,Cat_6
79
+ 459222,Female,Yes,67,Yes,Artist,0,Average,3,Cat_6
80
+ 459223,Female,Yes,47,Yes,Doctor,1,Average,4,Cat_6
81
+ 459224,Female,Yes,49,Yes,Artist,0,Average,2,Cat_6
82
+ 459227,Female,Yes,32,No,Engineer,9,Low,4,Cat_6
83
+ 459229,Female,Yes,65,Yes,Lawyer,1,Average,4,Cat_6
84
+ 459236,Female,Yes,78,No,Lawyer,0,High,2,Cat_6
85
+ 459237,Male,No,33,Yes,Artist,1,Low,6,Cat_6
86
+ 459244,Male,Yes,48,Yes,Artist,1,Low,1,Cat_6
87
+ 459247,Male,Yes,58,Yes,Executive,1,Average,5,Cat_6
88
+ 459258,Female,Yes,83,Yes,Lawyer,1,High,,Cat_6
89
+ 459263,Female,No,30,No,Healthcare,9,Low,4,Cat_6
90
+ 459264,Female,No,35,Yes,Artist,0,Low,2,Cat_6
91
+ 459266,Male,No,32,Yes,Healthcare,6,Low,5,Cat_6
92
+ 459270,Male,Yes,69,Yes,Homemaker,1,High,2,Cat_6
93
+ 459284,Female,Yes,71,Yes,Lawyer,1,High,2,Cat_6
94
+ 459287,Male,No,43,Yes,Lawyer,0,Low,1,Cat_4
95
+ 459288,Male,Yes,37,Yes,Artist,0,Low,2,Cat_6
96
+ 459289,Male,No,42,Yes,Doctor,0,Low,1,Cat_6
97
+ 459290,Female,Yes,70,Yes,Doctor,1,Average,2,Cat_6
98
+ 459292,Male,No,46,Yes,Artist,0,Low,2,Cat_6
99
+ 459293,Male,No,21,No,Healthcare,,Low,,Cat_1
100
+ 459296,Male,Yes,70,Yes,Artist,0,Average,2,Cat_6
101
+ 459300,Female,Yes,61,Yes,Artist,1,Low,,Cat_6
102
+ 459307,Male,Yes,60,Yes,Entertainment,1,Low,1,Cat_6
103
+ 459310,Male,No,37,Yes,Entertainment,0,Low,2,Cat_2
104
+ 459316,Male,Yes,30,Yes,Healthcare,1,Low,2,Cat_6
105
+ 459318,Female,No,32,Yes,Engineer,1,Low,3,Cat_6
106
+ 459320,Male,Yes,26,Yes,Executive,0,Low,3,Cat_6
107
+ 459322,Male,No,42,Yes,Marketing,0,Low,1,Cat_6
108
+ 459323,Female,No,18,No,Doctor,,Low,,Cat_6
109
+ 459338,Male,Yes,80,No,Executive,,Low,,Cat_6
110
+ 459339,Male,Yes,29,Yes,Healthcare,8,High,2,Cat_6
111
+ 459344,Female,Yes,88,Yes,Artist,1,High,2,Cat_6
112
+ 459347,Male,Yes,70,Yes,Lawyer,1,Low,1,Cat_6
113
+ 459349,Female,Yes,50,Yes,Artist,1,High,4,Cat_6
114
+ 459352,Male,Yes,43,Yes,Doctor,4,Average,4,Cat_3
115
+ 459353,Male,Yes,51,Yes,Artist,6,Average,2,Cat_6
116
+ 459354,Female,Yes,50,Yes,Artist,,High,3,Cat_6
117
+ 459355,Female,Yes,74,No,Homemaker,,Low,1,Cat_6
118
+ 459360,Female,No,29,Yes,Healthcare,,Low,3,Cat_6
119
+ 459361,Female,No,32,Yes,Engineer,,Low,2,Cat_6
120
+ 459362,Male,Yes,60,No,Executive,0,Low,2,Cat_6
121
+ 459363,Male,No,46,Yes,Artist,2,Low,1,Cat_6
122
+ 459364,Female,Yes,81,Yes,Marketing,0,Low,2,Cat_6
123
+ 459369,Male,Yes,41,No,Engineer,,Average,7,Cat_4
124
+ 459375,Male,Yes,22,No,Executive,0,High,4,Cat_6
125
+ 459377,Male,Yes,37,Yes,Artist,0,Average,3,Cat_6
126
+ 459383,Male,Yes,43,No,Engineer,0,Low,1,Cat_6
127
+ 459384,Male,Yes,50,Yes,Artist,1,Average,3,Cat_6
128
+ 459385,Female,Yes,35,Yes,Artist,1,Average,2,Cat_7
129
+ 459386,Male,Yes,65,No,Lawyer,1,High,2,Cat_6
130
+ 459391,Female,No,41,Yes,Engineer,0,Low,4,Cat_6
131
+ 459394,Male,No,28,No,Entertainment,8,Low,2,Cat_6
132
+ 459397,Male,Yes,55,Yes,Artist,4,Average,2,Cat_6
133
+ 459398,Female,Yes,58,No,Lawyer,,High,2,Cat_6
134
+ 459401,Male,No,28,No,Healthcare,1,Low,3,
135
+ 459403,Male,Yes,48,Yes,Artist,,Average,4,Cat_7
136
+ 459405,Female,Yes,78,No,Doctor,1,High,2,Cat_6
137
+ 459407,Female,No,35,Yes,Doctor,1,Low,3,Cat_6
138
+ 459409,Female,Yes,76,Yes,Lawyer,0,High,2,Cat_6
139
+ 459410,Female,Yes,88,Yes,Lawyer,1,High,2,Cat_6
140
+ 459412,Male,Yes,61,Yes,,1,Average,3,Cat_6
141
+ 459413,Female,Yes,79,Yes,Artist,,High,2,Cat_6
142
+ 459415,Male,No,30,No,Doctor,0,Low,4,Cat_6
143
+ 459418,Male,Yes,69,No,Executive,0,High,2,Cat_6
144
+ 459419,Male,Yes,65,Yes,Doctor,1,Average,2,Cat_6
145
+ 459420,Female,Yes,70,Yes,Lawyer,1,Low,2,Cat_6
146
+ 459421,Male,Yes,32,No,Healthcare,0,Average,4,Cat_6
147
+ 459422,Male,Yes,46,Yes,Entertainment,,Low,4,Cat_6
148
+ 459423,Male,No,21,No,Healthcare,8,Low,5,Cat_6
149
+ 459424,Male,Yes,47,Yes,Doctor,,Low,3,Cat_6
150
+ 459428,Female,No,39,No,Marketing,0,Low,2,Cat_4
151
+ 459432,Male,Yes,85,Yes,Lawyer,0,Low,3,Cat_6
152
+ 459436,Female,No,66,Yes,Artist,0,Low,2,Cat_6
153
+ 459439,Female,Yes,50,Yes,Artist,1,Average,2,Cat_6
154
+ 459445,Female,Yes,42,Yes,Artist,0,Average,3,Cat_6
155
+ 459447,Male,Yes,53,Yes,Artist,9,Low,1,Cat_6
156
+ 459449,Male,Yes,37,Yes,Artist,,Low,2,Cat_6
157
+ 459451,Female,Yes,45,Yes,Artist,1,Low,2,Cat_6
158
+ 459456,Female,No,66,No,Lawyer,,Low,1,Cat_6
159
+ 459458,Male,No,33,No,Marketing,,Low,,Cat_6
160
+ 459459,Male,Yes,40,Yes,Artist,4,Low,1,Cat_6
161
+ 459461,Female,Yes,35,Yes,Artist,1,Low,1,Cat_1
162
+ 459464,Male,No,27,Yes,Artist,,Low,2,Cat_6
163
+ 459466,Female,Yes,48,Yes,Artist,0,Average,3,Cat_4
164
+ 459467,Female,Yes,56,Yes,Artist,0,Average,2,Cat_6
165
+ 459469,Male,Yes,25,Yes,Healthcare,,Low,6,Cat_6
166
+ 459471,Female,No,30,No,Artist,,Low,8,Cat_6
167
+ 459480,Female,Yes,46,Yes,Entertainment,7,Low,3,Cat_6
168
+ 459481,Male,Yes,49,No,Lawyer,0,Low,2,Cat_6
169
+ 459482,Male,Yes,72,No,Marketing,1,Low,4,Cat_6
170
+ 459485,Female,Yes,79,Yes,Lawyer,,High,2,Cat_6
171
+ 459496,Female,No,35,Yes,Artist,,Low,3,Cat_6
172
+ 459497,Female,Yes,77,Yes,Lawyer,0,Low,1,Cat_6
173
+ 459499,Female,Yes,79,No,Lawyer,,High,2,Cat_6
174
+ 459503,Male,Yes,42,Yes,Healthcare,6,High,4,Cat_6
175
+ 459505,Female,No,42,Yes,Engineer,,Low,1,Cat_6
176
+ 459507,Male,Yes,67,No,Lawyer,,High,2,Cat_1
177
+ 459509,Male,No,26,Yes,Healthcare,1,Low,1,Cat_6
178
+ 459512,Male,Yes,67,Yes,Lawyer,1,High,2,Cat_6
179
+ 459515,Male,Yes,55,Yes,Engineer,1,Low,1,Cat_6
180
+ 459516,Female,,56,Yes,Artist,,Average,2,Cat_6
181
+ 459518,Male,Yes,63,,,,Average,4,Cat_6
182
+ 459535,Male,Yes,46,Yes,Artist,8,Average,2,Cat_6
183
+ 459536,Male,Yes,32,Yes,Healthcare,7,Low,2,Cat_6
184
+ 459538,Female,No,49,Yes,Homemaker,13,Low,1,Cat_6
185
+ 459541,Male,Yes,59,Yes,Artist,1,High,2,Cat_6
186
+ 459549,Male,No,22,No,Healthcare,8,Low,5,Cat_4
187
+ 459555,Female,No,28,Yes,Artist,8,Low,1,Cat_6
188
+ 459558,Male,No,28,Yes,Entertainment,1,Low,3,Cat_6
189
+ 459564,Male,Yes,75,Yes,Lawyer,2,Low,1,Cat_6
190
+ 459566,Female,Yes,37,Yes,Artist,13,Low,2,Cat_6
191
+ 459567,Male,Yes,50,Yes,Doctor,0,Average,2,Cat_6
192
+ 459571,Female,Yes,50,Yes,Executive,1,High,4,Cat_6
193
+ 459576,Female,Yes,88,No,Lawyer,,Low,,
194
+ 459579,Female,Yes,35,Yes,Artist,3,Average,5,Cat_4
195
+ 459581,Female,No,35,No,,,Low,,Cat_7
196
+ 459582,Male,Yes,31,No,Entertainment,,Average,3,Cat_6
197
+ 459583,Male,Yes,46,Yes,Artist,0,Low,1,Cat_6
198
+ 459585,Female,Yes,50,Yes,Artist,1,Average,4,Cat_6
199
+ 459587,Female,No,33,Yes,Artist,7,Low,3,Cat_6
200
+ 459588,Male,Yes,49,Yes,Artist,0,Low,1,Cat_6
201
+ 459591,Male,Yes,52,Yes,Artist,1,Average,3,Cat_6
202
+ 459592,Male,No,25,No,Healthcare,0,Low,3,Cat_6
203
+ 459594,Female,Yes,41,Yes,Artist,6,Low,1,Cat_6
204
+ 459597,Female,Yes,68,Yes,Artist,0,High,2,Cat_6
205
+ 459603,Female,Yes,79,No,Lawyer,2,High,2,Cat_6
206
+ 459607,Male,Yes,40,Yes,Entertainment,5,Average,5,Cat_6
207
+ 459608,Female,No,62,Yes,Doctor,,Low,1,Cat_6
208
+ 459612,Male,No,21,No,Healthcare,,Low,2,Cat_6
209
+ 459616,Female,No,20,No,Healthcare,,Low,4,Cat_1
210
+ 459617,Male,No,28,Yes,Entertainment,1,Low,5,Cat_6
211
+ 459618,Male,Yes,57,Yes,Doctor,0,Average,2,Cat_4
212
+ 459621,Female,No,25,No,Healthcare,8,Low,,
213
+ 459625,Female,Yes,63,No,Engineer,8,Low,1,Cat_6
214
+ 459626,Female,Yes,26,No,Entertainment,1,Low,3,Cat_6
215
+ 459632,Female,Yes,50,No,Marketing,0,High,3,Cat_4
216
+ 459644,Female,No,30,No,Marketing,9,Low,4,Cat_2
217
+ 459652,Female,No,26,No,Engineer,,Low,4,Cat_4
218
+ 459658,Male,Yes,61,Yes,Artist,1,Average,3,Cat_6
219
+ 459664,Male,No,42,Yes,Artist,3,Low,1,Cat_6
220
+ 459665,Male,Yes,88,Yes,Artist,4,Low,2,Cat_6
221
+ 459672,Male,Yes,45,No,Artist,3,Average,3,Cat_6
222
+ 459673,Female,Yes,86,Yes,Lawyer,1,Low,1,Cat_6
223
+ 459678,Male,No,18,No,Healthcare,1,Low,5,Cat_6
224
+ 459680,Male,No,37,Yes,Entertainment,,Low,1,Cat_6
225
+ 459686,Male,Yes,46,Yes,Artist,1,Low,1,Cat_6
226
+ 459691,Male,Yes,58,No,Artist,,Average,2,Cat_6
227
+ 459692,Female,Yes,72,Yes,Lawyer,8,High,2,Cat_6
228
+ 459693,Female,Yes,50,Yes,Artist,0,High,3,
229
+ 459699,Female,,56,Yes,Engineer,8,Average,3,Cat_6
230
+ 459701,Male,No,46,No,Artist,3,Low,3,Cat_5
231
+ 459710,Male,Yes,57,Yes,Artist,,Low,1,Cat_6
232
+ 459711,Male,Yes,42,No,Executive,9,High,6,Cat_6
233
+ 459712,Male,No,20,No,Healthcare,,Low,4,Cat_6
234
+ 459713,Male,No,19,No,Healthcare,,Low,3,Cat_6
235
+ 459715,Male,No,19,No,Healthcare,4,Low,4,Cat_6
236
+ 459718,Male,Yes,68,Yes,Executive,1,Low,1,Cat_6
237
+ 459725,Female,Yes,40,Yes,Artist,0,Low,2,Cat_6
238
+ 459727,Male,Yes,82,No,Lawyer,,High,2,Cat_6
239
+ 459740,Female,No,23,No,Healthcare,1,Low,3,Cat_6
240
+ 459742,Female,Yes,84,No,Lawyer,1,High,2,Cat_6
241
+ 459745,Male,Yes,51,No,Artist,0,Low,4,Cat_1
242
+ 459746,Male,,59,Yes,Artist,1,Average,2,Cat_6
243
+ 459747,Female,Yes,41,Yes,Artist,1,Average,5,Cat_6
244
+ 459748,Male,Yes,51,No,Executive,1,High,2,Cat_6
245
+ 459755,Female,Yes,62,No,Artist,,Average,3,Cat_6
246
+ 459756,Female,Yes,62,No,Lawyer,1,High,4,Cat_4
247
+ 459760,Female,Yes,38,Yes,Artist,8,Low,1,Cat_6
248
+ 459763,Male,No,18,No,Artist,,Low,4,Cat_4
249
+ 459767,Male,No,22,No,Healthcare,3,Low,4,Cat_6
250
+ 459771,Female,,30,Yes,Doctor,0,Low,3,Cat_3
251
+ 459779,Female,Yes,62,Yes,Entertainment,1,Low,1,Cat_6
252
+ 459780,Female,No,43,No,Entertainment,1,Low,3,Cat_6
253
+ 459785,Female,No,32,Yes,Engineer,,Low,1,Cat_3
254
+ 459793,Male,Yes,37,Yes,Artist,1,High,,Cat_6
255
+ 459795,Male,No,48,Yes,Artist,1,Low,1,Cat_6
256
+ 459801,Female,No,31,Yes,Engineer,4,Low,2,Cat_6
257
+ 459804,Male,Yes,46,No,Artist,4,High,4,Cat_6
258
+ 459806,Female,Yes,49,No,Engineer,1,Average,4,Cat_6
259
+ 459808,Male,Yes,43,No,Doctor,,Average,4,Cat_6
260
+ 459815,Male,No,42,Yes,Artist,8,Low,1,Cat_6
261
+ 459816,Male,Yes,37,Yes,Doctor,,Low,2,Cat_6
262
+ 459819,Male,Yes,72,Yes,Entertainment,,High,2,Cat_6
263
+ 459821,Male,,71,No,Executive,,High,1,
264
+ 459822,Female,No,39,Yes,Engineer,1,Low,1,Cat_4
265
+ 459825,Male,No,20,No,Healthcare,0,Low,5,Cat_2
266
+ 459827,Female,No,26,No,,,Low,1,Cat_7
267
+ 459832,Male,Yes,72,Yes,Executive,1,Low,1,Cat_6
268
+ 459845,Male,Yes,70,Yes,Healthcare,0,Low,1,Cat_4
269
+ 459851,Male,No,45,Yes,Artist,2,Low,1,Cat_6
270
+ 459853,Male,No,33,No,Executive,7,Low,5,Cat_6
271
+ 459856,Male,Yes,50,No,Entertainment,0,Average,3,Cat_6
272
+ 459857,Male,No,31,Yes,Entertainment,6,Low,1,Cat_6
273
+ 459861,Female,Yes,74,No,Lawyer,1,High,2,Cat_6
274
+ 459864,Female,Yes,68,No,Artist,,High,2,Cat_6
275
+ 459866,Female,No,49,Yes,Artist,,Low,1,Cat_6
276
+ 459867,Male,Yes,49,Yes,Marketing,0,High,2,Cat_6
277
+ 459869,Female,No,18,No,Healthcare,1,Low,3,Cat_6
278
+ 459871,Female,Yes,85,No,Entertainment,2,Average,2,Cat_6
279
+ 459885,Female,No,38,Yes,Entertainment,,Low,4,Cat_6
280
+ 459886,Male,Yes,28,No,Artist,0,Low,4,Cat_6
281
+ 459887,Male,Yes,46,No,Artist,3,Average,2,
282
+ 459889,Male,Yes,59,Yes,Homemaker,9,Average,3,Cat_6
283
+ 459897,Female,Yes,56,Yes,Artist,0,Low,2,Cat_6
284
+ 459909,Male,Yes,69,Yes,Artist,0,Low,1,Cat_6
285
+ 459910,Male,Yes,66,Yes,Artist,0,Low,2,Cat_6
286
+ 459911,Male,No,18,No,Healthcare,4,Low,6,Cat_2
287
+ 459914,Male,No,36,Yes,Artist,4,Low,1,Cat_4
288
+ 459923,Male,No,31,Yes,Marketing,1,Low,2,Cat_3
289
+ 459925,Male,Yes,67,No,Executive,1,High,2,Cat_4
290
+ 459937,Female,No,39,Yes,Artist,7,Low,1,Cat_6
291
+ 459943,Male,No,42,Yes,Entertainment,4,Low,3,Cat_6
292
+ 459945,Male,Yes,50,Yes,Artist,0,Low,2,Cat_6
293
+ 459946,Female,Yes,37,Yes,Artist,0,Average,2,Cat_6
294
+ 459949,Female,No,59,Yes,Artist,0,Low,1,Cat_6
295
+ 459953,Male,Yes,50,Yes,Artist,8,Low,2,Cat_6
296
+ 459961,Male,Yes,48,Yes,Artist,8,Low,3,Cat_2
297
+ 459962,Male,Yes,55,Yes,Artist,9,Low,1,Cat_6
298
+ 459966,Female,No,33,Yes,Doctor,1,Low,3,Cat_6
299
+ 459968,Male,No,38,Yes,Artist,13,Low,1,Cat_7
300
+ 459970,Male,No,43,Yes,Artist,0,Low,2,Cat_6
301
+ 459973,Female,No,53,Yes,Artist,0,Low,2,Cat_6
302
+ 459974,Male,No,37,Yes,Entertainment,0,Low,1,Cat_6
303
+ 459975,Female,No,36,Yes,Artist,5,Low,1,Cat_6
304
+ 459981,Male,No,36,Yes,Artist,5,Low,1,Cat_6
305
+ 459986,Male,Yes,62,Yes,Artist,1,Low,1,Cat_6
306
+ 459995,Female,No,38,No,Artist,2,Low,2,Cat_6
307
+ 459996,Male,No,55,Yes,Entertainment,1,Low,1,Cat_6
308
+ 459998,Male,Yes,60,No,Entertainment,1,Average,2,Cat_6
309
+ 460004,Female,Yes,36,Yes,Entertainment,7,Average,2,Cat_5
310
+ 460006,Male,No,30,No,Entertainment,5,Low,9,Cat_3
311
+ 460014,Female,No,66,No,Entertainment,4,Low,3,Cat_6
312
+ 460023,Male,Yes,45,Yes,Entertainment,1,Low,1,Cat_6
313
+ 460027,Female,No,40,Yes,Entertainment,6,Low,,Cat_6
314
+ 460033,Female,,45,Yes,Entertainment,5,Low,3,Cat_6
315
+ 460036,Male,Yes,41,Yes,,2,Low,1,Cat_6
316
+ 460040,Female,Yes,62,Yes,Homemaker,4,Low,1,Cat_5
317
+ 460045,Male,Yes,61,Yes,Artist,1,Low,2,Cat_6
318
+ 460046,Female,Yes,50,Yes,Artist,4,Low,2,Cat_6
319
+ 460050,Male,Yes,53,Yes,Entertainment,3,Low,2,Cat_6
320
+ 460051,Male,No,39,Yes,Artist,7,Low,1,Cat_6
321
+ 460052,Female,No,86,Yes,Lawyer,0,Low,1,Cat_3
322
+ 460058,Male,Yes,50,Yes,Artist,1,Low,1,Cat_4
323
+ 460059,Female,No,46,No,Entertainment,4,Low,,Cat_4
324
+ 460061,Male,No,52,Yes,Marketing,0,Low,1,Cat_3
325
+ 460066,Female,No,45,No,Marketing,0,Low,1,Cat_6
326
+ 460068,Female,No,37,Yes,Artist,9,Low,1,Cat_6
327
+ 460073,Female,Yes,36,Yes,Engineer,3,Low,1,Cat_6
328
+ 460075,Female,No,25,Yes,Artist,,Low,1,Cat_6
329
+ 460079,Female,No,40,No,Doctor,1,Low,1,Cat_6
330
+ 460081,Male,Yes,41,Yes,Artist,11,High,2,Cat_6
331
+ 460088,Female,Yes,25,Yes,Homemaker,,High,2,Cat_6
332
+ 460090,Male,Yes,80,No,Lawyer,4,Average,2,Cat_6
333
+ 460093,Female,No,46,Yes,Artist,3,Low,1,Cat_3
334
+ 460095,Female,Yes,81,Yes,Lawyer,1,Low,1,Cat_6
335
+ 460097,Male,,40,Yes,Artist,0,Low,2,Cat_3
336
+ 460099,Male,No,49,Yes,,1,Low,1,Cat_3
337
+ 460101,Female,No,26,Yes,Healthcare,8,Low,3,Cat_3
338
+ 460103,Male,No,26,Yes,Artist,1,Low,1,Cat_4
339
+ 460105,Female,No,47,Yes,Artist,0,Low,1,Cat_4
340
+ 460106,Female,Yes,71,Yes,Entertainment,0,Low,,Cat_6
341
+ 460107,Male,Yes,48,Yes,Engineer,1,Average,5,Cat_6
342
+ 460108,Male,Yes,39,Yes,Artist,1,Average,3,Cat_2
343
+ 460109,Male,Yes,50,Yes,Artist,8,Average,2,Cat_6
344
+ 460110,Female,No,46,Yes,Artist,1,Low,2,
345
+ 460112,Male,Yes,26,Yes,Engineer,8,Average,2,Cat_3
346
+ 460116,Female,Yes,42,Yes,,1,Low,2,Cat_6
347
+ 460118,Female,Yes,36,Yes,Artist,4,Low,2,Cat_6
348
+ 460119,Male,No,29,Yes,Healthcare,1,Low,4,Cat_6
349
+ 460122,Female,No,39,No,Artist,1,Low,1,Cat_6
350
+ 460124,Female,No,41,Yes,Artist,0,Low,3,Cat_6
351
+ 460126,Female,Yes,48,Yes,Marketing,8,Low,,Cat_6
352
+ 460134,Male,Yes,40,Yes,Entertainment,9,High,3,Cat_6
353
+ 460135,Female,No,25,Yes,Healthcare,4,Low,3,Cat_6
354
+ 460140,Female,Yes,41,Yes,Artist,7,Low,2,Cat_6
355
+ 460141,Male,No,37,Yes,Artist,11,Low,1,Cat_6
356
+ 460144,Female,No,53,Yes,Doctor,0,Low,,Cat_3
357
+ 460146,Female,Yes,51,Yes,Engineer,0,Average,3,Cat_3
358
+ 460147,Male,Yes,73,Yes,Entertainment,1,Average,3,Cat_6
359
+ 460157,Male,Yes,61,No,,1,Low,5,Cat_4
360
+ 460160,Male,No,39,Yes,Entertainment,5,Low,1,Cat_3
361
+ 460162,Female,No,19,No,Healthcare,0,Low,4,Cat_2
362
+ 460166,Female,No,19,No,Healthcare,0,Low,7,Cat_2
363
+ 460167,Female,No,23,No,Entertainment,1,Low,5,Cat_2
364
+ 460168,Male,Yes,83,Yes,Executive,0,High,2,Cat_2
365
+ 460171,Female,Yes,62,Yes,Artist,1,High,2,Cat_6
366
+ 460174,Female,No,43,Yes,Artist,9,Low,4,Cat_6
367
+ 460175,Female,No,27,No,Artist,0,Low,5,Cat_2
368
+ 460177,Male,No,50,Yes,Artist,0,Low,1,Cat_6
369
+ 460179,Female,No,23,No,Entertainment,0,Low,6,Cat_2
370
+ 460183,Male,No,35,No,Entertainment,9,Low,2,Cat_6
371
+ 460185,Male,No,32,No,Healthcare,9,Low,3,Cat_6
372
+ 460187,Female,No,42,Yes,Doctor,2,Low,3,Cat_6
373
+ 460189,Male,No,33,No,Entertainment,13,Low,1,Cat_6
374
+ 460190,Female,No,28,Yes,Entertainment,9,Low,3,Cat_6
375
+ 460192,Male,Yes,35,Yes,,1,Low,2,Cat_7
376
+ 460196,Female,No,35,Yes,Healthcare,9,Low,2,Cat_6
377
+ 460206,Female,Yes,39,Yes,Entertainment,0,Low,2,Cat_6
378
+ 460211,Male,Yes,28,,Artist,6,Low,1,Cat_6
379
+ 460212,Male,Yes,35,Yes,Entertainment,11,Low,6,Cat_6
380
+ 460214,Female,Yes,45,Yes,Engineer,0,Average,2,Cat_6
381
+ 460222,Female,,73,Yes,Lawyer,4,High,,Cat_6
382
+ 460223,Male,No,52,No,Entertainment,1,Low,1,Cat_6
383
+ 460227,Male,No,28,No,Healthcare,0,Low,3,Cat_6
384
+ 460242,Male,Yes,38,Yes,Healthcare,9,Low,3,Cat_6
385
+ 460243,Female,No,42,Yes,Entertainment,8,Low,1,Cat_6
386
+ 460247,Female,No,26,No,Doctor,9,Low,,Cat_6
387
+ 460248,Female,No,27,Yes,Healthcare,7,Low,2,Cat_6
388
+ 460252,Male,Yes,41,Yes,Artist,0,Low,2,Cat_6
389
+ 460263,Male,Yes,41,Yes,Artist,1,Low,2,Cat_6
390
+ 460265,Male,Yes,47,Yes,Executive,0,High,4,Cat_6
391
+ 460270,Male,No,35,Yes,Doctor,8,Low,1,Cat_6
392
+ 460272,Female,No,88,Yes,Lawyer,0,Low,1,Cat_6
393
+ 460275,Female,No,46,Yes,Artist,6,Low,1,Cat_6
394
+ 460276,Female,Yes,41,Yes,Artist,3,Low,2,Cat_6
395
+ 460281,Female,No,30,Yes,Doctor,10,Low,5,Cat_6
396
+ 460283,Male,Yes,43,Yes,Doctor,12,Low,2,Cat_6
397
+ 460284,Female,No,29,Yes,Entertainment,9,Low,2,Cat_6
398
+ 460287,Male,Yes,48,Yes,Artist,1,Low,1,Cat_6
399
+ 460289,Female,Yes,61,Yes,Artist,4,Average,6,Cat_4
400
+ 460298,Female,No,51,Yes,Lawyer,2,Low,1,Cat_6
401
+ 460303,Female,No,38,Yes,Artist,2,Low,1,
402
+ 460305,Female,,49,Yes,Entertainment,0,High,1,Cat_6
403
+ 460306,Female,No,43,Yes,Healthcare,9,Low,1,Cat_6
404
+ 460310,Male,No,27,No,Healthcare,14,Low,4,Cat_6
405
+ 460315,Female,No,35,No,Doctor,14,Low,6,Cat_7
406
+ 460319,Female,Yes,39,No,Doctor,4,Average,2,Cat_7
407
+ 460322,Female,Yes,52,No,Engineer,9,Low,,Cat_6
408
+ 460323,Female,No,38,Yes,Engineer,10,Low,1,Cat_6
409
+ 460324,Female,No,30,Yes,Entertainment,12,Low,2,Cat_6
410
+ 460327,Female,No,43,Yes,Artist,10,Low,1,Cat_6
411
+ 460333,Female,No,42,No,Entertainment,10,Low,4,Cat_6
412
+ 460336,Female,No,46,Yes,Artist,2,Low,1,Cat_7
413
+ 460340,Female,No,47,Yes,Artist,11,Low,2,Cat_6
414
+ 460341,Female,No,32,No,Entertainment,13,Low,5,Cat_7
415
+ 460344,Female,Yes,53,Yes,Artist,11,Average,2,Cat_6
416
+ 460346,Female,Yes,43,Yes,Artist,12,Average,,Cat_6
417
+ 460348,Female,No,39,Yes,Artist,0,Low,2,Cat_6
418
+ 460349,Male,,42,Yes,Artist,3,Average,2,Cat_6
419
+ 460354,Female,No,37,Yes,Artist,3,Low,1,Cat_3
420
+ 460356,Male,No,19,No,Healthcare,0,Low,4,Cat_6
421
+ 460358,Male,No,30,No,Marketing,1,Low,1,Cat_3
422
+ 460361,Female,Yes,49,Yes,Artist,0,Low,1,Cat_4
423
+ 460362,Male,Yes,55,Yes,Healthcare,0,Low,3,Cat_4
424
+ 460365,Female,Yes,59,Yes,Doctor,1,Low,2,Cat_4
425
+ 460369,Female,Yes,46,Yes,Artist,,Low,2,Cat_6
426
+ 460370,Female,Yes,27,Yes,Executive,9,High,2,Cat_6
427
+ 460371,Female,No,25,Yes,Artist,1,Low,2,Cat_6
428
+ 460378,Female,No,37,Yes,Doctor,1,Low,1,Cat_6
429
+ 460379,Male,No,38,Yes,Artist,9,Low,3,Cat_6
430
+ 460380,Male,No,29,Yes,Entertainment,9,Low,3,Cat_6
431
+ 460381,Male,No,28,Yes,Artist,11,Low,2,Cat_6
432
+ 460384,Female,Yes,27,Yes,Marketing,8,Low,2,Cat_6
433
+ 460387,Female,No,42,No,Entertainment,3,Low,2,Cat_6
434
+ 460388,Female,No,43,Yes,Artist,14,Low,2,Cat_6
435
+ 460389,Female,Yes,40,Yes,Healthcare,8,Average,2,Cat_6
436
+ 460390,Male,No,41,Yes,Artist,9,Low,3,Cat_6
437
+ 460392,Male,Yes,46,No,Entertainment,8,Low,1,Cat_1
438
+ 460394,Female,No,32,Yes,Healthcare,9,Low,3,Cat_6
439
+ 460397,Female,No,56,Yes,Entertainment,1,Low,1,Cat_6
440
+ 460399,Male,No,28,Yes,Marketing,12,Low,1,Cat_6
441
+ 460401,Female,No,25,Yes,Artist,0,Low,3,Cat_7
442
+ 460404,Male,Yes,42,Yes,Artist,6,Low,7,Cat_6
443
+ 460405,Female,No,41,Yes,Entertainment,5,Low,2,Cat_6
444
+ 460406,Male,Yes,36,Yes,Healthcare,3,Low,2,Cat_6
445
+ 460408,Female,No,42,Yes,Artist,2,Low,1,Cat_6
446
+ 460409,Female,No,42,Yes,Artist,8,Low,4,Cat_6
447
+ 460415,Female,No,55,Yes,Entertainment,1,Low,2,Cat_6
448
+ 460422,Male,Yes,52,Yes,Entertainment,1,High,,Cat_6
449
+ 460431,Female,No,47,Yes,Engineer,1,Low,1,Cat_6
450
+ 460434,Male,,57,Yes,Artist,2,High,3,Cat_6
451
+ 460437,Female,No,26,Yes,Artist,8,Low,1,Cat_6
452
+ 460440,Female,No,28,No,Artist,5,Low,2,Cat_6
453
+ 460443,Female,No,37,Yes,Doctor,0,Low,1,Cat_6
454
+ 460447,Male,,89,No,Lawyer,0,Low,1,Cat_3
455
+ 460449,Male,No,25,No,Marketing,2,Low,1,Cat_3
456
+ 460450,Male,Yes,50,Yes,Executive,1,High,4,Cat_4
457
+ 460453,Female,No,42,Yes,Doctor,5,Low,1,Cat_6
458
+ 460454,Male,No,48,Yes,Artist,,Low,1,Cat_6
459
+ 460457,Female,No,37,Yes,Entertainment,9,Low,,Cat_3
460
+ 460459,Female,No,30,No,Engineer,1,Low,5,Cat_3
461
+ 460460,Male,Yes,26,No,Entertainment,2,Low,4,Cat_3
462
+ 460467,Female,Yes,47,Yes,Artist,,Average,2,Cat_6
463
+ 460470,Male,No,36,No,Healthcare,,Low,4,Cat_4
464
+ 460476,Male,Yes,53,No,Doctor,,Average,4,Cat_3
465
+ 460477,Male,No,30,No,Entertainment,1,Low,6,Cat_3
466
+ 460484,Female,No,20,No,Healthcare,4,Low,7,Cat_3
467
+ 460485,Female,No,19,No,Marketing,8,Low,5,Cat_3
468
+ 460489,Male,No,19,No,Healthcare,9,Low,6,Cat_3
469
+ 460492,Female,No,37,No,Marketing,12,Low,,Cat_3
470
+ 460495,Male,No,20,No,Healthcare,0,Low,6,Cat_3
471
+ 460504,Male,,39,No,Executive,,Average,3,Cat_3
472
+ 460505,Female,No,26,Yes,Engineer,1,Low,3,Cat_3
473
+ 460507,Male,No,31,No,Doctor,0,Low,4,Cat_3
474
+ 460508,Male,Yes,31,Yes,Healthcare,2,High,3,Cat_3
475
+ 460518,Female,Yes,41,Yes,Engineer,9,Average,3,Cat_3
476
+ 460522,Female,Yes,32,No,Homemaker,,Average,2,Cat_4
477
+ 460541,Female,Yes,42,Yes,Homemaker,0,Average,3,Cat_3
478
+ 460542,Female,Yes,89,No,Lawyer,1,Low,,Cat_3
479
+ 460545,Male,Yes,78,No,Lawyer,1,High,3,Cat_3
480
+ 460546,Female,Yes,65,Yes,Lawyer,1,Low,2,Cat_3
481
+ 460547,Female,Yes,48,Yes,Homemaker,0,Average,,Cat_3
482
+ 460549,Male,No,36,Yes,Artist,8,Low,2,Cat_3
483
+ 460550,Female,Yes,55,Yes,Artist,0,Average,4,Cat_3
484
+ 460551,Male,Yes,52,Yes,Engineer,0,Average,2,Cat_3
485
+ 460555,Male,Yes,52,Yes,Homemaker,7,Average,3,Cat_3
486
+ 460556,Female,Yes,41,Yes,,1,Low,1,Cat_3
487
+ 460558,Female,Yes,36,Yes,Engineer,,Low,1,Cat_3
488
+ 460561,Female,No,37,No,Engineer,7,Low,1,Cat_3
489
+ 460563,Female,No,40,No,Healthcare,1,Low,2,Cat_1
490
+ 460566,Male,Yes,38,Yes,Homemaker,,Average,2,Cat_3
491
+ 460571,Male,No,25,No,Doctor,0,Low,3,Cat_3
492
+ 460572,Female,No,33,Yes,Engineer,1,Low,4,Cat_3
493
+ 460574,Male,No,26,Yes,Artist,1,Low,1,Cat_3
494
+ 460582,Female,No,28,No,Entertainment,0,Low,1,Cat_3
495
+ 460583,Male,No,18,No,Marketing,0,Low,6,Cat_3
496
+ 460585,Male,No,52,No,Entertainment,0,Low,3,Cat_3
497
+ 460586,Male,No,26,Yes,Healthcare,0,Low,2,Cat_3
498
+ 460588,Male,No,18,No,Healthcare,0,Low,4,Cat_3
499
+ 460597,Female,No,20,No,Marketing,1,Low,2,Cat_3
500
+ 460598,Female,Yes,36,Yes,Doctor,0,Average,3,Cat_3
501
+ 460605,Male,Yes,27,Yes,Doctor,8,Average,2,Cat_4
502
+ 460606,Male,No,21,No,Healthcare,,Low,5,Cat_7
503
+ 460612,Male,No,27,Yes,Entertainment,8,Low,4,Cat_3
504
+ 460615,Female,No,28,Yes,Healthcare,,Low,,Cat_3
505
+ 460618,Male,Yes,63,Yes,Lawyer,,Low,4,Cat_3
506
+ 460619,Male,No,48,Yes,Entertainment,,Low,,Cat_3
507
+ 460621,Male,Yes,80,Yes,Lawyer,1,Low,2,Cat_3
508
+ 460622,Female,Yes,71,Yes,Lawyer,7,High,3,Cat_3
509
+ 460626,Male,Yes,47,No,Doctor,8,High,4,Cat_6
510
+ 460627,Female,No,22,No,,1,Low,4,Cat_3
511
+ 460633,Male,Yes,35,Yes,,,High,2,Cat_3
512
+ 460634,Female,No,40,No,Entertainment,,Low,6,Cat_3
513
+ 460637,Female,No,18,No,Healthcare,,Low,,Cat_3
514
+ 460638,Female,No,26,Yes,Artist,0,Low,4,Cat_3
515
+ 460639,Female,Yes,73,Yes,Lawyer,,Low,5,Cat_1
516
+ 460640,Male,Yes,86,,Lawyer,,Low,1,Cat_3
517
+ 460645,Female,No,37,No,Doctor,1,Low,2,Cat_3
518
+ 460646,Male,Yes,59,Yes,Entertainment,,Low,,Cat_3
519
+ 460653,Female,No,28,No,Homemaker,8,Low,1,Cat_4
520
+ 460656,Female,Yes,29,Yes,Artist,9,Low,3,Cat_6
521
+ 460658,Female,Yes,37,Yes,Marketing,7,Average,3,Cat_6
522
+ 460659,Female,Yes,46,Yes,Marketing,,Average,3,Cat_6
523
+ 460660,Male,No,39,,Entertainment,6,Low,1,Cat_6
524
+ 460661,Female,No,33,No,Homemaker,8,Low,1,Cat_6
525
+ 460668,Female,No,32,Yes,Doctor,,Low,2,Cat_3
526
+ 460678,Female,No,32,No,Doctor,6,Low,2,Cat_3
527
+ 460686,Female,,25,No,Homemaker,8,Low,1,Cat_3
528
+ 460687,Female,Yes,48,Yes,Homemaker,9,Average,2,Cat_3
529
+ 460691,Female,No,27,No,Homemaker,8,Low,1,Cat_3
530
+ 460702,Female,No,49,Yes,Artist,1,Low,1,Cat_6
531
+ 460703,Female,Yes,33,Yes,Engineer,8,Average,5,Cat_4
532
+ 460706,Female,No,33,No,Engineer,7,Low,6,Cat_4
533
+ 460708,Male,Yes,39,Yes,Artist,0,Low,3,Cat_6
534
+ 460716,Male,Yes,50,Yes,Entertainment,0,Average,4,Cat_6
535
+ 460719,Female,Yes,84,Yes,Lawyer,0,Low,,Cat_3
536
+ 460720,Female,Yes,46,Yes,Artist,0,Average,2,Cat_6
537
+ 460722,Male,Yes,31,No,Entertainment,0,Average,3,Cat_3
538
+ 460726,Male,Yes,57,Yes,Artist,3,Average,2,Cat_6
539
+ 460727,Male,Yes,73,No,Executive,1,High,4,Cat_3
540
+ 460729,Male,Yes,36,Yes,Entertainment,9,Low,4,Cat_6
541
+ 460733,Male,No,53,Yes,Marketing,2,Low,4,Cat_6
542
+ 460734,Male,Yes,41,Yes,Entertainment,9,Average,,Cat_2
543
+ 460738,Female,No,53,No,Engineer,0,Low,,Cat_7
544
+ 460740,Male,Yes,35,Yes,Artist,2,Average,3,Cat_6
545
+ 460743,Male,Yes,62,Yes,Artist,0,Average,3,Cat_6
546
+ 460746,Male,No,23,No,Marketing,0,Low,3,Cat_6
547
+ 460763,Male,No,51,Yes,Artist,1,Low,2,Cat_6
548
+ 460769,Female,Yes,83,No,Lawyer,1,High,2,Cat_6
549
+ 460780,Female,No,26,Yes,Healthcare,0,Low,2,Cat_3
550
+ 460783,Male,Yes,86,Yes,Lawyer,1,Low,1,Cat_6
551
+ 460785,Male,No,26,Yes,Healthcare,0,Low,4,Cat_7
552
+ 460789,Male,Yes,42,Yes,Executive,0,Low,3,Cat_6
553
+ 460794,Female,Yes,41,Yes,Homemaker,9,Low,1,Cat_6
554
+ 460796,Male,Yes,67,No,Lawyer,0,Low,3,Cat_6
555
+ 460802,Male,Yes,68,Yes,Lawyer,1,High,2,Cat_6
556
+ 460811,Female,Yes,45,No,Engineer,0,High,2,Cat_6
557
+ 460813,Female,Yes,86,No,Lawyer,0,High,2,Cat_6
558
+ 460815,Male,Yes,62,Yes,Artist,0,High,2,Cat_3
559
+ 460822,Male,Yes,42,Yes,Artist,1,Low,2,Cat_6
560
+ 460825,Male,No,26,Yes,Doctor,0,Low,3,Cat_4
561
+ 460828,Male,No,48,No,Entertainment,1,Low,1,Cat_6
562
+ 460830,Male,Yes,40,No,Entertainment,3,Average,5,Cat_2
563
+ 460831,Male,No,20,No,Healthcare,0,Low,4,Cat_6
564
+ 460837,Female,No,25,Yes,Artist,1,Low,1,Cat_5
565
+ 460838,Male,No,37,Yes,Artist,1,Low,,Cat_6
566
+ 460840,Male,Yes,77,Yes,Lawyer,1,Low,1,Cat_6
567
+ 460844,Male,Yes,50,Yes,Healthcare,,Low,2,Cat_6
568
+ 460846,Female,No,22,No,Marketing,0,Low,4,Cat_6
569
+ 460847,Male,No,26,Yes,Artist,1,Low,3,Cat_6
570
+ 460851,Male,Yes,71,No,Doctor,0,Average,3,Cat_6
571
+ 460855,Male,Yes,50,Yes,Artist,,Low,2,Cat_6
572
+ 460857,Male,No,29,No,Entertainment,1,Low,1,Cat_4
573
+ 460859,Male,Yes,51,Yes,Entertainment,,Low,4,Cat_6
574
+ 460860,Male,Yes,52,Yes,Artist,6,Average,4,Cat_6
575
+ 460861,Male,No,20,No,Healthcare,1,Low,3,Cat_3
576
+ 460866,Male,No,26,Yes,Doctor,0,Low,9,Cat_4
577
+ 460870,Male,No,37,Yes,Healthcare,,Low,,Cat_4
578
+ 460871,Female,No,33,Yes,Healthcare,,Low,,Cat_6
579
+ 460872,Female,Yes,39,Yes,Artist,0,Low,2,Cat_4
580
+ 460877,Female,Yes,53,No,Artist,1,Average,5,Cat_6
581
+ 460878,Male,Yes,49,No,Entertainment,0,Average,4,Cat_6
582
+ 460882,Male,No,21,No,Healthcare,0,Low,2,Cat_3
583
+ 460888,Male,Yes,39,No,Homemaker,8,Low,1,Cat_6
584
+ 460891,Female,Yes,38,No,Artist,2,Average,4,Cat_3
585
+ 460897,Male,No,22,No,Healthcare,4,Low,4,Cat_6
586
+ 460898,Male,Yes,52,No,Artist,2,Average,4,Cat_6
587
+ 460899,Male,No,40,Yes,Entertainment,,Low,3,Cat_6
588
+ 460901,Male,No,20,No,Doctor,8,Low,3,Cat_6
589
+ 460902,Male,No,41,Yes,Executive,1,Low,3,Cat_6
590
+ 460905,Male,No,30,Yes,Artist,1,Low,1,Cat_3
591
+ 460906,Female,Yes,89,Yes,Lawyer,1,High,3,Cat_6
592
+ 460907,Male,Yes,83,No,Lawyer,1,High,3,Cat_6
593
+ 460923,Male,Yes,53,Yes,Artist,0,Average,3,Cat_6
594
+ 460924,Male,No,31,No,Doctor,1,Low,5,Cat_2
595
+ 460928,Male,Yes,48,Yes,Artist,1,Average,4,Cat_6
596
+ 460934,Female,No,29,No,Doctor,0,Low,2,Cat_6
597
+ 460935,Male,Yes,87,Yes,Lawyer,0,Low,1,Cat_6
598
+ 460945,Male,No,19,No,Engineer,4,Low,7,Cat_6
599
+ 460953,Male,Yes,60,No,Entertainment,1,Low,2,Cat_6
600
+ 460961,Male,No,23,No,Healthcare,1,Low,2,Cat_3
601
+ 460962,Male,Yes,61,Yes,Executive,9,High,4,Cat_6
602
+ 460963,Female,No,27,Yes,Artist,1,Low,3,Cat_6
603
+ 460968,Male,Yes,32,No,Doctor,14,Average,2,Cat_3
604
+ 460975,Male,Yes,79,,Lawyer,0,High,2,Cat_6
605
+ 460976,Male,No,19,No,Healthcare,1,Low,4,Cat_6
606
+ 460977,Male,Yes,42,Yes,Executive,0,High,3,Cat_4
607
+ 460979,Male,Yes,76,No,Lawyer,1,Low,1,Cat_6
608
+ 460981,Female,Yes,41,No,Marketing,1,Average,2,Cat_6
609
+ 460984,Male,Yes,38,Yes,Entertainment,0,Average,4,Cat_6
610
+ 460988,Male,Yes,43,Yes,Entertainment,0,Average,3,Cat_4
611
+ 460989,Male,No,19,No,Healthcare,1,Low,3,Cat_1
612
+ 460991,Female,No,28,Yes,Healthcare,1,Low,3,Cat_7
613
+ 460993,Male,Yes,56,Yes,Artist,0,Average,4,Cat_6
614
+ 460999,Male,No,28,Yes,Engineer,0,Low,3,Cat_3
615
+ 461000,Male,Yes,60,No,Marketing,1,High,2,Cat_3
616
+ 461001,Female,No,55,Yes,Artist,0,Low,,Cat_3
617
+ 461015,Male,Yes,35,Yes,Entertainment,1,Average,2,Cat_3
618
+ 461016,Male,No,25,No,Healthcare,5,Low,5,Cat_3
619
+ 461022,Male,Yes,71,Yes,Artist,1,Low,1,Cat_3
620
+ 461023,Male,Yes,65,No,Lawyer,,High,2,Cat_3
621
+ 461024,Male,Yes,74,Yes,Lawyer,1,Low,1,Cat_6
622
+ 461028,Female,No,20,No,Healthcare,5,Low,4,Cat_4
623
+ 461029,Male,Yes,43,No,Entertainment,9,Low,2,Cat_4
624
+ 461034,Female,No,20,No,Marketing,3,Low,6,Cat_3
625
+ 461037,Male,Yes,40,Yes,Healthcare,,High,5,Cat_3
626
+ 461038,Female,Yes,46,Yes,Engineer,0,High,5,Cat_3
627
+ 461041,Female,Yes,65,No,Lawyer,1,High,7,Cat_3
628
+ 461042,Male,No,21,No,Healthcare,0,Low,,Cat_4
629
+ 461043,Male,Yes,50,No,Healthcare,1,Low,7,Cat_4
630
+ 461044,Male,No,18,No,Healthcare,0,Low,5,Cat_4
631
+ 461049,Female,Yes,61,Yes,Doctor,1,Low,7,Cat_7
632
+ 461050,Male,Yes,49,Yes,,1,High,3,Cat_6
633
+ 461053,Male,Yes,39,No,Executive,,High,4,Cat_3
634
+ 461059,Female,Yes,52,No,Lawyer,1,High,2,Cat_6
635
+ 461060,Male,Yes,56,Yes,Executive,0,High,5,Cat_6
636
+ 461065,Male,Yes,55,Yes,Executive,,Low,6,Cat_3
637
+ 461071,Male,Yes,42,No,Engineer,1,Average,5,Cat_3
638
+ 461078,Female,No,33,No,Homemaker,0,Low,6,Cat_3
639
+ 461082,Male,No,19,No,Healthcare,8,Low,4,Cat_1
640
+ 461085,Female,No,27,No,Engineer,1,Low,1,Cat_3
641
+ 461093,Female,Yes,38,Yes,Artist,1,Average,4,Cat_3
642
+ 461099,Female,No,38,No,Artist,1,Low,4,Cat_3
643
+ 461111,Female,Yes,43,Yes,Doctor,8,Low,1,Cat_6
644
+ 461114,Male,Yes,53,Yes,Artist,1,Average,4,Cat_3
645
+ 461116,Male,Yes,33,No,Executive,4,High,4,Cat_3
646
+ 461118,Female,No,30,Yes,Healthcare,7,Low,,Cat_3
647
+ 461119,Female,No,22,No,Healthcare,6,Low,3,Cat_3
648
+ 461121,Male,No,33,No,Doctor,0,Low,4,Cat_3
649
+ 461124,Male,No,21,No,Healthcare,1,Low,8,Cat_4
650
+ 461127,Male,No,20,No,Healthcare,1,Low,5,Cat_4
651
+ 461128,Male,No,19,No,Healthcare,7,Low,3,Cat_6
652
+ 461129,Female,Yes,58,Yes,Entertainment,1,Average,4,Cat_6
653
+ 461131,Male,Yes,67,Yes,Artist,1,High,,Cat_6
654
+ 461145,Female,Yes,36,Yes,Entertainment,1,Low,2,Cat_3
655
+ 461152,Female,No,30,No,Homemaker,8,Low,,Cat_3
656
+ 461154,Male,No,23,No,Homemaker,1,Low,4,Cat_3
657
+ 461158,Female,No,42,Yes,Entertainment,1,Low,,Cat_3
658
+ 461162,Female,No,37,No,Marketing,8,Low,3,Cat_3
659
+ 461163,Female,Yes,58,No,Entertainment,9,Low,4,Cat_3
660
+ 461168,Female,Yes,26,No,Engineer,7,Average,2,Cat_3
661
+ 461169,Male,No,39,Yes,Entertainment,9,Low,2,Cat_3
662
+ 461174,Female,No,23,No,Marketing,,Low,4,Cat_3
663
+ 461177,Male,Yes,41,No,Executive,8,Average,4,Cat_1
664
+ 461178,Male,Yes,26,No,Entertainment,0,Low,3,Cat_3
665
+ 461179,Female,Yes,25,No,Engineer,3,Low,3,Cat_3
666
+ 461181,Male,No,19,No,Healthcare,,Low,4,Cat_3
667
+ 461183,Male,No,36,No,Executive,0,Low,5,Cat_3
668
+ 461187,Male,No,29,No,Healthcare,9,Low,4,Cat_3
669
+ 461197,Male,No,26,No,Marketing,1,Low,1,Cat_3
670
+ 461198,Female,No,78,Yes,Lawyer,,Low,1,Cat_6
671
+ 461201,Female,No,55,Yes,Artist,,Low,1,Cat_6
672
+ 461205,Male,No,26,Yes,Healthcare,,Low,3,Cat_2
673
+ 461211,Female,No,46,Yes,Entertainment,0,Low,1,Cat_6
674
+ 461214,Male,No,29,No,Healthcare,0,Low,4,Cat_6
675
+ 461215,Female,No,36,Yes,Artist,10,Low,1,Cat_6
676
+ 461218,Male,Yes,27,No,Executive,1,Low,6,Cat_6
677
+ 461220,Female,No,29,No,Executive,8,Low,3,Cat_6
678
+ 461221,Female,No,25,No,Marketing,1,Low,4,Cat_6
679
+ 461225,Female,No,30,No,Marketing,10,Low,6,Cat_6
680
+ 461226,Male,Yes,45,Yes,,1,Low,2,Cat_6
681
+ 461230,Female,No,21,No,Executive,0,Low,,Cat_3
682
+ 461232,Female,Yes,41,Yes,Executive,,High,,Cat_3
683
+ 461233,Male,Yes,38,Yes,Entertainment,,Low,,Cat_3
684
+ 461236,Female,No,28,Yes,Healthcare,9,Low,1,Cat_6
685
+ 461237,Male,No,33,Yes,Doctor,1,Low,5,Cat_2
686
+ 461241,Male,Yes,31,Yes,Healthcare,7,Low,2,Cat_6
687
+ 461242,Male,Yes,45,Yes,Healthcare,0,Low,2,Cat_6
688
+ 461243,Male,Yes,47,Yes,Marketing,0,Low,5,Cat_6
689
+ 461248,Female,No,39,No,Healthcare,0,Low,1,Cat_6
690
+ 461251,Female,No,47,Yes,Marketing,1,Low,,Cat_6
691
+ 461252,Female,Yes,53,Yes,Doctor,0,Low,1,Cat_3
692
+ 461256,Male,No,27,No,Doctor,1,Low,4,Cat_4
693
+ 461257,Male,Yes,37,Yes,Engineer,1,Average,2,Cat_4
694
+ 461258,Female,Yes,62,Yes,Artist,1,Average,3,Cat_4
695
+ 461262,Female,No,29,No,Engineer,0,Low,7,Cat_4
696
+ 461263,Female,Yes,51,Yes,Artist,0,Low,1,Cat_4
697
+ 461265,Male,No,30,No,Marketing,1,Low,6,Cat_4
698
+ 461269,Male,No,18,No,Entertainment,0,Low,4,Cat_4
699
+ 461274,Female,Yes,87,Yes,Lawyer,,High,2,Cat_6
700
+ 461276,Male,Yes,68,Yes,Marketing,0,Low,2,Cat_7
701
+ 461277,Male,Yes,84,Yes,Lawyer,5,Low,1,Cat_6
702
+ 461281,Male,No,22,No,Healthcare,2,Low,9,Cat_2
703
+ 461286,Female,No,22,No,Doctor,2,Low,4,Cat_6
704
+ 461289,Male,No,21,No,Healthcare,1,Low,3,Cat_6
705
+ 461292,Female,Yes,89,No,Lawyer,,High,2,Cat_3
706
+ 461297,Male,Yes,73,No,Lawyer,0,High,2,Cat_6
707
+ 461299,Female,Yes,75,Yes,Lawyer,0,High,2,Cat_6
708
+ 461303,Female,No,20,No,Doctor,6,Low,4,Cat_2
709
+ 461308,Male,No,22,No,Healthcare,1,Low,2,Cat_6
710
+ 461309,Female,No,22,No,Healthcare,0,Low,4,Cat_6
711
+ 461313,Male,Yes,63,Yes,Artist,0,Average,,Cat_6
712
+ 461314,Male,Yes,46,Yes,Artist,1,Average,3,Cat_6
713
+ 461319,Male,Yes,58,No,Artist,0,Average,2,Cat_6
714
+ 461320,Female,No,41,Yes,Artist,1,Low,3,Cat_6
715
+ 461322,Male,Yes,42,Yes,Artist,0,Average,2,Cat_6
716
+ 461323,Female,Yes,43,Yes,Healthcare,6,Average,2,Cat_6
717
+ 461324,Female,No,49,Yes,Artist,3,Low,1,Cat_6
718
+ 461326,Female,No,40,Yes,Artist,0,Low,1,Cat_6
719
+ 461335,Male,Yes,53,No,Executive,8,High,2,Cat_6
720
+ 461340,Male,Yes,36,Yes,Artist,4,Average,2,Cat_7
721
+ 461346,Male,Yes,50,Yes,Artist,8,Low,2,Cat_6
722
+ 461348,Male,Yes,42,Yes,Healthcare,1,Low,1,Cat_6
723
+ 461350,Male,No,30,No,Healthcare,0,Low,4,Cat_2
724
+ 461352,Male,No,29,No,Healthcare,2,Low,5,Cat_2
725
+ 461356,Male,No,28,Yes,Entertainment,1,Low,2,Cat_6
726
+ 461357,Male,No,27,Yes,Healthcare,1,Low,4,Cat_6
727
+ 461363,Male,No,49,Yes,Artist,0,Low,1,Cat_6
728
+ 461366,Male,No,32,Yes,Healthcare,1,Low,1,Cat_6
729
+ 461370,Male,No,25,Yes,Doctor,1,Low,3,Cat_6
730
+ 461377,Female,Yes,63,Yes,Artist,,Low,1,Cat_6
731
+ 461378,Female,No,42,Yes,Artist,8,Low,1,Cat_6
732
+ 461379,Male,No,31,Yes,Healthcare,1,Low,,Cat_5
733
+ 461383,Male,Yes,71,Yes,Artist,0,High,2,Cat_6
734
+ 461388,Male,No,20,No,Healthcare,,Low,5,Cat_2
735
+ 461397,Male,No,22,No,Healthcare,1,Low,4,Cat_6
736
+ 461402,Female,No,29,Yes,Entertainment,1,Low,5,Cat_6
737
+ 461408,Male,Yes,47,Yes,Marketing,0,Low,3,Cat_6
738
+ 461421,Male,Yes,43,Yes,Artist,,Average,3,Cat_6
739
+ 461423,Male,No,32,Yes,Artist,1,Low,3,Cat_4
740
+ 461426,Male,Yes,47,Yes,Artist,7,Average,2,Cat_6
741
+ 461428,Male,No,46,Yes,Artist,0,Low,1,Cat_6
742
+ 461432,Female,Yes,41,Yes,Artist,1,Average,2,Cat_6
743
+ 461437,Male,Yes,37,Yes,Entertainment,0,Average,2,Cat_6
744
+ 461439,Male,Yes,40,Yes,Artist,0,Average,2,Cat_6
745
+ 461441,Male,Yes,60,Yes,Artist,0,Average,4,Cat_6
746
+ 461442,Male,Yes,46,Yes,Artist,0,Average,6,Cat_2
747
+ 461454,Female,Yes,36,Yes,Artist,6,High,4,Cat_7
748
+ 461456,Female,No,38,No,Marketing,0,Low,1,Cat_6
749
+ 461457,Female,Yes,32,No,Doctor,0,Low,5,Cat_6
750
+ 461458,Female,No,41,Yes,Artist,5,Low,1,Cat_6
751
+ 461462,Male,Yes,56,Yes,Marketing,0,Low,3,Cat_6
752
+ 461465,Male,Yes,31,Yes,Artist,8,Average,2,Cat_6
753
+ 461466,Male,Yes,45,No,Artist,0,Low,2,Cat_7
754
+ 461468,Male,Yes,69,Yes,Entertainment,,Average,3,Cat_6
755
+ 461469,Male,Yes,37,Yes,Artist,0,Low,2,Cat_6
756
+ 461476,Male,Yes,47,Yes,Artist,1,Average,4,Cat_2
757
+ 461479,Female,Yes,52,Yes,Artist,1,Average,3,Cat_6
758
+ 461480,Female,Yes,57,Yes,Artist,1,High,3,Cat_6
759
+ 461482,Female,No,50,Yes,Artist,9,Low,1,Cat_6
760
+ 461494,Male,Yes,27,No,Engineer,0,Average,2,Cat_6
761
+ 461501,Female,Yes,45,Yes,Engineer,1,High,3,Cat_6
762
+ 461503,Female,No,30,Yes,Artist,8,Low,2,Cat_6
763
+ 461510,Male,Yes,45,Yes,Artist,0,Low,2,Cat_6
764
+ 461514,Male,No,30,No,Healthcare,1,Low,4,Cat_6
765
+ 461516,Male,Yes,31,Yes,Entertainment,1,Average,3,Cat_6
766
+ 461518,Female,Yes,45,Yes,Artist,1,Average,4,Cat_3
767
+ 461521,Male,Yes,67,Yes,Artist,0,High,2,Cat_6
768
+ 461522,Male,Yes,76,No,Executive,1,High,2,Cat_6
769
+ 461525,Male,Yes,69,Yes,Entertainment,0,Low,2,Cat_6
770
+ 461526,Male,Yes,83,No,Entertainment,0,Low,2,Cat_6
771
+ 461530,Male,Yes,38,Yes,Engineer,0,Low,2,Cat_6
772
+ 461534,Male,Yes,36,Yes,Artist,0,Low,1,Cat_6
773
+ 461540,Male,No,41,Yes,,2,Low,2,Cat_2
774
+ 461546,Female,Yes,69,No,Lawyer,0,Low,3,Cat_6
775
+ 461548,Female,No,33,Yes,Engineer,0,Low,3,Cat_6
776
+ 461553,Male,No,38,Yes,Artist,1,Low,3,Cat_7
777
+ 461556,Female,Yes,48,Yes,Engineer,1,Average,2,Cat_6
778
+ 461558,Male,Yes,51,Yes,Engineer,2,Average,2,Cat_6
779
+ 461564,Male,Yes,56,Yes,Executive,1,High,2,Cat_6
780
+ 461570,Male,Yes,57,Yes,Artist,0,Average,3,Cat_6
781
+ 461574,Female,Yes,49,Yes,Artist,1,Average,3,Cat_6
782
+ 461587,Male,No,30,Yes,Healthcare,0,Low,3,Cat_6
783
+ 461593,Female,Yes,40,Yes,Doctor,8,Average,2,Cat_6
784
+ 461602,Female,No,30,Yes,Artist,0,Low,,Cat_6
785
+ 461604,Male,Yes,38,No,Entertainment,0,Average,2,Cat_6
786
+ 461612,Female,No,31,Yes,Healthcare,8,Low,5,Cat_6
787
+ 461615,Male,No,33,Yes,Doctor,0,Low,2,Cat_6
788
+ 461617,Male,No,50,Yes,Artist,0,Low,2,Cat_6
789
+ 461619,Male,Yes,52,Yes,Executive,,High,3,Cat_6
790
+ 461624,Female,Yes,39,Yes,Artist,0,Average,,Cat_2
791
+ 461626,Male,Yes,73,Yes,Executive,0,High,2,Cat_6
792
+ 461630,Male,Yes,46,Yes,Artist,0,Average,3,Cat_6
793
+ 461637,Male,Yes,50,Yes,Artist,0,Low,2,Cat_7
794
+ 461644,Male,No,30,No,Healthcare,0,Low,6,Cat_6
795
+ 461653,Female,Yes,60,Yes,Doctor,0,Average,2,Cat_6
796
+ 461655,Female,Yes,39,Yes,Homemaker,9,Average,2,Cat_6
797
+ 461658,Female,Yes,59,Yes,Artist,1,Average,2,Cat_5
798
+ 461659,Female,Yes,51,Yes,Artist,0,Average,2,Cat_6
799
+ 461661,Female,Yes,40,Yes,Artist,5,Average,2,Cat_2
800
+ 461663,Male,No,23,No,Healthcare,1,Low,3,Cat_6
801
+ 461668,Male,Yes,53,Yes,Artist,4,Average,4,Cat_2
802
+ 461671,Male,No,32,No,Healthcare,7,Low,5,Cat_6
803
+ 461674,Male,Yes,52,Yes,Executive,0,High,4,Cat_6
804
+ 461676,Female,No,31,Yes,Engineer,0,Low,1,Cat_6
805
+ 461679,Male,No,30,Yes,Healthcare,3,Low,4,Cat_6
806
+ 461681,Male,No,25,Yes,Healthcare,8,Low,3,Cat_7
807
+ 461683,Male,Yes,40,Yes,Executive,1,High,4,Cat_6
808
+ 461685,Female,No,27,Yes,Healthcare,4,Low,4,Cat_6
809
+ 461686,Male,Yes,61,Yes,Artist,0,Low,2,Cat_6
810
+ 461690,Female,No,33,Yes,Engineer,1,Low,1,Cat_4
811
+ 461694,Male,No,28,Yes,Doctor,1,Low,4,Cat_4
812
+ 461695,Female,Yes,48,Yes,Artist,2,Average,2,Cat_6
813
+ 461698,Female,Yes,73,Yes,Artist,0,High,2,Cat_6
814
+ 461701,Male,Yes,36,No,Artist,0,Average,2,Cat_5
815
+ 461705,Female,No,32,No,Healthcare,0,Low,4,Cat_6
816
+ 461708,Male,Yes,82,No,Lawyer,0,High,2,Cat_6
817
+ 461709,Male,No,28,Yes,Artist,1,Low,3,Cat_4
818
+ 461711,Female,No,42,Yes,Artist,8,Low,3,Cat_2
819
+ 461716,Female,Yes,60,Yes,Lawyer,6,High,9,Cat_6
820
+ 461720,Female,No,46,Yes,Artist,1,Low,1,Cat_4
821
+ 461722,Male,No,31,No,Doctor,0,Low,3,Cat_6
822
+ 461724,Female,Yes,50,Yes,Artist,1,Low,1,Cat_7
823
+ 461725,Female,No,30,Yes,Engineer,3,Low,1,Cat_4
824
+ 461727,Female,No,49,Yes,Artist,1,Low,3,Cat_6
825
+ 461737,Female,Yes,51,Yes,Doctor,0,Average,6,Cat_4
826
+ 461738,Female,Yes,46,Yes,,,Average,3,Cat_6
827
+ 461744,Male,Yes,53,Yes,Artist,0,Average,4,Cat_6
828
+ 461747,Male,Yes,65,Yes,Artist,0,High,2,Cat_6
829
+ 461749,Female,No,22,No,Healthcare,0,Low,5,Cat_6
830
+ 461752,Male,Yes,65,Yes,Doctor,1,Average,3,Cat_6
831
+ 461756,Female,Yes,39,Yes,Engineer,0,Average,2,Cat_4
832
+ 461760,Male,Yes,84,Yes,Artist,0,High,2,Cat_6
833
+ 461769,Male,No,37,Yes,Artist,0,Low,1,Cat_6
834
+ 461771,Male,Yes,28,Yes,Doctor,8,Average,2,Cat_6
835
+ 461775,Female,Yes,82,No,Lawyer,0,High,2,Cat_6
836
+ 461778,Female,Yes,87,Yes,Lawyer,0,High,2,Cat_6
837
+ 461780,Female,No,69,Yes,Lawyer,1,Low,5,Cat_6
838
+ 461782,Female,Yes,51,Yes,Artist,,High,5,Cat_6
839
+ 461784,Female,Yes,74,Yes,Lawyer,1,Low,1,Cat_6
840
+ 461788,Female,Yes,79,Yes,Lawyer,1,High,2,Cat_6
841
+ 461791,Female,No,21,No,Lawyer,9,Low,1,Cat_6
842
+ 461792,Female,No,20,No,Healthcare,5,Low,5,Cat_2
843
+ 461800,Female,No,43,Yes,Doctor,3,Low,1,Cat_2
844
+ 461801,Female,No,25,No,Healthcare,1,Low,3,Cat_6
845
+ 461802,Male,No,43,Yes,Artist,0,Low,4,Cat_6
846
+ 461804,Female,No,42,Yes,Artist,1,Low,1,Cat_6
847
+ 461807,Male,No,25,Yes,Doctor,10,Low,4,Cat_6
848
+ 461815,Male,Yes,59,Yes,Artist,0,Low,1,Cat_3
849
+ 461816,Female,No,49,Yes,Marketing,0,Low,5,Cat_6
850
+ 461821,Female,No,32,No,Doctor,1,Low,4,Cat_6
851
+ 461822,Male,Yes,36,Yes,Artist,8,High,2,Cat_6
852
+ 461824,Male,Yes,45,Yes,Marketing,9,Low,3,Cat_6
853
+ 461832,Male,No,29,Yes,Healthcare,,Low,3,Cat_6
854
+ 461837,Male,Yes,37,Yes,Artist,0,Low,2,Cat_6
855
+ 461845,Female,Yes,48,Yes,Doctor,1,Average,4,Cat_6
856
+ 461846,Female,No,65,Yes,Artist,0,Low,2,Cat_2
857
+ 461848,Male,No,39,No,Marketing,1,Low,2,Cat_6
858
+ 461858,Male,No,25,No,Entertainment,1,Low,7,Cat_4
859
+ 461859,Female,Yes,49,No,Artist,5,Low,5,Cat_6
860
+ 461860,Female,Yes,77,Yes,Lawyer,1,High,2,Cat_6
861
+ 461862,Female,No,38,Yes,Artist,9,Low,1,Cat_6
862
+ 461864,Male,No,19,Yes,Marketing,0,Low,6,Cat_4
863
+ 461872,Female,Yes,76,Yes,Lawyer,1,High,2,Cat_6
864
+ 461873,Male,No,28,Yes,Doctor,0,Low,4,Cat_6
865
+ 461874,Male,Yes,51,Yes,Doctor,1,Average,3,Cat_3
866
+ 461882,Female,No,28,Yes,Doctor,0,Low,5,Cat_7
867
+ 461892,Female,No,42,Yes,Healthcare,0,Low,1,Cat_2
868
+ 461896,Male,Yes,45,Yes,Artist,1,Low,1,Cat_6
869
+ 461898,Male,Yes,63,Yes,Executive,6,High,3,Cat_6
870
+ 461899,Female,No,18,No,Doctor,0,Low,6,Cat_6
871
+ 461901,Male,No,26,Yes,Artist,7,Low,4,Cat_6
872
+ 461910,Male,Yes,31,Yes,Artist,,Average,2,Cat_2
873
+ 461913,Male,No,43,Yes,Entertainment,5,Low,4,Cat_2
874
+ 461914,Female,Yes,60,Yes,Artist,7,Low,,Cat_6
875
+ 461921,Female,No,36,Yes,Artist,0,Low,1,Cat_6
876
+ 461927,Male,No,32,No,Healthcare,1,Low,4,Cat_2
877
+ 461928,Male,Yes,68,Yes,Lawyer,,Low,1,
878
+ 461929,Male,Yes,60,Yes,Entertainment,1,Low,1,Cat_6
879
+ 461930,Female,No,42,Yes,Artist,0,Low,1,Cat_4
880
+ 461931,Female,No,18,No,Healthcare,6,Low,5,
881
+ 461936,Male,Yes,69,No,Lawyer,0,High,2,Cat_6
882
+ 461937,Female,No,42,Yes,Doctor,0,Low,,Cat_6
883
+ 461941,Female,Yes,70,Yes,Artist,1,Low,1,Cat_6
884
+ 461943,Male,No,25,Yes,Healthcare,1,Low,3,Cat_6
885
+ 461962,Male,Yes,56,Yes,Entertainment,1,Average,3,Cat_6
886
+ 461963,Female,No,40,Yes,Artist,9,Low,1,Cat_6
887
+ 461965,Male,No,23,No,Healthcare,1,Low,6,Cat_6
888
+ 461967,Female,No,20,No,Marketing,3,Low,4,Cat_7
889
+ 461968,Female,No,39,Yes,Entertainment,2,Low,1,Cat_6
890
+ 461978,Female,No,19,No,Healthcare,0,Low,4,Cat_6
891
+ 461985,Male,No,28,Yes,Entertainment,,Low,,Cat_5
892
+ 461988,Male,Yes,40,No,Engineer,1,Average,2,Cat_6
893
+ 461989,Female,,60,Yes,Engineer,1,Average,4,Cat_2
894
+ 461993,Male,No,33,No,Healthcare,3,Low,4,Cat_6
895
+ 461994,Male,Yes,20,No,Doctor,14,Low,2,Cat_6
896
+ 461996,Female,No,35,No,Artist,7,Low,4,Cat_6
897
+ 461999,Male,No,27,Yes,Doctor,0,Low,5,Cat_6
898
+ 462007,Female,Yes,42,Yes,Artist,1,Average,2,Cat_6
899
+ 462011,Male,Yes,30,No,Marketing,0,Low,4,Cat_4
900
+ 462013,Female,Yes,56,Yes,Executive,0,Average,2,Cat_6
901
+ 462015,Male,Yes,28,Yes,Entertainment,0,Average,2,Cat_6
902
+ 462016,Female,Yes,38,Yes,Artist,6,Average,2,Cat_6
903
+ 462017,Male,No,26,Yes,Entertainment,9,Low,1,Cat_2
904
+ 462027,Male,No,36,No,Engineer,0,Low,1,Cat_6
905
+ 462029,Male,No,56,No,Entertainment,0,Low,1,Cat_6
906
+ 462033,Male,No,26,Yes,Entertainment,0,Low,1,Cat_6
907
+ 462038,Male,No,28,Yes,Artist,4,Low,4,Cat_6
908
+ 462043,Male,No,32,No,Healthcare,0,Low,5,Cat_6
909
+ 462044,Female,No,52,Yes,Artist,4,Low,1,Cat_6
910
+ 462048,Female,No,23,No,Healthcare,0,Low,4,Cat_6
911
+ 462051,Male,No,23,No,Healthcare,,Low,5,Cat_4
912
+ 462052,Male,Yes,50,Yes,Artist,0,Low,2,Cat_6
913
+ 462053,Male,Yes,26,Yes,Artist,,Low,2,Cat_6
914
+ 462058,Male,Yes,40,Yes,Entertainment,8,Low,2,Cat_6
915
+ 462060,Female,Yes,53,Yes,Artist,1,Average,2,Cat_6
916
+ 462064,Male,Yes,63,Yes,Artist,0,Average,3,Cat_7
917
+ 462068,Male,Yes,62,Yes,Executive,0,High,3,Cat_6
918
+ 462075,Female,No,38,Yes,Artist,1,Low,1,Cat_6
919
+ 462078,Female,Yes,57,No,Artist,1,Average,2,Cat_2
920
+ 462080,Female,No,43,Yes,Artist,9,Low,1,Cat_6
921
+ 462081,Male,No,21,No,Marketing,1,Low,3,Cat_4
922
+ 462083,Male,No,22,No,Healthcare,0,Low,5,Cat_6
923
+ 462084,Male,Yes,68,Yes,Artist,1,Low,1,Cat_6
924
+ 462085,Female,No,28,Yes,Healthcare,0,Low,1,Cat_6
925
+ 462088,Male,Yes,33,Yes,Artist,0,Average,2,Cat_6
926
+ 462090,Female,No,38,Yes,Artist,8,Low,1,Cat_6
927
+ 462091,Male,No,23,No,Healthcare,0,Low,5,Cat_4
928
+ 462094,Female,No,41,Yes,Healthcare,,Low,1,Cat_6
929
+ 462096,Female,No,41,Yes,Homemaker,,Low,1,Cat_4
930
+ 462102,Female,No,39,Yes,Doctor,4,Low,1,Cat_6
931
+ 462103,Female,Yes,49,No,Entertainment,9,High,2,Cat_6
932
+ 462108,Female,Yes,33,Yes,Homemaker,,Average,2,Cat_6
933
+ 462109,Male,Yes,79,No,Lawyer,0,Low,1,Cat_6
934
+ 462111,Male,Yes,38,Yes,Artist,6,Average,4,Cat_6
935
+ 462114,Male,No,21,No,Healthcare,1,Low,4,Cat_6
936
+ 462116,Female,Yes,68,Yes,Doctor,0,Average,2,Cat_6
937
+ 462118,Male,No,31,Yes,Artist,0,Low,3,Cat_6
938
+ 462120,Male,Yes,46,No,Artist,1,Low,3,Cat_3
939
+ 462128,Male,Yes,35,Yes,Artist,9,Average,2,Cat_6
940
+ 462131,Female,No,42,Yes,Artist,8,Low,3,Cat_2
941
+ 462134,Male,Yes,87,No,Lawyer,0,Low,1,
942
+ 462141,Female,No,38,Yes,Artist,8,Low,1,Cat_6
943
+ 462149,Female,Yes,88,No,Lawyer,2,High,1,Cat_6
944
+ 462151,Female,No,42,Yes,Artist,9,Low,1,Cat_6
945
+ 462163,Female,Yes,26,Yes,Artist,4,Average,2,Cat_3
946
+ 462168,Male,Yes,35,Yes,Executive,0,High,3,Cat_6
947
+ 462171,Female,Yes,41,No,Engineer,3,High,2,Cat_6
948
+ 462172,Male,Yes,37,Yes,Doctor,1,Average,2,Cat_1
949
+ 462174,Female,Yes,41,Yes,Engineer,8,Average,4,Cat_4
950
+ 462177,Male,No,35,,Artist,6,Low,5,Cat_2
951
+ 462179,Female,No,33,Yes,Marketing,0,Low,9,Cat_7
952
+ 462180,Female,Yes,61,Yes,Engineer,2,Average,4,Cat_2
953
+ 462186,Female,No,19,No,Doctor,1,Low,3,Cat_1
954
+ 462187,Female,No,50,Yes,Artist,4,Low,1,Cat_6
955
+ 462188,Female,Yes,48,No,Engineer,0,Average,4,Cat_4
956
+ 462196,Male,Yes,57,No,Marketing,1,Average,3,Cat_4
957
+ 462197,Female,Yes,72,No,Engineer,1,Average,3,Cat_4
958
+ 462198,Female,No,39,No,Engineer,4,Low,,Cat_3
959
+ 462200,Female,Yes,49,Yes,Doctor,0,Low,3,Cat_4
960
+ 462202,Female,No,41,Yes,Entertainment,0,Low,4,Cat_4
961
+ 462203,Male,Yes,65,No,Executive,2,High,7,Cat_4
962
+ 462204,Female,No,22,No,Marketing,0,Low,3,Cat_4
963
+ 462205,Female,No,23,No,Healthcare,0,Low,4,Cat_4
964
+ 462209,Female,Yes,41,No,Artist,0,Low,1,Cat_4
965
+ 462210,Female,Yes,42,Yes,Engineer,0,Low,3,Cat_4
966
+ 462211,Male,No,18,No,Healthcare,0,Low,3,Cat_4
967
+ 462214,Male,Yes,49,No,Doctor,1,Low,2,Cat_4
968
+ 462216,Female,Yes,40,No,Doctor,0,Low,2,Cat_4
969
+ 462218,Male,Yes,50,No,Executive,1,Average,5,Cat_4
970
+ 462220,Female,No,19,No,Healthcare,6,Low,3,Cat_4
971
+ 462222,Male,No,22,No,Healthcare,0,Low,6,Cat_4
972
+ 462229,Male,No,23,No,,1,Low,8,Cat_4
973
+ 462231,Male,No,27,Yes,Artist,4,Low,6,Cat_4
974
+ 462232,Male,Yes,55,No,Executive,0,High,8,Cat_4
975
+ 462234,Male,Yes,32,No,,1,Average,6,Cat_4
976
+ 462238,Male,Yes,57,No,Entertainment,,Low,2,Cat_3
977
+ 462240,Male,Yes,80,No,Lawyer,0,High,2,Cat_6
978
+ 462243,Male,Yes,43,No,Executive,0,Low,4,Cat_6
979
+ 462246,Female,Yes,79,No,Lawyer,1,High,2,Cat_6
980
+ 462249,Male,No,25,No,Entertainment,1,Low,3,Cat_6
981
+ 462256,Female,Yes,58,Yes,Homemaker,0,Average,4,Cat_6
982
+ 462257,Female,Yes,78,Yes,Lawyer,,High,2,Cat_6
983
+ 462260,Male,Yes,76,Yes,Lawyer,1,Low,2,Cat_6
984
+ 462262,Male,No,27,No,Healthcare,1,Low,3,
985
+ 462274,Male,Yes,47,Yes,Artist,1,Average,3,Cat_6
986
+ 462275,Male,Yes,43,Yes,Artist,1,Average,2,Cat_6
987
+ 462278,Male,No,31,Yes,Healthcare,1,Low,4,Cat_6
988
+ 462279,Male,No,27,No,Healthcare,0,Low,7,Cat_6
989
+ 462280,Male,No,31,Yes,Healthcare,0,Low,4,Cat_6
990
+ 462281,Male,Yes,46,Yes,Artist,1,Low,2,Cat_6
991
+ 462284,Male,Yes,48,Yes,Executive,1,Average,4,Cat_6
992
+ 462285,Male,Yes,51,Yes,Doctor,,Low,2,
993
+ 462286,Male,Yes,57,No,Doctor,0,Average,2,Cat_6
994
+ 462290,Female,No,30,Yes,Doctor,0,Low,1,Cat_6
995
+ 462291,Female,No,37,Yes,Marketing,,Low,3,Cat_6
996
+ 462297,Female,No,31,Yes,Artist,14,Low,2,Cat_6
997
+ 462300,Male,Yes,49,Yes,Artist,1,Average,3,Cat_6
998
+ 462304,Male,Yes,56,Yes,Artist,1,Low,4,Cat_4
999
+ 462306,Male,Yes,83,No,Lawyer,8,High,2,Cat_6
1000
+ 462309,Male,No,32,Yes,Healthcare,,Low,1,Cat_6
1001
+ 462310,Male,Yes,63,Yes,Artist,5,Average,4,Cat_6
1002
+ 462323,Female,Yes,71,Yes,Doctor,1,Average,2,Cat_6
1003
+ 462336,Male,Yes,50,No,Artist,0,Low,4,Cat_6
1004
+ 462339,Male,No,31,Yes,Artist,4,Low,5,Cat_6
1005
+ 462340,Male,Yes,60,No,Entertainment,0,Average,6,Cat_6
1006
+ 462342,Female,Yes,71,Yes,Lawyer,8,High,2,Cat_6
1007
+ 462345,Male,Yes,49,Yes,Doctor,0,Average,6,Cat_4
1008
+ 462346,Male,Yes,74,Yes,Lawyer,9,Low,1,Cat_6
1009
+ 462349,Male,Yes,51,Yes,Artist,1,Average,6,Cat_6
1010
+ 462355,Male,Yes,61,No,Entertainment,0,Low,,Cat_6
1011
+ 462356,Male,No,46,Yes,Engineer,0,Low,3,Cat_6
1012
+ 462358,Male,Yes,39,No,Doctor,2,Average,2,Cat_6
1013
+ 462365,Male,Yes,85,Yes,Lawyer,1,High,2,Cat_6
1014
+ 462368,Female,Yes,31,Yes,Artist,1,Average,2,Cat_6
1015
+ 462370,Male,Yes,39,Yes,Executive,4,High,3,Cat_6
1016
+ 462381,Female,Yes,48,No,Doctor,1,High,2,Cat_6
1017
+ 462382,Male,Yes,71,Yes,Lawyer,0,High,2,Cat_6
1018
+ 462384,Female,No,31,Yes,Healthcare,,Low,1,Cat_7
1019
+ 462386,Female,No,32,Yes,Healthcare,0,Low,5,Cat_6
1020
+ 462389,Female,Yes,55,No,Engineer,0,Low,1,Cat_6
1021
+ 462395,Male,Yes,46,Yes,Artist,0,High,2,Cat_6
1022
+ 462396,Male,Yes,53,Yes,Doctor,,Average,2,Cat_6
1023
+ 462397,Male,Yes,50,Yes,Artist,0,Average,4,Cat_6
1024
+ 462400,Male,No,45,Yes,Artist,1,Low,1,Cat_6
1025
+ 462401,Male,Yes,33,No,Executive,1,Average,2,Cat_4
1026
+ 462409,Female,Yes,29,No,Engineer,5,Low,2,Cat_6
1027
+ 462411,Male,No,35,Yes,Artist,8,Low,1,Cat_6
1028
+ 462415,Male,No,25,No,Doctor,1,Low,1,Cat_6
1029
+ 462420,Male,No,26,Yes,Healthcare,0,Low,3,Cat_6
1030
+ 462421,Male,No,48,Yes,Artist,1,Low,2,Cat_6
1031
+ 462423,Male,Yes,66,No,Lawyer,0,High,3,Cat_6
1032
+ 462424,Female,Yes,38,No,Artist,0,Low,3,Cat_6
1033
+ 462428,Male,Yes,65,Yes,Entertainment,2,Average,3,Cat_6
1034
+ 462429,Male,Yes,87,No,Lawyer,1,Low,1,Cat_6
1035
+ 462445,Male,No,20,No,Healthcare,1,Low,3,Cat_6
1036
+ 462446,Male,No,19,No,Healthcare,0,Low,4,Cat_6
1037
+ 462447,Male,No,22,No,Healthcare,9,Low,4,Cat_6
1038
+ 462450,Male,No,18,No,Healthcare,0,Low,,Cat_6
1039
+ 462451,Male,No,18,No,Marketing,1,Low,9,Cat_6
1040
+ 462452,Male,No,19,No,Healthcare,0,Low,,Cat_4
1041
+ 462454,Male,No,19,No,Healthcare,1,Low,3,Cat_2
1042
+ 462456,Male,No,22,No,Healthcare,0,Low,8,Cat_6
1043
+ 462457,Male,No,31,No,Healthcare,4,Low,4,Cat_6
1044
+ 462463,Male,Yes,63,No,Artist,0,Average,2,Cat_6
1045
+ 462472,Male,No,43,Yes,Artist,1,Low,1,Cat_6
1046
+ 462473,Male,No,73,No,Engineer,0,Low,,Cat_4
1047
+ 462485,Female,Yes,39,No,Engineer,0,Low,2,Cat_6
1048
+ 462488,Male,No,31,Yes,Healthcare,1,Low,5,Cat_6
1049
+ 462491,Male,No,31,Yes,Artist,0,Low,5,Cat_6
1050
+ 462492,Male,Yes,43,No,Artist,0,Average,4,Cat_2
1051
+ 462496,Male,Yes,52,No,Artist,0,Average,3,Cat_6
1052
+ 462498,Female,Yes,63,Yes,Doctor,0,Average,3,Cat_6
1053
+ 462503,Male,Yes,51,Yes,Executive,1,High,4,Cat_6
1054
+ 462508,Male,Yes,35,Yes,Healthcare,1,Low,7,Cat_4
1055
+ 462512,Female,Yes,32,No,Entertainment,,Average,2,Cat_4
1056
+ 462517,Female,Yes,39,Yes,Homemaker,9,High,4,Cat_6
1057
+ 462518,Female,No,25,No,Healthcare,1,Low,6,Cat_5
1058
+ 462519,Male,No,20,No,Healthcare,0,Low,5,Cat_4
1059
+ 462521,Female,No,33,No,Homemaker,9,Low,1,Cat_6
1060
+ 462522,Male,Yes,36,No,Executive,0,Average,5,Cat_4
1061
+ 462524,Female,Yes,35,Yes,Doctor,,Low,2,Cat_6
1062
+ 462525,Female,Yes,42,Yes,Artist,1,Average,2,Cat_6
1063
+ 462526,Female,Yes,52,Yes,Artist,2,Average,5,Cat_6
1064
+ 462529,Female,Yes,42,Yes,Engineer,1,Low,2,Cat_6
1065
+ 462531,Female,Yes,57,No,Homemaker,,High,2,Cat_6
1066
+ 462533,Female,No,30,Yes,Entertainment,1,Low,3,Cat_6
1067
+ 462538,Female,Yes,73,Yes,Lawyer,1,High,2,Cat_6
1068
+ 462541,Male,Yes,66,Yes,Engineer,3,High,2,Cat_6
1069
+ 462542,Female,Yes,62,Yes,Artist,9,Average,5,Cat_2
1070
+ 462543,Female,Yes,36,Yes,Artist,4,Low,1,Cat_3
1071
+ 462545,Male,No,33,No,Engineer,0,Low,3,Cat_4
1072
+ 462554,Male,No,28,No,Healthcare,0,Low,8,Cat_4
1073
+ 462561,Female,Yes,48,Yes,Artist,3,Average,2,Cat_6
1074
+ 462563,Female,Yes,53,Yes,Artist,1,Average,2,Cat_6
1075
+ 462566,Female,Yes,27,No,Doctor,1,Low,,Cat_3
1076
+ 462577,Female,Yes,71,No,Marketing,0,High,2,Cat_4
1077
+ 462578,Male,Yes,35,Yes,Artist,9,Average,2,Cat_4
1078
+ 462580,Female,No,41,Yes,Artist,0,Low,1,Cat_4
1079
+ 462584,Female,Yes,39,No,Entertainment,0,Low,4,Cat_4
1080
+ 462587,Female,Yes,79,No,Lawyer,1,High,2,Cat_4
1081
+ 462589,Female,No,29,No,Engineer,9,Low,8,Cat_4
1082
+ 462595,Female,No,33,Yes,Artist,7,Low,7,Cat_4
1083
+ 462596,Female,No,31,No,Healthcare,0,Low,,Cat_4
1084
+ 462600,Male,Yes,25,No,Engineer,4,Average,3,Cat_4
1085
+ 462607,Female,,43,No,Engineer,2,Average,3,Cat_4
1086
+ 462609,Female,Yes,52,No,Doctor,4,Low,1,Cat_4
1087
+ 462611,Male,Yes,41,No,Executive,0,High,7,Cat_4
1088
+ 462612,Female,Yes,27,No,Doctor,,High,6,Cat_4
1089
+ 462613,Female,Yes,39,No,Engineer,1,Average,5,Cat_4
1090
+ 462615,Male,No,32,No,Doctor,3,Low,7,Cat_4
1091
+ 462617,Male,No,19,No,Healthcare,1,Low,5,Cat_4
1092
+ 462619,Male,,58,No,,1,High,,Cat_4
1093
+ 462625,Male,No,30,Yes,Artist,1,Low,3,Cat_4
1094
+ 462626,Female,No,31,Yes,Engineer,0,Low,6,Cat_4
1095
+ 462632,Female,Yes,43,No,Engineer,,Average,4,Cat_4
1096
+ 462637,Female,Yes,63,No,Marketing,,Average,6,Cat_4
1097
+ 462643,Female,Yes,37,Yes,Engineer,,Average,3,Cat_4
1098
+ 462654,Male,Yes,37,No,Artist,0,Average,6,Cat_4
1099
+ 462658,Female,Yes,31,Yes,Homemaker,9,Average,2,
1100
+ 462668,Female,No,38,Yes,Artist,4,Low,1,Cat_6
1101
+ 462669,Female,Yes,41,Yes,Entertainment,,High,6,Cat_6
1102
+ 462678,Female,Yes,45,Yes,Artist,3,Average,3,Cat_6
1103
+ 462680,Male,Yes,35,Yes,Doctor,,Average,4,Cat_6
1104
+ 462683,Female,Yes,43,No,Engineer,1,Low,5,Cat_1
1105
+ 462685,Female,No,33,No,Healthcare,,Low,3,Cat_4
1106
+ 462687,Male,No,26,No,Homemaker,14,Low,3,Cat_3
1107
+ 462692,Female,Yes,39,No,Artist,,Average,2,Cat_6
1108
+ 462696,Male,Yes,49,No,Artist,1,High,2,Cat_6
1109
+ 462697,Male,,47,No,,0,Average,2,Cat_6
1110
+ 462702,Male,Yes,53,No,Entertainment,1,Average,4,Cat_4
1111
+ 462704,Male,Yes,52,Yes,Executive,5,High,5,Cat_6
1112
+ 462705,Female,Yes,66,No,Lawyer,0,Average,2,Cat_6
1113
+ 462716,Male,No,26,No,Entertainment,6,Low,2,Cat_4
1114
+ 462720,Male,Yes,38,Yes,Marketing,,Low,5,Cat_6
1115
+ 462722,Female,No,25,No,Homemaker,,Low,4,Cat_6
1116
+ 462723,Female,Yes,53,No,Artist,8,Average,2,Cat_6
1117
+ 462727,Female,Yes,87,No,Lawyer,0,High,2,Cat_6
1118
+ 462729,Male,No,28,No,Healthcare,1,Low,2,Cat_6
1119
+ 462731,Female,Yes,37,Yes,Artist,7,High,3,Cat_6
1120
+ 462732,Female,Yes,42,Yes,Artist,,Low,1,Cat_6
1121
+ 462735,Female,Yes,25,No,Artist,1,Average,2,Cat_1
1122
+ 462736,Female,Yes,33,No,Engineer,6,Low,3,Cat_6
1123
+ 462738,Female,No,33,Yes,Healthcare,,Low,3,Cat_2
1124
+ 462739,Male,Yes,46,Yes,Artist,1,Low,2,Cat_6
1125
+ 462743,Male,No,33,No,Healthcare,2,Low,4,Cat_3
1126
+ 462746,Male,No,26,No,Entertainment,1,Low,3,Cat_6
1127
+ 462747,Male,No,32,No,Doctor,6,Low,4,Cat_6
1128
+ 462752,Female,No,25,No,Healthcare,,Low,1,Cat_6
1129
+ 462755,Female,No,18,No,Healthcare,1,Low,,Cat_6
1130
+ 462756,Female,No,22,No,Engineer,0,Low,4,Cat_6
1131
+ 462761,Male,No,19,No,Healthcare,2,Low,4,Cat_6
1132
+ 462762,Male,Yes,46,Yes,Artist,0,High,4,Cat_6
1133
+ 462767,Male,No,19,No,Healthcare,4,Low,4,Cat_6
1134
+ 462768,Male,Yes,45,Yes,Artist,0,Average,3,Cat_6
1135
+ 462776,Female,Yes,52,Yes,Engineer,1,Average,3,Cat_6
1136
+ 462785,Female,Yes,42,Yes,Engineer,,Average,5,Cat_3
1137
+ 462788,Male,Yes,47,No,Entertainment,1,Average,3,Cat_3
1138
+ 462792,Male,Yes,45,No,Homemaker,,Average,4,Cat_6
1139
+ 462799,Male,No,32,No,Healthcare,,Low,,Cat_5
1140
+ 462804,Male,Yes,41,No,Executive,5,High,3,Cat_4
1141
+ 462807,Female,No,28,Yes,Homemaker,,Low,1,Cat_6
1142
+ 462810,Male,Yes,37,No,Executive,9,High,4,Cat_6
1143
+ 462814,Female,Yes,20,No,Engineer,8,Average,2,Cat_5
1144
+ 462817,Female,Yes,73,Yes,Lawyer,3,Low,1,Cat_6
1145
+ 462819,Male,Yes,51,Yes,Artist,0,Average,3,Cat_6
1146
+ 462823,Male,Yes,18,Yes,Engineer,,Average,4,Cat_6
1147
+ 462824,Male,Yes,42,No,Engineer,1,Average,3,Cat_4
1148
+ 462826,Male,No,20,No,Healthcare,1,Low,3,Cat_3
1149
+ 462827,Female,No,23,No,Doctor,0,Low,3,Cat_3
1150
+ 462834,Male,Yes,31,Yes,Homemaker,2,Low,2,Cat_1
1151
+ 462838,Female,Yes,33,Yes,Homemaker,1,Low,3,Cat_5
1152
+ 462841,Male,No,21,No,Healthcare,9,Low,6,Cat_6
1153
+ 462845,Male,Yes,51,Yes,Doctor,5,Average,7,Cat_6
1154
+ 462849,Male,Yes,47,Yes,Artist,0,Average,4,Cat_6
1155
+ 462850,Male,No,20,No,Healthcare,0,Low,4,Cat_6
1156
+ 462853,Male,No,21,No,Healthcare,0,Low,2,Cat_6
1157
+ 462854,Male,No,22,No,Healthcare,1,Low,3,Cat_6
1158
+ 462858,Female,No,32,Yes,Engineer,9,Low,4,Cat_6
1159
+ 462861,Female,No,30,Yes,Healthcare,8,Low,1,Cat_6
1160
+ 462866,Male,Yes,61,Yes,Doctor,1,Low,1,Cat_6
1161
+ 462868,Male,Yes,43,No,Entertainment,0,Average,4,Cat_4
1162
+ 462869,Male,No,25,Yes,Doctor,8,Low,1,Cat_6
1163
+ 462871,Male,Yes,46,No,Entertainment,0,Average,3,Cat_6
1164
+ 462872,Female,Yes,53,No,Engineer,12,Low,2,Cat_3
1165
+ 462874,Male,Yes,55,Yes,Doctor,0,High,2,Cat_6
1166
+ 462887,Female,Yes,42,No,Engineer,0,Low,3,Cat_6
1167
+ 462890,Female,No,26,Yes,Marketing,11,Low,1,Cat_6
1168
+ 462891,Male,No,29,No,Healthcare,0,Low,3,Cat_6
1169
+ 462894,Male,Yes,39,Yes,Artist,4,Average,4,Cat_3
1170
+ 462900,Male,Yes,38,Yes,Artist,1,Average,3,Cat_6
1171
+ 462903,Male,Yes,69,Yes,Entertainment,,Average,2,Cat_6
1172
+ 462905,Female,No,25,No,Artist,6,Low,3,Cat_6
1173
+ 462914,Female,No,26,Yes,Artist,4,Low,4,Cat_6
1174
+ 462920,Male,Yes,51,No,Executive,0,High,5,Cat_6
1175
+ 462923,Male,Yes,30,No,Homemaker,8,Average,2,Cat_6
1176
+ 462925,Female,Yes,28,No,Homemaker,,Average,2,Cat_3
1177
+ 462927,Female,No,33,No,Homemaker,8,Low,2,Cat_6
1178
+ 462936,Female,No,41,Yes,Engineer,,Low,1,Cat_6
1179
+ 462941,Male,No,71,No,Lawyer,,Low,2,Cat_6
1180
+ 462944,Male,Yes,42,Yes,Executive,5,High,3,Cat_6
1181
+ 462951,Male,Yes,71,Yes,Lawyer,2,Low,1,Cat_6
1182
+ 462956,Male,Yes,35,No,Artist,6,Average,5,Cat_6
1183
+ 462958,Male,No,28,No,Marketing,0,Low,5,Cat_6
1184
+ 462963,Male,Yes,31,Yes,Artist,1,Average,2,Cat_3
1185
+ 462966,Male,Yes,43,Yes,Artist,2,Average,3,Cat_6
1186
+ 462968,Female,Yes,77,No,Lawyer,0,High,2,Cat_6
1187
+ 462971,Female,Yes,71,Yes,Engineer,0,Low,1,Cat_6
1188
+ 462976,Female,Yes,47,Yes,Engineer,0,Average,2,Cat_6
1189
+ 462981,Female,No,26,No,Homemaker,9,Low,1,Cat_6
1190
+ 462982,Male,Yes,40,No,Doctor,4,Average,4,Cat_6
1191
+ 462983,Female,Yes,72,Yes,Lawyer,0,High,2,Cat_6
1192
+ 462984,Female,Yes,73,Yes,Artist,1,High,2,Cat_6
1193
+ 462986,Male,No,26,Yes,Healthcare,1,Low,6,Cat_3
1194
+ 462992,Female,Yes,57,Yes,Engineer,,High,3,Cat_3
1195
+ 462993,Male,Yes,30,No,Artist,,Average,3,Cat_6
1196
+ 462994,Female,Yes,36,No,Artist,,Average,3,Cat_6
1197
+ 462998,Male,Yes,52,No,Entertainment,10,Average,4,Cat_6
1198
+ 463003,Male,Yes,42,Yes,Artist,3,Average,2,Cat_6
1199
+ 463012,Male,Yes,52,No,Engineer,,Low,1,Cat_6
1200
+ 463020,Male,Yes,28,Yes,Artist,0,Average,3,Cat_1
1201
+ 463023,Female,Yes,43,No,Homemaker,7,Low,1,Cat_6
1202
+ 463024,Male,No,43,Yes,Artist,,Low,1,Cat_6
1203
+ 463028,Male,No,25,No,Doctor,0,Low,4,Cat_6
1204
+ 463030,Male,Yes,52,Yes,Executive,1,High,3,Cat_6
1205
+ 463034,Female,No,28,Yes,Homemaker,9,Low,1,Cat_6
1206
+ 463037,Male,Yes,56,Yes,Entertainment,0,Average,4,Cat_6
1207
+ 463039,Male,Yes,38,No,Executive,12,High,7,Cat_6
1208
+ 463040,Male,Yes,83,No,Lawyer,1,High,2,Cat_6
1209
+ 463044,Male,Yes,82,Yes,Lawyer,,High,2,Cat_6
1210
+ 463047,Male,Yes,32,Yes,Homemaker,8,Low,,Cat_6
1211
+ 463051,Female,No,35,Yes,Homemaker,12,Low,1,Cat_6
1212
+ 463052,Male,Yes,40,Yes,Marketing,0,Low,2,Cat_6
1213
+ 463058,Female,No,25,Yes,Homemaker,13,Low,1,
1214
+ 463062,Female,Yes,39,Yes,Artist,,Average,3,Cat_6
1215
+ 463069,Male,No,25,Yes,Artist,7,Low,1,Cat_6
1216
+ 463075,Male,Yes,52,Yes,Artist,0,Low,4,Cat_6
1217
+ 463080,Male,No,33,No,Artist,0,Low,4,Cat_5
1218
+ 463083,Male,No,28,Yes,Artist,6,Low,3,Cat_6
1219
+ 463085,Female,No,43,Yes,Artist,0,Low,1,Cat_6
1220
+ 463086,Male,No,30,Yes,Artist,8,Low,,Cat_5
1221
+ 463088,Female,Yes,84,Yes,Lawyer,1,High,2,Cat_6
1222
+ 463089,Male,Yes,48,Yes,Executive,6,High,4,Cat_6
1223
+ 463090,Female,Yes,55,No,Engineer,3,Average,2,Cat_6
1224
+ 463091,Female,Yes,37,Yes,Homemaker,8,Low,1,Cat_6
1225
+ 463094,Male,Yes,38,Yes,Engineer,11,Average,3,Cat_6
1226
+ 463096,Female,No,28,Yes,Doctor,,Low,3,Cat_6
1227
+ 463099,Male,Yes,86,Yes,Lawyer,,Low,1,Cat_6
1228
+ 463100,Female,No,35,No,Homemaker,9,Low,1,Cat_6
1229
+ 463102,Male,No,35,No,Entertainment,0,Low,2,Cat_6
1230
+ 463104,Female,Yes,46,No,Lawyer,0,Low,1,Cat_6
1231
+ 463106,Female,Yes,79,Yes,Lawyer,0,Low,1,Cat_6
1232
+ 463108,Male,Yes,63,Yes,Lawyer,5,High,2,Cat_6
1233
+ 463118,Female,Yes,50,Yes,Doctor,,High,3,Cat_6
1234
+ 463120,Female,No,35,Yes,Entertainment,0,Low,1,Cat_6
1235
+ 463129,Male,Yes,65,No,Doctor,,Low,1,Cat_6
1236
+ 463133,Male,Yes,50,No,Artist,0,Average,4,Cat_6
1237
+ 463138,Female,No,27,No,Homemaker,,Low,,Cat_3
1238
+ 463144,Male,Yes,45,Yes,Executive,0,High,3,Cat_6
1239
+ 463145,Female,No,36,Yes,Homemaker,0,Low,4,Cat_6
1240
+ 463146,Male,Yes,43,No,Entertainment,11,Average,2,Cat_6
1241
+ 463148,Male,Yes,62,Yes,Marketing,1,High,5,Cat_6
1242
+ 463149,Male,Yes,57,Yes,Artist,2,Average,2,Cat_6
1243
+ 463150,Male,No,51,No,Marketing,9,Low,1,Cat_6
1244
+ 463151,Male,Yes,59,Yes,Artist,0,Low,1,Cat_3
1245
+ 463154,Female,Yes,27,No,Artist,0,Low,4,Cat_6
1246
+ 463156,Female,Yes,83,No,Lawyer,,High,2,Cat_6
1247
+ 463157,Male,Yes,50,Yes,Entertainment,6,Low,3,Cat_6
1248
+ 463158,Male,Yes,75,Yes,Executive,1,High,3,Cat_6
1249
+ 463163,Male,No,28,No,Executive,2,Low,2,Cat_3
1250
+ 463164,Male,Yes,39,Yes,Artist,9,Average,2,Cat_6
1251
+ 463165,Female,Yes,69,Yes,Doctor,0,Average,2,Cat_6
1252
+ 463166,Female,No,41,Yes,Artist,1,Low,1,Cat_4
1253
+ 463170,Female,,28,Yes,Healthcare,0,Low,5,Cat_3
1254
+ 463171,Female,Yes,39,No,Entertainment,1,High,3,Cat_3
1255
+ 463173,Male,No,47,Yes,Artist,0,Low,1,Cat_3
1256
+ 463174,Female,Yes,62,Yes,Engineer,1,Low,1,Cat_3
1257
+ 463175,Female,,41,No,Engineer,0,Low,4,Cat_3
1258
+ 463181,Male,Yes,49,Yes,Doctor,5,Average,3,Cat_5
1259
+ 463187,Female,Yes,52,Yes,Artist,8,Low,2,Cat_6
1260
+ 463192,Female,Yes,48,No,Entertainment,2,Average,,Cat_4
1261
+ 463195,Female,No,26,Yes,Healthcare,7,Low,2,Cat_3
1262
+ 463196,Female,Yes,72,Yes,Engineer,1,Low,1,Cat_6
1263
+ 463199,Female,Yes,47,Yes,Artist,0,Low,3,Cat_4
1264
+ 463201,Female,No,19,No,Healthcare,1,Low,2,Cat_4
1265
+ 463203,Female,No,21,No,Healthcare,1,Low,3,Cat_7
1266
+ 463204,Male,No,39,No,Entertainment,1,Low,1,Cat_6
1267
+ 463209,Female,No,52,Yes,Artist,0,Low,1,Cat_6
1268
+ 463218,Male,Yes,37,No,Entertainment,8,Average,3,Cat_6
1269
+ 463219,Male,Yes,51,No,Entertainment,0,Low,2,Cat_6
1270
+ 463220,Male,Yes,48,No,Engineer,1,Average,3,Cat_6
1271
+ 463221,Male,No,22,No,Healthcare,,Low,3,Cat_6
1272
+ 463224,Male,Yes,47,Yes,Executive,1,High,4,Cat_6
1273
+ 463240,Female,Yes,45,No,Engineer,0,Average,3,Cat_6
1274
+ 463242,Female,No,29,No,Engineer,5,Low,2,Cat_6
1275
+ 463244,Female,Yes,47,No,Doctor,1,Low,1,Cat_6
1276
+ 463245,Male,Yes,41,Yes,Entertainment,8,Average,2,Cat_6
1277
+ 463248,Female,Yes,32,No,Homemaker,9,Average,4,Cat_2
1278
+ 463251,Male,Yes,31,No,Marketing,2,Low,3,Cat_6
1279
+ 463256,Male,No,20,No,Marketing,1,Low,3,Cat_6
1280
+ 463258,Female,Yes,46,Yes,Artist,0,Average,3,Cat_6
1281
+ 463260,Male,Yes,70,Yes,Lawyer,3,Low,1,Cat_6
1282
+ 463265,Male,Yes,65,Yes,Artist,1,Average,3,Cat_6
1283
+ 463266,Female,Yes,68,,Artist,1,Average,2,Cat_6
1284
+ 463267,Male,Yes,29,No,Homemaker,9,Low,1,Cat_4
1285
+ 463269,Male,Yes,41,Yes,Entertainment,3,Average,2,Cat_3
1286
+ 463270,Male,Yes,50,No,Executive,0,Low,5,
1287
+ 463273,Male,Yes,38,Yes,Entertainment,9,Average,2,Cat_3
1288
+ 463276,Male,Yes,37,No,Executive,,Average,2,Cat_3
1289
+ 463277,Female,Yes,30,No,Engineer,6,Low,2,Cat_3
1290
+ 463278,Female,Yes,63,Yes,Engineer,1,Low,1,Cat_3
1291
+ 463280,Male,Yes,42,Yes,Artist,6,Average,2,Cat_3
1292
+ 463292,Male,Yes,41,No,Executive,0,High,3,Cat_6
1293
+ 463302,Female,Yes,60,Yes,Engineer,,High,4,Cat_6
1294
+ 463308,Male,Yes,46,Yes,Engineer,1,Low,2,Cat_3
1295
+ 463316,Female,Yes,83,No,Lawyer,0,High,2,Cat_6
1296
+ 463323,Male,Yes,27,Yes,Healthcare,3,Low,2,Cat_6
1297
+ 463324,Female,No,22,No,Healthcare,1,Low,4,Cat_2
1298
+ 463330,Male,No,20,No,Healthcare,0,Low,4,Cat_6
1299
+ 463332,Female,Yes,40,Yes,Engineer,0,Low,2,Cat_6
1300
+ 463334,Female,No,28,Yes,Doctor,0,Low,6,Cat_4
1301
+ 463335,Male,No,28,Yes,Doctor,,Low,1,Cat_4
1302
+ 463338,Male,Yes,28,No,Entertainment,0,Low,2,Cat_3
1303
+ 463340,Female,No,20,No,Healthcare,0,Low,4,Cat_3
1304
+ 463341,Female,Yes,53,No,Engineer,0,Average,6,Cat_3
1305
+ 463348,Female,Yes,35,Yes,Doctor,0,Low,2,Cat_6
1306
+ 463351,Female,No,21,,Healthcare,3,Low,4,Cat_5
1307
+ 463356,Male,No,30,Yes,Healthcare,6,Low,4,Cat_2
1308
+ 463360,Female,Yes,46,Yes,Artist,2,Low,1,Cat_6
1309
+ 463367,Female,No,36,Yes,Engineer,3,Low,4,Cat_2
1310
+ 463368,Female,Yes,38,Yes,Artist,4,High,3,Cat_2
1311
+ 463372,Female,Yes,26,No,Marketing,1,Average,2,
1312
+ 463375,Female,Yes,45,Yes,Doctor,1,Low,1,Cat_4
1313
+ 463376,Female,Yes,46,Yes,Executive,5,High,2,Cat_6
1314
+ 463378,Male,No,25,Yes,Doctor,0,Low,1,Cat_3
1315
+ 463379,Male,No,27,No,Marketing,0,Low,7,Cat_6
1316
+ 463386,Female,Yes,42,Yes,Doctor,6,Low,1,Cat_3
1317
+ 463387,Male,,20,No,Marketing,3,Low,2,Cat_3
1318
+ 463391,Male,Yes,55,Yes,Doctor,6,Low,1,Cat_3
1319
+ 463395,Male,No,25,No,Marketing,,Low,1,Cat_6
1320
+ 463404,Male,Yes,27,No,Doctor,,High,2,Cat_3
1321
+ 463406,Male,No,31,No,Marketing,0,Low,4,Cat_3
1322
+ 463409,Female,Yes,38,No,Entertainment,6,Average,5,Cat_2
1323
+ 463411,Male,Yes,43,Yes,Entertainment,,Average,2,Cat_6
1324
+ 463420,Female,Yes,59,Yes,Artist,2,High,3,Cat_6
1325
+ 463423,Male,Yes,61,No,Executive,1,Average,3,Cat_6
1326
+ 463427,Female,Yes,27,Yes,Engineer,1,Low,2,Cat_6
1327
+ 463428,Male,Yes,26,No,Executive,1,High,5,Cat_6
1328
+ 463431,Male,Yes,39,Yes,Artist,,Average,4,Cat_4
1329
+ 463437,Male,Yes,51,Yes,Artist,0,Average,3,Cat_6
1330
+ 463438,Male,Yes,47,No,Entertainment,0,Average,3,Cat_6
1331
+ 463443,Male,Yes,52,Yes,Artist,1,Average,4,Cat_6
1332
+ 463444,Male,Yes,59,Yes,Lawyer,,High,2,Cat_6
1333
+ 463447,Male,Yes,57,No,Engineer,1,Average,2,Cat_6
1334
+ 463452,Female,Yes,86,Yes,Lawyer,1,High,2,Cat_6
1335
+ 463460,Male,Yes,49,Yes,Artist,,Average,2,Cat_6
1336
+ 463461,Male,No,30,No,Doctor,,Low,4,Cat_4
1337
+ 463462,Female,Yes,43,No,Engineer,0,Average,4,Cat_6
1338
+ 463470,Male,No,19,No,Healthcare,,Low,5,Cat_2
1339
+ 463472,Male,No,20,No,Healthcare,,Low,4,Cat_6
1340
+ 463473,Male,No,19,No,Healthcare,,Low,3,Cat_6
1341
+ 463475,Female,Yes,43,Yes,Doctor,0,Low,1,Cat_6
1342
+ 463477,Male,No,31,No,Healthcare,0,Low,4,Cat_4
1343
+ 463483,Male,Yes,30,No,Executive,1,High,2,Cat_6
1344
+ 463491,Male,Yes,27,Yes,Doctor,8,Average,3,Cat_6
1345
+ 463493,Male,Yes,36,Yes,Executive,,High,4,Cat_6
1346
+ 463499,Male,Yes,47,Yes,Executive,0,Low,2,Cat_6
1347
+ 463500,Male,Yes,35,Yes,Executive,1,High,4,Cat_6
1348
+ 463503,Male,Yes,25,Yes,Entertainment,0,Low,2,Cat_7
1349
+ 463508,Female,Yes,25,No,Artist,0,Low,3,Cat_6
1350
+ 463509,Male,No,38,No,Artist,1,Low,1,Cat_3
1351
+ 463512,Female,No,32,No,Engineer,0,Low,3,Cat_6
1352
+ 463516,Male,Yes,48,No,Executive,1,High,6,Cat_6
1353
+ 463527,Female,No,38,No,Artist,10,Low,1,Cat_6
1354
+ 463528,Male,Yes,70,No,Executive,,High,2,Cat_6
1355
+ 463529,Male,No,42,Yes,Marketing,,Low,1,Cat_6
1356
+ 463533,Female,Yes,85,Yes,Artist,1,High,2,Cat_2
1357
+ 463537,Female,No,25,Yes,Healthcare,1,Low,3,Cat_6
1358
+ 463545,Female,No,31,Yes,Doctor,1,Low,2,Cat_4
1359
+ 463548,Female,No,20,No,Healthcare,3,Low,4,Cat_4
1360
+ 463550,Female,Yes,37,Yes,Artist,0,Average,2,Cat_4
1361
+ 463553,Male,No,33,Yes,Artist,8,Low,2,Cat_6
1362
+ 463554,Female,No,52,No,Artist,5,Low,1,Cat_6
1363
+ 463557,Male,No,26,Yes,Doctor,0,Low,3,Cat_6
1364
+ 463560,Female,No,21,No,Healthcare,9,Low,5,Cat_4
1365
+ 463561,Female,No,42,Yes,Engineer,0,Low,1,Cat_6
1366
+ 463566,Female,Yes,35,Yes,Homemaker,,Average,4,Cat_2
1367
+ 463572,Male,Yes,39,Yes,Artist,0,Average,4,Cat_6
1368
+ 463577,Female,Yes,41,Yes,Doctor,1,Average,2,Cat_6
1369
+ 463586,Female,No,18,No,Healthcare,1,Low,5,Cat_6
1370
+ 463588,Male,No,22,No,Healthcare,0,Low,1,Cat_6
1371
+ 463598,Female,Yes,25,No,Engineer,2,Low,2,Cat_6
1372
+ 463601,Female,No,20,No,Healthcare,4,Low,5,
1373
+ 463603,Female,No,18,No,Entertainment,0,Low,4,Cat_2
1374
+ 463605,Female,No,20,No,Healthcare,1,Low,5,Cat_5
1375
+ 463606,Male,No,21,No,Marketing,0,Low,4,Cat_2
1376
+ 463614,Female,No,25,No,Healthcare,1,Low,4,Cat_3
1377
+ 463615,Female,Yes,60,Yes,Artist,,Average,2,Cat_6
1378
+ 463616,Female,Yes,46,No,Engineer,0,Average,5,Cat_3
1379
+ 463619,Male,Yes,68,No,Executive,1,High,2,Cat_6
1380
+ 463620,Male,No,21,No,Healthcare,1,Low,4,Cat_2
1381
+ 463623,Male,No,27,Yes,Doctor,0,Low,3,Cat_6
1382
+ 463624,Male,Yes,59,Yes,Executive,1,High,4,Cat_6
1383
+ 463628,Female,No,26,Yes,Artist,8,Low,1,Cat_6
1384
+ 463632,Male,Yes,26,Yes,Artist,0,Average,2,Cat_6
1385
+ 463638,Female,Yes,32,No,Doctor,1,Average,2,Cat_7
1386
+ 463639,Male,No,33,No,Healthcare,0,Low,6,Cat_6
1387
+ 463640,Male,No,28,Yes,Healthcare,0,Low,3,Cat_6
1388
+ 463644,Female,No,30,Yes,Healthcare,0,Low,3,Cat_7
1389
+ 463652,Female,No,32,Yes,Artist,,Low,1,Cat_6
1390
+ 463654,Female,No,41,No,Engineer,3,Low,3,Cat_3
1391
+ 463655,Male,Yes,42,Yes,Artist,13,Low,2,Cat_6
1392
+ 463661,Female,Yes,45,Yes,Doctor,1,Average,4,Cat_6
1393
+ 463663,Female,No,39,Yes,,1,Low,2,Cat_6
1394
+ 463664,Female,No,29,No,Engineer,0,Low,1,Cat_6
1395
+ 463665,Male,Yes,46,Yes,Entertainment,1,Average,3,Cat_6
1396
+ 463669,Female,Yes,26,Yes,Marketing,5,High,4,Cat_2
1397
+ 463670,Female,No,26,Yes,Healthcare,,Low,4,Cat_6
1398
+ 463689,Female,Yes,41,Yes,Doctor,1,Low,,Cat_6
1399
+ 463699,Female,Yes,38,Yes,Marketing,9,Low,3,Cat_6
1400
+ 463703,Male,Yes,69,No,Executive,1,High,4,Cat_6
1401
+ 463704,Male,No,46,Yes,Artist,0,Low,2,Cat_6
1402
+ 463707,Female,No,40,No,Artist,0,Low,1,Cat_5
1403
+ 463713,Male,No,25,No,Engineer,9,Low,3,Cat_4
1404
+ 463714,Male,Yes,59,No,,1,Average,2,Cat_4
1405
+ 463716,Male,No,26,No,Doctor,1,Low,4,Cat_6
1406
+ 463718,Female,No,33,Yes,Artist,0,Low,4,Cat_6
1407
+ 463722,Male,Yes,56,Yes,Executive,8,High,2,Cat_6
1408
+ 463724,Male,No,30,No,Healthcare,0,Low,5,Cat_4
1409
+ 463726,Female,No,26,No,Healthcare,0,Low,3,Cat_6
1410
+ 463727,Female,No,28,No,Doctor,0,Low,5,Cat_3
1411
+ 463728,Female,Yes,28,No,Doctor,0,Average,6,Cat_6
1412
+ 463732,Male,No,20,No,Healthcare,1,Low,4,Cat_6
1413
+ 463734,Male,Yes,41,No,Executive,1,Average,3,Cat_6
1414
+ 463741,Male,Yes,37,Yes,Artist,0,High,3,Cat_6
1415
+ 463745,Male,Yes,59,Yes,Artist,1,Average,3,Cat_3
1416
+ 463747,Female,Yes,43,Yes,Artist,0,Average,2,Cat_6
1417
+ 463748,Male,No,20,No,Healthcare,1,Low,3,Cat_6
1418
+ 463753,Female,No,30,Yes,Healthcare,1,Low,5,Cat_2
1419
+ 463756,Male,Yes,66,No,Executive,0,Average,2,Cat_6
1420
+ 463761,Male,Yes,28,Yes,Artist,1,Average,3,Cat_6
1421
+ 463764,Male,Yes,49,Yes,Entertainment,0,Average,3,Cat_6
1422
+ 463766,Female,Yes,61,Yes,Artist,0,Average,3,
1423
+ 463767,Male,Yes,27,Yes,Artist,9,Average,2,Cat_6
1424
+ 463768,Female,Yes,35,No,Engineer,1,Low,1,Cat_4
1425
+ 463774,Male,Yes,33,Yes,Healthcare,0,Average,2,Cat_6
1426
+ 463776,Female,Yes,36,Yes,Artist,2,Average,2,Cat_6
1427
+ 463782,Female,No,27,Yes,Artist,9,Low,1,Cat_6
1428
+ 463783,Female,No,29,No,Healthcare,,Low,,
1429
+ 463784,Female,No,31,No,Engineer,1,Low,5,Cat_4
1430
+ 463785,Female,No,30,No,Healthcare,0,Low,4,Cat_4
1431
+ 463786,Female,Yes,43,Yes,Artist,,Average,2,Cat_6
1432
+ 463790,Male,Yes,47,No,Executive,1,Low,4,Cat_4
1433
+ 463792,Female,No,42,No,Engineer,,Low,1,Cat_6
1434
+ 463794,Female,No,33,Yes,Healthcare,,Low,5,Cat_2
1435
+ 463799,Female,No,36,Yes,Artist,1,Low,4,Cat_2
1436
+ 463800,Female,No,30,Yes,Engineer,1,Low,3,Cat_6
1437
+ 463804,Male,Yes,60,Yes,Artist,9,Low,1,Cat_6
1438
+ 463807,Female,No,32,Yes,Healthcare,0,Low,3,Cat_4
1439
+ 463811,Female,Yes,32,Yes,Artist,0,Average,2,Cat_4
1440
+ 463814,Female,No,28,No,Healthcare,7,Low,3,Cat_5
1441
+ 463816,Male,Yes,46,Yes,Healthcare,2,High,4,Cat_7
1442
+ 463818,Female,Yes,38,Yes,Artist,4,Low,1,Cat_6
1443
+ 463819,Male,Yes,28,,Artist,8,Low,,Cat_6
1444
+ 463821,Male,Yes,30,Yes,Entertainment,7,Low,2,Cat_6
1445
+ 463825,Female,Yes,52,Yes,Artist,0,Average,3,
1446
+ 463827,Female,Yes,46,Yes,Engineer,1,Average,4,Cat_6
1447
+ 463828,Male,Yes,37,No,Engineer,0,Average,2,Cat_1
1448
+ 463830,Female,No,25,Yes,Engineer,2,Low,3,Cat_6
1449
+ 463834,Female,Yes,43,Yes,Engineer,1,Average,4,Cat_6
1450
+ 463835,Male,No,32,No,Marketing,0,Low,4,Cat_6
1451
+ 463842,Female,Yes,50,Yes,Engineer,1,High,4,Cat_6
1452
+ 463847,Male,Yes,43,No,Artist,3,Average,3,Cat_6
1453
+ 463856,Male,Yes,37,Yes,Artist,0,Average,2,Cat_4
1454
+ 463857,Male,Yes,61,No,Healthcare,0,High,4,Cat_7
1455
+ 463859,Male,Yes,39,Yes,Artist,5,Average,2,Cat_6
1456
+ 463865,Male,Yes,46,Yes,Artist,1,Average,5,Cat_6
1457
+ 463877,Male,Yes,37,No,Entertainment,0,Average,4,Cat_4
1458
+ 463880,Female,Yes,36,No,Engineer,0,Low,3,Cat_2
1459
+ 463884,Female,No,28,No,Artist,0,Low,1,Cat_6
1460
+ 463891,Male,Yes,86,Yes,Lawyer,0,Low,1,Cat_6
1461
+ 463892,Male,No,42,Yes,Artist,8,Low,1,Cat_6
1462
+ 463904,Male,Yes,82,Yes,Executive,1,Low,1,Cat_6
1463
+ 463917,Female,No,18,No,Healthcare,1,Low,8,Cat_4
1464
+ 463923,Female,No,18,No,Engineer,0,Low,4,Cat_6
1465
+ 463924,Female,No,36,Yes,Artist,1,Low,1,Cat_5
1466
+ 463926,Female,No,26,No,Engineer,1,Low,6,Cat_6
1467
+ 463931,Male,Yes,49,Yes,Entertainment,1,Average,2,Cat_6
1468
+ 463932,Female,Yes,69,Yes,Artist,1,Average,3,Cat_6
1469
+ 463941,Female,No,29,No,Artist,1,Low,6,Cat_4
1470
+ 463943,Male,No,68,Yes,Entertainment,1,Low,2,Cat_6
1471
+ 463946,Male,No,33,No,Healthcare,4,Low,3,Cat_4
1472
+ 463948,Male,Yes,38,No,Executive,3,High,5,Cat_6
1473
+ 463951,Male,Yes,52,No,Entertainment,1,Average,3,Cat_6
1474
+ 463955,Male,Yes,28,Yes,Artist,1,Low,2,Cat_6
1475
+ 463958,Female,No,27,No,Healthcare,1,Low,5,Cat_2
1476
+ 463961,Female,No,28,No,Engineer,0,Low,4,Cat_4
1477
+ 463963,Female,Yes,25,No,Engineer,7,High,3,Cat_6
1478
+ 463966,Female,No,30,Yes,Artist,8,Low,1,Cat_6
1479
+ 463978,Male,Yes,40,Yes,Artist,1,Average,3,Cat_2
1480
+ 463980,Female,No,25,Yes,Artist,0,Low,9,Cat_6
1481
+ 463981,Female,No,30,Yes,Artist,5,Low,1,
1482
+ 463983,Female,Yes,43,No,Engineer,0,Average,2,Cat_4
1483
+ 463986,Female,No,26,Yes,Artist,1,Low,4,Cat_6
1484
+ 463997,Female,Yes,37,No,Entertainment,0,Average,3,Cat_6
1485
+ 464000,Female,No,28,No,Healthcare,1,Low,5,Cat_7
1486
+ 464004,Female,Yes,31,No,Marketing,1,Low,5,Cat_4
1487
+ 464007,Male,Yes,46,Yes,Artist,1,Low,3,Cat_6
1488
+ 464009,Female,Yes,47,Yes,Artist,5,Average,4,Cat_6
1489
+ 464010,Male,No,28,No,Healthcare,1,Low,4,Cat_6
1490
+ 464013,Male,No,30,No,Healthcare,0,Low,1,Cat_6
1491
+ 464016,Female,,29,Yes,Entertainment,1,High,1,Cat_1
1492
+ 464019,Male,No,23,No,Artist,2,Low,5,Cat_6
1493
+ 464021,Female,No,22,No,Healthcare,1,Low,5,Cat_6
1494
+ 464023,Male,No,20,No,Healthcare,1,Low,5,Cat_7
1495
+ 464030,Male,No,22,No,Entertainment,1,Low,4,Cat_6
1496
+ 464031,Female,No,19,No,Healthcare,0,Low,4,Cat_6
1497
+ 464032,Male,No,21,No,Healthcare,1,Low,3,Cat_6
1498
+ 464033,Female,No,19,No,Healthcare,0,Low,4,Cat_6
1499
+ 464039,Male,No,39,Yes,Artist,1,Low,2,Cat_6
1500
+ 464042,Female,Yes,38,Yes,Artist,8,Low,2,Cat_6
1501
+ 464046,Male,No,33,Yes,Healthcare,3,Low,1,Cat_6
1502
+ 464048,Female,No,38,Yes,Homemaker,4,Low,1,Cat_6
1503
+ 464049,Female,No,29,Yes,Healthcare,0,Low,3,Cat_6
1504
+ 464053,Female,Yes,35,No,Entertainment,4,Low,1,Cat_6
1505
+ 464054,Male,Yes,32,Yes,Artist,9,Average,2,Cat_6
1506
+ 464059,Male,Yes,59,Yes,Artist,0,Low,1,Cat_6
1507
+ 464063,Female,No,32,Yes,Doctor,0,Low,1,Cat_6
1508
+ 464066,Female,No,29,Yes,Healthcare,8,Low,3,Cat_4
1509
+ 464067,Female,No,31,Yes,Entertainment,0,Low,4,Cat_2
1510
+ 464068,Male,Yes,59,No,Executive,0,High,4,Cat_6
1511
+ 464071,Male,Yes,87,Yes,Lawyer,0,High,2,Cat_6
1512
+ 464072,Male,Yes,53,Yes,Executive,0,Low,2,Cat_6
1513
+ 464076,Male,Yes,83,No,Lawyer,0,High,2,Cat_6
1514
+ 464084,Male,No,33,No,Healthcare,1,Low,5,Cat_4
1515
+ 464087,Female,No,26,No,Engineer,,Low,4,Cat_6
1516
+ 464089,Female,Yes,39,Yes,Artist,7,High,5,
1517
+ 464096,Female,No,27,No,Healthcare,1,Low,5,Cat_4
1518
+ 464099,Female,Yes,42,Yes,Artist,5,Average,2,Cat_4
1519
+ 464103,Male,Yes,46,Yes,Artist,4,Average,2,Cat_6
1520
+ 464110,Male,Yes,63,Yes,Doctor,0,High,2,Cat_6
1521
+ 464112,Male,No,32,Yes,Doctor,1,Low,2,Cat_6
1522
+ 464115,Female,No,38,Yes,Engineer,0,Low,3,Cat_6
1523
+ 464118,Male,No,38,Yes,Entertainment,1,Low,2,Cat_6
1524
+ 464121,Female,Yes,63,Yes,Engineer,1,Low,1,Cat_6
1525
+ 464123,Female,No,45,Yes,Artist,1,Low,1,Cat_6
1526
+ 464127,Female,No,33,Yes,Healthcare,1,Low,5,Cat_2
1527
+ 464132,Male,No,27,No,Entertainment,0,Low,2,Cat_6
1528
+ 464137,Female,Yes,87,No,Artist,7,High,2,Cat_7
1529
+ 464139,Female,No,25,No,Healthcare,14,Low,1,Cat_6
1530
+ 464144,Male,Yes,61,Yes,Artist,0,Average,4,Cat_6
1531
+ 464152,Male,Yes,41,Yes,Artist,1,High,4,Cat_6
1532
+ 464162,Male,Yes,86,Yes,Lawyer,,High,2,Cat_6
1533
+ 464167,Male,Yes,51,Yes,Executive,4,High,3,Cat_6
1534
+ 464169,Male,,83,No,Lawyer,0,High,2,Cat_6
1535
+ 464172,Male,Yes,60,Yes,Artist,3,High,3,Cat_6
1536
+ 464173,Male,Yes,65,Yes,Artist,6,Average,3,Cat_6
1537
+ 464175,Female,No,32,No,Healthcare,1,Low,,Cat_6
1538
+ 464176,Female,Yes,41,Yes,Artist,1,Low,1,Cat_6
1539
+ 464179,Female,Yes,56,Yes,Artist,0,Average,3,Cat_6
1540
+ 464180,Female,Yes,74,No,Lawyer,1,High,2,Cat_6
1541
+ 464182,Male,Yes,39,Yes,Artist,4,Average,2,Cat_2
1542
+ 464183,Female,No,42,No,Artist,2,Low,2,Cat_6
1543
+ 464185,Male,Yes,68,Yes,Artist,5,High,2,Cat_6
1544
+ 464195,Male,No,30,Yes,Artist,1,Low,1,Cat_6
1545
+ 464200,Female,No,32,No,Healthcare,1,Low,3,Cat_6
1546
+ 464202,Male,Yes,43,Yes,Artist,13,Low,1,Cat_6
1547
+ 464204,Female,Yes,40,Yes,Artist,3,High,2,Cat_5
1548
+ 464205,Female,Yes,87,No,Entertainment,0,High,2,Cat_6
1549
+ 464206,Male,Yes,43,No,Entertainment,1,Low,2,Cat_6
1550
+ 464211,Male,Yes,48,Yes,Doctor,1,Average,3,Cat_2
1551
+ 464212,Female,Yes,58,Yes,Marketing,0,Average,2,Cat_6
1552
+ 464216,Male,Yes,52,Yes,Artist,,High,3,Cat_6
1553
+ 464217,Female,No,30,No,Healthcare,14,Low,3,Cat_6
1554
+ 464223,Female,Yes,53,Yes,Artist,2,Low,2,Cat_6
1555
+ 464226,Female,Yes,56,Yes,Artist,3,Average,3,Cat_6
1556
+ 464231,Male,Yes,48,Yes,Artist,1,Average,4,Cat_6
1557
+ 464232,Male,Yes,28,No,Doctor,1,Low,5,Cat_6
1558
+ 464246,Female,Yes,61,Yes,Artist,0,Average,2,Cat_6
1559
+ 464254,Male,Yes,62,Yes,Entertainment,1,Average,3,Cat_6
1560
+ 464255,Female,Yes,49,Yes,Artist,1,Average,5,Cat_4
1561
+ 464257,Male,Yes,40,,Entertainment,0,High,2,Cat_6
1562
+ 464265,Male,Yes,62,Yes,Entertainment,1,Low,2,Cat_6
1563
+ 464269,Male,No,35,Yes,Entertainment,1,Low,,Cat_1
1564
+ 464270,Female,No,48,Yes,Artist,4,Low,1,Cat_6
1565
+ 464271,Female,Yes,36,Yes,Artist,1,Average,3,Cat_2
1566
+ 464274,Female,Yes,56,Yes,Artist,1,Average,5,Cat_6
1567
+ 464276,Female,Yes,66,No,Marketing,0,High,2,Cat_1
1568
+ 464283,Male,No,40,Yes,Artist,6,Low,2,Cat_6
1569
+ 464286,Female,Yes,57,Yes,Artist,0,Average,2,Cat_6
1570
+ 464287,Male,Yes,42,Yes,Artist,,Average,3,Cat_2
1571
+ 464289,Male,Yes,35,No,Marketing,1,Low,3,Cat_6
1572
+ 464292,Male,Yes,58,Yes,Artist,0,Average,2,Cat_6
1573
+ 464297,Male,No,29,No,Artist,8,Low,5,Cat_5
1574
+ 464298,Male,No,26,No,Doctor,0,Low,1,Cat_6
1575
+ 464308,Female,Yes,84,Yes,Lawyer,1,High,2,Cat_6
1576
+ 464318,Male,Yes,86,Yes,Executive,0,Low,1,Cat_6
1577
+ 464320,Male,Yes,77,No,Lawyer,1,High,2,Cat_6
1578
+ 464326,Female,No,37,Yes,Artist,0,Low,3,Cat_6
1579
+ 464332,Male,Yes,74,No,Executive,0,High,2,Cat_6
1580
+ 464339,Male,No,27,No,Artist,1,Low,2,Cat_6
1581
+ 464344,Female,Yes,56,Yes,Artist,0,Low,1,Cat_6
1582
+ 464351,Female,No,27,Yes,Healthcare,0,Low,1,Cat_6
1583
+ 464364,Male,Yes,39,Yes,Artist,7,Average,2,Cat_6
1584
+ 464368,Male,Yes,35,Yes,Entertainment,3,Average,2,Cat_6
1585
+ 464370,Male,Yes,66,Yes,Entertainment,1,Average,2,Cat_6
1586
+ 464373,Female,No,47,Yes,Artist,0,Low,2,Cat_6
1587
+ 464378,Female,Yes,36,Yes,Artist,8,Average,2,Cat_6
1588
+ 464381,Male,Yes,43,Yes,Artist,4,Average,2,Cat_6
1589
+ 464382,Female,Yes,55,Yes,Artist,0,Average,4,Cat_6
1590
+ 464386,Male,Yes,41,Yes,Doctor,0,Average,3,Cat_6
1591
+ 464387,Female,No,26,Yes,Artist,9,Low,5,Cat_6
1592
+ 464389,Male,Yes,72,Yes,Artist,0,High,2,Cat_2
1593
+ 464392,Male,Yes,59,,Artist,0,Average,2,Cat_6
1594
+ 464396,Male,Yes,38,Yes,Entertainment,1,Average,3,Cat_6
1595
+ 464412,Male,Yes,72,No,Lawyer,1,Low,2,Cat_6
1596
+ 464424,Male,No,31,Yes,Healthcare,1,Low,4,Cat_6
1597
+ 464425,Male,No,41,Yes,Artist,9,Low,1,Cat_6
1598
+ 464432,Male,No,25,No,Engineer,9,Low,2,Cat_3
1599
+ 464433,Male,No,29,Yes,Artist,,Low,,Cat_2
1600
+ 464436,Male,Yes,83,Yes,Lawyer,0,High,2,Cat_4
1601
+ 464437,Female,Yes,51,Yes,Engineer,0,Average,4,Cat_6
1602
+ 464441,Male,Yes,40,Yes,Artist,0,Low,2,Cat_2
1603
+ 464451,Female,Yes,76,Yes,Artist,0,Average,2,Cat_6
1604
+ 464456,Male,Yes,29,Yes,Artist,1,Low,4,Cat_6
1605
+ 464468,Male,Yes,46,Yes,Artist,1,Low,3,Cat_6
1606
+ 464473,Female,Yes,58,Yes,Artist,0,Average,4,Cat_6
1607
+ 464474,Female,No,46,Yes,Artist,1,Low,1,Cat_6
1608
+ 464478,Female,Yes,74,No,Lawyer,0,High,2,Cat_6
1609
+ 464481,Male,Yes,53,Yes,Executive,1,High,3,Cat_6
1610
+ 464482,Male,Yes,63,Yes,Artist,1,Low,1,Cat_6
1611
+ 464483,Female,Yes,49,Yes,Artist,1,Average,3,Cat_6
1612
+ 464485,Male,No,25,Yes,Entertainment,5,Low,2,Cat_3
1613
+ 464487,Male,No,46,No,Engineer,1,Low,3,Cat_4
1614
+ 464488,Female,No,43,Yes,Artist,7,Low,9,Cat_6
1615
+ 464494,Female,Yes,58,Yes,Artist,1,Average,4,Cat_3
1616
+ 464499,Male,Yes,41,Yes,Executive,1,High,4,Cat_6
1617
+ 464501,Female,No,28,No,Healthcare,1,Low,3,Cat_6
1618
+ 464504,Male,No,26,Yes,Healthcare,0,Low,4,Cat_6
1619
+ 464506,Male,No,29,Yes,Healthcare,9,Low,2,Cat_4
1620
+ 464517,Male,No,33,Yes,Healthcare,0,Low,,Cat_5
1621
+ 464522,Female,No,39,Yes,Engineer,14,Low,1,Cat_6
1622
+ 464526,Male,Yes,51,Yes,Entertainment,0,Average,4,Cat_6
1623
+ 464528,Male,Yes,46,Yes,Entertainment,4,High,4,Cat_2
1624
+ 464533,Male,Yes,38,No,Executive,,High,6,Cat_6
1625
+ 464536,Male,Yes,26,Yes,Artist,1,Average,3,Cat_6
1626
+ 464540,Female,Yes,42,Yes,Engineer,1,Average,4,Cat_4
1627
+ 464544,Female,Yes,43,Yes,Entertainment,5,Average,3,Cat_6
1628
+ 464549,Male,Yes,53,Yes,Executive,1,Low,4,Cat_6
1629
+ 464550,Male,Yes,46,Yes,Artist,,Low,4,Cat_6
1630
+ 464552,Female,Yes,40,Yes,Artist,1,Average,3,Cat_4
1631
+ 464553,Male,Yes,71,Yes,Artist,1,Low,2,Cat_6
1632
+ 464555,Male,Yes,32,Yes,Marketing,13,High,4,Cat_4
1633
+ 464560,Male,No,41,Yes,Entertainment,9,Low,2,Cat_6
1634
+ 464561,Female,No,46,Yes,Entertainment,8,Low,2,Cat_6
1635
+ 464566,Male,Yes,40,Yes,Executive,0,High,4,Cat_6
1636
+ 464569,Male,No,29,No,Doctor,1,Low,5,Cat_6
1637
+ 464570,Male,Yes,25,Yes,Doctor,1,Average,2,Cat_6
1638
+ 464572,Female,Yes,52,Yes,Marketing,0,Low,1,Cat_6
1639
+ 464576,Male,No,30,Yes,Doctor,9,Low,5,Cat_6
1640
+ 464577,Female,Yes,25,Yes,Healthcare,12,High,2,Cat_6
1641
+ 464580,Male,No,32,No,Artist,9,Low,4,Cat_6
1642
+ 464581,Female,No,33,No,Doctor,,Low,4,Cat_6
1643
+ 464586,Female,No,49,Yes,Artist,1,Low,1,Cat_3
1644
+ 464593,Female,No,43,Yes,Doctor,1,Low,4,Cat_2
1645
+ 464594,Male,Yes,48,Yes,Artist,1,Low,1,Cat_2
1646
+ 464597,Male,No,41,No,Artist,5,Low,2,Cat_6
1647
+ 464601,Female,No,29,Yes,Healthcare,9,Low,2,Cat_6
1648
+ 464603,Female,No,35,Yes,Artist,0,Low,2,Cat_3
1649
+ 464606,Male,Yes,41,Yes,Artist,1,Average,2,Cat_6
1650
+ 464607,Female,Yes,47,Yes,Artist,1,Average,4,Cat_2
1651
+ 464608,Female,Yes,53,Yes,Artist,1,Average,3,Cat_6
1652
+ 464618,Male,,40,Yes,Artist,5,Low,1,Cat_6
1653
+ 464620,Female,Yes,40,Yes,Artist,0,High,2,Cat_6
1654
+ 464621,Male,Yes,46,Yes,Artist,0,Low,1,Cat_6
1655
+ 464637,Female,No,36,Yes,Marketing,,Low,4,Cat_4
1656
+ 464641,Female,Yes,71,Yes,Lawyer,2,Low,6,Cat_1
1657
+ 464652,Female,Yes,30,No,Engineer,5,Average,2,Cat_4
1658
+ 464654,Female,Yes,40,No,Engineer,1,Average,4,Cat_4
1659
+ 464664,Male,Yes,43,No,Entertainment,0,Average,5,Cat_4
1660
+ 464666,Male,Yes,40,Yes,Entertainment,3,Average,3,Cat_4
1661
+ 464670,Male,Yes,39,No,Entertainment,1,Average,4,Cat_4
1662
+ 464673,Male,Yes,49,No,Executive,1,High,7,Cat_2
1663
+ 464674,Male,Yes,51,No,Artist,0,Average,5,Cat_4
1664
+ 464675,Female,Yes,39,No,Doctor,1,Average,9,Cat_4
1665
+ 464677,Male,Yes,23,No,Healthcare,1,Low,5,Cat_4
1666
+ 464683,Male,Yes,53,No,Engineer,0,Average,6,Cat_4
1667
+ 464684,Female,No,35,No,Engineer,9,Low,5,Cat_4
1668
+ 464685,Male,No,35,No,Executive,2,Low,4,Cat_4
1669
+ 464688,Male,Yes,30,Yes,Doctor,1,Low,9,Cat_4
1670
+ 464690,Male,Yes,39,No,Engineer,2,Average,,Cat_4
1671
+ 464691,Male,No,38,Yes,Artist,1,Low,3,Cat_4
1672
+ 464692,Female,No,53,No,Marketing,0,Low,1,Cat_3
1673
+ 464693,Female,No,36,Yes,Engineer,8,Low,1,Cat_4
1674
+ 464695,Male,No,33,No,Engineer,0,Low,4,Cat_4
1675
+ 464696,Female,No,40,Yes,Engineer,1,Low,1,Cat_4
1676
+ 464697,Female,Yes,36,Yes,Artist,0,Average,4,Cat_4
1677
+ 464699,Male,No,31,No,Doctor,1,Low,5,Cat_4
1678
+ 464701,Male,No,31,No,Doctor,1,Low,2,Cat_4
1679
+ 464704,Male,Yes,41,Yes,Healthcare,0,Average,4,Cat_4
1680
+ 464707,Male,Yes,48,No,,0,Average,4,Cat_4
1681
+ 464711,Female,Yes,38,Yes,Artist,5,Average,3,Cat_1
1682
+ 464712,Male,Yes,49,No,Artist,1,Low,5,Cat_4
1683
+ 464722,Male,Yes,42,Yes,Doctor,1,Low,,Cat_4
1684
+ 464726,Male,Yes,28,Yes,Executive,14,High,9,Cat_4
1685
+ 464728,Male,Yes,51,No,Entertainment,0,High,4,Cat_4
1686
+ 464732,Male,Yes,41,No,Artist,1,Average,2,Cat_4
1687
+ 464737,Female,Yes,57,No,Engineer,0,Average,6,Cat_4
1688
+ 464739,Male,Yes,67,Yes,Artist,0,Low,1,Cat_4
1689
+ 464746,Male,Yes,29,No,Executive,3,Average,5,Cat_4
1690
+ 464752,Female,Yes,46,,Marketing,,Low,1,Cat_4
1691
+ 464755,Male,Yes,49,Yes,Artist,0,High,2,Cat_6
1692
+ 464756,Female,No,28,No,Engineer,6,Low,3,Cat_4
1693
+ 464758,Female,Yes,48,No,Engineer,1,Average,4,Cat_4
1694
+ 464760,Female,Yes,51,No,Engineer,5,Average,4,Cat_4
1695
+ 464765,Female,Yes,48,No,Engineer,5,Average,6,Cat_4
1696
+ 464766,Female,Yes,48,No,Engineer,5,Average,5,Cat_4
1697
+ 464769,Female,,52,No,Engineer,9,Average,4,Cat_4
1698
+ 464772,Female,Yes,39,No,Engineer,8,Average,4,Cat_4
1699
+ 464774,Female,Yes,50,No,Engineer,7,Average,5,Cat_4
1700
+ 464780,Female,No,33,No,Engineer,1,Low,9,Cat_4
1701
+ 464790,Female,No,35,Yes,Artist,,Low,1,Cat_4
1702
+ 464792,Male,Yes,30,No,Marketing,2,High,5,Cat_4
1703
+ 464794,Female,Yes,46,No,Engineer,8,Average,,Cat_4
1704
+ 464799,Male,No,36,No,Marketing,0,Low,4,Cat_4
1705
+ 464802,Male,No,43,No,Entertainment,0,Low,1,Cat_4
1706
+ 464804,Male,Yes,26,No,Entertainment,1,Low,1,Cat_4
1707
+ 464806,Male,Yes,33,No,Executive,0,Low,2,Cat_4
1708
+ 464809,Male,Yes,50,,Entertainment,,Average,5,Cat_4
1709
+ 464812,Female,Yes,49,Yes,Engineer,1,High,5,Cat_4
1710
+ 464813,Male,Yes,48,Yes,Engineer,6,Average,5,Cat_6
1711
+ 464817,Male,No,31,Yes,Artist,5,Low,1,Cat_4
1712
+ 464818,Female,Yes,38,No,Engineer,,Average,2,Cat_4
1713
+ 464825,Female,No,21,No,Healthcare,5,Low,1,Cat_4
1714
+ 464827,Female,Yes,50,No,Entertainment,8,Average,5,Cat_4
1715
+ 464828,Male,No,23,No,Healthcare,9,Low,6,Cat_4
1716
+ 464831,Female,Yes,21,No,Healthcare,0,Low,2,Cat_4
1717
+ 464832,Male,Yes,71,No,Lawyer,1,Low,,Cat_4
1718
+ 464835,Male,No,20,No,Healthcare,0,Low,6,Cat_4
1719
+ 464836,Female,,32,No,Engineer,7,High,5,Cat_4
1720
+ 464845,Male,Yes,29,No,Engineer,0,Average,3,Cat_4
1721
+ 464849,Male,Yes,42,Yes,Artist,0,Average,4,Cat_4
1722
+ 464851,Male,No,20,No,Doctor,0,Low,6,Cat_4
1723
+ 464852,Male,Yes,36,No,Executive,1,Low,6,Cat_4
1724
+ 464854,Female,Yes,42,No,Engineer,0,High,6,Cat_4
1725
+ 464857,Male,No,18,No,Healthcare,7,Low,4,Cat_4
1726
+ 464861,Male,No,25,No,Homemaker,,Low,2,Cat_4
1727
+ 464864,Female,No,30,No,Engineer,10,Low,8,Cat_4
1728
+ 464865,Female,No,28,No,Homemaker,9,Low,9,Cat_4
1729
+ 464868,Male,Yes,42,Yes,Entertainment,7,Low,6,Cat_4
1730
+ 464872,Male,Yes,38,Yes,Artist,1,Low,4,Cat_4
1731
+ 464873,Male,Yes,42,Yes,Artist,1,Average,2,Cat_4
1732
+ 464876,Female,Yes,52,No,Engineer,,Average,5,Cat_4
1733
+ 464879,Female,Yes,29,Yes,Doctor,0,Average,2,Cat_4
1734
+ 464884,Male,Yes,40,Yes,Artist,1,Low,2,Cat_4
1735
+ 464885,Female,No,38,No,Engineer,1,Low,2,Cat_4
1736
+ 464886,Male,Yes,37,Yes,Engineer,1,Average,4,Cat_4
1737
+ 464902,Female,Yes,65,No,Lawyer,1,Low,1,Cat_4
1738
+ 464905,Male,,81,No,Executive,,High,2,Cat_4
1739
+ 464907,Male,,59,Yes,Engineer,0,Average,2,Cat_4
1740
+ 464910,Female,Yes,47,Yes,Artist,1,Average,5,Cat_4
1741
+ 464911,Male,Yes,57,Yes,Artist,0,Average,3,Cat_4
1742
+ 464915,Male,Yes,39,Yes,Executive,,High,4,Cat_4
1743
+ 464916,Female,,32,,Doctor,8,High,2,Cat_4
1744
+ 464919,Male,Yes,37,Yes,Artist,9,Low,1,Cat_4
1745
+ 464920,Male,No,39,Yes,Artist,4,Low,1,Cat_4
1746
+ 464921,Male,Yes,39,No,Doctor,1,Average,5,Cat_4
1747
+ 464925,Male,,60,No,Executive,7,Average,2,Cat_4
1748
+ 464927,Female,Yes,70,Yes,Artist,1,Average,2,Cat_4
1749
+ 464932,Male,Yes,51,Yes,Executive,9,Low,1,Cat_4
1750
+ 464938,Male,Yes,48,No,Artist,1,Low,3,Cat_4
1751
+ 464939,Male,No,43,No,Entertainment,0,Low,1,Cat_4
1752
+ 464940,Female,Yes,29,No,Engineer,1,Low,2,Cat_4
1753
+ 464944,Female,Yes,43,Yes,Entertainment,0,Low,2,Cat_4
1754
+ 464947,Male,No,25,No,Doctor,5,Low,1,Cat_4
1755
+ 464957,Female,Yes,75,No,Lawyer,0,Low,1,Cat_4
1756
+ 464960,Female,No,22,No,Healthcare,0,Low,5,Cat_4
1757
+ 464961,Male,Yes,86,No,Marketing,1,Low,1,Cat_4
1758
+ 464963,Female,Yes,50,Yes,Entertainment,1,Low,2,Cat_4
1759
+ 464972,Male,Yes,73,No,Lawyer,1,High,9,Cat_4
1760
+ 464973,Male,No,87,,Lawyer,1,Low,2,Cat_4
1761
+ 464981,Male,Yes,49,Yes,Artist,0,Average,4,Cat_6
1762
+ 464987,Male,Yes,46,Yes,Executive,1,High,5,Cat_6
1763
+ 464990,Male,Yes,73,No,Executive,0,High,2,Cat_6
1764
+ 464991,Female,Yes,87,Yes,Lawyer,1,High,2,Cat_6
1765
+ 464995,Male,Yes,53,No,Executive,2,High,4,Cat_4
1766
+ 465001,Male,Yes,84,Yes,Lawyer,1,High,2,Cat_6
1767
+ 465005,Male,Yes,47,Yes,Executive,3,High,3,Cat_6
1768
+ 465012,Male,Yes,59,No,Executive,1,High,4,Cat_6
1769
+ 465014,Male,Yes,82,No,Lawyer,1,Low,1,Cat_6
1770
+ 465022,Female,Yes,71,Yes,Lawyer,0,High,2,Cat_6
1771
+ 465023,Male,Yes,39,Yes,Artist,9,Average,2,Cat_2
1772
+ 465026,Female,No,25,No,Doctor,0,Low,2,Cat_6
1773
+ 465032,Male,Yes,67,Yes,Executive,1,High,2,Cat_6
1774
+ 465035,Female,Yes,83,Yes,Lawyer,13,High,2,Cat_6
1775
+ 465038,Male,Yes,49,No,Executive,0,High,4,Cat_6
1776
+ 465039,Female,Yes,87,No,Lawyer,0,High,2,Cat_6
1777
+ 465040,Male,Yes,69,No,Lawyer,1,Average,2,Cat_6
1778
+ 465045,Male,Yes,40,Yes,Entertainment,9,Average,2,Cat_6
1779
+ 465056,Male,Yes,87,Yes,Lawyer,1,High,2,Cat_6
1780
+ 465069,Male,Yes,68,Yes,Healthcare,0,Average,3,Cat_6
1781
+ 465075,Female,Yes,43,Yes,Artist,,Average,2,Cat_6
1782
+ 465076,Male,Yes,67,Yes,Artist,0,High,5,Cat_6
1783
+ 465079,Male,Yes,80,Yes,Lawyer,1,Low,1,Cat_6
1784
+ 465082,Male,Yes,65,Yes,Lawyer,1,Low,1,Cat_3
1785
+ 465087,Male,No,29,Yes,Doctor,0,Low,4,Cat_6
1786
+ 465091,Male,Yes,60,Yes,Entertainment,,Average,3,Cat_6
1787
+ 465092,Male,Yes,72,Yes,Executive,1,High,2,Cat_6
1788
+ 465093,Male,Yes,57,Yes,Doctor,0,Low,1,Cat_6
1789
+ 465095,Male,Yes,47,Yes,Executive,1,High,4,Cat_6
1790
+ 465099,Male,Yes,39,No,Entertainment,1,Average,2,Cat_6
1791
+ 465100,Male,Yes,62,Yes,Artist,0,High,2,Cat_6
1792
+ 465101,Female,Yes,81,Yes,Lawyer,1,Low,1,Cat_6
1793
+ 465105,Male,Yes,65,No,Executive,8,Average,2,Cat_6
1794
+ 465109,Male,No,47,No,Lawyer,,Low,2,Cat_6
1795
+ 465111,Female,Yes,40,Yes,Artist,8,Average,2,Cat_6
1796
+ 465112,Female,Yes,86,No,Lawyer,0,High,2,Cat_6
1797
+ 465113,Male,Yes,67,Yes,Lawyer,0,High,2,Cat_4
1798
+ 465119,Female,Yes,45,Yes,Artist,0,Average,5,Cat_6
1799
+ 465120,Female,No,27,Yes,Healthcare,1,Low,4,Cat_6
1800
+ 465121,Female,No,32,Yes,Artist,7,Low,1,Cat_3
1801
+ 465122,Female,Yes,41,Yes,Artist,3,Average,2,Cat_6
1802
+ 465124,Female,Yes,27,Yes,Healthcare,6,Average,2,Cat_6
1803
+ 465128,Female,Yes,58,No,Artist,0,Average,3,Cat_6
1804
+ 465134,Female,Yes,61,Yes,Entertainment,1,Average,5,Cat_6
1805
+ 465136,Male,Yes,52,Yes,Artist,0,Average,2,Cat_6
1806
+ 465144,Male,No,25,Yes,Doctor,8,Low,1,Cat_6
1807
+ 465147,Male,No,33,Yes,Healthcare,2,Low,3,Cat_6
1808
+ 465148,Male,No,31,No,Artist,0,Low,,
1809
+ 465150,Male,No,37,Yes,Entertainment,1,Low,1,Cat_6
1810
+ 465153,Male,Yes,38,Yes,Artist,1,Average,2,Cat_6
1811
+ 465155,Male,Yes,81,Yes,Lawyer,0,Low,1,Cat_6
1812
+ 465160,Male,Yes,61,Yes,Executive,0,High,3,Cat_6
1813
+ 465164,Male,No,20,No,Healthcare,0,Low,3,Cat_6
1814
+ 465171,Female,Yes,48,Yes,Artist,8,High,4,Cat_6
1815
+ 465172,Female,Yes,43,Yes,Artist,8,Average,2,Cat_6
1816
+ 465175,Female,No,22,No,Homemaker,0,Low,4,Cat_6
1817
+ 465176,Female,Yes,63,Yes,Artist,1,Average,4,Cat_6
1818
+ 465181,Female,No,25,Yes,Healthcare,8,Low,1,Cat_4
1819
+ 465182,Female,No,73,Yes,Lawyer,1,Low,1,Cat_6
1820
+ 465186,Female,Yes,43,No,Artist,4,Average,4,Cat_1
1821
+ 465187,Female,Yes,39,No,Doctor,1,Average,4,Cat_4
1822
+ 465188,Female,Yes,49,Yes,Artist,0,Average,4,Cat_6
1823
+ 465189,Female,Yes,83,Yes,Lawyer,1,High,2,Cat_6
1824
+ 465194,Male,No,22,No,Healthcare,9,Low,6,Cat_2
1825
+ 465196,Female,No,31,Yes,Artist,2,Low,2,Cat_4
1826
+ 465197,Female,Yes,60,Yes,Artist,1,High,4,Cat_6
1827
+ 465201,Male,Yes,42,Yes,Entertainment,1,Average,4,Cat_3
1828
+ 465202,Male,No,25,No,Entertainment,7,Low,4,Cat_6
1829
+ 465203,Male,No,29,Yes,Healthcare,3,Low,3,Cat_6
1830
+ 465204,Male,Yes,29,Yes,Healthcare,1,Low,2,Cat_6
1831
+ 465213,Male,Yes,39,Yes,Entertainment,2,Average,2,Cat_6
1832
+ 465214,Male,Yes,33,No,Engineer,14,Low,1,Cat_6
1833
+ 465216,Male,Yes,35,Yes,Executive,9,High,4,Cat_6
1834
+ 465226,Male,Yes,38,No,Entertainment,2,Low,3,Cat_6
1835
+ 465228,Male,Yes,59,Yes,Artist,1,High,2,Cat_6
1836
+ 465231,Male,Yes,67,No,Artist,1,Average,2,Cat_6
1837
+ 465236,Male,Yes,45,Yes,Artist,1,Low,1,Cat_6
1838
+ 465237,Male,Yes,70,Yes,Lawyer,,High,2,Cat_6
1839
+ 465242,Male,No,19,No,Healthcare,5,Low,4,Cat_3
1840
+ 465249,Female,No,23,No,Healthcare,0,Low,4,Cat_6
1841
+ 465254,Male,No,22,No,Healthcare,1,Low,4,Cat_7
1842
+ 465261,Female,No,23,Yes,Healthcare,1,Low,4,Cat_1
1843
+ 465264,Male,Yes,80,No,Executive,0,Low,1,Cat_6
1844
+ 465267,Male,Yes,40,No,Engineer,14,Average,5,Cat_4
1845
+ 465274,Male,No,36,Yes,Artist,0,Low,1,Cat_4
1846
+ 465285,Female,Yes,31,No,Engineer,8,Low,4,Cat_6
1847
+ 465288,Female,Yes,20,No,Engineer,1,Low,2,Cat_4
1848
+ 465289,Male,Yes,31,Yes,Executive,1,High,2,Cat_6
1849
+ 465290,Male,Yes,50,Yes,Executive,0,High,5,Cat_6
1850
+ 465294,Male,Yes,67,No,Lawyer,0,Low,2,Cat_6
1851
+ 465295,Female,,43,Yes,Doctor,9,Average,1,Cat_6
1852
+ 465296,Female,Yes,85,Yes,Lawyer,5,High,3,Cat_6
1853
+ 465303,Female,Yes,65,Yes,Artist,1,Average,3,Cat_2
1854
+ 465306,Male,Yes,71,No,Executive,1,Average,4,Cat_2
1855
+ 465310,Female,No,20,No,Healthcare,1,Low,6,Cat_4
1856
+ 465319,Male,No,20,No,Healthcare,0,Low,5,Cat_6
1857
+ 465326,Male,Yes,87,Yes,Artist,,Low,1,Cat_6
1858
+ 465333,Female,Yes,37,Yes,Artist,4,Low,2,Cat_7
1859
+ 465335,Male,Yes,59,No,Entertainment,1,Average,2,Cat_7
1860
+ 465340,Female,No,29,Yes,Artist,3,Low,4,Cat_2
1861
+ 465342,Male,Yes,85,Yes,Executive,0,High,2,Cat_6
1862
+ 465344,Female,Yes,72,Yes,Lawyer,1,High,2,Cat_6
1863
+ 465345,Female,No,42,Yes,Artist,0,Low,,Cat_6
1864
+ 465351,Female,Yes,45,Yes,Artist,9,Average,2,Cat_6
1865
+ 465352,Male,Yes,59,Yes,Entertainment,1,Average,4,Cat_6
1866
+ 465354,Male,No,19,No,Doctor,0,Low,5,Cat_2
1867
+ 465357,Female,Yes,47,Yes,Artist,0,Average,3,Cat_6
1868
+ 465358,Female,Yes,73,Yes,Artist,0,High,2,Cat_6
1869
+ 465359,Female,Yes,42,No,Artist,1,Low,1,Cat_6
1870
+ 465364,Female,No,37,Yes,Doctor,7,Low,5,Cat_2
1871
+ 465366,Female,No,38,Yes,Artist,8,Low,1,Cat_6
1872
+ 465371,Female,No,41,Yes,Artist,1,Low,1,Cat_6
1873
+ 465372,Female,No,40,Yes,Entertainment,0,Low,1,Cat_6
1874
+ 465383,Female,Yes,30,Yes,Entertainment,0,Low,4,Cat_6
1875
+ 465384,Male,Yes,56,Yes,Artist,0,High,2,Cat_6
1876
+ 465391,Female,Yes,65,Yes,Lawyer,1,High,2,Cat_6
1877
+ 465393,Male,Yes,35,Yes,Artist,5,Average,2,Cat_6
1878
+ 465395,Female,Yes,37,No,Engineer,0,Average,5,Cat_4
1879
+ 465399,Male,No,36,Yes,Entertainment,0,Low,1,Cat_4
1880
+ 465405,Female,,26,Yes,Homemaker,1,High,4,Cat_2
1881
+ 465408,Male,No,25,No,Executive,,Low,4,Cat_6
1882
+ 465410,Male,No,30,No,Healthcare,0,Low,4,Cat_5
1883
+ 465417,Male,Yes,37,Yes,Entertainment,,Average,2,Cat_4
1884
+ 465419,Male,No,30,No,Artist,0,Low,3,Cat_6
1885
+ 465423,Male,Yes,46,Yes,Entertainment,1,Average,4,Cat_7
1886
+ 465428,Female,No,38,Yes,Engineer,1,Low,1,Cat_4
1887
+ 465433,Female,No,40,Yes,Artist,,Low,1,Cat_2
1888
+ 465435,Female,No,31,Yes,Artist,5,Low,1,Cat_6
1889
+ 465437,Male,Yes,45,Yes,Executive,4,High,5,Cat_6
1890
+ 465440,Male,Yes,55,No,Engineer,1,Low,5,Cat_6
1891
+ 465441,Female,Yes,51,Yes,Engineer,2,Low,1,Cat_4
1892
+ 465445,Female,No,29,Yes,Homemaker,5,Low,7,Cat_6
1893
+ 465458,Female,Yes,74,Yes,Artist,1,High,2,Cat_6
1894
+ 465461,Male,Yes,69,No,Entertainment,1,Average,3,Cat_6
1895
+ 465463,Female,No,28,No,Doctor,,Low,5,Cat_2
1896
+ 465464,Male,Yes,41,Yes,Executive,0,Average,,Cat_4
1897
+ 465467,Male,,29,No,Healthcare,1,Low,3,Cat_6
1898
+ 465471,Male,Yes,39,Yes,Artist,0,Low,1,Cat_6
1899
+ 465472,Female,Yes,74,No,Entertainment,,High,3,Cat_6
1900
+ 465473,Female,No,59,Yes,Artist,4,Low,1,Cat_6
1901
+ 465477,Male,No,27,No,Healthcare,1,Low,3,Cat_2
1902
+ 465479,Male,No,33,No,Artist,0,Low,1,Cat_4
1903
+ 465482,Male,No,31,No,Entertainment,9,Low,2,Cat_2
1904
+ 465483,Male,Yes,46,No,Artist,0,Average,3,Cat_6
1905
+ 465484,Female,Yes,63,Yes,Artist,0,Low,2,Cat_6
1906
+ 465488,Male,No,22,No,Healthcare,1,Low,4,Cat_6
1907
+ 465489,Female,No,53,Yes,Engineer,1,Low,5,Cat_6
1908
+ 465492,Male,Yes,59,No,Entertainment,1,Low,1,Cat_2
1909
+ 465496,Male,Yes,84,Yes,Lawyer,,Low,2,Cat_2
1910
+ 465505,Male,Yes,63,Yes,Artist,1,Average,4,Cat_6
1911
+ 465507,Male,Yes,35,Yes,Artist,8,Low,1,Cat_6
1912
+ 465508,Male,No,21,No,Healthcare,1,Low,4,Cat_6
1913
+ 465510,Male,Yes,67,No,Lawyer,0,High,2,Cat_6
1914
+ 465518,Female,Yes,41,Yes,Artist,1,Average,3,Cat_4
1915
+ 465520,Female,No,27,Yes,Artist,0,Low,8,Cat_2
1916
+ 465521,Female,Yes,53,Yes,Artist,1,Average,2,Cat_7
1917
+ 465522,Female,No,33,Yes,Healthcare,4,Low,8,Cat_5
1918
+ 465529,Female,No,32,No,Doctor,0,Low,4,Cat_6
1919
+ 465538,Male,Yes,59,No,,5,High,2,Cat_6
1920
+ 465539,Female,Yes,50,Yes,Artist,1,High,5,Cat_6
1921
+ 465541,Female,Yes,50,Yes,Artist,1,Average,4,Cat_7
1922
+ 465543,Female,Yes,41,Yes,Healthcare,1,Average,2,Cat_3
1923
+ 465547,Female,Yes,71,,Lawyer,1,Low,1,Cat_6
1924
+ 465550,Female,No,33,Yes,Healthcare,1,Low,6,Cat_3
1925
+ 465551,Female,Yes,46,Yes,Artist,,Average,2,Cat_3
1926
+ 465554,Female,No,78,Yes,Lawyer,1,Low,3,Cat_6
1927
+ 465555,Female,Yes,69,No,Lawyer,,High,2,Cat_4
1928
+ 465558,Female,No,40,Yes,Healthcare,8,Low,1,Cat_7
1929
+ 465568,Male,Yes,43,Yes,Executive,2,High,3,Cat_6
1930
+ 465569,Male,Yes,36,Yes,Artist,0,High,3,Cat_6
1931
+ 465571,Male,Yes,35,Yes,Entertainment,1,Average,2,Cat_2
1932
+ 465577,Male,No,30,No,Healthcare,0,Low,4,Cat_3
1933
+ 465584,Male,Yes,47,No,Entertainment,3,Average,2,Cat_6
1934
+ 465586,Male,Yes,69,No,Artist,0,Low,1,Cat_6
1935
+ 465587,Male,Yes,41,Yes,Entertainment,,Low,5,Cat_3
1936
+ 465594,Male,Yes,33,No,Executive,4,Low,6,Cat_3
1937
+ 465598,Male,No,27,Yes,Healthcare,6,Low,5,Cat_2
1938
+ 465600,Male,Yes,38,Yes,Engineer,6,Low,2,Cat_3
1939
+ 465601,Male,Yes,35,Yes,Artist,,Average,4,Cat_3
1940
+ 465602,Male,Yes,27,Yes,Artist,10,Low,2,Cat_3
1941
+ 465603,Female,Yes,51,Yes,Homemaker,9,Low,,Cat_3
1942
+ 465605,Female,Yes,52,Yes,Engineer,4,Low,1,Cat_3
1943
+ 465611,Male,No,53,Yes,Doctor,0,Low,1,Cat_6
1944
+ 465612,Male,Yes,43,Yes,Artist,8,Average,2,Cat_6
1945
+ 465616,Male,Yes,42,Yes,Doctor,8,Low,2,Cat_6
1946
+ 465621,Male,No,36,Yes,Doctor,9,Low,1,Cat_6
1947
+ 465625,Male,No,36,Yes,Artist,14,Low,2,Cat_6
1948
+ 465627,Female,No,40,Yes,Healthcare,1,Low,1,Cat_6
1949
+ 465629,Male,Yes,47,Yes,Entertainment,2,Average,3,Cat_6
1950
+ 465635,Male,No,30,No,Doctor,1,Low,2,Cat_4
1951
+ 465638,Female,Yes,53,Yes,Artist,,Low,,Cat_3
1952
+ 465640,Male,Yes,45,Yes,Artist,5,Average,2,Cat_6
1953
+ 465644,Male,No,33,Yes,Healthcare,0,Low,5,Cat_6
1954
+ 465645,Female,No,40,Yes,Artist,8,Low,2,Cat_6
1955
+ 465649,Female,Yes,36,Yes,Marketing,5,Low,1,Cat_6
1956
+ 465651,Male,No,32,No,Engineer,0,Low,4,Cat_6
1957
+ 465653,Female,Yes,51,Yes,Artist,0,Low,2,Cat_6
1958
+ 465655,Female,No,49,Yes,Artist,0,Low,1,Cat_6
1959
+ 465656,Male,Yes,81,No,Lawyer,1,Low,,Cat_6
1960
+ 465658,Male,Yes,72,Yes,Artist,1,Average,4,Cat_6
1961
+ 465663,Female,No,70,Yes,Artist,0,Low,2,Cat_6
1962
+ 465667,Male,No,21,No,Healthcare,0,Low,3,Cat_2
1963
+ 465668,Male,No,21,No,Healthcare,1,Low,5,Cat_4
1964
+ 465669,Female,Yes,41,No,Entertainment,4,Average,4,Cat_4
1965
+ 465670,Female,No,49,No,Engineer,12,Low,1,Cat_4
1966
+ 465675,Female,No,51,No,Entertainment,0,Low,1,Cat_4
1967
+ 465680,Male,Yes,28,No,Healthcare,0,Average,5,Cat_4
1968
+ 465685,Male,No,37,Yes,Healthcare,5,Low,2,Cat_3
1969
+ 465688,Female,Yes,63,,Artist,1,Average,3,Cat_3
1970
+ 465689,Male,No,19,No,Healthcare,8,Low,4,Cat_3
1971
+ 465695,Female,No,32,No,Healthcare,,Low,3,Cat_4
1972
+ 465697,Female,Yes,51,No,Artist,6,Low,1,Cat_6
1973
+ 465703,Male,Yes,26,No,Entertainment,3,Low,2,Cat_4
1974
+ 465704,Male,Yes,61,No,Artist,0,Low,1,Cat_6
1975
+ 465705,Female,Yes,51,Yes,Artist,0,Average,4,Cat_6
1976
+ 465706,Female,Yes,45,Yes,Artist,0,Average,3,Cat_6
1977
+ 465721,Male,Yes,29,Yes,Entertainment,1,High,2,Cat_3
1978
+ 465722,Male,Yes,47,No,,0,Low,5,Cat_3
1979
+ 465725,Male,No,25,Yes,Doctor,1,Low,2,Cat_3
1980
+ 465727,Male,No,40,No,Marketing,0,Low,5,Cat_4
1981
+ 465728,Male,No,45,Yes,,1,Low,1,Cat_4
1982
+ 465733,Male,Yes,32,Yes,Entertainment,1,Average,2,Cat_4
1983
+ 465734,Male,Yes,38,Yes,Artist,0,Low,3,Cat_1
1984
+ 465736,Female,No,38,Yes,Artist,8,Low,2,Cat_3
1985
+ 465737,Female,Yes,48,Yes,Engineer,7,Low,3,Cat_3
1986
+ 465740,Female,No,71,Yes,Doctor,0,Low,1,Cat_6
1987
+ 465742,Female,Yes,46,Yes,Artist,3,Low,3,Cat_6
1988
+ 465751,Female,Yes,46,Yes,Artist,9,Low,2,Cat_6
1989
+ 465753,Female,Yes,49,Yes,Artist,7,Low,2,Cat_6
1990
+ 465766,Male,Yes,43,No,Entertainment,0,Low,3,Cat_4
1991
+ 465768,Female,No,38,Yes,Artist,6,Low,4,Cat_4
1992
+ 465769,Male,No,25,Yes,Healthcare,8,Low,4,Cat_6
1993
+ 465772,Female,Yes,46,Yes,Engineer,0,Low,4,Cat_1
1994
+ 465775,Female,No,28,Yes,Engineer,9,Low,3,Cat_6
1995
+ 465776,Female,No,41,Yes,Entertainment,5,Low,4,Cat_6
1996
+ 465777,Female,No,32,Yes,Artist,9,Low,5,Cat_6
1997
+ 465784,Female,No,21,No,Healthcare,0,Low,4,Cat_3
1998
+ 465788,Male,No,22,No,Healthcare,1,Low,6,Cat_4
1999
+ 465793,Male,No,27,No,Healthcare,0,Low,5,Cat_4
2000
+ 465797,Male,Yes,40,Yes,Artist,0,Average,2,Cat_2
2001
+ 465804,Female,Yes,68,No,Engineer,0,Low,1,Cat_4
2002
+ 465809,Female,No,25,No,Homemaker,1,Low,7,Cat_4
2003
+ 465811,Male,No,28,No,Healthcare,1,Low,4,Cat_4
2004
+ 465813,Male,No,28,No,Marketing,2,Low,8,Cat_4
2005
+ 465818,Male,No,27,No,Entertainment,1,Low,3,Cat_4
2006
+ 465823,Male,Yes,67,No,Entertainment,5,Average,4,Cat_4
2007
+ 465826,Male,Yes,46,No,Executive,4,Low,9,Cat_4
2008
+ 465828,Female,No,33,No,Entertainment,8,Low,4,Cat_4
2009
+ 465829,Female,Yes,40,Yes,Doctor,6,Average,3,Cat_4
2010
+ 465830,Female,Yes,48,No,,5,Average,7,Cat_4
2011
+ 465831,Male,Yes,42,No,Executive,0,High,5,Cat_4
2012
+ 465837,Male,No,56,Yes,,1,Low,1,Cat_6
2013
+ 465841,Female,No,51,Yes,Engineer,3,Low,1,Cat_6
2014
+ 465848,Female,No,27,Yes,Healthcare,0,Low,1,Cat_7
2015
+ 465849,Female,No,25,Yes,Doctor,7,Low,3,Cat_4
2016
+ 465851,Female,Yes,51,No,Artist,9,High,2,Cat_4
2017
+ 465853,Female,Yes,26,Yes,Healthcare,,Average,2,Cat_6
2018
+ 465857,Female,No,35,Yes,Doctor,0,Low,1,Cat_6
2019
+ 465860,Female,,25,Yes,Doctor,1,Low,3,Cat_6
2020
+ 465863,Male,No,30,No,Healthcare,6,Low,3,Cat_6
2021
+ 465865,Female,No,41,Yes,Healthcare,9,Low,1,Cat_6
2022
+ 465866,Male,Yes,42,Yes,Artist,6,Low,3,Cat_6
2023
+ 465867,Female,Yes,40,Yes,Artist,8,High,5,Cat_6
2024
+ 465873,Male,No,36,Yes,Entertainment,13,Low,1,Cat_6
2025
+ 465875,Female,No,39,Yes,Artist,9,Low,1,Cat_6
2026
+ 465884,Male,Yes,40,Yes,Executive,7,High,3,Cat_6
2027
+ 465893,Female,Yes,40,Yes,Engineer,1,Average,2,Cat_6
2028
+ 465894,Male,No,28,Yes,Artist,9,Low,6,Cat_6
2029
+ 465907,Female,No,31,Yes,Marketing,8,Low,,Cat_1
2030
+ 465916,Male,No,41,Yes,Artist,4,Low,1,Cat_6
2031
+ 465923,Female,No,28,Yes,Engineer,9,Low,5,Cat_6
2032
+ 465925,Male,No,30,Yes,Healthcare,1,Low,1,Cat_6
2033
+ 465927,Female,No,30,Yes,Healthcare,1,Low,1,Cat_6
2034
+ 465930,Female,No,38,Yes,Artist,9,Low,2,Cat_6
2035
+ 465931,Male,Yes,43,Yes,Artist,7,Low,1,Cat_7
2036
+ 465935,Male,No,29,Yes,Entertainment,9,Low,1,Cat_6
2037
+ 465937,Female,No,30,Yes,Healthcare,9,Low,3,Cat_6
2038
+ 465941,Male,Yes,27,Yes,Healthcare,0,Low,2,Cat_6
2039
+ 465948,Female,Yes,48,Yes,Artist,0,Average,2,Cat_6
2040
+ 465953,Female,No,51,Yes,Artist,1,Low,1,Cat_6
2041
+ 465957,Female,No,48,Yes,Marketing,0,Low,1,Cat_6
2042
+ 465960,Female,No,28,Yes,Marketing,9,Low,1,Cat_6
2043
+ 465961,Female,No,40,Yes,Artist,3,Low,1,Cat_6
2044
+ 465963,Male,Yes,51,Yes,Artist,1,Low,2,Cat_6
2045
+ 465965,Female,Yes,36,No,Marketing,8,Low,2,Cat_6
2046
+ 465972,Female,No,51,Yes,Marketing,9,Low,1,Cat_6
2047
+ 465974,Male,Yes,45,Yes,Executive,5,High,4,Cat_4
2048
+ 465975,Male,No,40,Yes,Artist,8,Low,1,Cat_6
2049
+ 465976,Male,No,40,Yes,Artist,0,Low,1,Cat_7
2050
+ 465979,Male,Yes,41,Yes,Artist,2,Low,2,Cat_6
2051
+ 465982,Male,Yes,43,Yes,Entertainment,0,Average,4,Cat_6
2052
+ 465983,Male,,21,No,Healthcare,1,Low,3,Cat_6
2053
+ 465996,Male,No,23,No,Healthcare,1,Low,4,Cat_6
2054
+ 465997,Female,No,31,No,Doctor,0,Low,3,Cat_6
2055
+ 466001,Female,Yes,42,Yes,Entertainment,6,Low,2,Cat_6
2056
+ 466007,Male,Yes,61,No,Artist,0,Low,1,Cat_7
2057
+ 466017,Female,Yes,45,Yes,Homemaker,0,Low,1,Cat_3
2058
+ 466019,Female,Yes,63,Yes,Artist,5,Low,1,Cat_3
2059
+ 466020,Male,Yes,86,No,Lawyer,0,Low,1,Cat_6
2060
+ 466022,Female,Yes,67,No,Engineer,,High,3,Cat_7
2061
+ 466023,Male,Yes,71,No,Executive,,High,3,Cat_7
2062
+ 466024,Female,Yes,43,No,Entertainment,14,Low,2,Cat_3
2063
+ 466032,Male,,28,No,Entertainment,,Low,2,Cat_6
2064
+ 466042,Male,Yes,47,No,Entertainment,0,Low,2,Cat_6
2065
+ 466043,Female,Yes,53,Yes,Artist,0,Average,4,Cat_6
2066
+ 466046,Female,Yes,36,No,Entertainment,1,Average,2,Cat_4
2067
+ 466058,Male,Yes,35,No,Entertainment,1,Low,,Cat_4
2068
+ 466069,Female,Yes,48,Yes,Artist,1,High,4,
2069
+ 466071,Female,Yes,60,Yes,Artist,3,Low,3,Cat_4
2070
+ 466078,Female,Yes,45,No,Executive,,Low,1,Cat_6
2071
+ 466079,Female,Yes,42,No,Engineer,0,Low,2,Cat_6
2072
+ 466082,Female,Yes,89,Yes,Lawyer,1,Low,1,Cat_6
2073
+ 466083,Female,No,23,No,Marketing,4,Low,2,Cat_3
2074
+ 466084,Male,Yes,46,Yes,Homemaker,11,Low,1,Cat_3
2075
+ 466085,Male,No,22,No,,8,Low,4,Cat_4
2076
+ 466088,Female,No,30,No,Healthcare,0,Low,7,Cat_6
2077
+ 466090,Male,Yes,58,Yes,Entertainment,0,Low,,Cat_6
2078
+ 466092,Male,Yes,73,Yes,Artist,0,Average,4,Cat_6
2079
+ 466099,Female,Yes,71,Yes,Lawyer,0,Low,1,Cat_6
2080
+ 466103,Female,Yes,35,No,Engineer,0,Low,5,Cat_6
2081
+ 466109,Male,Yes,52,Yes,Entertainment,1,Average,4,Cat_6
2082
+ 466111,Male,Yes,84,Yes,Lawyer,0,Low,2,Cat_6
2083
+ 466114,Male,Yes,47,Yes,Entertainment,1,Average,5,Cat_6
2084
+ 466115,Male,Yes,39,No,Executive,0,Low,2,Cat_6
2085
+ 466118,Female,Yes,40,No,Engineer,0,Low,3,Cat_4
2086
+ 466124,Female,No,46,Yes,Artist,1,Low,1,Cat_6
2087
+ 466128,Male,No,40,Yes,Artist,3,Low,2,Cat_6
2088
+ 466130,Female,No,27,No,Artist,1,Low,6,Cat_6
2089
+ 466132,Female,No,23,No,Healthcare,4,Low,4,Cat_7
2090
+ 466136,Female,No,21,Yes,Artist,1,Low,2,Cat_6
2091
+ 466138,Male,Yes,70,No,Lawyer,2,High,2,Cat_6
2092
+ 466140,Male,Yes,28,Yes,Entertainment,1,Low,2,Cat_6
2093
+ 466141,Female,Yes,58,Yes,Homemaker,1,Low,4,Cat_6
2094
+ 466142,Female,Yes,27,Yes,Entertainment,0,Average,2,Cat_6
2095
+ 466143,Female,Yes,49,No,Engineer,0,Average,5,
2096
+ 466146,Female,Yes,37,No,Engineer,8,Average,3,Cat_6
2097
+ 466148,Male,Yes,39,No,Entertainment,1,Average,4,Cat_6
2098
+ 466149,Female,No,28,No,Doctor,2,Low,4,Cat_6
2099
+ 466153,Male,Yes,73,No,Entertainment,0,Average,2,Cat_6
2100
+ 466154,Female,Yes,51,Yes,Artist,1,Average,5,Cat_3
2101
+ 466156,Female,Yes,48,Yes,Doctor,8,Average,3,Cat_2
2102
+ 466157,Male,Yes,72,Yes,Homemaker,9,Low,,
2103
+ 466161,Male,Yes,47,No,Artist,1,Average,,Cat_6
2104
+ 466162,Female,Yes,67,Yes,Doctor,0,Low,1,Cat_4
2105
+ 466166,Male,Yes,77,Yes,Lawyer,0,High,2,Cat_4
2106
+ 466172,Male,Yes,46,Yes,Artist,3,Average,3,Cat_6
2107
+ 466178,Female,Yes,52,Yes,Artist,1,Average,4,Cat_6
2108
+ 466180,Male,Yes,67,No,Lawyer,1,Low,1,Cat_6
2109
+ 466185,Male,Yes,62,Yes,Doctor,0,Average,4,Cat_6
2110
+ 466200,Male,Yes,45,Yes,Doctor,8,Average,3,Cat_4
2111
+ 466201,Male,Yes,40,Yes,Doctor,1,Average,5,Cat_4
2112
+ 466206,Female,Yes,60,Yes,Artist,4,Average,2,Cat_3
2113
+ 466207,Female,Yes,37,Yes,Doctor,8,Average,4,Cat_2
2114
+ 466208,Male,Yes,69,No,Executive,2,High,1,Cat_6
2115
+ 466210,Female,Yes,58,Yes,Artist,1,High,4,Cat_6
2116
+ 466211,Male,Yes,52,Yes,Artist,1,Low,,Cat_6
2117
+ 466213,Male,No,20,No,Healthcare,2,Low,5,Cat_6
2118
+ 466218,Female,,23,No,Healthcare,6,Low,4,Cat_2
2119
+ 466223,Male,Yes,66,Yes,Artist,0,Low,1,Cat_4
2120
+ 466225,Male,No,19,No,Healthcare,1,Low,3,Cat_2
2121
+ 466226,Female,Yes,53,Yes,Artist,0,Average,5,Cat_6
2122
+ 466233,Female,Yes,59,Yes,Homemaker,6,Low,1,Cat_6
2123
+ 466235,Female,Yes,61,Yes,Artist,0,Average,4,Cat_4
2124
+ 466236,Female,Yes,68,Yes,Engineer,1,Low,2,Cat_4
2125
+ 466238,Male,No,20,No,Healthcare,1,Low,3,Cat_4
2126
+ 466246,Male,No,20,No,Healthcare,1,Low,4,Cat_2
2127
+ 466247,Female,,49,Yes,Artist,0,Low,4,Cat_2
2128
+ 466253,Male,No,19,No,Healthcare,1,Low,3,Cat_2
2129
+ 466257,Female,No,27,No,Healthcare,1,Low,4,Cat_6
2130
+ 466264,Male,Yes,32,Yes,,1,Low,2,Cat_3
2131
+ 466268,Female,Yes,67,Yes,Artist,0,Average,3,Cat_4
2132
+ 466271,Male,No,27,No,Entertainment,1,Low,3,Cat_2
2133
+ 466274,Male,Yes,72,Yes,Executive,0,Low,,Cat_6
2134
+ 466276,Female,No,32,No,Doctor,1,Low,5,Cat_4
2135
+ 466278,Female,No,28,No,,0,Low,2,Cat_3
2136
+ 466282,Male,Yes,29,Yes,Healthcare,8,Low,,Cat_6
2137
+ 466285,Female,No,19,No,Healthcare,1,Low,5,Cat_2
2138
+ 466286,Female,Yes,52,Yes,Artist,1,Average,5,Cat_2
2139
+ 466287,Female,Yes,47,Yes,Doctor,1,Average,2,Cat_2
2140
+ 466289,Male,No,19,No,Healthcare,3,Low,5,Cat_2
2141
+ 466290,Female,No,18,No,Healthcare,5,Low,,Cat_4
2142
+ 466292,Female,Yes,79,No,Lawyer,1,High,2,Cat_6
2143
+ 466297,Female,No,19,No,Healthcare,1,Low,4,Cat_4
2144
+ 466300,Female,Yes,48,Yes,Artist,0,Low,3,Cat_2
2145
+ 466301,Male,Yes,52,Yes,Artist,1,Average,3,Cat_2
2146
+ 466306,Male,No,23,No,Healthcare,1,Low,4,Cat_6
2147
+ 466313,Female,Yes,58,Yes,Artist,1,Low,1,Cat_4
2148
+ 466315,Female,Yes,69,Yes,Engineer,1,Low,1,Cat_6
2149
+ 466317,Male,Yes,37,Yes,Entertainment,4,Low,1,Cat_6
2150
+ 466318,Female,No,30,No,Healthcare,0,Low,3,Cat_6
2151
+ 466319,Female,,25,No,Healthcare,0,Low,4,Cat_6
2152
+ 466320,Female,No,39,Yes,Engineer,8,Low,2,Cat_4
2153
+ 466321,Male,Yes,43,Yes,Entertainment,3,Low,2,Cat_4
2154
+ 466324,Female,No,32,No,Engineer,0,Low,1,Cat_4
2155
+ 466326,Male,No,23,No,Healthcare,0,Low,5,Cat_3
2156
+ 466335,Female,No,30,No,Healthcare,1,Low,3,Cat_4
2157
+ 466337,Female,Yes,41,No,Engineer,1,Low,2,Cat_4
2158
+ 466341,Male,Yes,49,Yes,Artist,1,Average,2,Cat_5
2159
+ 466347,Male,Yes,66,No,Executive,6,Low,3,Cat_4
2160
+ 466352,Female,Yes,67,Yes,Doctor,1,Low,2,Cat_6
2161
+ 466355,Male,No,30,Yes,Healthcare,0,Low,2,Cat_6
2162
+ 466367,Female,No,39,Yes,Doctor,6,Low,1,Cat_2
2163
+ 466370,Female,,52,Yes,Artist,0,Low,4,Cat_2
2164
+ 466372,Female,Yes,57,Yes,Artist,0,Average,5,Cat_6
2165
+ 466373,Male,Yes,63,Yes,Executive,1,High,1,Cat_6
2166
+ 466376,Female,Yes,52,No,Homemaker,4,High,3,Cat_6
2167
+ 466377,Male,Yes,61,Yes,,8,Average,2,Cat_6
2168
+ 466380,Male,Yes,35,Yes,Entertainment,7,Low,2,Cat_6
2169
+ 466381,Male,Yes,52,Yes,Artist,4,Average,2,Cat_6
2170
+ 466382,Female,Yes,45,Yes,Engineer,2,High,2,Cat_4
2171
+ 466387,Male,Yes,37,Yes,Entertainment,8,Average,2,Cat_6
2172
+ 466389,Female,Yes,45,Yes,Engineer,1,Average,2,Cat_6
2173
+ 466391,Female,Yes,55,Yes,Engineer,0,Average,,Cat_6
2174
+ 466392,Female,Yes,49,Yes,Engineer,4,Average,,Cat_3
2175
+ 466393,Female,Yes,42,No,Entertainment,1,Low,6,Cat_3
2176
+ 466395,Female,Yes,39,Yes,Doctor,3,High,2,Cat_4
2177
+ 466397,Male,No,18,No,Healthcare,0,Low,3,Cat_3
2178
+ 466400,Male,Yes,43,No,Artist,1,Average,3,Cat_3
2179
+ 466401,Male,Yes,50,No,Executive,1,Average,4,Cat_6
2180
+ 466402,Male,Yes,37,Yes,Artist,1,Average,4,Cat_6
2181
+ 466404,Female,No,37,Yes,Engineer,1,Low,1,Cat_6
2182
+ 466406,Male,Yes,63,Yes,Entertainment,0,Low,3,Cat_6
2183
+ 466408,Male,Yes,83,Yes,Lawyer,1,Low,2,Cat_3
2184
+ 466411,Male,Yes,55,Yes,Artist,1,Average,3,Cat_3
2185
+ 466414,Male,Yes,71,Yes,Artist,1,Low,3,Cat_6
2186
+ 466418,Male,Yes,87,No,Lawyer,1,Low,1,Cat_4
2187
+ 466419,Female,Yes,49,Yes,Entertainment,2,Average,5,Cat_3
2188
+ 466422,Male,Yes,27,No,Doctor,0,Low,4,Cat_4
2189
+ 466427,Female,Yes,25,No,Marketing,1,Low,4,Cat_4
2190
+ 466429,Male,Yes,42,No,Healthcare,0,Low,2,Cat_3
2191
+ 466443,Female,Yes,66,Yes,Artist,4,Low,2,Cat_6
2192
+ 466450,Female,No,32,Yes,Healthcare,1,Low,1,Cat_6
2193
+ 466455,Female,Yes,32,Yes,Doctor,4,Low,2,Cat_6
2194
+ 466456,Female,Yes,37,No,Doctor,8,Low,1,Cat_2
2195
+ 466457,Female,Yes,62,,Lawyer,9,Low,5,Cat_6
2196
+ 466463,Female,No,33,Yes,Healthcare,3,Low,4,Cat_4
2197
+ 466464,Female,Yes,45,Yes,Homemaker,2,Average,2,Cat_3
2198
+ 466466,Female,,18,No,Healthcare,5,Low,5,Cat_3
2199
+ 466467,Female,Yes,37,Yes,Artist,0,Average,3,Cat_3
2200
+ 466468,Male,No,30,Yes,Doctor,4,Low,4,Cat_3
2201
+ 466474,Male,No,31,Yes,Entertainment,5,Low,3,Cat_6
2202
+ 466478,Female,Yes,48,Yes,Artist,0,Average,4,Cat_3
2203
+ 466483,Male,No,31,Yes,Healthcare,,Low,1,Cat_3
2204
+ 466486,Female,Yes,36,Yes,Doctor,8,Low,2,Cat_4
2205
+ 466488,Male,Yes,61,Yes,Entertainment,0,Average,6,Cat_6
2206
+ 466490,Female,Yes,83,No,Lawyer,0,High,2,Cat_6
2207
+ 466493,Male,Yes,77,No,Lawyer,1,High,2,Cat_6
2208
+ 466500,Female,Yes,46,Yes,Artist,3,High,3,Cat_4
2209
+ 466501,Male,Yes,48,Yes,Engineer,0,Average,3,Cat_3
2210
+ 466502,Male,No,19,No,Healthcare,0,Low,5,Cat_3
2211
+ 466516,Male,No,21,No,Healthcare,1,Low,3,Cat_6
2212
+ 466517,Female,No,40,No,Engineer,,Low,1,Cat_6
2213
+ 466526,Male,No,27,No,Healthcare,0,Low,5,Cat_2
2214
+ 466527,Female,Yes,49,No,Marketing,0,Low,1,Cat_5
2215
+ 466530,Male,No,19,No,Healthcare,1,Low,4,
2216
+ 466533,Female,No,53,Yes,Entertainment,1,Low,1,Cat_6
2217
+ 466535,Male,No,29,Yes,Artist,8,Low,1,Cat_6
2218
+ 466536,Male,No,23,No,Healthcare,3,Low,4,Cat_4
2219
+ 466538,Male,Yes,84,Yes,Lawyer,1,High,2,Cat_6
2220
+ 466541,Male,No,38,Yes,Entertainment,0,Low,4,Cat_6
2221
+ 466543,Male,No,26,Yes,Doctor,11,Low,2,Cat_7
2222
+ 466545,Female,No,19,No,Healthcare,1,Low,4,Cat_2
2223
+ 466550,Female,,22,No,Healthcare,1,Low,4,Cat_6
2224
+ 466552,Male,Yes,20,No,Entertainment,0,Low,2,Cat_6
2225
+ 466553,Male,Yes,36,Yes,Healthcare,0,Low,3,Cat_6
2226
+ 466556,Male,No,18,No,Healthcare,1,Low,3,Cat_6
2227
+ 466562,Female,No,20,No,Healthcare,7,Low,4,Cat_6
2228
+ 466564,Female,No,18,No,Marketing,1,Low,4,Cat_6
2229
+ 466565,Male,Yes,32,No,Artist,7,Average,2,Cat_6
2230
+ 466576,Female,No,18,No,Healthcare,0,Low,4,Cat_6
2231
+ 466586,Male,No,18,No,Healthcare,0,Low,2,Cat_6
2232
+ 466588,Female,No,21,No,Healthcare,8,Low,4,Cat_6
2233
+ 466596,Female,Yes,75,Yes,Artist,1,High,2,Cat_6
2234
+ 466603,Male,Yes,37,Yes,Engineer,0,Average,2,Cat_6
2235
+ 466606,Female,Yes,35,Yes,Engineer,1,Low,3,Cat_3
2236
+ 466613,Male,No,20,No,Healthcare,9,Low,3,Cat_6
2237
+ 466623,Male,Yes,58,,Entertainment,2,Average,4,Cat_3
2238
+ 466628,Male,No,33,No,Healthcare,8,Low,4,
2239
+ 466631,Male,Yes,58,Yes,Artist,0,Low,3,Cat_6
2240
+ 466634,Male,No,20,No,Healthcare,1,Low,5,Cat_6
2241
+ 466635,Male,Yes,50,Yes,Artist,4,Average,2,Cat_6
2242
+ 466644,Female,No,51,Yes,Homemaker,0,Low,,Cat_6
2243
+ 466650,Female,No,27,No,Healthcare,8,Low,3,Cat_4
2244
+ 466652,Female,Yes,58,Yes,Doctor,1,Average,2,Cat_6
2245
+ 466655,Male,Yes,62,No,Executive,1,Low,2,Cat_6
2246
+ 466656,Male,Yes,79,Yes,Marketing,0,High,2,Cat_6
2247
+ 466658,Female,No,19,No,Healthcare,1,Low,4,Cat_6
2248
+ 466662,Female,No,33,No,Engineer,0,Low,,Cat_4
2249
+ 466665,Male,Yes,36,Yes,Artist,1,Average,2,Cat_6
2250
+ 466666,Female,Yes,29,Yes,Healthcare,1,Low,2,Cat_6
2251
+ 466671,Female,,28,No,Healthcare,3,Low,3,Cat_2
2252
+ 466686,Female,No,22,No,Healthcare,0,Low,4,Cat_6
2253
+ 466687,Male,No,21,No,Healthcare,1,Low,3,Cat_6
2254
+ 466688,Male,No,22,No,Healthcare,0,Low,3,Cat_4
2255
+ 466689,Male,No,28,Yes,Artist,9,Low,3,Cat_6
2256
+ 466696,Female,Yes,48,Yes,Artist,3,Average,4,Cat_6
2257
+ 466704,Male,Yes,48,Yes,Doctor,3,Average,2,Cat_6
2258
+ 466705,Male,Yes,66,No,Lawyer,0,Low,3,Cat_6
2259
+ 466707,Female,Yes,47,Yes,Homemaker,1,Low,4,Cat_6
2260
+ 466713,Female,Yes,68,Yes,Artist,1,High,4,Cat_6
2261
+ 466718,Male,Yes,73,,Executive,0,High,2,Cat_6
2262
+ 466720,Female,Yes,59,No,Lawyer,0,Low,1,Cat_2
2263
+ 466721,Male,Yes,38,Yes,Doctor,7,Average,2,Cat_6
2264
+ 466725,Female,Yes,76,No,Lawyer,1,High,2,Cat_6
2265
+ 466731,Female,Yes,40,Yes,Engineer,3,Low,2,Cat_4
2266
+ 466732,Female,Yes,49,Yes,Engineer,0,High,2,Cat_4
2267
+ 466733,Female,No,33,No,Homemaker,0,Low,,Cat_4
2268
+ 466735,Male,No,18,No,Healthcare,1,Low,,Cat_6
2269
+ 466746,Female,Yes,69,Yes,Lawyer,0,High,2,Cat_6
2270
+ 466749,Male,No,22,,Healthcare,1,Low,5,Cat_3
2271
+ 466750,Female,No,18,,Healthcare,0,Low,3,Cat_3
2272
+ 466751,Female,No,20,,Healthcare,1,Low,4,Cat_6
2273
+ 466752,Male,Yes,36,Yes,Healthcare,1,Low,1,Cat_6
2274
+ 466753,Female,Yes,67,Yes,Artist,0,Average,2,Cat_3
2275
+ 466754,Female,Yes,37,Yes,Artist,1,Average,3,Cat_6
2276
+ 466759,Female,No,26,No,Healthcare,2,Low,,Cat_6
2277
+ 466760,Male,Yes,51,Yes,Doctor,1,Average,4,Cat_6
2278
+ 466765,Female,Yes,67,Yes,Lawyer,1,Low,2,Cat_6
2279
+ 466769,Female,No,29,Yes,Entertainment,1,Low,4,Cat_6
2280
+ 466775,Female,Yes,76,Yes,Lawyer,0,Low,2,Cat_6
2281
+ 466776,Male,Yes,86,Yes,Lawyer,0,Low,1,Cat_6
2282
+ 466777,Female,Yes,51,Yes,Homemaker,9,Average,2,Cat_6
2283
+ 466778,Male,Yes,35,Yes,Entertainment,1,Low,2,Cat_3
2284
+ 466788,Male,No,30,No,Doctor,3,Low,2,Cat_6
2285
+ 466790,Male,Yes,47,Yes,Doctor,0,Average,2,Cat_3
2286
+ 466791,Male,Yes,81,No,Lawyer,0,Low,1,Cat_6
2287
+ 466792,Female,Yes,85,No,Lawyer,0,Low,1,Cat_6
2288
+ 466795,Male,,60,Yes,Entertainment,,Average,5,Cat_6
2289
+ 466799,Female,No,21,No,Healthcare,2,Low,3,Cat_6
2290
+ 466802,Female,,40,Yes,Engineer,0,Low,1,Cat_6
2291
+ 466804,Female,,35,Yes,Homemaker,4,Low,1,Cat_3
2292
+ 466807,Female,,35,Yes,Healthcare,0,Low,1,Cat_4
2293
+ 466808,Female,No,41,No,Engineer,1,Low,1,Cat_6
2294
+ 466810,Male,No,18,No,Healthcare,0,Low,3,Cat_6
2295
+ 466811,Male,No,22,No,Healthcare,0,Low,,Cat_4
2296
+ 466813,Male,Yes,61,Yes,Artist,0,Low,,Cat_6
2297
+ 466814,Male,No,23,No,Healthcare,0,Low,3,Cat_6
2298
+ 466815,Male,No,31,No,Healthcare,1,Low,5,Cat_4
2299
+ 466816,Male,Yes,82,Yes,Lawyer,0,High,2,Cat_6
2300
+ 466818,Male,Yes,84,No,Executive,1,High,2,Cat_6
2301
+ 466826,Male,Yes,41,Yes,Entertainment,1,Low,2,Cat_6
2302
+ 466832,Female,Yes,66,Yes,Artist,0,Average,2,Cat_4
2303
+ 466833,Male,Yes,57,Yes,Artist,5,Low,2,Cat_6
2304
+ 466846,Male,No,20,No,Healthcare,3,Low,4,Cat_2
2305
+ 466863,Female,No,32,No,Homemaker,14,Low,1,Cat_6
2306
+ 466867,Female,No,29,No,Homemaker,11,Low,1,Cat_6
2307
+ 466871,Male,Yes,36,Yes,Executive,,High,4,Cat_6
2308
+ 466874,Male,Yes,38,Yes,Entertainment,1,Average,3,Cat_6
2309
+ 466884,Female,Yes,43,No,Doctor,1,Low,1,Cat_6
2310
+ 466886,Female,No,42,No,Marketing,1,Low,1,Cat_6
2311
+ 466891,Female,Yes,48,No,Homemaker,8,Low,1,Cat_6
2312
+ 466905,Male,Yes,62,Yes,Artist,0,Low,1,Cat_6
2313
+ 466906,Male,No,63,Yes,Artist,0,Low,2,Cat_6
2314
+ 466908,Male,Yes,60,Yes,Entertainment,1,Low,2,Cat_6
2315
+ 466909,Male,Yes,63,Yes,Artist,1,Low,2,Cat_6
2316
+ 466910,Male,Yes,62,Yes,Entertainment,9,Low,1,Cat_6
2317
+ 466917,Male,Yes,40,No,Executive,4,Low,,Cat_6
2318
+ 466918,Male,Yes,63,Yes,Artist,0,Average,1,Cat_6
2319
+ 466920,Male,No,19,No,Healthcare,6,Low,4,Cat_3
2320
+ 466923,Female,No,21,No,Homemaker,8,Low,1,Cat_6
2321
+ 466926,Male,No,21,No,Healthcare,1,Low,,Cat_6
2322
+ 466927,Male,No,22,No,Engineer,6,Low,5,Cat_2
2323
+ 466936,Male,Yes,60,No,Lawyer,1,High,3,Cat_6
2324
+ 466938,Male,Yes,59,Yes,Artist,8,Low,1,Cat_6
2325
+ 466939,Male,Yes,73,No,Lawyer,1,High,2,Cat_6
2326
+ 466951,Female,Yes,52,Yes,Artist,0,High,3,Cat_6
2327
+ 466954,Female,Yes,66,No,Doctor,9,Average,2,Cat_6
2328
+ 466955,Male,Yes,61,No,Entertainment,1,Low,4,Cat_3
2329
+ 466956,Female,Yes,61,Yes,Artist,1,Low,1,Cat_6
2330
+ 466961,Female,Yes,61,Yes,Artist,2,Average,2,Cat_6
2331
+ 466966,Male,Yes,59,Yes,Entertainment,1,Average,2,Cat_6
2332
+ 466967,Male,Yes,51,Yes,Artist,1,Low,1,Cat_6
2333
+ 466970,Female,Yes,36,Yes,Homemaker,9,Low,2,Cat_4
2334
+ 466971,Male,No,71,Yes,Executive,9,Low,3,Cat_6
2335
+ 466975,Male,Yes,48,Yes,Artist,1,Average,2,Cat_6
2336
+ 466990,Male,Yes,43,Yes,Entertainment,9,Average,2,Cat_6
2337
+ 466996,Female,No,36,Yes,Artist,9,Low,1,Cat_6
2338
+ 466998,Female,Yes,57,No,Artist,,Average,3,Cat_6
2339
+ 466999,Male,No,33,Yes,Healthcare,1,Low,3,Cat_6
2340
+ 467000,Female,No,31,Yes,Artist,1,Low,6,Cat_4
2341
+ 467008,Male,Yes,57,Yes,Artist,1,Average,3,Cat_6
2342
+ 467009,Female,No,33,No,Homemaker,2,Low,4,Cat_3
2343
+ 467022,Male,No,30,Yes,Artist,1,Low,5,Cat_6
2344
+ 467023,Male,Yes,26,No,Doctor,8,Average,2,Cat_6
2345
+ 467025,Female,No,29,No,Engineer,1,Low,3,Cat_6
2346
+ 467044,Female,No,42,Yes,Marketing,0,Low,1,Cat_7
2347
+ 467046,Female,No,30,No,Doctor,0,Low,5,Cat_3
2348
+ 467050,Female,No,18,No,Engineer,1,Low,5,Cat_2
2349
+ 467053,Male,No,18,No,Healthcare,5,Low,4,Cat_6
2350
+ 467058,Male,Yes,80,No,Executive,0,High,2,Cat_6
2351
+ 467060,Male,No,35,No,Engineer,7,Low,2,Cat_6
2352
+ 467063,Male,Yes,45,Yes,Entertainment,1,Average,2,Cat_6
2353
+ 467073,Male,No,42,Yes,Engineer,8,Low,1,Cat_6
2354
+ 467078,Female,Yes,26,No,Healthcare,,High,2,Cat_7
2355
+ 467079,Male,Yes,38,Yes,Artist,1,Low,2,Cat_6
2356
+ 467084,Male,Yes,41,Yes,Artist,1,Average,7,Cat_6
2357
+ 467085,Male,No,45,Yes,Entertainment,1,Low,2,Cat_6
2358
+ 467088,Male,Yes,57,Yes,Artist,1,Low,1,Cat_3
2359
+ 467092,Female,No,33,Yes,Healthcare,5,Low,4,Cat_6
2360
+ 467093,Female,Yes,51,Yes,Artist,8,Average,2,Cat_6
2361
+ 467098,Male,Yes,85,No,Executive,1,Low,2,Cat_6
2362
+ 467099,Female,No,30,No,Entertainment,0,Low,3,Cat_6
2363
+ 467107,Male,Yes,38,Yes,Engineer,1,Average,3,Cat_4
2364
+ 467111,Male,Yes,66,Yes,Artist,1,Low,1,Cat_6
2365
+ 467112,Male,No,40,Yes,Artist,0,Low,2,Cat_2
2366
+ 467113,Male,Yes,83,Yes,Lawyer,,Low,1,Cat_6
2367
+ 467114,Male,Yes,61,Yes,Marketing,1,Average,3,Cat_6
2368
+ 467116,Male,Yes,65,Yes,Executive,1,High,2,Cat_6
2369
+ 467119,Male,Yes,37,No,Marketing,0,High,4,Cat_7
2370
+ 467121,Male,Yes,47,Yes,Doctor,0,Low,,Cat_6
2371
+ 467125,Male,Yes,51,No,Entertainment,1,Average,4,Cat_3
2372
+ 467127,Male,Yes,73,No,Lawyer,,Low,1,Cat_6
2373
+ 467129,Female,,49,No,Marketing,1,Average,3,Cat_4
2374
+ 467132,Female,Yes,73,Yes,Engineer,0,Low,2,Cat_6
2375
+ 467136,Male,Yes,37,No,Entertainment,1,Average,4,Cat_4
2376
+ 467137,Female,Yes,55,Yes,Engineer,0,Low,1,Cat_6
2377
+ 467138,Female,No,32,No,Homemaker,12,Low,1,Cat_6
2378
+ 467139,Female,No,28,Yes,Artist,0,Low,3,Cat_6
2379
+ 467143,Female,No,50,No,Lawyer,0,Low,3,Cat_6
2380
+ 467144,Male,Yes,38,Yes,Entertainment,1,Low,2,Cat_6
2381
+ 467146,Female,No,28,No,Homemaker,8,Low,1,Cat_6
2382
+ 467147,Male,No,46,Yes,Entertainment,1,Low,1,Cat_6
2383
+ 467153,Female,Yes,47,Yes,Artist,0,Low,,Cat_6
2384
+ 467157,Male,Yes,39,Yes,Executive,8,High,6,Cat_7
2385
+ 467158,Female,No,26,No,Healthcare,1,Low,,Cat_6
2386
+ 467159,Female,Yes,37,Yes,Homemaker,9,High,2,Cat_6
2387
+ 467160,Male,Yes,43,No,,1,Average,2,Cat_3
2388
+ 467165,Female,No,27,No,Homemaker,,Low,1,Cat_6
2389
+ 467167,Male,Yes,69,Yes,Artist,1,Average,,Cat_3
2390
+ 467168,Male,Yes,47,Yes,Artist,9,Average,2,Cat_1
2391
+ 467172,Male,No,36,,Artist,9,Low,2,Cat_6
2392
+ 467180,Male,Yes,43,Yes,Healthcare,1,Low,3,Cat_3
2393
+ 467183,Male,Yes,42,Yes,Entertainment,3,Average,4,Cat_6
2394
+ 467185,Male,No,29,Yes,Artist,0,Low,3,Cat_6
2395
+ 467189,Female,Yes,45,Yes,Artist,1,High,4,Cat_6
2396
+ 467193,Male,Yes,88,Yes,Artist,1,Low,2,Cat_6
2397
+ 467201,Female,No,33,Yes,Engineer,,Low,5,Cat_7
2398
+ 467202,Male,Yes,18,No,Doctor,0,Low,4,Cat_6
2399
+ 467208,Female,Yes,41,Yes,Homemaker,,High,2,Cat_6
2400
+ 467212,Female,No,28,Yes,Doctor,1,Low,3,Cat_6
2401
+ 467216,Female,No,30,Yes,Entertainment,0,Low,1,Cat_6
2402
+ 467217,Female,Yes,79,Yes,Lawyer,,High,2,Cat_6
2403
+ 467218,Female,No,27,Yes,Artist,8,Low,1,Cat_6
2404
+ 467223,Female,Yes,53,Yes,Engineer,0,Average,4,Cat_6
2405
+ 467227,Female,No,43,Yes,Artist,14,Low,1,Cat_4
2406
+ 467230,Male,No,19,No,Healthcare,1,Low,4,Cat_6
2407
+ 467232,Male,No,26,No,Entertainment,1,Low,2,Cat_6
2408
+ 467233,Female,No,67,No,Artist,1,Low,2,Cat_6
2409
+ 467235,Female,No,32,Yes,Artist,1,Low,2,Cat_5
2410
+ 467238,Female,No,26,No,Doctor,7,Low,4,Cat_6
2411
+ 467239,Female,No,29,No,Engineer,0,Low,3,Cat_6
2412
+ 467241,Female,No,33,Yes,Artist,9,Low,1,Cat_6
2413
+ 467242,Male,No,22,No,Doctor,0,Low,3,Cat_6
2414
+ 467247,Female,No,27,No,Engineer,0,Low,2,Cat_6
2415
+ 467256,Male,No,30,No,Healthcare,1,Low,4,Cat_2
2416
+ 467260,Male,No,25,No,Doctor,8,Low,4,Cat_6
2417
+ 467263,Female,No,32,No,Marketing,,Low,1,Cat_4
2418
+ 467268,Male,Yes,85,Yes,Lawyer,,Low,1,Cat_6
2419
+ 467275,Male,No,29,Yes,Healthcare,,Low,,Cat_6
2420
+ 467281,Male,Yes,56,Yes,Lawyer,0,Low,4,Cat_6
2421
+ 467283,Male,Yes,52,Yes,Artist,0,Average,3,Cat_2
2422
+ 467288,Female,No,25,No,Healthcare,,Low,5,Cat_6
2423
+ 467296,Female,Yes,65,Yes,Artist,,Average,2,Cat_3
2424
+ 467300,Female,Yes,49,Yes,Artist,1,Low,1,Cat_6
2425
+ 467301,Female,Yes,73,No,Lawyer,1,Low,2,Cat_6
2426
+ 467303,Male,Yes,36,Yes,Doctor,2,Average,2,Cat_6
2427
+ 467309,Female,No,36,Yes,Engineer,4,Low,1,Cat_7
2428
+ 467311,Male,Yes,71,Yes,Lawyer,1,High,3,Cat_6
2429
+ 467312,Female,Yes,55,Yes,Artist,0,Low,2,Cat_6
2430
+ 467313,Male,Yes,35,Yes,Entertainment,1,Average,2,Cat_6
2431
+ 467314,Male,Yes,41,No,Artist,0,Average,2,Cat_6
2432
+ 467317,Male,No,42,Yes,Artist,1,Low,1,Cat_2
2433
+ 467318,Male,Yes,35,Yes,Doctor,,Low,2,Cat_6
2434
+ 467322,Female,Yes,48,Yes,Artist,1,Average,2,Cat_1
2435
+ 467325,Female,Yes,73,Yes,Lawyer,1,High,2,Cat_6
2436
+ 467329,Female,No,40,Yes,Doctor,1,Low,1,Cat_6
2437
+ 467338,Female,No,29,Yes,Healthcare,3,Low,6,Cat_6
2438
+ 467339,Male,,62,Yes,Artist,1,Average,3,Cat_6
2439
+ 467344,Male,Yes,89,Yes,Lawyer,0,Low,2,Cat_6
2440
+ 467345,Male,Yes,86,Yes,Lawyer,0,Low,1,Cat_6
2441
+ 467346,Male,Yes,38,Yes,Artist,0,Average,3,Cat_6
2442
+ 467352,Male,Yes,45,Yes,Executive,0,High,4,Cat_6
2443
+ 467355,Male,No,26,No,Healthcare,0,Low,4,Cat_6
2444
+ 467357,Male,Yes,55,Yes,,1,Low,2,Cat_6
2445
+ 467358,Female,Yes,52,Yes,Artist,1,Average,5,Cat_6
2446
+ 467359,Male,Yes,43,Yes,Artist,5,Average,2,Cat_6
2447
+ 467365,Male,No,35,Yes,Artist,1,Low,1,Cat_6
2448
+ 467367,Male,Yes,73,Yes,Lawyer,1,Low,2,Cat_6
2449
+ 467369,Male,No,41,Yes,Artist,4,Low,3,Cat_6
2450
+ 467373,Male,No,27,Yes,Healthcare,,Low,1,Cat_6
2451
+ 467375,Male,Yes,35,Yes,Entertainment,6,Low,3,Cat_6
2452
+ 467378,Female,Yes,63,Yes,Artist,0,Average,2,Cat_6
2453
+ 467384,Male,No,41,Yes,,,Low,1,Cat_6
2454
+ 467385,Male,No,53,No,Artist,1,Low,,Cat_4
2455
+ 467389,Male,No,42,No,Engineer,0,Low,,Cat_6
2456
+ 467393,Female,Yes,46,Yes,Artist,0,Average,4,Cat_6
2457
+ 467398,Male,Yes,38,No,Entertainment,0,Low,2,Cat_6
2458
+ 467399,Male,Yes,25,Yes,Doctor,1,Low,3,Cat_6
2459
+ 467403,Female,Yes,40,Yes,Artist,7,Average,3,Cat_4
2460
+ 467410,Female,Yes,55,Yes,Lawyer,1,Low,2,Cat_6
2461
+ 467415,Female,No,29,Yes,Healthcare,0,Low,1,Cat_6
2462
+ 467419,Female,Yes,39,Yes,Artist,2,Low,1,Cat_6
2463
+ 467421,Male,Yes,50,No,Doctor,1,Average,3,Cat_6
2464
+ 467422,Female,Yes,61,Yes,Artist,1,Average,2,Cat_6
2465
+ 467423,Male,Yes,56,Yes,Artist,0,Low,1,Cat_6
2466
+ 467434,Male,No,40,Yes,Entertainment,1,Low,3,Cat_1
2467
+ 467437,Female,Yes,86,Yes,Lawyer,0,High,2,Cat_6
2468
+ 467438,Male,No,27,No,Entertainment,5,Low,3,Cat_6
2469
+ 467441,Male,No,35,Yes,Artist,,Low,1,Cat_6
2470
+ 467442,Male,Yes,56,Yes,Artist,,Average,2,Cat_6
2471
+ 467444,Female,Yes,36,Yes,Artist,,Low,2,Cat_6
2472
+ 467445,Male,Yes,32,No,Doctor,9,Low,2,Cat_2
2473
+ 467449,Female,Yes,85,Yes,Lawyer,1,Low,2,Cat_6
2474
+ 467451,Female,Yes,51,Yes,Artist,0,Low,1,Cat_1
2475
+ 467455,Female,No,41,Yes,Artist,8,Low,2,Cat_6
2476
+ 467456,Male,Yes,42,No,Executive,5,High,4,Cat_6
2477
+ 467457,Female,No,30,Yes,Marketing,0,Low,6,Cat_6
2478
+ 467459,Male,Yes,42,Yes,Executive,,High,5,Cat_6
2479
+ 467463,Female,Yes,42,Yes,Artist,9,Average,3,Cat_6
2480
+ 467468,Female,No,25,No,Healthcare,,Low,5,Cat_7
2481
+ 467472,Male,Yes,60,Yes,Executive,4,High,4,Cat_6
2482
+ 467474,Male,No,18,No,Healthcare,2,Low,5,Cat_6
2483
+ 467479,Male,Yes,36,Yes,Executive,0,Average,4,Cat_6
2484
+ 467481,Male,Yes,49,Yes,Artist,0,Average,2,Cat_6
2485
+ 467482,Male,Yes,42,Yes,Executive,1,High,3,Cat_6
2486
+ 467487,Male,Yes,42,No,Artist,1,Average,5,Cat_4
2487
+ 467488,Female,Yes,39,Yes,Entertainment,,Average,2,Cat_2
2488
+ 467492,Female,Yes,62,Yes,Doctor,1,Low,2,Cat_7
2489
+ 467493,Male,Yes,47,Yes,Executive,0,High,4,
2490
+ 467499,Male,Yes,39,Yes,Artist,,Low,3,Cat_6
2491
+ 467500,Female,Yes,25,Yes,Artist,3,High,2,Cat_6
2492
+ 467503,Female,No,27,Yes,Artist,1,Low,4,Cat_6
2493
+ 467504,Female,,31,No,Doctor,0,Low,4,Cat_6
2494
+ 467505,Male,Yes,36,Yes,Artist,0,Low,4,Cat_6
2495
+ 467510,Male,Yes,51,Yes,Entertainment,3,Low,3,Cat_6
2496
+ 467511,Male,Yes,63,Yes,Entertainment,,Low,1,Cat_6
2497
+ 467514,Male,No,40,Yes,Artist,,Low,4,Cat_6
2498
+ 467518,Male,No,22,No,Doctor,1,Low,,Cat_6
2499
+ 467532,Male,Yes,52,Yes,Artist,9,Low,1,Cat_6
2500
+ 467533,Male,Yes,89,Yes,Lawyer,4,Low,1,Cat_6
2501
+ 467537,Female,Yes,65,No,Lawyer,,High,3,Cat_6
2502
+ 467539,Male,Yes,48,Yes,Artist,,Average,4,Cat_7
2503
+ 467540,Male,Yes,48,Yes,Healthcare,1,Average,4,Cat_6
2504
+ 467542,Male,No,31,Yes,Healthcare,8,Low,1,Cat_6
2505
+ 467557,Female,Yes,62,Yes,Artist,,Average,2,Cat_6
2506
+ 467559,Male,Yes,58,Yes,Executive,0,Average,4,Cat_6
2507
+ 467565,Male,Yes,60,Yes,Artist,0,Low,3,Cat_6
2508
+ 467569,Male,No,19,No,Healthcare,,Low,4,Cat_6
2509
+ 467570,Male,No,18,No,Healthcare,14,Low,,Cat_6
2510
+ 467576,Male,Yes,48,Yes,Doctor,1,Average,3,Cat_6
2511
+ 467579,Male,No,35,Yes,Doctor,5,Low,1,Cat_6
2512
+ 467580,Male,No,27,Yes,Doctor,,Low,3,Cat_6
2513
+ 467588,Male,Yes,60,Yes,Artist,0,Average,4,Cat_6
2514
+ 467589,Male,No,32,No,Entertainment,0,Low,1,Cat_6
2515
+ 467592,Male,Yes,40,Yes,Entertainment,7,Low,2,Cat_6
2516
+ 467595,Female,No,25,Yes,Healthcare,0,Low,1,Cat_6
2517
+ 467596,Male,Yes,42,No,Artist,1,Low,5,Cat_3
2518
+ 467604,Male,No,26,No,Healthcare,8,Low,8,Cat_4
2519
+ 467608,Male,No,27,Yes,Engineer,6,Low,1,Cat_6
2520
+ 467609,Male,No,42,No,Artist,2,Low,4,Cat_6
2521
+ 467610,Female,Yes,77,Yes,Lawyer,4,Low,1,Cat_6
2522
+ 467612,Male,Yes,70,Yes,Executive,0,Low,,Cat_7
2523
+ 467614,Male,Yes,36,No,Artist,4,Average,2,Cat_6
2524
+ 467620,Male,Yes,57,Yes,Lawyer,6,Low,3,Cat_6
2525
+ 467621,Male,Yes,76,Yes,Lawyer,1,Low,1,Cat_6
2526
+ 467623,Male,Yes,77,Yes,,0,High,2,Cat_6
2527
+ 467629,Male,Yes,52,Yes,Artist,1,Low,1,Cat_6
2528
+ 467635,Female,No,35,Yes,Artist,9,Low,1,Cat_6
2529
+ 467641,Male,Yes,43,Yes,Doctor,9,Average,2,Cat_6
2530
+ 467643,Male,No,43,Yes,Artist,14,Low,1,Cat_3
2531
+ 467654,Female,Yes,62,Yes,Artist,,High,4,Cat_6
2532
+ 467657,Male,No,21,No,Healthcare,0,Low,4,Cat_3
2533
+ 467658,Male,No,23,No,Healthcare,0,Low,4,Cat_3
2534
+ 467659,Male,Yes,65,Yes,Entertainment,0,Average,2,Cat_6
2535
+ 467664,Male,Yes,35,Yes,Executive,4,High,4,Cat_6
2536
+ 467666,Male,Yes,48,Yes,Executive,4,High,3,Cat_6
2537
+ 467667,Male,Yes,33,No,Doctor,9,Low,2,Cat_6
2538
+ 467669,Male,Yes,82,No,Lawyer,1,High,2,Cat_6
2539
+ 467673,Male,Yes,45,No,Executive,1,High,4,Cat_6
2540
+ 467678,Male,No,56,No,Marketing,1,Low,2,Cat_6
2541
+ 467679,Female,Yes,49,Yes,Artist,,Average,4,Cat_2
2542
+ 467683,Male,Yes,30,Yes,Healthcare,8,High,3,Cat_2
2543
+ 467684,Male,No,37,Yes,Healthcare,8,Low,3,Cat_2
2544
+ 467685,Male,Yes,51,No,Marketing,0,High,6,Cat_4
2545
+ 467693,Male,Yes,59,Yes,Entertainment,5,High,5,Cat_6
2546
+ 467694,Male,Yes,56,Yes,Executive,0,High,2,Cat_6
2547
+ 467699,Female,Yes,29,Yes,Doctor,0,Average,2,Cat_4
2548
+ 467705,Male,Yes,31,Yes,Artist,,Low,2,Cat_6
2549
+ 467706,Female,Yes,35,Yes,Artist,,Average,4,Cat_6
2550
+ 467707,Male,Yes,89,Yes,Lawyer,7,High,2,Cat_6
2551
+ 467710,Female,No,38,Yes,Artist,9,Low,4,Cat_6
2552
+ 467715,Male,Yes,45,Yes,Executive,4,High,3,Cat_6
2553
+ 467721,Male,No,37,Yes,Entertainment,0,Low,1,Cat_4
2554
+ 467723,Male,Yes,74,No,Executive,1,Low,7,Cat_6
2555
+ 467726,Male,Yes,82,Yes,Lawyer,0,High,2,Cat_6
2556
+ 467727,Male,Yes,53,Yes,Artist,7,High,4,Cat_3
2557
+ 467728,Female,Yes,43,No,Engineer,0,High,5,Cat_6
2558
+ 467729,Male,Yes,62,Yes,Entertainment,2,Average,6,Cat_6
2559
+ 467733,Male,Yes,56,No,Executive,8,High,3,Cat_6
2560
+ 467734,Male,Yes,88,Yes,Lawyer,3,High,2,Cat_6
2561
+ 467735,Male,No,28,Yes,Doctor,0,Low,2,Cat_6
2562
+ 467737,Female,Yes,51,Yes,Entertainment,5,Average,2,Cat_6
2563
+ 467739,Female,Yes,60,No,Artist,0,Average,4,Cat_6
2564
+ 467740,Male,No,19,No,Healthcare,0,Low,3,Cat_6
2565
+ 467741,Male,No,23,No,Healthcare,1,Low,3,Cat_4
2566
+ 467749,Male,No,20,No,Healthcare,0,Low,9,Cat_7
2567
+ 467763,Female,No,50,Yes,Artist,1,Low,1,Cat_2
2568
+ 467767,Female,No,21,No,Marketing,4,Low,4,Cat_6
2569
+ 467768,Male,Yes,62,Yes,Doctor,0,Average,2,Cat_6
2570
+ 467769,Female,No,36,Yes,Doctor,1,Low,1,Cat_3
2571
+ 467772,Female,No,31,No,Marketing,0,Low,2,Cat_6
2572
+ 467779,Male,Yes,52,Yes,Doctor,4,Average,3,Cat_6
2573
+ 467789,Male,No,20,No,Healthcare,1,Low,5,Cat_6
2574
+ 467798,Female,No,23,No,,,Low,2,Cat_6
2575
+ 467802,Female,Yes,48,Yes,Artist,1,High,5,Cat_6
2576
+ 467803,Female,Yes,40,Yes,Entertainment,6,Average,2,Cat_6
2577
+ 467806,Male,Yes,55,Yes,Artist,1,High,2,Cat_6
2578
+ 467808,Female,Yes,62,Yes,Artist,1,Average,2,Cat_6
2579
+ 467812,Male,No,48,Yes,Artist,0,Low,1,Cat_2
2580
+ 467813,Male,Yes,36,Yes,Entertainment,1,Low,2,Cat_4
2581
+ 467815,Female,Yes,73,Yes,Artist,0,Low,2,Cat_6
2582
+ 467825,Female,No,23,No,Marketing,0,Low,8,Cat_6
2583
+ 467828,Female,Yes,25,Yes,Artist,0,Average,2,Cat_2
2584
+ 467838,Male,Yes,60,Yes,Artist,0,Average,2,Cat_6
2585
+ 467848,Male,No,37,Yes,Artist,14,Low,1,Cat_6
2586
+ 467849,Female,Yes,39,Yes,Doctor,0,Low,1,Cat_2
2587
+ 467852,Female,No,39,Yes,Artist,12,Low,1,Cat_6
2588
+ 467856,Male,Yes,58,Yes,Artist,0,Low,2,Cat_6
2589
+ 467860,Female,No,33,Yes,Entertainment,0,Low,1,Cat_7
2590
+ 467861,Female,No,29,No,Artist,,Low,4,Cat_4
2591
+ 467864,Female,Yes,66,Yes,Lawyer,1,High,2,Cat_6
2592
+ 467865,Female,No,40,Yes,Artist,2,Low,1,Cat_4
2593
+ 467868,Female,Yes,66,Yes,Entertainment,0,High,2,Cat_6
2594
+ 467876,Female,Yes,50,Yes,Artist,9,High,2,Cat_6
2595
+ 467879,Female,Yes,51,Yes,Artist,,High,4,Cat_6
2596
+ 467880,Female,Yes,50,Yes,Artist,0,Average,2,Cat_6
2597
+ 467882,Female,No,39,Yes,Artist,1,Low,1,Cat_6
2598
+ 467883,Female,Yes,46,Yes,Artist,0,Average,2,Cat_6
2599
+ 467888,Male,No,29,No,Doctor,0,Low,4,Cat_6
2600
+ 467891,Female,No,29,Yes,Doctor,0,Low,5,Cat_6
2601
+ 467892,Male,No,23,No,Doctor,1,Low,5,Cat_6
2602
+ 467894,Male,Yes,57,Yes,Artist,1,Average,2,Cat_6
2603
+ 467895,Female,No,31,Yes,Healthcare,1,Low,4,Cat_6
2604
+ 467898,Female,Yes,69,Yes,Artist,1,Low,1,Cat_6
2605
+ 467901,Female,No,28,Yes,Entertainment,0,Low,4,Cat_6
2606
+ 467904,Female,No,31,Yes,Artist,14,Low,1,Cat_6
2607
+ 467905,Male,Yes,37,Yes,Executive,0,High,3,Cat_6
2608
+ 467911,Male,Yes,58,Yes,Healthcare,0,Low,4,Cat_6
2609
+ 467913,Male,Yes,48,Yes,Artist,3,Low,1,Cat_6
2610
+ 467915,Female,No,18,No,Doctor,1,Low,4,Cat_6
2611
+ 467917,Female,No,27,Yes,Healthcare,2,Low,4,Cat_1
2612
+ 467927,Male,No,30,Yes,Doctor,8,Low,6,Cat_2
2613
+ 467929,Female,Yes,36,Yes,Artist,1,Average,2,Cat_6
2614
+ 467930,Male,Yes,45,Yes,Entertainment,4,Average,2,Cat_6
2615
+ 467932,Female,No,26,No,Healthcare,1,Low,4,Cat_6
2616
+ 467933,Female,No,23,No,Healthcare,0,Low,3,Cat_6
2617
+ 467934,Female,No,42,Yes,Artist,0,Low,1,Cat_6
2618
+ 467938,Male,Yes,46,Yes,Entertainment,5,Low,1,Cat_2
2619
+ 467940,Female,No,27,No,Marketing,8,Low,4,Cat_2
2620
+ 467946,Female,Yes,42,Yes,Artist,0,Low,2,Cat_6
2621
+ 467948,Female,No,19,No,Healthcare,0,Low,3,Cat_6
2622
+ 467949,Male,No,21,No,Healthcare,1,Low,4,Cat_4
2623
+ 467950,Female,No,35,Yes,Entertainment,1,Low,2,Cat_6
2624
+ 467954,Male,No,29,No,Healthcare,9,Low,4,Cat_6
2625
+ 467958,Female,No,35,Yes,Doctor,1,Low,1,Cat_6
2626
+ 467960,Female,No,53,Yes,Entertainment,,Low,2,Cat_6
2627
+ 467961,Male,Yes,47,Yes,Executive,1,High,5,Cat_4
2628
+ 467968,Female,No,43,Yes,Healthcare,9,Low,3,Cat_7