teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,2628 @@
|
|
|
1
|
+
ID,Gender,Ever_Married,Age,Graduated,Profession,Work_Experience,Spending_Score,Family_Size,Var_1
|
|
2
|
+
458989,Female,Yes,36,Yes,Engineer,0,Low,1,Cat_6
|
|
3
|
+
458994,Male,Yes,37,Yes,Healthcare,8,Average,4,Cat_6
|
|
4
|
+
458996,Female,Yes,69,No,,0,Low,1,Cat_6
|
|
5
|
+
459000,Male,Yes,59,No,Executive,11,High,2,Cat_6
|
|
6
|
+
459001,Female,No,19,No,Marketing,,Low,4,Cat_6
|
|
7
|
+
459003,Male,Yes,47,Yes,Doctor,0,High,5,Cat_4
|
|
8
|
+
459005,Male,Yes,61,Yes,Doctor,5,Low,3,Cat_6
|
|
9
|
+
459008,Female,Yes,47,Yes,Artist,1,Average,3,Cat_6
|
|
10
|
+
459013,Male,Yes,50,Yes,Artist,2,Average,4,Cat_6
|
|
11
|
+
459014,Male,No,19,No,Healthcare,0,Low,4,Cat_6
|
|
12
|
+
459015,Male,No,22,No,Healthcare,0,Low,3,Cat_6
|
|
13
|
+
459016,Female,No,22,No,Healthcare,0,Low,6,Cat_6
|
|
14
|
+
459024,Male,Yes,50,Yes,Artist,1,Average,5,Cat_6
|
|
15
|
+
459026,Male,No,27,No,Healthcare,8,Low,3,Cat_3
|
|
16
|
+
459032,Male,No,18,No,Doctor,0,Low,3,Cat_6
|
|
17
|
+
459033,Female,Yes,61,Yes,Artist,0,Low,1,Cat_6
|
|
18
|
+
459036,Female,Yes,20,Yes,Lawyer,1,Average,3,Cat_3
|
|
19
|
+
459039,Male,Yes,45,Yes,Artist,1,Average,2,Cat_6
|
|
20
|
+
459041,Male,Yes,55,Yes,Artist,8,Low,1,Cat_6
|
|
21
|
+
459045,Female,Yes,88,Yes,Lawyer,1,Average,4,Cat_6
|
|
22
|
+
459056,Male,Yes,63,No,Executive,,High,3,Cat_6
|
|
23
|
+
459057,Male,Yes,69,No,Lawyer,,High,,Cat_6
|
|
24
|
+
459058,Male,No,42,Yes,Artist,0,Low,4,Cat_3
|
|
25
|
+
459059,Male,Yes,79,No,Executive,,High,2,Cat_6
|
|
26
|
+
459061,Female,Yes,35,Yes,Healthcare,9,High,3,Cat_6
|
|
27
|
+
459064,Male,Yes,27,No,Executive,5,High,4,Cat_6
|
|
28
|
+
459065,Male,Yes,52,Yes,Engineer,,Low,2,Cat_6
|
|
29
|
+
459074,Female,No,29,Yes,Healthcare,0,Low,4,Cat_4
|
|
30
|
+
459077,Female,Yes,79,No,Lawyer,1,High,2,Cat_6
|
|
31
|
+
459079,Male,Yes,87,Yes,Lawyer,,High,2,Cat_6
|
|
32
|
+
459080,Male,Yes,89,No,Lawyer,1,Low,2,Cat_6
|
|
33
|
+
459083,Male,Yes,63,Yes,Artist,9,Average,3,
|
|
34
|
+
459090,Male,No,31,No,Artist,1,Low,2,Cat_6
|
|
35
|
+
459091,Male,Yes,72,Yes,Artist,1,Average,6,Cat_1
|
|
36
|
+
459093,Female,Yes,41,Yes,Doctor,9,Average,2,
|
|
37
|
+
459100,Female,No,61,Yes,Artist,11,Low,1,Cat_6
|
|
38
|
+
459106,Male,Yes,62,Yes,Artist,0,Low,2,Cat_6
|
|
39
|
+
459114,Male,Yes,56,Yes,Artist,1,Average,2,Cat_6
|
|
40
|
+
459116,Male,Yes,60,Yes,Artist,2,Average,5,Cat_6
|
|
41
|
+
459117,Male,Yes,68,Yes,Artist,0,High,2,Cat_6
|
|
42
|
+
459118,Male,No,19,No,Healthcare,,Low,8,Cat_6
|
|
43
|
+
459119,Male,Yes,57,Yes,Executive,8,High,3,Cat_6
|
|
44
|
+
459120,Male,No,19,No,Healthcare,5,Low,5,Cat_2
|
|
45
|
+
459121,Female,Yes,51,Yes,Artist,3,Average,6,Cat_6
|
|
46
|
+
459123,Female,Yes,86,No,Artist,1,High,2,Cat_6
|
|
47
|
+
459130,Female,Yes,74,No,Lawyer,1,High,2,Cat_6
|
|
48
|
+
459132,Male,No,23,No,Entertainment,6,Low,2,Cat_6
|
|
49
|
+
459136,Male,Yes,47,Yes,Artist,0,Average,2,Cat_6
|
|
50
|
+
459140,Female,No,19,No,Healthcare,7,Low,6,Cat_6
|
|
51
|
+
459143,Male,Yes,50,No,Artist,0,High,4,Cat_6
|
|
52
|
+
459144,Male,Yes,80,Yes,Lawyer,,High,2,Cat_6
|
|
53
|
+
459145,Male,Yes,78,No,Lawyer,,Low,1,Cat_2
|
|
54
|
+
459150,Female,No,48,Yes,Doctor,0,Low,1,Cat_6
|
|
55
|
+
459160,Male,Yes,70,Yes,Doctor,1,Average,2,Cat_6
|
|
56
|
+
459161,Male,Yes,50,Yes,Executive,3,High,5,Cat_6
|
|
57
|
+
459162,Female,Yes,83,Yes,Lawyer,0,High,2,Cat_6
|
|
58
|
+
459163,Male,No,35,Yes,Entertainment,0,Low,1,Cat_6
|
|
59
|
+
459167,Female,No,36,Yes,Artist,0,Low,2,Cat_5
|
|
60
|
+
459170,Female,No,35,Yes,Artist,1,Low,1,Cat_6
|
|
61
|
+
459171,Male,Yes,35,Yes,Artist,0,Average,2,Cat_6
|
|
62
|
+
459172,Male,No,18,No,Healthcare,3,Low,3,Cat_2
|
|
63
|
+
459175,Female,Yes,73,Yes,Artist,1,Average,2,Cat_6
|
|
64
|
+
459181,Male,Yes,62,No,Artist,1,High,3,Cat_6
|
|
65
|
+
459182,Female,Yes,46,Yes,Artist,1,Average,2,Cat_6
|
|
66
|
+
459184,Male,Yes,43,Yes,Entertainment,0,Low,4,Cat_4
|
|
67
|
+
459185,Female,No,32,Yes,Entertainment,7,Low,1,Cat_6
|
|
68
|
+
459193,Male,No,39,Yes,Artist,0,Low,1,Cat_6
|
|
69
|
+
459194,Female,Yes,89,Yes,Lawyer,0,High,2,Cat_6
|
|
70
|
+
459196,Female,No,18,No,Healthcare,0,Low,3,Cat_4
|
|
71
|
+
459208,Female,Yes,57,Yes,Artist,0,High,2,Cat_3
|
|
72
|
+
459209,Female,No,18,No,Entertainment,0,Low,4,Cat_6
|
|
73
|
+
459210,Female,Yes,71,Yes,Artist,1,High,2,Cat_6
|
|
74
|
+
459212,Female,Yes,69,Yes,Artist,0,Average,2,Cat_6
|
|
75
|
+
459213,Female,No,42,Yes,Healthcare,0,Low,4,Cat_6
|
|
76
|
+
459216,Female,No,36,Yes,Artist,0,Low,2,Cat_6
|
|
77
|
+
459220,Female,Yes,80,Yes,Lawyer,1,High,2,Cat_6
|
|
78
|
+
459221,Male,Yes,69,No,Entertainment,,Low,1,Cat_6
|
|
79
|
+
459222,Female,Yes,67,Yes,Artist,0,Average,3,Cat_6
|
|
80
|
+
459223,Female,Yes,47,Yes,Doctor,1,Average,4,Cat_6
|
|
81
|
+
459224,Female,Yes,49,Yes,Artist,0,Average,2,Cat_6
|
|
82
|
+
459227,Female,Yes,32,No,Engineer,9,Low,4,Cat_6
|
|
83
|
+
459229,Female,Yes,65,Yes,Lawyer,1,Average,4,Cat_6
|
|
84
|
+
459236,Female,Yes,78,No,Lawyer,0,High,2,Cat_6
|
|
85
|
+
459237,Male,No,33,Yes,Artist,1,Low,6,Cat_6
|
|
86
|
+
459244,Male,Yes,48,Yes,Artist,1,Low,1,Cat_6
|
|
87
|
+
459247,Male,Yes,58,Yes,Executive,1,Average,5,Cat_6
|
|
88
|
+
459258,Female,Yes,83,Yes,Lawyer,1,High,,Cat_6
|
|
89
|
+
459263,Female,No,30,No,Healthcare,9,Low,4,Cat_6
|
|
90
|
+
459264,Female,No,35,Yes,Artist,0,Low,2,Cat_6
|
|
91
|
+
459266,Male,No,32,Yes,Healthcare,6,Low,5,Cat_6
|
|
92
|
+
459270,Male,Yes,69,Yes,Homemaker,1,High,2,Cat_6
|
|
93
|
+
459284,Female,Yes,71,Yes,Lawyer,1,High,2,Cat_6
|
|
94
|
+
459287,Male,No,43,Yes,Lawyer,0,Low,1,Cat_4
|
|
95
|
+
459288,Male,Yes,37,Yes,Artist,0,Low,2,Cat_6
|
|
96
|
+
459289,Male,No,42,Yes,Doctor,0,Low,1,Cat_6
|
|
97
|
+
459290,Female,Yes,70,Yes,Doctor,1,Average,2,Cat_6
|
|
98
|
+
459292,Male,No,46,Yes,Artist,0,Low,2,Cat_6
|
|
99
|
+
459293,Male,No,21,No,Healthcare,,Low,,Cat_1
|
|
100
|
+
459296,Male,Yes,70,Yes,Artist,0,Average,2,Cat_6
|
|
101
|
+
459300,Female,Yes,61,Yes,Artist,1,Low,,Cat_6
|
|
102
|
+
459307,Male,Yes,60,Yes,Entertainment,1,Low,1,Cat_6
|
|
103
|
+
459310,Male,No,37,Yes,Entertainment,0,Low,2,Cat_2
|
|
104
|
+
459316,Male,Yes,30,Yes,Healthcare,1,Low,2,Cat_6
|
|
105
|
+
459318,Female,No,32,Yes,Engineer,1,Low,3,Cat_6
|
|
106
|
+
459320,Male,Yes,26,Yes,Executive,0,Low,3,Cat_6
|
|
107
|
+
459322,Male,No,42,Yes,Marketing,0,Low,1,Cat_6
|
|
108
|
+
459323,Female,No,18,No,Doctor,,Low,,Cat_6
|
|
109
|
+
459338,Male,Yes,80,No,Executive,,Low,,Cat_6
|
|
110
|
+
459339,Male,Yes,29,Yes,Healthcare,8,High,2,Cat_6
|
|
111
|
+
459344,Female,Yes,88,Yes,Artist,1,High,2,Cat_6
|
|
112
|
+
459347,Male,Yes,70,Yes,Lawyer,1,Low,1,Cat_6
|
|
113
|
+
459349,Female,Yes,50,Yes,Artist,1,High,4,Cat_6
|
|
114
|
+
459352,Male,Yes,43,Yes,Doctor,4,Average,4,Cat_3
|
|
115
|
+
459353,Male,Yes,51,Yes,Artist,6,Average,2,Cat_6
|
|
116
|
+
459354,Female,Yes,50,Yes,Artist,,High,3,Cat_6
|
|
117
|
+
459355,Female,Yes,74,No,Homemaker,,Low,1,Cat_6
|
|
118
|
+
459360,Female,No,29,Yes,Healthcare,,Low,3,Cat_6
|
|
119
|
+
459361,Female,No,32,Yes,Engineer,,Low,2,Cat_6
|
|
120
|
+
459362,Male,Yes,60,No,Executive,0,Low,2,Cat_6
|
|
121
|
+
459363,Male,No,46,Yes,Artist,2,Low,1,Cat_6
|
|
122
|
+
459364,Female,Yes,81,Yes,Marketing,0,Low,2,Cat_6
|
|
123
|
+
459369,Male,Yes,41,No,Engineer,,Average,7,Cat_4
|
|
124
|
+
459375,Male,Yes,22,No,Executive,0,High,4,Cat_6
|
|
125
|
+
459377,Male,Yes,37,Yes,Artist,0,Average,3,Cat_6
|
|
126
|
+
459383,Male,Yes,43,No,Engineer,0,Low,1,Cat_6
|
|
127
|
+
459384,Male,Yes,50,Yes,Artist,1,Average,3,Cat_6
|
|
128
|
+
459385,Female,Yes,35,Yes,Artist,1,Average,2,Cat_7
|
|
129
|
+
459386,Male,Yes,65,No,Lawyer,1,High,2,Cat_6
|
|
130
|
+
459391,Female,No,41,Yes,Engineer,0,Low,4,Cat_6
|
|
131
|
+
459394,Male,No,28,No,Entertainment,8,Low,2,Cat_6
|
|
132
|
+
459397,Male,Yes,55,Yes,Artist,4,Average,2,Cat_6
|
|
133
|
+
459398,Female,Yes,58,No,Lawyer,,High,2,Cat_6
|
|
134
|
+
459401,Male,No,28,No,Healthcare,1,Low,3,
|
|
135
|
+
459403,Male,Yes,48,Yes,Artist,,Average,4,Cat_7
|
|
136
|
+
459405,Female,Yes,78,No,Doctor,1,High,2,Cat_6
|
|
137
|
+
459407,Female,No,35,Yes,Doctor,1,Low,3,Cat_6
|
|
138
|
+
459409,Female,Yes,76,Yes,Lawyer,0,High,2,Cat_6
|
|
139
|
+
459410,Female,Yes,88,Yes,Lawyer,1,High,2,Cat_6
|
|
140
|
+
459412,Male,Yes,61,Yes,,1,Average,3,Cat_6
|
|
141
|
+
459413,Female,Yes,79,Yes,Artist,,High,2,Cat_6
|
|
142
|
+
459415,Male,No,30,No,Doctor,0,Low,4,Cat_6
|
|
143
|
+
459418,Male,Yes,69,No,Executive,0,High,2,Cat_6
|
|
144
|
+
459419,Male,Yes,65,Yes,Doctor,1,Average,2,Cat_6
|
|
145
|
+
459420,Female,Yes,70,Yes,Lawyer,1,Low,2,Cat_6
|
|
146
|
+
459421,Male,Yes,32,No,Healthcare,0,Average,4,Cat_6
|
|
147
|
+
459422,Male,Yes,46,Yes,Entertainment,,Low,4,Cat_6
|
|
148
|
+
459423,Male,No,21,No,Healthcare,8,Low,5,Cat_6
|
|
149
|
+
459424,Male,Yes,47,Yes,Doctor,,Low,3,Cat_6
|
|
150
|
+
459428,Female,No,39,No,Marketing,0,Low,2,Cat_4
|
|
151
|
+
459432,Male,Yes,85,Yes,Lawyer,0,Low,3,Cat_6
|
|
152
|
+
459436,Female,No,66,Yes,Artist,0,Low,2,Cat_6
|
|
153
|
+
459439,Female,Yes,50,Yes,Artist,1,Average,2,Cat_6
|
|
154
|
+
459445,Female,Yes,42,Yes,Artist,0,Average,3,Cat_6
|
|
155
|
+
459447,Male,Yes,53,Yes,Artist,9,Low,1,Cat_6
|
|
156
|
+
459449,Male,Yes,37,Yes,Artist,,Low,2,Cat_6
|
|
157
|
+
459451,Female,Yes,45,Yes,Artist,1,Low,2,Cat_6
|
|
158
|
+
459456,Female,No,66,No,Lawyer,,Low,1,Cat_6
|
|
159
|
+
459458,Male,No,33,No,Marketing,,Low,,Cat_6
|
|
160
|
+
459459,Male,Yes,40,Yes,Artist,4,Low,1,Cat_6
|
|
161
|
+
459461,Female,Yes,35,Yes,Artist,1,Low,1,Cat_1
|
|
162
|
+
459464,Male,No,27,Yes,Artist,,Low,2,Cat_6
|
|
163
|
+
459466,Female,Yes,48,Yes,Artist,0,Average,3,Cat_4
|
|
164
|
+
459467,Female,Yes,56,Yes,Artist,0,Average,2,Cat_6
|
|
165
|
+
459469,Male,Yes,25,Yes,Healthcare,,Low,6,Cat_6
|
|
166
|
+
459471,Female,No,30,No,Artist,,Low,8,Cat_6
|
|
167
|
+
459480,Female,Yes,46,Yes,Entertainment,7,Low,3,Cat_6
|
|
168
|
+
459481,Male,Yes,49,No,Lawyer,0,Low,2,Cat_6
|
|
169
|
+
459482,Male,Yes,72,No,Marketing,1,Low,4,Cat_6
|
|
170
|
+
459485,Female,Yes,79,Yes,Lawyer,,High,2,Cat_6
|
|
171
|
+
459496,Female,No,35,Yes,Artist,,Low,3,Cat_6
|
|
172
|
+
459497,Female,Yes,77,Yes,Lawyer,0,Low,1,Cat_6
|
|
173
|
+
459499,Female,Yes,79,No,Lawyer,,High,2,Cat_6
|
|
174
|
+
459503,Male,Yes,42,Yes,Healthcare,6,High,4,Cat_6
|
|
175
|
+
459505,Female,No,42,Yes,Engineer,,Low,1,Cat_6
|
|
176
|
+
459507,Male,Yes,67,No,Lawyer,,High,2,Cat_1
|
|
177
|
+
459509,Male,No,26,Yes,Healthcare,1,Low,1,Cat_6
|
|
178
|
+
459512,Male,Yes,67,Yes,Lawyer,1,High,2,Cat_6
|
|
179
|
+
459515,Male,Yes,55,Yes,Engineer,1,Low,1,Cat_6
|
|
180
|
+
459516,Female,,56,Yes,Artist,,Average,2,Cat_6
|
|
181
|
+
459518,Male,Yes,63,,,,Average,4,Cat_6
|
|
182
|
+
459535,Male,Yes,46,Yes,Artist,8,Average,2,Cat_6
|
|
183
|
+
459536,Male,Yes,32,Yes,Healthcare,7,Low,2,Cat_6
|
|
184
|
+
459538,Female,No,49,Yes,Homemaker,13,Low,1,Cat_6
|
|
185
|
+
459541,Male,Yes,59,Yes,Artist,1,High,2,Cat_6
|
|
186
|
+
459549,Male,No,22,No,Healthcare,8,Low,5,Cat_4
|
|
187
|
+
459555,Female,No,28,Yes,Artist,8,Low,1,Cat_6
|
|
188
|
+
459558,Male,No,28,Yes,Entertainment,1,Low,3,Cat_6
|
|
189
|
+
459564,Male,Yes,75,Yes,Lawyer,2,Low,1,Cat_6
|
|
190
|
+
459566,Female,Yes,37,Yes,Artist,13,Low,2,Cat_6
|
|
191
|
+
459567,Male,Yes,50,Yes,Doctor,0,Average,2,Cat_6
|
|
192
|
+
459571,Female,Yes,50,Yes,Executive,1,High,4,Cat_6
|
|
193
|
+
459576,Female,Yes,88,No,Lawyer,,Low,,
|
|
194
|
+
459579,Female,Yes,35,Yes,Artist,3,Average,5,Cat_4
|
|
195
|
+
459581,Female,No,35,No,,,Low,,Cat_7
|
|
196
|
+
459582,Male,Yes,31,No,Entertainment,,Average,3,Cat_6
|
|
197
|
+
459583,Male,Yes,46,Yes,Artist,0,Low,1,Cat_6
|
|
198
|
+
459585,Female,Yes,50,Yes,Artist,1,Average,4,Cat_6
|
|
199
|
+
459587,Female,No,33,Yes,Artist,7,Low,3,Cat_6
|
|
200
|
+
459588,Male,Yes,49,Yes,Artist,0,Low,1,Cat_6
|
|
201
|
+
459591,Male,Yes,52,Yes,Artist,1,Average,3,Cat_6
|
|
202
|
+
459592,Male,No,25,No,Healthcare,0,Low,3,Cat_6
|
|
203
|
+
459594,Female,Yes,41,Yes,Artist,6,Low,1,Cat_6
|
|
204
|
+
459597,Female,Yes,68,Yes,Artist,0,High,2,Cat_6
|
|
205
|
+
459603,Female,Yes,79,No,Lawyer,2,High,2,Cat_6
|
|
206
|
+
459607,Male,Yes,40,Yes,Entertainment,5,Average,5,Cat_6
|
|
207
|
+
459608,Female,No,62,Yes,Doctor,,Low,1,Cat_6
|
|
208
|
+
459612,Male,No,21,No,Healthcare,,Low,2,Cat_6
|
|
209
|
+
459616,Female,No,20,No,Healthcare,,Low,4,Cat_1
|
|
210
|
+
459617,Male,No,28,Yes,Entertainment,1,Low,5,Cat_6
|
|
211
|
+
459618,Male,Yes,57,Yes,Doctor,0,Average,2,Cat_4
|
|
212
|
+
459621,Female,No,25,No,Healthcare,8,Low,,
|
|
213
|
+
459625,Female,Yes,63,No,Engineer,8,Low,1,Cat_6
|
|
214
|
+
459626,Female,Yes,26,No,Entertainment,1,Low,3,Cat_6
|
|
215
|
+
459632,Female,Yes,50,No,Marketing,0,High,3,Cat_4
|
|
216
|
+
459644,Female,No,30,No,Marketing,9,Low,4,Cat_2
|
|
217
|
+
459652,Female,No,26,No,Engineer,,Low,4,Cat_4
|
|
218
|
+
459658,Male,Yes,61,Yes,Artist,1,Average,3,Cat_6
|
|
219
|
+
459664,Male,No,42,Yes,Artist,3,Low,1,Cat_6
|
|
220
|
+
459665,Male,Yes,88,Yes,Artist,4,Low,2,Cat_6
|
|
221
|
+
459672,Male,Yes,45,No,Artist,3,Average,3,Cat_6
|
|
222
|
+
459673,Female,Yes,86,Yes,Lawyer,1,Low,1,Cat_6
|
|
223
|
+
459678,Male,No,18,No,Healthcare,1,Low,5,Cat_6
|
|
224
|
+
459680,Male,No,37,Yes,Entertainment,,Low,1,Cat_6
|
|
225
|
+
459686,Male,Yes,46,Yes,Artist,1,Low,1,Cat_6
|
|
226
|
+
459691,Male,Yes,58,No,Artist,,Average,2,Cat_6
|
|
227
|
+
459692,Female,Yes,72,Yes,Lawyer,8,High,2,Cat_6
|
|
228
|
+
459693,Female,Yes,50,Yes,Artist,0,High,3,
|
|
229
|
+
459699,Female,,56,Yes,Engineer,8,Average,3,Cat_6
|
|
230
|
+
459701,Male,No,46,No,Artist,3,Low,3,Cat_5
|
|
231
|
+
459710,Male,Yes,57,Yes,Artist,,Low,1,Cat_6
|
|
232
|
+
459711,Male,Yes,42,No,Executive,9,High,6,Cat_6
|
|
233
|
+
459712,Male,No,20,No,Healthcare,,Low,4,Cat_6
|
|
234
|
+
459713,Male,No,19,No,Healthcare,,Low,3,Cat_6
|
|
235
|
+
459715,Male,No,19,No,Healthcare,4,Low,4,Cat_6
|
|
236
|
+
459718,Male,Yes,68,Yes,Executive,1,Low,1,Cat_6
|
|
237
|
+
459725,Female,Yes,40,Yes,Artist,0,Low,2,Cat_6
|
|
238
|
+
459727,Male,Yes,82,No,Lawyer,,High,2,Cat_6
|
|
239
|
+
459740,Female,No,23,No,Healthcare,1,Low,3,Cat_6
|
|
240
|
+
459742,Female,Yes,84,No,Lawyer,1,High,2,Cat_6
|
|
241
|
+
459745,Male,Yes,51,No,Artist,0,Low,4,Cat_1
|
|
242
|
+
459746,Male,,59,Yes,Artist,1,Average,2,Cat_6
|
|
243
|
+
459747,Female,Yes,41,Yes,Artist,1,Average,5,Cat_6
|
|
244
|
+
459748,Male,Yes,51,No,Executive,1,High,2,Cat_6
|
|
245
|
+
459755,Female,Yes,62,No,Artist,,Average,3,Cat_6
|
|
246
|
+
459756,Female,Yes,62,No,Lawyer,1,High,4,Cat_4
|
|
247
|
+
459760,Female,Yes,38,Yes,Artist,8,Low,1,Cat_6
|
|
248
|
+
459763,Male,No,18,No,Artist,,Low,4,Cat_4
|
|
249
|
+
459767,Male,No,22,No,Healthcare,3,Low,4,Cat_6
|
|
250
|
+
459771,Female,,30,Yes,Doctor,0,Low,3,Cat_3
|
|
251
|
+
459779,Female,Yes,62,Yes,Entertainment,1,Low,1,Cat_6
|
|
252
|
+
459780,Female,No,43,No,Entertainment,1,Low,3,Cat_6
|
|
253
|
+
459785,Female,No,32,Yes,Engineer,,Low,1,Cat_3
|
|
254
|
+
459793,Male,Yes,37,Yes,Artist,1,High,,Cat_6
|
|
255
|
+
459795,Male,No,48,Yes,Artist,1,Low,1,Cat_6
|
|
256
|
+
459801,Female,No,31,Yes,Engineer,4,Low,2,Cat_6
|
|
257
|
+
459804,Male,Yes,46,No,Artist,4,High,4,Cat_6
|
|
258
|
+
459806,Female,Yes,49,No,Engineer,1,Average,4,Cat_6
|
|
259
|
+
459808,Male,Yes,43,No,Doctor,,Average,4,Cat_6
|
|
260
|
+
459815,Male,No,42,Yes,Artist,8,Low,1,Cat_6
|
|
261
|
+
459816,Male,Yes,37,Yes,Doctor,,Low,2,Cat_6
|
|
262
|
+
459819,Male,Yes,72,Yes,Entertainment,,High,2,Cat_6
|
|
263
|
+
459821,Male,,71,No,Executive,,High,1,
|
|
264
|
+
459822,Female,No,39,Yes,Engineer,1,Low,1,Cat_4
|
|
265
|
+
459825,Male,No,20,No,Healthcare,0,Low,5,Cat_2
|
|
266
|
+
459827,Female,No,26,No,,,Low,1,Cat_7
|
|
267
|
+
459832,Male,Yes,72,Yes,Executive,1,Low,1,Cat_6
|
|
268
|
+
459845,Male,Yes,70,Yes,Healthcare,0,Low,1,Cat_4
|
|
269
|
+
459851,Male,No,45,Yes,Artist,2,Low,1,Cat_6
|
|
270
|
+
459853,Male,No,33,No,Executive,7,Low,5,Cat_6
|
|
271
|
+
459856,Male,Yes,50,No,Entertainment,0,Average,3,Cat_6
|
|
272
|
+
459857,Male,No,31,Yes,Entertainment,6,Low,1,Cat_6
|
|
273
|
+
459861,Female,Yes,74,No,Lawyer,1,High,2,Cat_6
|
|
274
|
+
459864,Female,Yes,68,No,Artist,,High,2,Cat_6
|
|
275
|
+
459866,Female,No,49,Yes,Artist,,Low,1,Cat_6
|
|
276
|
+
459867,Male,Yes,49,Yes,Marketing,0,High,2,Cat_6
|
|
277
|
+
459869,Female,No,18,No,Healthcare,1,Low,3,Cat_6
|
|
278
|
+
459871,Female,Yes,85,No,Entertainment,2,Average,2,Cat_6
|
|
279
|
+
459885,Female,No,38,Yes,Entertainment,,Low,4,Cat_6
|
|
280
|
+
459886,Male,Yes,28,No,Artist,0,Low,4,Cat_6
|
|
281
|
+
459887,Male,Yes,46,No,Artist,3,Average,2,
|
|
282
|
+
459889,Male,Yes,59,Yes,Homemaker,9,Average,3,Cat_6
|
|
283
|
+
459897,Female,Yes,56,Yes,Artist,0,Low,2,Cat_6
|
|
284
|
+
459909,Male,Yes,69,Yes,Artist,0,Low,1,Cat_6
|
|
285
|
+
459910,Male,Yes,66,Yes,Artist,0,Low,2,Cat_6
|
|
286
|
+
459911,Male,No,18,No,Healthcare,4,Low,6,Cat_2
|
|
287
|
+
459914,Male,No,36,Yes,Artist,4,Low,1,Cat_4
|
|
288
|
+
459923,Male,No,31,Yes,Marketing,1,Low,2,Cat_3
|
|
289
|
+
459925,Male,Yes,67,No,Executive,1,High,2,Cat_4
|
|
290
|
+
459937,Female,No,39,Yes,Artist,7,Low,1,Cat_6
|
|
291
|
+
459943,Male,No,42,Yes,Entertainment,4,Low,3,Cat_6
|
|
292
|
+
459945,Male,Yes,50,Yes,Artist,0,Low,2,Cat_6
|
|
293
|
+
459946,Female,Yes,37,Yes,Artist,0,Average,2,Cat_6
|
|
294
|
+
459949,Female,No,59,Yes,Artist,0,Low,1,Cat_6
|
|
295
|
+
459953,Male,Yes,50,Yes,Artist,8,Low,2,Cat_6
|
|
296
|
+
459961,Male,Yes,48,Yes,Artist,8,Low,3,Cat_2
|
|
297
|
+
459962,Male,Yes,55,Yes,Artist,9,Low,1,Cat_6
|
|
298
|
+
459966,Female,No,33,Yes,Doctor,1,Low,3,Cat_6
|
|
299
|
+
459968,Male,No,38,Yes,Artist,13,Low,1,Cat_7
|
|
300
|
+
459970,Male,No,43,Yes,Artist,0,Low,2,Cat_6
|
|
301
|
+
459973,Female,No,53,Yes,Artist,0,Low,2,Cat_6
|
|
302
|
+
459974,Male,No,37,Yes,Entertainment,0,Low,1,Cat_6
|
|
303
|
+
459975,Female,No,36,Yes,Artist,5,Low,1,Cat_6
|
|
304
|
+
459981,Male,No,36,Yes,Artist,5,Low,1,Cat_6
|
|
305
|
+
459986,Male,Yes,62,Yes,Artist,1,Low,1,Cat_6
|
|
306
|
+
459995,Female,No,38,No,Artist,2,Low,2,Cat_6
|
|
307
|
+
459996,Male,No,55,Yes,Entertainment,1,Low,1,Cat_6
|
|
308
|
+
459998,Male,Yes,60,No,Entertainment,1,Average,2,Cat_6
|
|
309
|
+
460004,Female,Yes,36,Yes,Entertainment,7,Average,2,Cat_5
|
|
310
|
+
460006,Male,No,30,No,Entertainment,5,Low,9,Cat_3
|
|
311
|
+
460014,Female,No,66,No,Entertainment,4,Low,3,Cat_6
|
|
312
|
+
460023,Male,Yes,45,Yes,Entertainment,1,Low,1,Cat_6
|
|
313
|
+
460027,Female,No,40,Yes,Entertainment,6,Low,,Cat_6
|
|
314
|
+
460033,Female,,45,Yes,Entertainment,5,Low,3,Cat_6
|
|
315
|
+
460036,Male,Yes,41,Yes,,2,Low,1,Cat_6
|
|
316
|
+
460040,Female,Yes,62,Yes,Homemaker,4,Low,1,Cat_5
|
|
317
|
+
460045,Male,Yes,61,Yes,Artist,1,Low,2,Cat_6
|
|
318
|
+
460046,Female,Yes,50,Yes,Artist,4,Low,2,Cat_6
|
|
319
|
+
460050,Male,Yes,53,Yes,Entertainment,3,Low,2,Cat_6
|
|
320
|
+
460051,Male,No,39,Yes,Artist,7,Low,1,Cat_6
|
|
321
|
+
460052,Female,No,86,Yes,Lawyer,0,Low,1,Cat_3
|
|
322
|
+
460058,Male,Yes,50,Yes,Artist,1,Low,1,Cat_4
|
|
323
|
+
460059,Female,No,46,No,Entertainment,4,Low,,Cat_4
|
|
324
|
+
460061,Male,No,52,Yes,Marketing,0,Low,1,Cat_3
|
|
325
|
+
460066,Female,No,45,No,Marketing,0,Low,1,Cat_6
|
|
326
|
+
460068,Female,No,37,Yes,Artist,9,Low,1,Cat_6
|
|
327
|
+
460073,Female,Yes,36,Yes,Engineer,3,Low,1,Cat_6
|
|
328
|
+
460075,Female,No,25,Yes,Artist,,Low,1,Cat_6
|
|
329
|
+
460079,Female,No,40,No,Doctor,1,Low,1,Cat_6
|
|
330
|
+
460081,Male,Yes,41,Yes,Artist,11,High,2,Cat_6
|
|
331
|
+
460088,Female,Yes,25,Yes,Homemaker,,High,2,Cat_6
|
|
332
|
+
460090,Male,Yes,80,No,Lawyer,4,Average,2,Cat_6
|
|
333
|
+
460093,Female,No,46,Yes,Artist,3,Low,1,Cat_3
|
|
334
|
+
460095,Female,Yes,81,Yes,Lawyer,1,Low,1,Cat_6
|
|
335
|
+
460097,Male,,40,Yes,Artist,0,Low,2,Cat_3
|
|
336
|
+
460099,Male,No,49,Yes,,1,Low,1,Cat_3
|
|
337
|
+
460101,Female,No,26,Yes,Healthcare,8,Low,3,Cat_3
|
|
338
|
+
460103,Male,No,26,Yes,Artist,1,Low,1,Cat_4
|
|
339
|
+
460105,Female,No,47,Yes,Artist,0,Low,1,Cat_4
|
|
340
|
+
460106,Female,Yes,71,Yes,Entertainment,0,Low,,Cat_6
|
|
341
|
+
460107,Male,Yes,48,Yes,Engineer,1,Average,5,Cat_6
|
|
342
|
+
460108,Male,Yes,39,Yes,Artist,1,Average,3,Cat_2
|
|
343
|
+
460109,Male,Yes,50,Yes,Artist,8,Average,2,Cat_6
|
|
344
|
+
460110,Female,No,46,Yes,Artist,1,Low,2,
|
|
345
|
+
460112,Male,Yes,26,Yes,Engineer,8,Average,2,Cat_3
|
|
346
|
+
460116,Female,Yes,42,Yes,,1,Low,2,Cat_6
|
|
347
|
+
460118,Female,Yes,36,Yes,Artist,4,Low,2,Cat_6
|
|
348
|
+
460119,Male,No,29,Yes,Healthcare,1,Low,4,Cat_6
|
|
349
|
+
460122,Female,No,39,No,Artist,1,Low,1,Cat_6
|
|
350
|
+
460124,Female,No,41,Yes,Artist,0,Low,3,Cat_6
|
|
351
|
+
460126,Female,Yes,48,Yes,Marketing,8,Low,,Cat_6
|
|
352
|
+
460134,Male,Yes,40,Yes,Entertainment,9,High,3,Cat_6
|
|
353
|
+
460135,Female,No,25,Yes,Healthcare,4,Low,3,Cat_6
|
|
354
|
+
460140,Female,Yes,41,Yes,Artist,7,Low,2,Cat_6
|
|
355
|
+
460141,Male,No,37,Yes,Artist,11,Low,1,Cat_6
|
|
356
|
+
460144,Female,No,53,Yes,Doctor,0,Low,,Cat_3
|
|
357
|
+
460146,Female,Yes,51,Yes,Engineer,0,Average,3,Cat_3
|
|
358
|
+
460147,Male,Yes,73,Yes,Entertainment,1,Average,3,Cat_6
|
|
359
|
+
460157,Male,Yes,61,No,,1,Low,5,Cat_4
|
|
360
|
+
460160,Male,No,39,Yes,Entertainment,5,Low,1,Cat_3
|
|
361
|
+
460162,Female,No,19,No,Healthcare,0,Low,4,Cat_2
|
|
362
|
+
460166,Female,No,19,No,Healthcare,0,Low,7,Cat_2
|
|
363
|
+
460167,Female,No,23,No,Entertainment,1,Low,5,Cat_2
|
|
364
|
+
460168,Male,Yes,83,Yes,Executive,0,High,2,Cat_2
|
|
365
|
+
460171,Female,Yes,62,Yes,Artist,1,High,2,Cat_6
|
|
366
|
+
460174,Female,No,43,Yes,Artist,9,Low,4,Cat_6
|
|
367
|
+
460175,Female,No,27,No,Artist,0,Low,5,Cat_2
|
|
368
|
+
460177,Male,No,50,Yes,Artist,0,Low,1,Cat_6
|
|
369
|
+
460179,Female,No,23,No,Entertainment,0,Low,6,Cat_2
|
|
370
|
+
460183,Male,No,35,No,Entertainment,9,Low,2,Cat_6
|
|
371
|
+
460185,Male,No,32,No,Healthcare,9,Low,3,Cat_6
|
|
372
|
+
460187,Female,No,42,Yes,Doctor,2,Low,3,Cat_6
|
|
373
|
+
460189,Male,No,33,No,Entertainment,13,Low,1,Cat_6
|
|
374
|
+
460190,Female,No,28,Yes,Entertainment,9,Low,3,Cat_6
|
|
375
|
+
460192,Male,Yes,35,Yes,,1,Low,2,Cat_7
|
|
376
|
+
460196,Female,No,35,Yes,Healthcare,9,Low,2,Cat_6
|
|
377
|
+
460206,Female,Yes,39,Yes,Entertainment,0,Low,2,Cat_6
|
|
378
|
+
460211,Male,Yes,28,,Artist,6,Low,1,Cat_6
|
|
379
|
+
460212,Male,Yes,35,Yes,Entertainment,11,Low,6,Cat_6
|
|
380
|
+
460214,Female,Yes,45,Yes,Engineer,0,Average,2,Cat_6
|
|
381
|
+
460222,Female,,73,Yes,Lawyer,4,High,,Cat_6
|
|
382
|
+
460223,Male,No,52,No,Entertainment,1,Low,1,Cat_6
|
|
383
|
+
460227,Male,No,28,No,Healthcare,0,Low,3,Cat_6
|
|
384
|
+
460242,Male,Yes,38,Yes,Healthcare,9,Low,3,Cat_6
|
|
385
|
+
460243,Female,No,42,Yes,Entertainment,8,Low,1,Cat_6
|
|
386
|
+
460247,Female,No,26,No,Doctor,9,Low,,Cat_6
|
|
387
|
+
460248,Female,No,27,Yes,Healthcare,7,Low,2,Cat_6
|
|
388
|
+
460252,Male,Yes,41,Yes,Artist,0,Low,2,Cat_6
|
|
389
|
+
460263,Male,Yes,41,Yes,Artist,1,Low,2,Cat_6
|
|
390
|
+
460265,Male,Yes,47,Yes,Executive,0,High,4,Cat_6
|
|
391
|
+
460270,Male,No,35,Yes,Doctor,8,Low,1,Cat_6
|
|
392
|
+
460272,Female,No,88,Yes,Lawyer,0,Low,1,Cat_6
|
|
393
|
+
460275,Female,No,46,Yes,Artist,6,Low,1,Cat_6
|
|
394
|
+
460276,Female,Yes,41,Yes,Artist,3,Low,2,Cat_6
|
|
395
|
+
460281,Female,No,30,Yes,Doctor,10,Low,5,Cat_6
|
|
396
|
+
460283,Male,Yes,43,Yes,Doctor,12,Low,2,Cat_6
|
|
397
|
+
460284,Female,No,29,Yes,Entertainment,9,Low,2,Cat_6
|
|
398
|
+
460287,Male,Yes,48,Yes,Artist,1,Low,1,Cat_6
|
|
399
|
+
460289,Female,Yes,61,Yes,Artist,4,Average,6,Cat_4
|
|
400
|
+
460298,Female,No,51,Yes,Lawyer,2,Low,1,Cat_6
|
|
401
|
+
460303,Female,No,38,Yes,Artist,2,Low,1,
|
|
402
|
+
460305,Female,,49,Yes,Entertainment,0,High,1,Cat_6
|
|
403
|
+
460306,Female,No,43,Yes,Healthcare,9,Low,1,Cat_6
|
|
404
|
+
460310,Male,No,27,No,Healthcare,14,Low,4,Cat_6
|
|
405
|
+
460315,Female,No,35,No,Doctor,14,Low,6,Cat_7
|
|
406
|
+
460319,Female,Yes,39,No,Doctor,4,Average,2,Cat_7
|
|
407
|
+
460322,Female,Yes,52,No,Engineer,9,Low,,Cat_6
|
|
408
|
+
460323,Female,No,38,Yes,Engineer,10,Low,1,Cat_6
|
|
409
|
+
460324,Female,No,30,Yes,Entertainment,12,Low,2,Cat_6
|
|
410
|
+
460327,Female,No,43,Yes,Artist,10,Low,1,Cat_6
|
|
411
|
+
460333,Female,No,42,No,Entertainment,10,Low,4,Cat_6
|
|
412
|
+
460336,Female,No,46,Yes,Artist,2,Low,1,Cat_7
|
|
413
|
+
460340,Female,No,47,Yes,Artist,11,Low,2,Cat_6
|
|
414
|
+
460341,Female,No,32,No,Entertainment,13,Low,5,Cat_7
|
|
415
|
+
460344,Female,Yes,53,Yes,Artist,11,Average,2,Cat_6
|
|
416
|
+
460346,Female,Yes,43,Yes,Artist,12,Average,,Cat_6
|
|
417
|
+
460348,Female,No,39,Yes,Artist,0,Low,2,Cat_6
|
|
418
|
+
460349,Male,,42,Yes,Artist,3,Average,2,Cat_6
|
|
419
|
+
460354,Female,No,37,Yes,Artist,3,Low,1,Cat_3
|
|
420
|
+
460356,Male,No,19,No,Healthcare,0,Low,4,Cat_6
|
|
421
|
+
460358,Male,No,30,No,Marketing,1,Low,1,Cat_3
|
|
422
|
+
460361,Female,Yes,49,Yes,Artist,0,Low,1,Cat_4
|
|
423
|
+
460362,Male,Yes,55,Yes,Healthcare,0,Low,3,Cat_4
|
|
424
|
+
460365,Female,Yes,59,Yes,Doctor,1,Low,2,Cat_4
|
|
425
|
+
460369,Female,Yes,46,Yes,Artist,,Low,2,Cat_6
|
|
426
|
+
460370,Female,Yes,27,Yes,Executive,9,High,2,Cat_6
|
|
427
|
+
460371,Female,No,25,Yes,Artist,1,Low,2,Cat_6
|
|
428
|
+
460378,Female,No,37,Yes,Doctor,1,Low,1,Cat_6
|
|
429
|
+
460379,Male,No,38,Yes,Artist,9,Low,3,Cat_6
|
|
430
|
+
460380,Male,No,29,Yes,Entertainment,9,Low,3,Cat_6
|
|
431
|
+
460381,Male,No,28,Yes,Artist,11,Low,2,Cat_6
|
|
432
|
+
460384,Female,Yes,27,Yes,Marketing,8,Low,2,Cat_6
|
|
433
|
+
460387,Female,No,42,No,Entertainment,3,Low,2,Cat_6
|
|
434
|
+
460388,Female,No,43,Yes,Artist,14,Low,2,Cat_6
|
|
435
|
+
460389,Female,Yes,40,Yes,Healthcare,8,Average,2,Cat_6
|
|
436
|
+
460390,Male,No,41,Yes,Artist,9,Low,3,Cat_6
|
|
437
|
+
460392,Male,Yes,46,No,Entertainment,8,Low,1,Cat_1
|
|
438
|
+
460394,Female,No,32,Yes,Healthcare,9,Low,3,Cat_6
|
|
439
|
+
460397,Female,No,56,Yes,Entertainment,1,Low,1,Cat_6
|
|
440
|
+
460399,Male,No,28,Yes,Marketing,12,Low,1,Cat_6
|
|
441
|
+
460401,Female,No,25,Yes,Artist,0,Low,3,Cat_7
|
|
442
|
+
460404,Male,Yes,42,Yes,Artist,6,Low,7,Cat_6
|
|
443
|
+
460405,Female,No,41,Yes,Entertainment,5,Low,2,Cat_6
|
|
444
|
+
460406,Male,Yes,36,Yes,Healthcare,3,Low,2,Cat_6
|
|
445
|
+
460408,Female,No,42,Yes,Artist,2,Low,1,Cat_6
|
|
446
|
+
460409,Female,No,42,Yes,Artist,8,Low,4,Cat_6
|
|
447
|
+
460415,Female,No,55,Yes,Entertainment,1,Low,2,Cat_6
|
|
448
|
+
460422,Male,Yes,52,Yes,Entertainment,1,High,,Cat_6
|
|
449
|
+
460431,Female,No,47,Yes,Engineer,1,Low,1,Cat_6
|
|
450
|
+
460434,Male,,57,Yes,Artist,2,High,3,Cat_6
|
|
451
|
+
460437,Female,No,26,Yes,Artist,8,Low,1,Cat_6
|
|
452
|
+
460440,Female,No,28,No,Artist,5,Low,2,Cat_6
|
|
453
|
+
460443,Female,No,37,Yes,Doctor,0,Low,1,Cat_6
|
|
454
|
+
460447,Male,,89,No,Lawyer,0,Low,1,Cat_3
|
|
455
|
+
460449,Male,No,25,No,Marketing,2,Low,1,Cat_3
|
|
456
|
+
460450,Male,Yes,50,Yes,Executive,1,High,4,Cat_4
|
|
457
|
+
460453,Female,No,42,Yes,Doctor,5,Low,1,Cat_6
|
|
458
|
+
460454,Male,No,48,Yes,Artist,,Low,1,Cat_6
|
|
459
|
+
460457,Female,No,37,Yes,Entertainment,9,Low,,Cat_3
|
|
460
|
+
460459,Female,No,30,No,Engineer,1,Low,5,Cat_3
|
|
461
|
+
460460,Male,Yes,26,No,Entertainment,2,Low,4,Cat_3
|
|
462
|
+
460467,Female,Yes,47,Yes,Artist,,Average,2,Cat_6
|
|
463
|
+
460470,Male,No,36,No,Healthcare,,Low,4,Cat_4
|
|
464
|
+
460476,Male,Yes,53,No,Doctor,,Average,4,Cat_3
|
|
465
|
+
460477,Male,No,30,No,Entertainment,1,Low,6,Cat_3
|
|
466
|
+
460484,Female,No,20,No,Healthcare,4,Low,7,Cat_3
|
|
467
|
+
460485,Female,No,19,No,Marketing,8,Low,5,Cat_3
|
|
468
|
+
460489,Male,No,19,No,Healthcare,9,Low,6,Cat_3
|
|
469
|
+
460492,Female,No,37,No,Marketing,12,Low,,Cat_3
|
|
470
|
+
460495,Male,No,20,No,Healthcare,0,Low,6,Cat_3
|
|
471
|
+
460504,Male,,39,No,Executive,,Average,3,Cat_3
|
|
472
|
+
460505,Female,No,26,Yes,Engineer,1,Low,3,Cat_3
|
|
473
|
+
460507,Male,No,31,No,Doctor,0,Low,4,Cat_3
|
|
474
|
+
460508,Male,Yes,31,Yes,Healthcare,2,High,3,Cat_3
|
|
475
|
+
460518,Female,Yes,41,Yes,Engineer,9,Average,3,Cat_3
|
|
476
|
+
460522,Female,Yes,32,No,Homemaker,,Average,2,Cat_4
|
|
477
|
+
460541,Female,Yes,42,Yes,Homemaker,0,Average,3,Cat_3
|
|
478
|
+
460542,Female,Yes,89,No,Lawyer,1,Low,,Cat_3
|
|
479
|
+
460545,Male,Yes,78,No,Lawyer,1,High,3,Cat_3
|
|
480
|
+
460546,Female,Yes,65,Yes,Lawyer,1,Low,2,Cat_3
|
|
481
|
+
460547,Female,Yes,48,Yes,Homemaker,0,Average,,Cat_3
|
|
482
|
+
460549,Male,No,36,Yes,Artist,8,Low,2,Cat_3
|
|
483
|
+
460550,Female,Yes,55,Yes,Artist,0,Average,4,Cat_3
|
|
484
|
+
460551,Male,Yes,52,Yes,Engineer,0,Average,2,Cat_3
|
|
485
|
+
460555,Male,Yes,52,Yes,Homemaker,7,Average,3,Cat_3
|
|
486
|
+
460556,Female,Yes,41,Yes,,1,Low,1,Cat_3
|
|
487
|
+
460558,Female,Yes,36,Yes,Engineer,,Low,1,Cat_3
|
|
488
|
+
460561,Female,No,37,No,Engineer,7,Low,1,Cat_3
|
|
489
|
+
460563,Female,No,40,No,Healthcare,1,Low,2,Cat_1
|
|
490
|
+
460566,Male,Yes,38,Yes,Homemaker,,Average,2,Cat_3
|
|
491
|
+
460571,Male,No,25,No,Doctor,0,Low,3,Cat_3
|
|
492
|
+
460572,Female,No,33,Yes,Engineer,1,Low,4,Cat_3
|
|
493
|
+
460574,Male,No,26,Yes,Artist,1,Low,1,Cat_3
|
|
494
|
+
460582,Female,No,28,No,Entertainment,0,Low,1,Cat_3
|
|
495
|
+
460583,Male,No,18,No,Marketing,0,Low,6,Cat_3
|
|
496
|
+
460585,Male,No,52,No,Entertainment,0,Low,3,Cat_3
|
|
497
|
+
460586,Male,No,26,Yes,Healthcare,0,Low,2,Cat_3
|
|
498
|
+
460588,Male,No,18,No,Healthcare,0,Low,4,Cat_3
|
|
499
|
+
460597,Female,No,20,No,Marketing,1,Low,2,Cat_3
|
|
500
|
+
460598,Female,Yes,36,Yes,Doctor,0,Average,3,Cat_3
|
|
501
|
+
460605,Male,Yes,27,Yes,Doctor,8,Average,2,Cat_4
|
|
502
|
+
460606,Male,No,21,No,Healthcare,,Low,5,Cat_7
|
|
503
|
+
460612,Male,No,27,Yes,Entertainment,8,Low,4,Cat_3
|
|
504
|
+
460615,Female,No,28,Yes,Healthcare,,Low,,Cat_3
|
|
505
|
+
460618,Male,Yes,63,Yes,Lawyer,,Low,4,Cat_3
|
|
506
|
+
460619,Male,No,48,Yes,Entertainment,,Low,,Cat_3
|
|
507
|
+
460621,Male,Yes,80,Yes,Lawyer,1,Low,2,Cat_3
|
|
508
|
+
460622,Female,Yes,71,Yes,Lawyer,7,High,3,Cat_3
|
|
509
|
+
460626,Male,Yes,47,No,Doctor,8,High,4,Cat_6
|
|
510
|
+
460627,Female,No,22,No,,1,Low,4,Cat_3
|
|
511
|
+
460633,Male,Yes,35,Yes,,,High,2,Cat_3
|
|
512
|
+
460634,Female,No,40,No,Entertainment,,Low,6,Cat_3
|
|
513
|
+
460637,Female,No,18,No,Healthcare,,Low,,Cat_3
|
|
514
|
+
460638,Female,No,26,Yes,Artist,0,Low,4,Cat_3
|
|
515
|
+
460639,Female,Yes,73,Yes,Lawyer,,Low,5,Cat_1
|
|
516
|
+
460640,Male,Yes,86,,Lawyer,,Low,1,Cat_3
|
|
517
|
+
460645,Female,No,37,No,Doctor,1,Low,2,Cat_3
|
|
518
|
+
460646,Male,Yes,59,Yes,Entertainment,,Low,,Cat_3
|
|
519
|
+
460653,Female,No,28,No,Homemaker,8,Low,1,Cat_4
|
|
520
|
+
460656,Female,Yes,29,Yes,Artist,9,Low,3,Cat_6
|
|
521
|
+
460658,Female,Yes,37,Yes,Marketing,7,Average,3,Cat_6
|
|
522
|
+
460659,Female,Yes,46,Yes,Marketing,,Average,3,Cat_6
|
|
523
|
+
460660,Male,No,39,,Entertainment,6,Low,1,Cat_6
|
|
524
|
+
460661,Female,No,33,No,Homemaker,8,Low,1,Cat_6
|
|
525
|
+
460668,Female,No,32,Yes,Doctor,,Low,2,Cat_3
|
|
526
|
+
460678,Female,No,32,No,Doctor,6,Low,2,Cat_3
|
|
527
|
+
460686,Female,,25,No,Homemaker,8,Low,1,Cat_3
|
|
528
|
+
460687,Female,Yes,48,Yes,Homemaker,9,Average,2,Cat_3
|
|
529
|
+
460691,Female,No,27,No,Homemaker,8,Low,1,Cat_3
|
|
530
|
+
460702,Female,No,49,Yes,Artist,1,Low,1,Cat_6
|
|
531
|
+
460703,Female,Yes,33,Yes,Engineer,8,Average,5,Cat_4
|
|
532
|
+
460706,Female,No,33,No,Engineer,7,Low,6,Cat_4
|
|
533
|
+
460708,Male,Yes,39,Yes,Artist,0,Low,3,Cat_6
|
|
534
|
+
460716,Male,Yes,50,Yes,Entertainment,0,Average,4,Cat_6
|
|
535
|
+
460719,Female,Yes,84,Yes,Lawyer,0,Low,,Cat_3
|
|
536
|
+
460720,Female,Yes,46,Yes,Artist,0,Average,2,Cat_6
|
|
537
|
+
460722,Male,Yes,31,No,Entertainment,0,Average,3,Cat_3
|
|
538
|
+
460726,Male,Yes,57,Yes,Artist,3,Average,2,Cat_6
|
|
539
|
+
460727,Male,Yes,73,No,Executive,1,High,4,Cat_3
|
|
540
|
+
460729,Male,Yes,36,Yes,Entertainment,9,Low,4,Cat_6
|
|
541
|
+
460733,Male,No,53,Yes,Marketing,2,Low,4,Cat_6
|
|
542
|
+
460734,Male,Yes,41,Yes,Entertainment,9,Average,,Cat_2
|
|
543
|
+
460738,Female,No,53,No,Engineer,0,Low,,Cat_7
|
|
544
|
+
460740,Male,Yes,35,Yes,Artist,2,Average,3,Cat_6
|
|
545
|
+
460743,Male,Yes,62,Yes,Artist,0,Average,3,Cat_6
|
|
546
|
+
460746,Male,No,23,No,Marketing,0,Low,3,Cat_6
|
|
547
|
+
460763,Male,No,51,Yes,Artist,1,Low,2,Cat_6
|
|
548
|
+
460769,Female,Yes,83,No,Lawyer,1,High,2,Cat_6
|
|
549
|
+
460780,Female,No,26,Yes,Healthcare,0,Low,2,Cat_3
|
|
550
|
+
460783,Male,Yes,86,Yes,Lawyer,1,Low,1,Cat_6
|
|
551
|
+
460785,Male,No,26,Yes,Healthcare,0,Low,4,Cat_7
|
|
552
|
+
460789,Male,Yes,42,Yes,Executive,0,Low,3,Cat_6
|
|
553
|
+
460794,Female,Yes,41,Yes,Homemaker,9,Low,1,Cat_6
|
|
554
|
+
460796,Male,Yes,67,No,Lawyer,0,Low,3,Cat_6
|
|
555
|
+
460802,Male,Yes,68,Yes,Lawyer,1,High,2,Cat_6
|
|
556
|
+
460811,Female,Yes,45,No,Engineer,0,High,2,Cat_6
|
|
557
|
+
460813,Female,Yes,86,No,Lawyer,0,High,2,Cat_6
|
|
558
|
+
460815,Male,Yes,62,Yes,Artist,0,High,2,Cat_3
|
|
559
|
+
460822,Male,Yes,42,Yes,Artist,1,Low,2,Cat_6
|
|
560
|
+
460825,Male,No,26,Yes,Doctor,0,Low,3,Cat_4
|
|
561
|
+
460828,Male,No,48,No,Entertainment,1,Low,1,Cat_6
|
|
562
|
+
460830,Male,Yes,40,No,Entertainment,3,Average,5,Cat_2
|
|
563
|
+
460831,Male,No,20,No,Healthcare,0,Low,4,Cat_6
|
|
564
|
+
460837,Female,No,25,Yes,Artist,1,Low,1,Cat_5
|
|
565
|
+
460838,Male,No,37,Yes,Artist,1,Low,,Cat_6
|
|
566
|
+
460840,Male,Yes,77,Yes,Lawyer,1,Low,1,Cat_6
|
|
567
|
+
460844,Male,Yes,50,Yes,Healthcare,,Low,2,Cat_6
|
|
568
|
+
460846,Female,No,22,No,Marketing,0,Low,4,Cat_6
|
|
569
|
+
460847,Male,No,26,Yes,Artist,1,Low,3,Cat_6
|
|
570
|
+
460851,Male,Yes,71,No,Doctor,0,Average,3,Cat_6
|
|
571
|
+
460855,Male,Yes,50,Yes,Artist,,Low,2,Cat_6
|
|
572
|
+
460857,Male,No,29,No,Entertainment,1,Low,1,Cat_4
|
|
573
|
+
460859,Male,Yes,51,Yes,Entertainment,,Low,4,Cat_6
|
|
574
|
+
460860,Male,Yes,52,Yes,Artist,6,Average,4,Cat_6
|
|
575
|
+
460861,Male,No,20,No,Healthcare,1,Low,3,Cat_3
|
|
576
|
+
460866,Male,No,26,Yes,Doctor,0,Low,9,Cat_4
|
|
577
|
+
460870,Male,No,37,Yes,Healthcare,,Low,,Cat_4
|
|
578
|
+
460871,Female,No,33,Yes,Healthcare,,Low,,Cat_6
|
|
579
|
+
460872,Female,Yes,39,Yes,Artist,0,Low,2,Cat_4
|
|
580
|
+
460877,Female,Yes,53,No,Artist,1,Average,5,Cat_6
|
|
581
|
+
460878,Male,Yes,49,No,Entertainment,0,Average,4,Cat_6
|
|
582
|
+
460882,Male,No,21,No,Healthcare,0,Low,2,Cat_3
|
|
583
|
+
460888,Male,Yes,39,No,Homemaker,8,Low,1,Cat_6
|
|
584
|
+
460891,Female,Yes,38,No,Artist,2,Average,4,Cat_3
|
|
585
|
+
460897,Male,No,22,No,Healthcare,4,Low,4,Cat_6
|
|
586
|
+
460898,Male,Yes,52,No,Artist,2,Average,4,Cat_6
|
|
587
|
+
460899,Male,No,40,Yes,Entertainment,,Low,3,Cat_6
|
|
588
|
+
460901,Male,No,20,No,Doctor,8,Low,3,Cat_6
|
|
589
|
+
460902,Male,No,41,Yes,Executive,1,Low,3,Cat_6
|
|
590
|
+
460905,Male,No,30,Yes,Artist,1,Low,1,Cat_3
|
|
591
|
+
460906,Female,Yes,89,Yes,Lawyer,1,High,3,Cat_6
|
|
592
|
+
460907,Male,Yes,83,No,Lawyer,1,High,3,Cat_6
|
|
593
|
+
460923,Male,Yes,53,Yes,Artist,0,Average,3,Cat_6
|
|
594
|
+
460924,Male,No,31,No,Doctor,1,Low,5,Cat_2
|
|
595
|
+
460928,Male,Yes,48,Yes,Artist,1,Average,4,Cat_6
|
|
596
|
+
460934,Female,No,29,No,Doctor,0,Low,2,Cat_6
|
|
597
|
+
460935,Male,Yes,87,Yes,Lawyer,0,Low,1,Cat_6
|
|
598
|
+
460945,Male,No,19,No,Engineer,4,Low,7,Cat_6
|
|
599
|
+
460953,Male,Yes,60,No,Entertainment,1,Low,2,Cat_6
|
|
600
|
+
460961,Male,No,23,No,Healthcare,1,Low,2,Cat_3
|
|
601
|
+
460962,Male,Yes,61,Yes,Executive,9,High,4,Cat_6
|
|
602
|
+
460963,Female,No,27,Yes,Artist,1,Low,3,Cat_6
|
|
603
|
+
460968,Male,Yes,32,No,Doctor,14,Average,2,Cat_3
|
|
604
|
+
460975,Male,Yes,79,,Lawyer,0,High,2,Cat_6
|
|
605
|
+
460976,Male,No,19,No,Healthcare,1,Low,4,Cat_6
|
|
606
|
+
460977,Male,Yes,42,Yes,Executive,0,High,3,Cat_4
|
|
607
|
+
460979,Male,Yes,76,No,Lawyer,1,Low,1,Cat_6
|
|
608
|
+
460981,Female,Yes,41,No,Marketing,1,Average,2,Cat_6
|
|
609
|
+
460984,Male,Yes,38,Yes,Entertainment,0,Average,4,Cat_6
|
|
610
|
+
460988,Male,Yes,43,Yes,Entertainment,0,Average,3,Cat_4
|
|
611
|
+
460989,Male,No,19,No,Healthcare,1,Low,3,Cat_1
|
|
612
|
+
460991,Female,No,28,Yes,Healthcare,1,Low,3,Cat_7
|
|
613
|
+
460993,Male,Yes,56,Yes,Artist,0,Average,4,Cat_6
|
|
614
|
+
460999,Male,No,28,Yes,Engineer,0,Low,3,Cat_3
|
|
615
|
+
461000,Male,Yes,60,No,Marketing,1,High,2,Cat_3
|
|
616
|
+
461001,Female,No,55,Yes,Artist,0,Low,,Cat_3
|
|
617
|
+
461015,Male,Yes,35,Yes,Entertainment,1,Average,2,Cat_3
|
|
618
|
+
461016,Male,No,25,No,Healthcare,5,Low,5,Cat_3
|
|
619
|
+
461022,Male,Yes,71,Yes,Artist,1,Low,1,Cat_3
|
|
620
|
+
461023,Male,Yes,65,No,Lawyer,,High,2,Cat_3
|
|
621
|
+
461024,Male,Yes,74,Yes,Lawyer,1,Low,1,Cat_6
|
|
622
|
+
461028,Female,No,20,No,Healthcare,5,Low,4,Cat_4
|
|
623
|
+
461029,Male,Yes,43,No,Entertainment,9,Low,2,Cat_4
|
|
624
|
+
461034,Female,No,20,No,Marketing,3,Low,6,Cat_3
|
|
625
|
+
461037,Male,Yes,40,Yes,Healthcare,,High,5,Cat_3
|
|
626
|
+
461038,Female,Yes,46,Yes,Engineer,0,High,5,Cat_3
|
|
627
|
+
461041,Female,Yes,65,No,Lawyer,1,High,7,Cat_3
|
|
628
|
+
461042,Male,No,21,No,Healthcare,0,Low,,Cat_4
|
|
629
|
+
461043,Male,Yes,50,No,Healthcare,1,Low,7,Cat_4
|
|
630
|
+
461044,Male,No,18,No,Healthcare,0,Low,5,Cat_4
|
|
631
|
+
461049,Female,Yes,61,Yes,Doctor,1,Low,7,Cat_7
|
|
632
|
+
461050,Male,Yes,49,Yes,,1,High,3,Cat_6
|
|
633
|
+
461053,Male,Yes,39,No,Executive,,High,4,Cat_3
|
|
634
|
+
461059,Female,Yes,52,No,Lawyer,1,High,2,Cat_6
|
|
635
|
+
461060,Male,Yes,56,Yes,Executive,0,High,5,Cat_6
|
|
636
|
+
461065,Male,Yes,55,Yes,Executive,,Low,6,Cat_3
|
|
637
|
+
461071,Male,Yes,42,No,Engineer,1,Average,5,Cat_3
|
|
638
|
+
461078,Female,No,33,No,Homemaker,0,Low,6,Cat_3
|
|
639
|
+
461082,Male,No,19,No,Healthcare,8,Low,4,Cat_1
|
|
640
|
+
461085,Female,No,27,No,Engineer,1,Low,1,Cat_3
|
|
641
|
+
461093,Female,Yes,38,Yes,Artist,1,Average,4,Cat_3
|
|
642
|
+
461099,Female,No,38,No,Artist,1,Low,4,Cat_3
|
|
643
|
+
461111,Female,Yes,43,Yes,Doctor,8,Low,1,Cat_6
|
|
644
|
+
461114,Male,Yes,53,Yes,Artist,1,Average,4,Cat_3
|
|
645
|
+
461116,Male,Yes,33,No,Executive,4,High,4,Cat_3
|
|
646
|
+
461118,Female,No,30,Yes,Healthcare,7,Low,,Cat_3
|
|
647
|
+
461119,Female,No,22,No,Healthcare,6,Low,3,Cat_3
|
|
648
|
+
461121,Male,No,33,No,Doctor,0,Low,4,Cat_3
|
|
649
|
+
461124,Male,No,21,No,Healthcare,1,Low,8,Cat_4
|
|
650
|
+
461127,Male,No,20,No,Healthcare,1,Low,5,Cat_4
|
|
651
|
+
461128,Male,No,19,No,Healthcare,7,Low,3,Cat_6
|
|
652
|
+
461129,Female,Yes,58,Yes,Entertainment,1,Average,4,Cat_6
|
|
653
|
+
461131,Male,Yes,67,Yes,Artist,1,High,,Cat_6
|
|
654
|
+
461145,Female,Yes,36,Yes,Entertainment,1,Low,2,Cat_3
|
|
655
|
+
461152,Female,No,30,No,Homemaker,8,Low,,Cat_3
|
|
656
|
+
461154,Male,No,23,No,Homemaker,1,Low,4,Cat_3
|
|
657
|
+
461158,Female,No,42,Yes,Entertainment,1,Low,,Cat_3
|
|
658
|
+
461162,Female,No,37,No,Marketing,8,Low,3,Cat_3
|
|
659
|
+
461163,Female,Yes,58,No,Entertainment,9,Low,4,Cat_3
|
|
660
|
+
461168,Female,Yes,26,No,Engineer,7,Average,2,Cat_3
|
|
661
|
+
461169,Male,No,39,Yes,Entertainment,9,Low,2,Cat_3
|
|
662
|
+
461174,Female,No,23,No,Marketing,,Low,4,Cat_3
|
|
663
|
+
461177,Male,Yes,41,No,Executive,8,Average,4,Cat_1
|
|
664
|
+
461178,Male,Yes,26,No,Entertainment,0,Low,3,Cat_3
|
|
665
|
+
461179,Female,Yes,25,No,Engineer,3,Low,3,Cat_3
|
|
666
|
+
461181,Male,No,19,No,Healthcare,,Low,4,Cat_3
|
|
667
|
+
461183,Male,No,36,No,Executive,0,Low,5,Cat_3
|
|
668
|
+
461187,Male,No,29,No,Healthcare,9,Low,4,Cat_3
|
|
669
|
+
461197,Male,No,26,No,Marketing,1,Low,1,Cat_3
|
|
670
|
+
461198,Female,No,78,Yes,Lawyer,,Low,1,Cat_6
|
|
671
|
+
461201,Female,No,55,Yes,Artist,,Low,1,Cat_6
|
|
672
|
+
461205,Male,No,26,Yes,Healthcare,,Low,3,Cat_2
|
|
673
|
+
461211,Female,No,46,Yes,Entertainment,0,Low,1,Cat_6
|
|
674
|
+
461214,Male,No,29,No,Healthcare,0,Low,4,Cat_6
|
|
675
|
+
461215,Female,No,36,Yes,Artist,10,Low,1,Cat_6
|
|
676
|
+
461218,Male,Yes,27,No,Executive,1,Low,6,Cat_6
|
|
677
|
+
461220,Female,No,29,No,Executive,8,Low,3,Cat_6
|
|
678
|
+
461221,Female,No,25,No,Marketing,1,Low,4,Cat_6
|
|
679
|
+
461225,Female,No,30,No,Marketing,10,Low,6,Cat_6
|
|
680
|
+
461226,Male,Yes,45,Yes,,1,Low,2,Cat_6
|
|
681
|
+
461230,Female,No,21,No,Executive,0,Low,,Cat_3
|
|
682
|
+
461232,Female,Yes,41,Yes,Executive,,High,,Cat_3
|
|
683
|
+
461233,Male,Yes,38,Yes,Entertainment,,Low,,Cat_3
|
|
684
|
+
461236,Female,No,28,Yes,Healthcare,9,Low,1,Cat_6
|
|
685
|
+
461237,Male,No,33,Yes,Doctor,1,Low,5,Cat_2
|
|
686
|
+
461241,Male,Yes,31,Yes,Healthcare,7,Low,2,Cat_6
|
|
687
|
+
461242,Male,Yes,45,Yes,Healthcare,0,Low,2,Cat_6
|
|
688
|
+
461243,Male,Yes,47,Yes,Marketing,0,Low,5,Cat_6
|
|
689
|
+
461248,Female,No,39,No,Healthcare,0,Low,1,Cat_6
|
|
690
|
+
461251,Female,No,47,Yes,Marketing,1,Low,,Cat_6
|
|
691
|
+
461252,Female,Yes,53,Yes,Doctor,0,Low,1,Cat_3
|
|
692
|
+
461256,Male,No,27,No,Doctor,1,Low,4,Cat_4
|
|
693
|
+
461257,Male,Yes,37,Yes,Engineer,1,Average,2,Cat_4
|
|
694
|
+
461258,Female,Yes,62,Yes,Artist,1,Average,3,Cat_4
|
|
695
|
+
461262,Female,No,29,No,Engineer,0,Low,7,Cat_4
|
|
696
|
+
461263,Female,Yes,51,Yes,Artist,0,Low,1,Cat_4
|
|
697
|
+
461265,Male,No,30,No,Marketing,1,Low,6,Cat_4
|
|
698
|
+
461269,Male,No,18,No,Entertainment,0,Low,4,Cat_4
|
|
699
|
+
461274,Female,Yes,87,Yes,Lawyer,,High,2,Cat_6
|
|
700
|
+
461276,Male,Yes,68,Yes,Marketing,0,Low,2,Cat_7
|
|
701
|
+
461277,Male,Yes,84,Yes,Lawyer,5,Low,1,Cat_6
|
|
702
|
+
461281,Male,No,22,No,Healthcare,2,Low,9,Cat_2
|
|
703
|
+
461286,Female,No,22,No,Doctor,2,Low,4,Cat_6
|
|
704
|
+
461289,Male,No,21,No,Healthcare,1,Low,3,Cat_6
|
|
705
|
+
461292,Female,Yes,89,No,Lawyer,,High,2,Cat_3
|
|
706
|
+
461297,Male,Yes,73,No,Lawyer,0,High,2,Cat_6
|
|
707
|
+
461299,Female,Yes,75,Yes,Lawyer,0,High,2,Cat_6
|
|
708
|
+
461303,Female,No,20,No,Doctor,6,Low,4,Cat_2
|
|
709
|
+
461308,Male,No,22,No,Healthcare,1,Low,2,Cat_6
|
|
710
|
+
461309,Female,No,22,No,Healthcare,0,Low,4,Cat_6
|
|
711
|
+
461313,Male,Yes,63,Yes,Artist,0,Average,,Cat_6
|
|
712
|
+
461314,Male,Yes,46,Yes,Artist,1,Average,3,Cat_6
|
|
713
|
+
461319,Male,Yes,58,No,Artist,0,Average,2,Cat_6
|
|
714
|
+
461320,Female,No,41,Yes,Artist,1,Low,3,Cat_6
|
|
715
|
+
461322,Male,Yes,42,Yes,Artist,0,Average,2,Cat_6
|
|
716
|
+
461323,Female,Yes,43,Yes,Healthcare,6,Average,2,Cat_6
|
|
717
|
+
461324,Female,No,49,Yes,Artist,3,Low,1,Cat_6
|
|
718
|
+
461326,Female,No,40,Yes,Artist,0,Low,1,Cat_6
|
|
719
|
+
461335,Male,Yes,53,No,Executive,8,High,2,Cat_6
|
|
720
|
+
461340,Male,Yes,36,Yes,Artist,4,Average,2,Cat_7
|
|
721
|
+
461346,Male,Yes,50,Yes,Artist,8,Low,2,Cat_6
|
|
722
|
+
461348,Male,Yes,42,Yes,Healthcare,1,Low,1,Cat_6
|
|
723
|
+
461350,Male,No,30,No,Healthcare,0,Low,4,Cat_2
|
|
724
|
+
461352,Male,No,29,No,Healthcare,2,Low,5,Cat_2
|
|
725
|
+
461356,Male,No,28,Yes,Entertainment,1,Low,2,Cat_6
|
|
726
|
+
461357,Male,No,27,Yes,Healthcare,1,Low,4,Cat_6
|
|
727
|
+
461363,Male,No,49,Yes,Artist,0,Low,1,Cat_6
|
|
728
|
+
461366,Male,No,32,Yes,Healthcare,1,Low,1,Cat_6
|
|
729
|
+
461370,Male,No,25,Yes,Doctor,1,Low,3,Cat_6
|
|
730
|
+
461377,Female,Yes,63,Yes,Artist,,Low,1,Cat_6
|
|
731
|
+
461378,Female,No,42,Yes,Artist,8,Low,1,Cat_6
|
|
732
|
+
461379,Male,No,31,Yes,Healthcare,1,Low,,Cat_5
|
|
733
|
+
461383,Male,Yes,71,Yes,Artist,0,High,2,Cat_6
|
|
734
|
+
461388,Male,No,20,No,Healthcare,,Low,5,Cat_2
|
|
735
|
+
461397,Male,No,22,No,Healthcare,1,Low,4,Cat_6
|
|
736
|
+
461402,Female,No,29,Yes,Entertainment,1,Low,5,Cat_6
|
|
737
|
+
461408,Male,Yes,47,Yes,Marketing,0,Low,3,Cat_6
|
|
738
|
+
461421,Male,Yes,43,Yes,Artist,,Average,3,Cat_6
|
|
739
|
+
461423,Male,No,32,Yes,Artist,1,Low,3,Cat_4
|
|
740
|
+
461426,Male,Yes,47,Yes,Artist,7,Average,2,Cat_6
|
|
741
|
+
461428,Male,No,46,Yes,Artist,0,Low,1,Cat_6
|
|
742
|
+
461432,Female,Yes,41,Yes,Artist,1,Average,2,Cat_6
|
|
743
|
+
461437,Male,Yes,37,Yes,Entertainment,0,Average,2,Cat_6
|
|
744
|
+
461439,Male,Yes,40,Yes,Artist,0,Average,2,Cat_6
|
|
745
|
+
461441,Male,Yes,60,Yes,Artist,0,Average,4,Cat_6
|
|
746
|
+
461442,Male,Yes,46,Yes,Artist,0,Average,6,Cat_2
|
|
747
|
+
461454,Female,Yes,36,Yes,Artist,6,High,4,Cat_7
|
|
748
|
+
461456,Female,No,38,No,Marketing,0,Low,1,Cat_6
|
|
749
|
+
461457,Female,Yes,32,No,Doctor,0,Low,5,Cat_6
|
|
750
|
+
461458,Female,No,41,Yes,Artist,5,Low,1,Cat_6
|
|
751
|
+
461462,Male,Yes,56,Yes,Marketing,0,Low,3,Cat_6
|
|
752
|
+
461465,Male,Yes,31,Yes,Artist,8,Average,2,Cat_6
|
|
753
|
+
461466,Male,Yes,45,No,Artist,0,Low,2,Cat_7
|
|
754
|
+
461468,Male,Yes,69,Yes,Entertainment,,Average,3,Cat_6
|
|
755
|
+
461469,Male,Yes,37,Yes,Artist,0,Low,2,Cat_6
|
|
756
|
+
461476,Male,Yes,47,Yes,Artist,1,Average,4,Cat_2
|
|
757
|
+
461479,Female,Yes,52,Yes,Artist,1,Average,3,Cat_6
|
|
758
|
+
461480,Female,Yes,57,Yes,Artist,1,High,3,Cat_6
|
|
759
|
+
461482,Female,No,50,Yes,Artist,9,Low,1,Cat_6
|
|
760
|
+
461494,Male,Yes,27,No,Engineer,0,Average,2,Cat_6
|
|
761
|
+
461501,Female,Yes,45,Yes,Engineer,1,High,3,Cat_6
|
|
762
|
+
461503,Female,No,30,Yes,Artist,8,Low,2,Cat_6
|
|
763
|
+
461510,Male,Yes,45,Yes,Artist,0,Low,2,Cat_6
|
|
764
|
+
461514,Male,No,30,No,Healthcare,1,Low,4,Cat_6
|
|
765
|
+
461516,Male,Yes,31,Yes,Entertainment,1,Average,3,Cat_6
|
|
766
|
+
461518,Female,Yes,45,Yes,Artist,1,Average,4,Cat_3
|
|
767
|
+
461521,Male,Yes,67,Yes,Artist,0,High,2,Cat_6
|
|
768
|
+
461522,Male,Yes,76,No,Executive,1,High,2,Cat_6
|
|
769
|
+
461525,Male,Yes,69,Yes,Entertainment,0,Low,2,Cat_6
|
|
770
|
+
461526,Male,Yes,83,No,Entertainment,0,Low,2,Cat_6
|
|
771
|
+
461530,Male,Yes,38,Yes,Engineer,0,Low,2,Cat_6
|
|
772
|
+
461534,Male,Yes,36,Yes,Artist,0,Low,1,Cat_6
|
|
773
|
+
461540,Male,No,41,Yes,,2,Low,2,Cat_2
|
|
774
|
+
461546,Female,Yes,69,No,Lawyer,0,Low,3,Cat_6
|
|
775
|
+
461548,Female,No,33,Yes,Engineer,0,Low,3,Cat_6
|
|
776
|
+
461553,Male,No,38,Yes,Artist,1,Low,3,Cat_7
|
|
777
|
+
461556,Female,Yes,48,Yes,Engineer,1,Average,2,Cat_6
|
|
778
|
+
461558,Male,Yes,51,Yes,Engineer,2,Average,2,Cat_6
|
|
779
|
+
461564,Male,Yes,56,Yes,Executive,1,High,2,Cat_6
|
|
780
|
+
461570,Male,Yes,57,Yes,Artist,0,Average,3,Cat_6
|
|
781
|
+
461574,Female,Yes,49,Yes,Artist,1,Average,3,Cat_6
|
|
782
|
+
461587,Male,No,30,Yes,Healthcare,0,Low,3,Cat_6
|
|
783
|
+
461593,Female,Yes,40,Yes,Doctor,8,Average,2,Cat_6
|
|
784
|
+
461602,Female,No,30,Yes,Artist,0,Low,,Cat_6
|
|
785
|
+
461604,Male,Yes,38,No,Entertainment,0,Average,2,Cat_6
|
|
786
|
+
461612,Female,No,31,Yes,Healthcare,8,Low,5,Cat_6
|
|
787
|
+
461615,Male,No,33,Yes,Doctor,0,Low,2,Cat_6
|
|
788
|
+
461617,Male,No,50,Yes,Artist,0,Low,2,Cat_6
|
|
789
|
+
461619,Male,Yes,52,Yes,Executive,,High,3,Cat_6
|
|
790
|
+
461624,Female,Yes,39,Yes,Artist,0,Average,,Cat_2
|
|
791
|
+
461626,Male,Yes,73,Yes,Executive,0,High,2,Cat_6
|
|
792
|
+
461630,Male,Yes,46,Yes,Artist,0,Average,3,Cat_6
|
|
793
|
+
461637,Male,Yes,50,Yes,Artist,0,Low,2,Cat_7
|
|
794
|
+
461644,Male,No,30,No,Healthcare,0,Low,6,Cat_6
|
|
795
|
+
461653,Female,Yes,60,Yes,Doctor,0,Average,2,Cat_6
|
|
796
|
+
461655,Female,Yes,39,Yes,Homemaker,9,Average,2,Cat_6
|
|
797
|
+
461658,Female,Yes,59,Yes,Artist,1,Average,2,Cat_5
|
|
798
|
+
461659,Female,Yes,51,Yes,Artist,0,Average,2,Cat_6
|
|
799
|
+
461661,Female,Yes,40,Yes,Artist,5,Average,2,Cat_2
|
|
800
|
+
461663,Male,No,23,No,Healthcare,1,Low,3,Cat_6
|
|
801
|
+
461668,Male,Yes,53,Yes,Artist,4,Average,4,Cat_2
|
|
802
|
+
461671,Male,No,32,No,Healthcare,7,Low,5,Cat_6
|
|
803
|
+
461674,Male,Yes,52,Yes,Executive,0,High,4,Cat_6
|
|
804
|
+
461676,Female,No,31,Yes,Engineer,0,Low,1,Cat_6
|
|
805
|
+
461679,Male,No,30,Yes,Healthcare,3,Low,4,Cat_6
|
|
806
|
+
461681,Male,No,25,Yes,Healthcare,8,Low,3,Cat_7
|
|
807
|
+
461683,Male,Yes,40,Yes,Executive,1,High,4,Cat_6
|
|
808
|
+
461685,Female,No,27,Yes,Healthcare,4,Low,4,Cat_6
|
|
809
|
+
461686,Male,Yes,61,Yes,Artist,0,Low,2,Cat_6
|
|
810
|
+
461690,Female,No,33,Yes,Engineer,1,Low,1,Cat_4
|
|
811
|
+
461694,Male,No,28,Yes,Doctor,1,Low,4,Cat_4
|
|
812
|
+
461695,Female,Yes,48,Yes,Artist,2,Average,2,Cat_6
|
|
813
|
+
461698,Female,Yes,73,Yes,Artist,0,High,2,Cat_6
|
|
814
|
+
461701,Male,Yes,36,No,Artist,0,Average,2,Cat_5
|
|
815
|
+
461705,Female,No,32,No,Healthcare,0,Low,4,Cat_6
|
|
816
|
+
461708,Male,Yes,82,No,Lawyer,0,High,2,Cat_6
|
|
817
|
+
461709,Male,No,28,Yes,Artist,1,Low,3,Cat_4
|
|
818
|
+
461711,Female,No,42,Yes,Artist,8,Low,3,Cat_2
|
|
819
|
+
461716,Female,Yes,60,Yes,Lawyer,6,High,9,Cat_6
|
|
820
|
+
461720,Female,No,46,Yes,Artist,1,Low,1,Cat_4
|
|
821
|
+
461722,Male,No,31,No,Doctor,0,Low,3,Cat_6
|
|
822
|
+
461724,Female,Yes,50,Yes,Artist,1,Low,1,Cat_7
|
|
823
|
+
461725,Female,No,30,Yes,Engineer,3,Low,1,Cat_4
|
|
824
|
+
461727,Female,No,49,Yes,Artist,1,Low,3,Cat_6
|
|
825
|
+
461737,Female,Yes,51,Yes,Doctor,0,Average,6,Cat_4
|
|
826
|
+
461738,Female,Yes,46,Yes,,,Average,3,Cat_6
|
|
827
|
+
461744,Male,Yes,53,Yes,Artist,0,Average,4,Cat_6
|
|
828
|
+
461747,Male,Yes,65,Yes,Artist,0,High,2,Cat_6
|
|
829
|
+
461749,Female,No,22,No,Healthcare,0,Low,5,Cat_6
|
|
830
|
+
461752,Male,Yes,65,Yes,Doctor,1,Average,3,Cat_6
|
|
831
|
+
461756,Female,Yes,39,Yes,Engineer,0,Average,2,Cat_4
|
|
832
|
+
461760,Male,Yes,84,Yes,Artist,0,High,2,Cat_6
|
|
833
|
+
461769,Male,No,37,Yes,Artist,0,Low,1,Cat_6
|
|
834
|
+
461771,Male,Yes,28,Yes,Doctor,8,Average,2,Cat_6
|
|
835
|
+
461775,Female,Yes,82,No,Lawyer,0,High,2,Cat_6
|
|
836
|
+
461778,Female,Yes,87,Yes,Lawyer,0,High,2,Cat_6
|
|
837
|
+
461780,Female,No,69,Yes,Lawyer,1,Low,5,Cat_6
|
|
838
|
+
461782,Female,Yes,51,Yes,Artist,,High,5,Cat_6
|
|
839
|
+
461784,Female,Yes,74,Yes,Lawyer,1,Low,1,Cat_6
|
|
840
|
+
461788,Female,Yes,79,Yes,Lawyer,1,High,2,Cat_6
|
|
841
|
+
461791,Female,No,21,No,Lawyer,9,Low,1,Cat_6
|
|
842
|
+
461792,Female,No,20,No,Healthcare,5,Low,5,Cat_2
|
|
843
|
+
461800,Female,No,43,Yes,Doctor,3,Low,1,Cat_2
|
|
844
|
+
461801,Female,No,25,No,Healthcare,1,Low,3,Cat_6
|
|
845
|
+
461802,Male,No,43,Yes,Artist,0,Low,4,Cat_6
|
|
846
|
+
461804,Female,No,42,Yes,Artist,1,Low,1,Cat_6
|
|
847
|
+
461807,Male,No,25,Yes,Doctor,10,Low,4,Cat_6
|
|
848
|
+
461815,Male,Yes,59,Yes,Artist,0,Low,1,Cat_3
|
|
849
|
+
461816,Female,No,49,Yes,Marketing,0,Low,5,Cat_6
|
|
850
|
+
461821,Female,No,32,No,Doctor,1,Low,4,Cat_6
|
|
851
|
+
461822,Male,Yes,36,Yes,Artist,8,High,2,Cat_6
|
|
852
|
+
461824,Male,Yes,45,Yes,Marketing,9,Low,3,Cat_6
|
|
853
|
+
461832,Male,No,29,Yes,Healthcare,,Low,3,Cat_6
|
|
854
|
+
461837,Male,Yes,37,Yes,Artist,0,Low,2,Cat_6
|
|
855
|
+
461845,Female,Yes,48,Yes,Doctor,1,Average,4,Cat_6
|
|
856
|
+
461846,Female,No,65,Yes,Artist,0,Low,2,Cat_2
|
|
857
|
+
461848,Male,No,39,No,Marketing,1,Low,2,Cat_6
|
|
858
|
+
461858,Male,No,25,No,Entertainment,1,Low,7,Cat_4
|
|
859
|
+
461859,Female,Yes,49,No,Artist,5,Low,5,Cat_6
|
|
860
|
+
461860,Female,Yes,77,Yes,Lawyer,1,High,2,Cat_6
|
|
861
|
+
461862,Female,No,38,Yes,Artist,9,Low,1,Cat_6
|
|
862
|
+
461864,Male,No,19,Yes,Marketing,0,Low,6,Cat_4
|
|
863
|
+
461872,Female,Yes,76,Yes,Lawyer,1,High,2,Cat_6
|
|
864
|
+
461873,Male,No,28,Yes,Doctor,0,Low,4,Cat_6
|
|
865
|
+
461874,Male,Yes,51,Yes,Doctor,1,Average,3,Cat_3
|
|
866
|
+
461882,Female,No,28,Yes,Doctor,0,Low,5,Cat_7
|
|
867
|
+
461892,Female,No,42,Yes,Healthcare,0,Low,1,Cat_2
|
|
868
|
+
461896,Male,Yes,45,Yes,Artist,1,Low,1,Cat_6
|
|
869
|
+
461898,Male,Yes,63,Yes,Executive,6,High,3,Cat_6
|
|
870
|
+
461899,Female,No,18,No,Doctor,0,Low,6,Cat_6
|
|
871
|
+
461901,Male,No,26,Yes,Artist,7,Low,4,Cat_6
|
|
872
|
+
461910,Male,Yes,31,Yes,Artist,,Average,2,Cat_2
|
|
873
|
+
461913,Male,No,43,Yes,Entertainment,5,Low,4,Cat_2
|
|
874
|
+
461914,Female,Yes,60,Yes,Artist,7,Low,,Cat_6
|
|
875
|
+
461921,Female,No,36,Yes,Artist,0,Low,1,Cat_6
|
|
876
|
+
461927,Male,No,32,No,Healthcare,1,Low,4,Cat_2
|
|
877
|
+
461928,Male,Yes,68,Yes,Lawyer,,Low,1,
|
|
878
|
+
461929,Male,Yes,60,Yes,Entertainment,1,Low,1,Cat_6
|
|
879
|
+
461930,Female,No,42,Yes,Artist,0,Low,1,Cat_4
|
|
880
|
+
461931,Female,No,18,No,Healthcare,6,Low,5,
|
|
881
|
+
461936,Male,Yes,69,No,Lawyer,0,High,2,Cat_6
|
|
882
|
+
461937,Female,No,42,Yes,Doctor,0,Low,,Cat_6
|
|
883
|
+
461941,Female,Yes,70,Yes,Artist,1,Low,1,Cat_6
|
|
884
|
+
461943,Male,No,25,Yes,Healthcare,1,Low,3,Cat_6
|
|
885
|
+
461962,Male,Yes,56,Yes,Entertainment,1,Average,3,Cat_6
|
|
886
|
+
461963,Female,No,40,Yes,Artist,9,Low,1,Cat_6
|
|
887
|
+
461965,Male,No,23,No,Healthcare,1,Low,6,Cat_6
|
|
888
|
+
461967,Female,No,20,No,Marketing,3,Low,4,Cat_7
|
|
889
|
+
461968,Female,No,39,Yes,Entertainment,2,Low,1,Cat_6
|
|
890
|
+
461978,Female,No,19,No,Healthcare,0,Low,4,Cat_6
|
|
891
|
+
461985,Male,No,28,Yes,Entertainment,,Low,,Cat_5
|
|
892
|
+
461988,Male,Yes,40,No,Engineer,1,Average,2,Cat_6
|
|
893
|
+
461989,Female,,60,Yes,Engineer,1,Average,4,Cat_2
|
|
894
|
+
461993,Male,No,33,No,Healthcare,3,Low,4,Cat_6
|
|
895
|
+
461994,Male,Yes,20,No,Doctor,14,Low,2,Cat_6
|
|
896
|
+
461996,Female,No,35,No,Artist,7,Low,4,Cat_6
|
|
897
|
+
461999,Male,No,27,Yes,Doctor,0,Low,5,Cat_6
|
|
898
|
+
462007,Female,Yes,42,Yes,Artist,1,Average,2,Cat_6
|
|
899
|
+
462011,Male,Yes,30,No,Marketing,0,Low,4,Cat_4
|
|
900
|
+
462013,Female,Yes,56,Yes,Executive,0,Average,2,Cat_6
|
|
901
|
+
462015,Male,Yes,28,Yes,Entertainment,0,Average,2,Cat_6
|
|
902
|
+
462016,Female,Yes,38,Yes,Artist,6,Average,2,Cat_6
|
|
903
|
+
462017,Male,No,26,Yes,Entertainment,9,Low,1,Cat_2
|
|
904
|
+
462027,Male,No,36,No,Engineer,0,Low,1,Cat_6
|
|
905
|
+
462029,Male,No,56,No,Entertainment,0,Low,1,Cat_6
|
|
906
|
+
462033,Male,No,26,Yes,Entertainment,0,Low,1,Cat_6
|
|
907
|
+
462038,Male,No,28,Yes,Artist,4,Low,4,Cat_6
|
|
908
|
+
462043,Male,No,32,No,Healthcare,0,Low,5,Cat_6
|
|
909
|
+
462044,Female,No,52,Yes,Artist,4,Low,1,Cat_6
|
|
910
|
+
462048,Female,No,23,No,Healthcare,0,Low,4,Cat_6
|
|
911
|
+
462051,Male,No,23,No,Healthcare,,Low,5,Cat_4
|
|
912
|
+
462052,Male,Yes,50,Yes,Artist,0,Low,2,Cat_6
|
|
913
|
+
462053,Male,Yes,26,Yes,Artist,,Low,2,Cat_6
|
|
914
|
+
462058,Male,Yes,40,Yes,Entertainment,8,Low,2,Cat_6
|
|
915
|
+
462060,Female,Yes,53,Yes,Artist,1,Average,2,Cat_6
|
|
916
|
+
462064,Male,Yes,63,Yes,Artist,0,Average,3,Cat_7
|
|
917
|
+
462068,Male,Yes,62,Yes,Executive,0,High,3,Cat_6
|
|
918
|
+
462075,Female,No,38,Yes,Artist,1,Low,1,Cat_6
|
|
919
|
+
462078,Female,Yes,57,No,Artist,1,Average,2,Cat_2
|
|
920
|
+
462080,Female,No,43,Yes,Artist,9,Low,1,Cat_6
|
|
921
|
+
462081,Male,No,21,No,Marketing,1,Low,3,Cat_4
|
|
922
|
+
462083,Male,No,22,No,Healthcare,0,Low,5,Cat_6
|
|
923
|
+
462084,Male,Yes,68,Yes,Artist,1,Low,1,Cat_6
|
|
924
|
+
462085,Female,No,28,Yes,Healthcare,0,Low,1,Cat_6
|
|
925
|
+
462088,Male,Yes,33,Yes,Artist,0,Average,2,Cat_6
|
|
926
|
+
462090,Female,No,38,Yes,Artist,8,Low,1,Cat_6
|
|
927
|
+
462091,Male,No,23,No,Healthcare,0,Low,5,Cat_4
|
|
928
|
+
462094,Female,No,41,Yes,Healthcare,,Low,1,Cat_6
|
|
929
|
+
462096,Female,No,41,Yes,Homemaker,,Low,1,Cat_4
|
|
930
|
+
462102,Female,No,39,Yes,Doctor,4,Low,1,Cat_6
|
|
931
|
+
462103,Female,Yes,49,No,Entertainment,9,High,2,Cat_6
|
|
932
|
+
462108,Female,Yes,33,Yes,Homemaker,,Average,2,Cat_6
|
|
933
|
+
462109,Male,Yes,79,No,Lawyer,0,Low,1,Cat_6
|
|
934
|
+
462111,Male,Yes,38,Yes,Artist,6,Average,4,Cat_6
|
|
935
|
+
462114,Male,No,21,No,Healthcare,1,Low,4,Cat_6
|
|
936
|
+
462116,Female,Yes,68,Yes,Doctor,0,Average,2,Cat_6
|
|
937
|
+
462118,Male,No,31,Yes,Artist,0,Low,3,Cat_6
|
|
938
|
+
462120,Male,Yes,46,No,Artist,1,Low,3,Cat_3
|
|
939
|
+
462128,Male,Yes,35,Yes,Artist,9,Average,2,Cat_6
|
|
940
|
+
462131,Female,No,42,Yes,Artist,8,Low,3,Cat_2
|
|
941
|
+
462134,Male,Yes,87,No,Lawyer,0,Low,1,
|
|
942
|
+
462141,Female,No,38,Yes,Artist,8,Low,1,Cat_6
|
|
943
|
+
462149,Female,Yes,88,No,Lawyer,2,High,1,Cat_6
|
|
944
|
+
462151,Female,No,42,Yes,Artist,9,Low,1,Cat_6
|
|
945
|
+
462163,Female,Yes,26,Yes,Artist,4,Average,2,Cat_3
|
|
946
|
+
462168,Male,Yes,35,Yes,Executive,0,High,3,Cat_6
|
|
947
|
+
462171,Female,Yes,41,No,Engineer,3,High,2,Cat_6
|
|
948
|
+
462172,Male,Yes,37,Yes,Doctor,1,Average,2,Cat_1
|
|
949
|
+
462174,Female,Yes,41,Yes,Engineer,8,Average,4,Cat_4
|
|
950
|
+
462177,Male,No,35,,Artist,6,Low,5,Cat_2
|
|
951
|
+
462179,Female,No,33,Yes,Marketing,0,Low,9,Cat_7
|
|
952
|
+
462180,Female,Yes,61,Yes,Engineer,2,Average,4,Cat_2
|
|
953
|
+
462186,Female,No,19,No,Doctor,1,Low,3,Cat_1
|
|
954
|
+
462187,Female,No,50,Yes,Artist,4,Low,1,Cat_6
|
|
955
|
+
462188,Female,Yes,48,No,Engineer,0,Average,4,Cat_4
|
|
956
|
+
462196,Male,Yes,57,No,Marketing,1,Average,3,Cat_4
|
|
957
|
+
462197,Female,Yes,72,No,Engineer,1,Average,3,Cat_4
|
|
958
|
+
462198,Female,No,39,No,Engineer,4,Low,,Cat_3
|
|
959
|
+
462200,Female,Yes,49,Yes,Doctor,0,Low,3,Cat_4
|
|
960
|
+
462202,Female,No,41,Yes,Entertainment,0,Low,4,Cat_4
|
|
961
|
+
462203,Male,Yes,65,No,Executive,2,High,7,Cat_4
|
|
962
|
+
462204,Female,No,22,No,Marketing,0,Low,3,Cat_4
|
|
963
|
+
462205,Female,No,23,No,Healthcare,0,Low,4,Cat_4
|
|
964
|
+
462209,Female,Yes,41,No,Artist,0,Low,1,Cat_4
|
|
965
|
+
462210,Female,Yes,42,Yes,Engineer,0,Low,3,Cat_4
|
|
966
|
+
462211,Male,No,18,No,Healthcare,0,Low,3,Cat_4
|
|
967
|
+
462214,Male,Yes,49,No,Doctor,1,Low,2,Cat_4
|
|
968
|
+
462216,Female,Yes,40,No,Doctor,0,Low,2,Cat_4
|
|
969
|
+
462218,Male,Yes,50,No,Executive,1,Average,5,Cat_4
|
|
970
|
+
462220,Female,No,19,No,Healthcare,6,Low,3,Cat_4
|
|
971
|
+
462222,Male,No,22,No,Healthcare,0,Low,6,Cat_4
|
|
972
|
+
462229,Male,No,23,No,,1,Low,8,Cat_4
|
|
973
|
+
462231,Male,No,27,Yes,Artist,4,Low,6,Cat_4
|
|
974
|
+
462232,Male,Yes,55,No,Executive,0,High,8,Cat_4
|
|
975
|
+
462234,Male,Yes,32,No,,1,Average,6,Cat_4
|
|
976
|
+
462238,Male,Yes,57,No,Entertainment,,Low,2,Cat_3
|
|
977
|
+
462240,Male,Yes,80,No,Lawyer,0,High,2,Cat_6
|
|
978
|
+
462243,Male,Yes,43,No,Executive,0,Low,4,Cat_6
|
|
979
|
+
462246,Female,Yes,79,No,Lawyer,1,High,2,Cat_6
|
|
980
|
+
462249,Male,No,25,No,Entertainment,1,Low,3,Cat_6
|
|
981
|
+
462256,Female,Yes,58,Yes,Homemaker,0,Average,4,Cat_6
|
|
982
|
+
462257,Female,Yes,78,Yes,Lawyer,,High,2,Cat_6
|
|
983
|
+
462260,Male,Yes,76,Yes,Lawyer,1,Low,2,Cat_6
|
|
984
|
+
462262,Male,No,27,No,Healthcare,1,Low,3,
|
|
985
|
+
462274,Male,Yes,47,Yes,Artist,1,Average,3,Cat_6
|
|
986
|
+
462275,Male,Yes,43,Yes,Artist,1,Average,2,Cat_6
|
|
987
|
+
462278,Male,No,31,Yes,Healthcare,1,Low,4,Cat_6
|
|
988
|
+
462279,Male,No,27,No,Healthcare,0,Low,7,Cat_6
|
|
989
|
+
462280,Male,No,31,Yes,Healthcare,0,Low,4,Cat_6
|
|
990
|
+
462281,Male,Yes,46,Yes,Artist,1,Low,2,Cat_6
|
|
991
|
+
462284,Male,Yes,48,Yes,Executive,1,Average,4,Cat_6
|
|
992
|
+
462285,Male,Yes,51,Yes,Doctor,,Low,2,
|
|
993
|
+
462286,Male,Yes,57,No,Doctor,0,Average,2,Cat_6
|
|
994
|
+
462290,Female,No,30,Yes,Doctor,0,Low,1,Cat_6
|
|
995
|
+
462291,Female,No,37,Yes,Marketing,,Low,3,Cat_6
|
|
996
|
+
462297,Female,No,31,Yes,Artist,14,Low,2,Cat_6
|
|
997
|
+
462300,Male,Yes,49,Yes,Artist,1,Average,3,Cat_6
|
|
998
|
+
462304,Male,Yes,56,Yes,Artist,1,Low,4,Cat_4
|
|
999
|
+
462306,Male,Yes,83,No,Lawyer,8,High,2,Cat_6
|
|
1000
|
+
462309,Male,No,32,Yes,Healthcare,,Low,1,Cat_6
|
|
1001
|
+
462310,Male,Yes,63,Yes,Artist,5,Average,4,Cat_6
|
|
1002
|
+
462323,Female,Yes,71,Yes,Doctor,1,Average,2,Cat_6
|
|
1003
|
+
462336,Male,Yes,50,No,Artist,0,Low,4,Cat_6
|
|
1004
|
+
462339,Male,No,31,Yes,Artist,4,Low,5,Cat_6
|
|
1005
|
+
462340,Male,Yes,60,No,Entertainment,0,Average,6,Cat_6
|
|
1006
|
+
462342,Female,Yes,71,Yes,Lawyer,8,High,2,Cat_6
|
|
1007
|
+
462345,Male,Yes,49,Yes,Doctor,0,Average,6,Cat_4
|
|
1008
|
+
462346,Male,Yes,74,Yes,Lawyer,9,Low,1,Cat_6
|
|
1009
|
+
462349,Male,Yes,51,Yes,Artist,1,Average,6,Cat_6
|
|
1010
|
+
462355,Male,Yes,61,No,Entertainment,0,Low,,Cat_6
|
|
1011
|
+
462356,Male,No,46,Yes,Engineer,0,Low,3,Cat_6
|
|
1012
|
+
462358,Male,Yes,39,No,Doctor,2,Average,2,Cat_6
|
|
1013
|
+
462365,Male,Yes,85,Yes,Lawyer,1,High,2,Cat_6
|
|
1014
|
+
462368,Female,Yes,31,Yes,Artist,1,Average,2,Cat_6
|
|
1015
|
+
462370,Male,Yes,39,Yes,Executive,4,High,3,Cat_6
|
|
1016
|
+
462381,Female,Yes,48,No,Doctor,1,High,2,Cat_6
|
|
1017
|
+
462382,Male,Yes,71,Yes,Lawyer,0,High,2,Cat_6
|
|
1018
|
+
462384,Female,No,31,Yes,Healthcare,,Low,1,Cat_7
|
|
1019
|
+
462386,Female,No,32,Yes,Healthcare,0,Low,5,Cat_6
|
|
1020
|
+
462389,Female,Yes,55,No,Engineer,0,Low,1,Cat_6
|
|
1021
|
+
462395,Male,Yes,46,Yes,Artist,0,High,2,Cat_6
|
|
1022
|
+
462396,Male,Yes,53,Yes,Doctor,,Average,2,Cat_6
|
|
1023
|
+
462397,Male,Yes,50,Yes,Artist,0,Average,4,Cat_6
|
|
1024
|
+
462400,Male,No,45,Yes,Artist,1,Low,1,Cat_6
|
|
1025
|
+
462401,Male,Yes,33,No,Executive,1,Average,2,Cat_4
|
|
1026
|
+
462409,Female,Yes,29,No,Engineer,5,Low,2,Cat_6
|
|
1027
|
+
462411,Male,No,35,Yes,Artist,8,Low,1,Cat_6
|
|
1028
|
+
462415,Male,No,25,No,Doctor,1,Low,1,Cat_6
|
|
1029
|
+
462420,Male,No,26,Yes,Healthcare,0,Low,3,Cat_6
|
|
1030
|
+
462421,Male,No,48,Yes,Artist,1,Low,2,Cat_6
|
|
1031
|
+
462423,Male,Yes,66,No,Lawyer,0,High,3,Cat_6
|
|
1032
|
+
462424,Female,Yes,38,No,Artist,0,Low,3,Cat_6
|
|
1033
|
+
462428,Male,Yes,65,Yes,Entertainment,2,Average,3,Cat_6
|
|
1034
|
+
462429,Male,Yes,87,No,Lawyer,1,Low,1,Cat_6
|
|
1035
|
+
462445,Male,No,20,No,Healthcare,1,Low,3,Cat_6
|
|
1036
|
+
462446,Male,No,19,No,Healthcare,0,Low,4,Cat_6
|
|
1037
|
+
462447,Male,No,22,No,Healthcare,9,Low,4,Cat_6
|
|
1038
|
+
462450,Male,No,18,No,Healthcare,0,Low,,Cat_6
|
|
1039
|
+
462451,Male,No,18,No,Marketing,1,Low,9,Cat_6
|
|
1040
|
+
462452,Male,No,19,No,Healthcare,0,Low,,Cat_4
|
|
1041
|
+
462454,Male,No,19,No,Healthcare,1,Low,3,Cat_2
|
|
1042
|
+
462456,Male,No,22,No,Healthcare,0,Low,8,Cat_6
|
|
1043
|
+
462457,Male,No,31,No,Healthcare,4,Low,4,Cat_6
|
|
1044
|
+
462463,Male,Yes,63,No,Artist,0,Average,2,Cat_6
|
|
1045
|
+
462472,Male,No,43,Yes,Artist,1,Low,1,Cat_6
|
|
1046
|
+
462473,Male,No,73,No,Engineer,0,Low,,Cat_4
|
|
1047
|
+
462485,Female,Yes,39,No,Engineer,0,Low,2,Cat_6
|
|
1048
|
+
462488,Male,No,31,Yes,Healthcare,1,Low,5,Cat_6
|
|
1049
|
+
462491,Male,No,31,Yes,Artist,0,Low,5,Cat_6
|
|
1050
|
+
462492,Male,Yes,43,No,Artist,0,Average,4,Cat_2
|
|
1051
|
+
462496,Male,Yes,52,No,Artist,0,Average,3,Cat_6
|
|
1052
|
+
462498,Female,Yes,63,Yes,Doctor,0,Average,3,Cat_6
|
|
1053
|
+
462503,Male,Yes,51,Yes,Executive,1,High,4,Cat_6
|
|
1054
|
+
462508,Male,Yes,35,Yes,Healthcare,1,Low,7,Cat_4
|
|
1055
|
+
462512,Female,Yes,32,No,Entertainment,,Average,2,Cat_4
|
|
1056
|
+
462517,Female,Yes,39,Yes,Homemaker,9,High,4,Cat_6
|
|
1057
|
+
462518,Female,No,25,No,Healthcare,1,Low,6,Cat_5
|
|
1058
|
+
462519,Male,No,20,No,Healthcare,0,Low,5,Cat_4
|
|
1059
|
+
462521,Female,No,33,No,Homemaker,9,Low,1,Cat_6
|
|
1060
|
+
462522,Male,Yes,36,No,Executive,0,Average,5,Cat_4
|
|
1061
|
+
462524,Female,Yes,35,Yes,Doctor,,Low,2,Cat_6
|
|
1062
|
+
462525,Female,Yes,42,Yes,Artist,1,Average,2,Cat_6
|
|
1063
|
+
462526,Female,Yes,52,Yes,Artist,2,Average,5,Cat_6
|
|
1064
|
+
462529,Female,Yes,42,Yes,Engineer,1,Low,2,Cat_6
|
|
1065
|
+
462531,Female,Yes,57,No,Homemaker,,High,2,Cat_6
|
|
1066
|
+
462533,Female,No,30,Yes,Entertainment,1,Low,3,Cat_6
|
|
1067
|
+
462538,Female,Yes,73,Yes,Lawyer,1,High,2,Cat_6
|
|
1068
|
+
462541,Male,Yes,66,Yes,Engineer,3,High,2,Cat_6
|
|
1069
|
+
462542,Female,Yes,62,Yes,Artist,9,Average,5,Cat_2
|
|
1070
|
+
462543,Female,Yes,36,Yes,Artist,4,Low,1,Cat_3
|
|
1071
|
+
462545,Male,No,33,No,Engineer,0,Low,3,Cat_4
|
|
1072
|
+
462554,Male,No,28,No,Healthcare,0,Low,8,Cat_4
|
|
1073
|
+
462561,Female,Yes,48,Yes,Artist,3,Average,2,Cat_6
|
|
1074
|
+
462563,Female,Yes,53,Yes,Artist,1,Average,2,Cat_6
|
|
1075
|
+
462566,Female,Yes,27,No,Doctor,1,Low,,Cat_3
|
|
1076
|
+
462577,Female,Yes,71,No,Marketing,0,High,2,Cat_4
|
|
1077
|
+
462578,Male,Yes,35,Yes,Artist,9,Average,2,Cat_4
|
|
1078
|
+
462580,Female,No,41,Yes,Artist,0,Low,1,Cat_4
|
|
1079
|
+
462584,Female,Yes,39,No,Entertainment,0,Low,4,Cat_4
|
|
1080
|
+
462587,Female,Yes,79,No,Lawyer,1,High,2,Cat_4
|
|
1081
|
+
462589,Female,No,29,No,Engineer,9,Low,8,Cat_4
|
|
1082
|
+
462595,Female,No,33,Yes,Artist,7,Low,7,Cat_4
|
|
1083
|
+
462596,Female,No,31,No,Healthcare,0,Low,,Cat_4
|
|
1084
|
+
462600,Male,Yes,25,No,Engineer,4,Average,3,Cat_4
|
|
1085
|
+
462607,Female,,43,No,Engineer,2,Average,3,Cat_4
|
|
1086
|
+
462609,Female,Yes,52,No,Doctor,4,Low,1,Cat_4
|
|
1087
|
+
462611,Male,Yes,41,No,Executive,0,High,7,Cat_4
|
|
1088
|
+
462612,Female,Yes,27,No,Doctor,,High,6,Cat_4
|
|
1089
|
+
462613,Female,Yes,39,No,Engineer,1,Average,5,Cat_4
|
|
1090
|
+
462615,Male,No,32,No,Doctor,3,Low,7,Cat_4
|
|
1091
|
+
462617,Male,No,19,No,Healthcare,1,Low,5,Cat_4
|
|
1092
|
+
462619,Male,,58,No,,1,High,,Cat_4
|
|
1093
|
+
462625,Male,No,30,Yes,Artist,1,Low,3,Cat_4
|
|
1094
|
+
462626,Female,No,31,Yes,Engineer,0,Low,6,Cat_4
|
|
1095
|
+
462632,Female,Yes,43,No,Engineer,,Average,4,Cat_4
|
|
1096
|
+
462637,Female,Yes,63,No,Marketing,,Average,6,Cat_4
|
|
1097
|
+
462643,Female,Yes,37,Yes,Engineer,,Average,3,Cat_4
|
|
1098
|
+
462654,Male,Yes,37,No,Artist,0,Average,6,Cat_4
|
|
1099
|
+
462658,Female,Yes,31,Yes,Homemaker,9,Average,2,
|
|
1100
|
+
462668,Female,No,38,Yes,Artist,4,Low,1,Cat_6
|
|
1101
|
+
462669,Female,Yes,41,Yes,Entertainment,,High,6,Cat_6
|
|
1102
|
+
462678,Female,Yes,45,Yes,Artist,3,Average,3,Cat_6
|
|
1103
|
+
462680,Male,Yes,35,Yes,Doctor,,Average,4,Cat_6
|
|
1104
|
+
462683,Female,Yes,43,No,Engineer,1,Low,5,Cat_1
|
|
1105
|
+
462685,Female,No,33,No,Healthcare,,Low,3,Cat_4
|
|
1106
|
+
462687,Male,No,26,No,Homemaker,14,Low,3,Cat_3
|
|
1107
|
+
462692,Female,Yes,39,No,Artist,,Average,2,Cat_6
|
|
1108
|
+
462696,Male,Yes,49,No,Artist,1,High,2,Cat_6
|
|
1109
|
+
462697,Male,,47,No,,0,Average,2,Cat_6
|
|
1110
|
+
462702,Male,Yes,53,No,Entertainment,1,Average,4,Cat_4
|
|
1111
|
+
462704,Male,Yes,52,Yes,Executive,5,High,5,Cat_6
|
|
1112
|
+
462705,Female,Yes,66,No,Lawyer,0,Average,2,Cat_6
|
|
1113
|
+
462716,Male,No,26,No,Entertainment,6,Low,2,Cat_4
|
|
1114
|
+
462720,Male,Yes,38,Yes,Marketing,,Low,5,Cat_6
|
|
1115
|
+
462722,Female,No,25,No,Homemaker,,Low,4,Cat_6
|
|
1116
|
+
462723,Female,Yes,53,No,Artist,8,Average,2,Cat_6
|
|
1117
|
+
462727,Female,Yes,87,No,Lawyer,0,High,2,Cat_6
|
|
1118
|
+
462729,Male,No,28,No,Healthcare,1,Low,2,Cat_6
|
|
1119
|
+
462731,Female,Yes,37,Yes,Artist,7,High,3,Cat_6
|
|
1120
|
+
462732,Female,Yes,42,Yes,Artist,,Low,1,Cat_6
|
|
1121
|
+
462735,Female,Yes,25,No,Artist,1,Average,2,Cat_1
|
|
1122
|
+
462736,Female,Yes,33,No,Engineer,6,Low,3,Cat_6
|
|
1123
|
+
462738,Female,No,33,Yes,Healthcare,,Low,3,Cat_2
|
|
1124
|
+
462739,Male,Yes,46,Yes,Artist,1,Low,2,Cat_6
|
|
1125
|
+
462743,Male,No,33,No,Healthcare,2,Low,4,Cat_3
|
|
1126
|
+
462746,Male,No,26,No,Entertainment,1,Low,3,Cat_6
|
|
1127
|
+
462747,Male,No,32,No,Doctor,6,Low,4,Cat_6
|
|
1128
|
+
462752,Female,No,25,No,Healthcare,,Low,1,Cat_6
|
|
1129
|
+
462755,Female,No,18,No,Healthcare,1,Low,,Cat_6
|
|
1130
|
+
462756,Female,No,22,No,Engineer,0,Low,4,Cat_6
|
|
1131
|
+
462761,Male,No,19,No,Healthcare,2,Low,4,Cat_6
|
|
1132
|
+
462762,Male,Yes,46,Yes,Artist,0,High,4,Cat_6
|
|
1133
|
+
462767,Male,No,19,No,Healthcare,4,Low,4,Cat_6
|
|
1134
|
+
462768,Male,Yes,45,Yes,Artist,0,Average,3,Cat_6
|
|
1135
|
+
462776,Female,Yes,52,Yes,Engineer,1,Average,3,Cat_6
|
|
1136
|
+
462785,Female,Yes,42,Yes,Engineer,,Average,5,Cat_3
|
|
1137
|
+
462788,Male,Yes,47,No,Entertainment,1,Average,3,Cat_3
|
|
1138
|
+
462792,Male,Yes,45,No,Homemaker,,Average,4,Cat_6
|
|
1139
|
+
462799,Male,No,32,No,Healthcare,,Low,,Cat_5
|
|
1140
|
+
462804,Male,Yes,41,No,Executive,5,High,3,Cat_4
|
|
1141
|
+
462807,Female,No,28,Yes,Homemaker,,Low,1,Cat_6
|
|
1142
|
+
462810,Male,Yes,37,No,Executive,9,High,4,Cat_6
|
|
1143
|
+
462814,Female,Yes,20,No,Engineer,8,Average,2,Cat_5
|
|
1144
|
+
462817,Female,Yes,73,Yes,Lawyer,3,Low,1,Cat_6
|
|
1145
|
+
462819,Male,Yes,51,Yes,Artist,0,Average,3,Cat_6
|
|
1146
|
+
462823,Male,Yes,18,Yes,Engineer,,Average,4,Cat_6
|
|
1147
|
+
462824,Male,Yes,42,No,Engineer,1,Average,3,Cat_4
|
|
1148
|
+
462826,Male,No,20,No,Healthcare,1,Low,3,Cat_3
|
|
1149
|
+
462827,Female,No,23,No,Doctor,0,Low,3,Cat_3
|
|
1150
|
+
462834,Male,Yes,31,Yes,Homemaker,2,Low,2,Cat_1
|
|
1151
|
+
462838,Female,Yes,33,Yes,Homemaker,1,Low,3,Cat_5
|
|
1152
|
+
462841,Male,No,21,No,Healthcare,9,Low,6,Cat_6
|
|
1153
|
+
462845,Male,Yes,51,Yes,Doctor,5,Average,7,Cat_6
|
|
1154
|
+
462849,Male,Yes,47,Yes,Artist,0,Average,4,Cat_6
|
|
1155
|
+
462850,Male,No,20,No,Healthcare,0,Low,4,Cat_6
|
|
1156
|
+
462853,Male,No,21,No,Healthcare,0,Low,2,Cat_6
|
|
1157
|
+
462854,Male,No,22,No,Healthcare,1,Low,3,Cat_6
|
|
1158
|
+
462858,Female,No,32,Yes,Engineer,9,Low,4,Cat_6
|
|
1159
|
+
462861,Female,No,30,Yes,Healthcare,8,Low,1,Cat_6
|
|
1160
|
+
462866,Male,Yes,61,Yes,Doctor,1,Low,1,Cat_6
|
|
1161
|
+
462868,Male,Yes,43,No,Entertainment,0,Average,4,Cat_4
|
|
1162
|
+
462869,Male,No,25,Yes,Doctor,8,Low,1,Cat_6
|
|
1163
|
+
462871,Male,Yes,46,No,Entertainment,0,Average,3,Cat_6
|
|
1164
|
+
462872,Female,Yes,53,No,Engineer,12,Low,2,Cat_3
|
|
1165
|
+
462874,Male,Yes,55,Yes,Doctor,0,High,2,Cat_6
|
|
1166
|
+
462887,Female,Yes,42,No,Engineer,0,Low,3,Cat_6
|
|
1167
|
+
462890,Female,No,26,Yes,Marketing,11,Low,1,Cat_6
|
|
1168
|
+
462891,Male,No,29,No,Healthcare,0,Low,3,Cat_6
|
|
1169
|
+
462894,Male,Yes,39,Yes,Artist,4,Average,4,Cat_3
|
|
1170
|
+
462900,Male,Yes,38,Yes,Artist,1,Average,3,Cat_6
|
|
1171
|
+
462903,Male,Yes,69,Yes,Entertainment,,Average,2,Cat_6
|
|
1172
|
+
462905,Female,No,25,No,Artist,6,Low,3,Cat_6
|
|
1173
|
+
462914,Female,No,26,Yes,Artist,4,Low,4,Cat_6
|
|
1174
|
+
462920,Male,Yes,51,No,Executive,0,High,5,Cat_6
|
|
1175
|
+
462923,Male,Yes,30,No,Homemaker,8,Average,2,Cat_6
|
|
1176
|
+
462925,Female,Yes,28,No,Homemaker,,Average,2,Cat_3
|
|
1177
|
+
462927,Female,No,33,No,Homemaker,8,Low,2,Cat_6
|
|
1178
|
+
462936,Female,No,41,Yes,Engineer,,Low,1,Cat_6
|
|
1179
|
+
462941,Male,No,71,No,Lawyer,,Low,2,Cat_6
|
|
1180
|
+
462944,Male,Yes,42,Yes,Executive,5,High,3,Cat_6
|
|
1181
|
+
462951,Male,Yes,71,Yes,Lawyer,2,Low,1,Cat_6
|
|
1182
|
+
462956,Male,Yes,35,No,Artist,6,Average,5,Cat_6
|
|
1183
|
+
462958,Male,No,28,No,Marketing,0,Low,5,Cat_6
|
|
1184
|
+
462963,Male,Yes,31,Yes,Artist,1,Average,2,Cat_3
|
|
1185
|
+
462966,Male,Yes,43,Yes,Artist,2,Average,3,Cat_6
|
|
1186
|
+
462968,Female,Yes,77,No,Lawyer,0,High,2,Cat_6
|
|
1187
|
+
462971,Female,Yes,71,Yes,Engineer,0,Low,1,Cat_6
|
|
1188
|
+
462976,Female,Yes,47,Yes,Engineer,0,Average,2,Cat_6
|
|
1189
|
+
462981,Female,No,26,No,Homemaker,9,Low,1,Cat_6
|
|
1190
|
+
462982,Male,Yes,40,No,Doctor,4,Average,4,Cat_6
|
|
1191
|
+
462983,Female,Yes,72,Yes,Lawyer,0,High,2,Cat_6
|
|
1192
|
+
462984,Female,Yes,73,Yes,Artist,1,High,2,Cat_6
|
|
1193
|
+
462986,Male,No,26,Yes,Healthcare,1,Low,6,Cat_3
|
|
1194
|
+
462992,Female,Yes,57,Yes,Engineer,,High,3,Cat_3
|
|
1195
|
+
462993,Male,Yes,30,No,Artist,,Average,3,Cat_6
|
|
1196
|
+
462994,Female,Yes,36,No,Artist,,Average,3,Cat_6
|
|
1197
|
+
462998,Male,Yes,52,No,Entertainment,10,Average,4,Cat_6
|
|
1198
|
+
463003,Male,Yes,42,Yes,Artist,3,Average,2,Cat_6
|
|
1199
|
+
463012,Male,Yes,52,No,Engineer,,Low,1,Cat_6
|
|
1200
|
+
463020,Male,Yes,28,Yes,Artist,0,Average,3,Cat_1
|
|
1201
|
+
463023,Female,Yes,43,No,Homemaker,7,Low,1,Cat_6
|
|
1202
|
+
463024,Male,No,43,Yes,Artist,,Low,1,Cat_6
|
|
1203
|
+
463028,Male,No,25,No,Doctor,0,Low,4,Cat_6
|
|
1204
|
+
463030,Male,Yes,52,Yes,Executive,1,High,3,Cat_6
|
|
1205
|
+
463034,Female,No,28,Yes,Homemaker,9,Low,1,Cat_6
|
|
1206
|
+
463037,Male,Yes,56,Yes,Entertainment,0,Average,4,Cat_6
|
|
1207
|
+
463039,Male,Yes,38,No,Executive,12,High,7,Cat_6
|
|
1208
|
+
463040,Male,Yes,83,No,Lawyer,1,High,2,Cat_6
|
|
1209
|
+
463044,Male,Yes,82,Yes,Lawyer,,High,2,Cat_6
|
|
1210
|
+
463047,Male,Yes,32,Yes,Homemaker,8,Low,,Cat_6
|
|
1211
|
+
463051,Female,No,35,Yes,Homemaker,12,Low,1,Cat_6
|
|
1212
|
+
463052,Male,Yes,40,Yes,Marketing,0,Low,2,Cat_6
|
|
1213
|
+
463058,Female,No,25,Yes,Homemaker,13,Low,1,
|
|
1214
|
+
463062,Female,Yes,39,Yes,Artist,,Average,3,Cat_6
|
|
1215
|
+
463069,Male,No,25,Yes,Artist,7,Low,1,Cat_6
|
|
1216
|
+
463075,Male,Yes,52,Yes,Artist,0,Low,4,Cat_6
|
|
1217
|
+
463080,Male,No,33,No,Artist,0,Low,4,Cat_5
|
|
1218
|
+
463083,Male,No,28,Yes,Artist,6,Low,3,Cat_6
|
|
1219
|
+
463085,Female,No,43,Yes,Artist,0,Low,1,Cat_6
|
|
1220
|
+
463086,Male,No,30,Yes,Artist,8,Low,,Cat_5
|
|
1221
|
+
463088,Female,Yes,84,Yes,Lawyer,1,High,2,Cat_6
|
|
1222
|
+
463089,Male,Yes,48,Yes,Executive,6,High,4,Cat_6
|
|
1223
|
+
463090,Female,Yes,55,No,Engineer,3,Average,2,Cat_6
|
|
1224
|
+
463091,Female,Yes,37,Yes,Homemaker,8,Low,1,Cat_6
|
|
1225
|
+
463094,Male,Yes,38,Yes,Engineer,11,Average,3,Cat_6
|
|
1226
|
+
463096,Female,No,28,Yes,Doctor,,Low,3,Cat_6
|
|
1227
|
+
463099,Male,Yes,86,Yes,Lawyer,,Low,1,Cat_6
|
|
1228
|
+
463100,Female,No,35,No,Homemaker,9,Low,1,Cat_6
|
|
1229
|
+
463102,Male,No,35,No,Entertainment,0,Low,2,Cat_6
|
|
1230
|
+
463104,Female,Yes,46,No,Lawyer,0,Low,1,Cat_6
|
|
1231
|
+
463106,Female,Yes,79,Yes,Lawyer,0,Low,1,Cat_6
|
|
1232
|
+
463108,Male,Yes,63,Yes,Lawyer,5,High,2,Cat_6
|
|
1233
|
+
463118,Female,Yes,50,Yes,Doctor,,High,3,Cat_6
|
|
1234
|
+
463120,Female,No,35,Yes,Entertainment,0,Low,1,Cat_6
|
|
1235
|
+
463129,Male,Yes,65,No,Doctor,,Low,1,Cat_6
|
|
1236
|
+
463133,Male,Yes,50,No,Artist,0,Average,4,Cat_6
|
|
1237
|
+
463138,Female,No,27,No,Homemaker,,Low,,Cat_3
|
|
1238
|
+
463144,Male,Yes,45,Yes,Executive,0,High,3,Cat_6
|
|
1239
|
+
463145,Female,No,36,Yes,Homemaker,0,Low,4,Cat_6
|
|
1240
|
+
463146,Male,Yes,43,No,Entertainment,11,Average,2,Cat_6
|
|
1241
|
+
463148,Male,Yes,62,Yes,Marketing,1,High,5,Cat_6
|
|
1242
|
+
463149,Male,Yes,57,Yes,Artist,2,Average,2,Cat_6
|
|
1243
|
+
463150,Male,No,51,No,Marketing,9,Low,1,Cat_6
|
|
1244
|
+
463151,Male,Yes,59,Yes,Artist,0,Low,1,Cat_3
|
|
1245
|
+
463154,Female,Yes,27,No,Artist,0,Low,4,Cat_6
|
|
1246
|
+
463156,Female,Yes,83,No,Lawyer,,High,2,Cat_6
|
|
1247
|
+
463157,Male,Yes,50,Yes,Entertainment,6,Low,3,Cat_6
|
|
1248
|
+
463158,Male,Yes,75,Yes,Executive,1,High,3,Cat_6
|
|
1249
|
+
463163,Male,No,28,No,Executive,2,Low,2,Cat_3
|
|
1250
|
+
463164,Male,Yes,39,Yes,Artist,9,Average,2,Cat_6
|
|
1251
|
+
463165,Female,Yes,69,Yes,Doctor,0,Average,2,Cat_6
|
|
1252
|
+
463166,Female,No,41,Yes,Artist,1,Low,1,Cat_4
|
|
1253
|
+
463170,Female,,28,Yes,Healthcare,0,Low,5,Cat_3
|
|
1254
|
+
463171,Female,Yes,39,No,Entertainment,1,High,3,Cat_3
|
|
1255
|
+
463173,Male,No,47,Yes,Artist,0,Low,1,Cat_3
|
|
1256
|
+
463174,Female,Yes,62,Yes,Engineer,1,Low,1,Cat_3
|
|
1257
|
+
463175,Female,,41,No,Engineer,0,Low,4,Cat_3
|
|
1258
|
+
463181,Male,Yes,49,Yes,Doctor,5,Average,3,Cat_5
|
|
1259
|
+
463187,Female,Yes,52,Yes,Artist,8,Low,2,Cat_6
|
|
1260
|
+
463192,Female,Yes,48,No,Entertainment,2,Average,,Cat_4
|
|
1261
|
+
463195,Female,No,26,Yes,Healthcare,7,Low,2,Cat_3
|
|
1262
|
+
463196,Female,Yes,72,Yes,Engineer,1,Low,1,Cat_6
|
|
1263
|
+
463199,Female,Yes,47,Yes,Artist,0,Low,3,Cat_4
|
|
1264
|
+
463201,Female,No,19,No,Healthcare,1,Low,2,Cat_4
|
|
1265
|
+
463203,Female,No,21,No,Healthcare,1,Low,3,Cat_7
|
|
1266
|
+
463204,Male,No,39,No,Entertainment,1,Low,1,Cat_6
|
|
1267
|
+
463209,Female,No,52,Yes,Artist,0,Low,1,Cat_6
|
|
1268
|
+
463218,Male,Yes,37,No,Entertainment,8,Average,3,Cat_6
|
|
1269
|
+
463219,Male,Yes,51,No,Entertainment,0,Low,2,Cat_6
|
|
1270
|
+
463220,Male,Yes,48,No,Engineer,1,Average,3,Cat_6
|
|
1271
|
+
463221,Male,No,22,No,Healthcare,,Low,3,Cat_6
|
|
1272
|
+
463224,Male,Yes,47,Yes,Executive,1,High,4,Cat_6
|
|
1273
|
+
463240,Female,Yes,45,No,Engineer,0,Average,3,Cat_6
|
|
1274
|
+
463242,Female,No,29,No,Engineer,5,Low,2,Cat_6
|
|
1275
|
+
463244,Female,Yes,47,No,Doctor,1,Low,1,Cat_6
|
|
1276
|
+
463245,Male,Yes,41,Yes,Entertainment,8,Average,2,Cat_6
|
|
1277
|
+
463248,Female,Yes,32,No,Homemaker,9,Average,4,Cat_2
|
|
1278
|
+
463251,Male,Yes,31,No,Marketing,2,Low,3,Cat_6
|
|
1279
|
+
463256,Male,No,20,No,Marketing,1,Low,3,Cat_6
|
|
1280
|
+
463258,Female,Yes,46,Yes,Artist,0,Average,3,Cat_6
|
|
1281
|
+
463260,Male,Yes,70,Yes,Lawyer,3,Low,1,Cat_6
|
|
1282
|
+
463265,Male,Yes,65,Yes,Artist,1,Average,3,Cat_6
|
|
1283
|
+
463266,Female,Yes,68,,Artist,1,Average,2,Cat_6
|
|
1284
|
+
463267,Male,Yes,29,No,Homemaker,9,Low,1,Cat_4
|
|
1285
|
+
463269,Male,Yes,41,Yes,Entertainment,3,Average,2,Cat_3
|
|
1286
|
+
463270,Male,Yes,50,No,Executive,0,Low,5,
|
|
1287
|
+
463273,Male,Yes,38,Yes,Entertainment,9,Average,2,Cat_3
|
|
1288
|
+
463276,Male,Yes,37,No,Executive,,Average,2,Cat_3
|
|
1289
|
+
463277,Female,Yes,30,No,Engineer,6,Low,2,Cat_3
|
|
1290
|
+
463278,Female,Yes,63,Yes,Engineer,1,Low,1,Cat_3
|
|
1291
|
+
463280,Male,Yes,42,Yes,Artist,6,Average,2,Cat_3
|
|
1292
|
+
463292,Male,Yes,41,No,Executive,0,High,3,Cat_6
|
|
1293
|
+
463302,Female,Yes,60,Yes,Engineer,,High,4,Cat_6
|
|
1294
|
+
463308,Male,Yes,46,Yes,Engineer,1,Low,2,Cat_3
|
|
1295
|
+
463316,Female,Yes,83,No,Lawyer,0,High,2,Cat_6
|
|
1296
|
+
463323,Male,Yes,27,Yes,Healthcare,3,Low,2,Cat_6
|
|
1297
|
+
463324,Female,No,22,No,Healthcare,1,Low,4,Cat_2
|
|
1298
|
+
463330,Male,No,20,No,Healthcare,0,Low,4,Cat_6
|
|
1299
|
+
463332,Female,Yes,40,Yes,Engineer,0,Low,2,Cat_6
|
|
1300
|
+
463334,Female,No,28,Yes,Doctor,0,Low,6,Cat_4
|
|
1301
|
+
463335,Male,No,28,Yes,Doctor,,Low,1,Cat_4
|
|
1302
|
+
463338,Male,Yes,28,No,Entertainment,0,Low,2,Cat_3
|
|
1303
|
+
463340,Female,No,20,No,Healthcare,0,Low,4,Cat_3
|
|
1304
|
+
463341,Female,Yes,53,No,Engineer,0,Average,6,Cat_3
|
|
1305
|
+
463348,Female,Yes,35,Yes,Doctor,0,Low,2,Cat_6
|
|
1306
|
+
463351,Female,No,21,,Healthcare,3,Low,4,Cat_5
|
|
1307
|
+
463356,Male,No,30,Yes,Healthcare,6,Low,4,Cat_2
|
|
1308
|
+
463360,Female,Yes,46,Yes,Artist,2,Low,1,Cat_6
|
|
1309
|
+
463367,Female,No,36,Yes,Engineer,3,Low,4,Cat_2
|
|
1310
|
+
463368,Female,Yes,38,Yes,Artist,4,High,3,Cat_2
|
|
1311
|
+
463372,Female,Yes,26,No,Marketing,1,Average,2,
|
|
1312
|
+
463375,Female,Yes,45,Yes,Doctor,1,Low,1,Cat_4
|
|
1313
|
+
463376,Female,Yes,46,Yes,Executive,5,High,2,Cat_6
|
|
1314
|
+
463378,Male,No,25,Yes,Doctor,0,Low,1,Cat_3
|
|
1315
|
+
463379,Male,No,27,No,Marketing,0,Low,7,Cat_6
|
|
1316
|
+
463386,Female,Yes,42,Yes,Doctor,6,Low,1,Cat_3
|
|
1317
|
+
463387,Male,,20,No,Marketing,3,Low,2,Cat_3
|
|
1318
|
+
463391,Male,Yes,55,Yes,Doctor,6,Low,1,Cat_3
|
|
1319
|
+
463395,Male,No,25,No,Marketing,,Low,1,Cat_6
|
|
1320
|
+
463404,Male,Yes,27,No,Doctor,,High,2,Cat_3
|
|
1321
|
+
463406,Male,No,31,No,Marketing,0,Low,4,Cat_3
|
|
1322
|
+
463409,Female,Yes,38,No,Entertainment,6,Average,5,Cat_2
|
|
1323
|
+
463411,Male,Yes,43,Yes,Entertainment,,Average,2,Cat_6
|
|
1324
|
+
463420,Female,Yes,59,Yes,Artist,2,High,3,Cat_6
|
|
1325
|
+
463423,Male,Yes,61,No,Executive,1,Average,3,Cat_6
|
|
1326
|
+
463427,Female,Yes,27,Yes,Engineer,1,Low,2,Cat_6
|
|
1327
|
+
463428,Male,Yes,26,No,Executive,1,High,5,Cat_6
|
|
1328
|
+
463431,Male,Yes,39,Yes,Artist,,Average,4,Cat_4
|
|
1329
|
+
463437,Male,Yes,51,Yes,Artist,0,Average,3,Cat_6
|
|
1330
|
+
463438,Male,Yes,47,No,Entertainment,0,Average,3,Cat_6
|
|
1331
|
+
463443,Male,Yes,52,Yes,Artist,1,Average,4,Cat_6
|
|
1332
|
+
463444,Male,Yes,59,Yes,Lawyer,,High,2,Cat_6
|
|
1333
|
+
463447,Male,Yes,57,No,Engineer,1,Average,2,Cat_6
|
|
1334
|
+
463452,Female,Yes,86,Yes,Lawyer,1,High,2,Cat_6
|
|
1335
|
+
463460,Male,Yes,49,Yes,Artist,,Average,2,Cat_6
|
|
1336
|
+
463461,Male,No,30,No,Doctor,,Low,4,Cat_4
|
|
1337
|
+
463462,Female,Yes,43,No,Engineer,0,Average,4,Cat_6
|
|
1338
|
+
463470,Male,No,19,No,Healthcare,,Low,5,Cat_2
|
|
1339
|
+
463472,Male,No,20,No,Healthcare,,Low,4,Cat_6
|
|
1340
|
+
463473,Male,No,19,No,Healthcare,,Low,3,Cat_6
|
|
1341
|
+
463475,Female,Yes,43,Yes,Doctor,0,Low,1,Cat_6
|
|
1342
|
+
463477,Male,No,31,No,Healthcare,0,Low,4,Cat_4
|
|
1343
|
+
463483,Male,Yes,30,No,Executive,1,High,2,Cat_6
|
|
1344
|
+
463491,Male,Yes,27,Yes,Doctor,8,Average,3,Cat_6
|
|
1345
|
+
463493,Male,Yes,36,Yes,Executive,,High,4,Cat_6
|
|
1346
|
+
463499,Male,Yes,47,Yes,Executive,0,Low,2,Cat_6
|
|
1347
|
+
463500,Male,Yes,35,Yes,Executive,1,High,4,Cat_6
|
|
1348
|
+
463503,Male,Yes,25,Yes,Entertainment,0,Low,2,Cat_7
|
|
1349
|
+
463508,Female,Yes,25,No,Artist,0,Low,3,Cat_6
|
|
1350
|
+
463509,Male,No,38,No,Artist,1,Low,1,Cat_3
|
|
1351
|
+
463512,Female,No,32,No,Engineer,0,Low,3,Cat_6
|
|
1352
|
+
463516,Male,Yes,48,No,Executive,1,High,6,Cat_6
|
|
1353
|
+
463527,Female,No,38,No,Artist,10,Low,1,Cat_6
|
|
1354
|
+
463528,Male,Yes,70,No,Executive,,High,2,Cat_6
|
|
1355
|
+
463529,Male,No,42,Yes,Marketing,,Low,1,Cat_6
|
|
1356
|
+
463533,Female,Yes,85,Yes,Artist,1,High,2,Cat_2
|
|
1357
|
+
463537,Female,No,25,Yes,Healthcare,1,Low,3,Cat_6
|
|
1358
|
+
463545,Female,No,31,Yes,Doctor,1,Low,2,Cat_4
|
|
1359
|
+
463548,Female,No,20,No,Healthcare,3,Low,4,Cat_4
|
|
1360
|
+
463550,Female,Yes,37,Yes,Artist,0,Average,2,Cat_4
|
|
1361
|
+
463553,Male,No,33,Yes,Artist,8,Low,2,Cat_6
|
|
1362
|
+
463554,Female,No,52,No,Artist,5,Low,1,Cat_6
|
|
1363
|
+
463557,Male,No,26,Yes,Doctor,0,Low,3,Cat_6
|
|
1364
|
+
463560,Female,No,21,No,Healthcare,9,Low,5,Cat_4
|
|
1365
|
+
463561,Female,No,42,Yes,Engineer,0,Low,1,Cat_6
|
|
1366
|
+
463566,Female,Yes,35,Yes,Homemaker,,Average,4,Cat_2
|
|
1367
|
+
463572,Male,Yes,39,Yes,Artist,0,Average,4,Cat_6
|
|
1368
|
+
463577,Female,Yes,41,Yes,Doctor,1,Average,2,Cat_6
|
|
1369
|
+
463586,Female,No,18,No,Healthcare,1,Low,5,Cat_6
|
|
1370
|
+
463588,Male,No,22,No,Healthcare,0,Low,1,Cat_6
|
|
1371
|
+
463598,Female,Yes,25,No,Engineer,2,Low,2,Cat_6
|
|
1372
|
+
463601,Female,No,20,No,Healthcare,4,Low,5,
|
|
1373
|
+
463603,Female,No,18,No,Entertainment,0,Low,4,Cat_2
|
|
1374
|
+
463605,Female,No,20,No,Healthcare,1,Low,5,Cat_5
|
|
1375
|
+
463606,Male,No,21,No,Marketing,0,Low,4,Cat_2
|
|
1376
|
+
463614,Female,No,25,No,Healthcare,1,Low,4,Cat_3
|
|
1377
|
+
463615,Female,Yes,60,Yes,Artist,,Average,2,Cat_6
|
|
1378
|
+
463616,Female,Yes,46,No,Engineer,0,Average,5,Cat_3
|
|
1379
|
+
463619,Male,Yes,68,No,Executive,1,High,2,Cat_6
|
|
1380
|
+
463620,Male,No,21,No,Healthcare,1,Low,4,Cat_2
|
|
1381
|
+
463623,Male,No,27,Yes,Doctor,0,Low,3,Cat_6
|
|
1382
|
+
463624,Male,Yes,59,Yes,Executive,1,High,4,Cat_6
|
|
1383
|
+
463628,Female,No,26,Yes,Artist,8,Low,1,Cat_6
|
|
1384
|
+
463632,Male,Yes,26,Yes,Artist,0,Average,2,Cat_6
|
|
1385
|
+
463638,Female,Yes,32,No,Doctor,1,Average,2,Cat_7
|
|
1386
|
+
463639,Male,No,33,No,Healthcare,0,Low,6,Cat_6
|
|
1387
|
+
463640,Male,No,28,Yes,Healthcare,0,Low,3,Cat_6
|
|
1388
|
+
463644,Female,No,30,Yes,Healthcare,0,Low,3,Cat_7
|
|
1389
|
+
463652,Female,No,32,Yes,Artist,,Low,1,Cat_6
|
|
1390
|
+
463654,Female,No,41,No,Engineer,3,Low,3,Cat_3
|
|
1391
|
+
463655,Male,Yes,42,Yes,Artist,13,Low,2,Cat_6
|
|
1392
|
+
463661,Female,Yes,45,Yes,Doctor,1,Average,4,Cat_6
|
|
1393
|
+
463663,Female,No,39,Yes,,1,Low,2,Cat_6
|
|
1394
|
+
463664,Female,No,29,No,Engineer,0,Low,1,Cat_6
|
|
1395
|
+
463665,Male,Yes,46,Yes,Entertainment,1,Average,3,Cat_6
|
|
1396
|
+
463669,Female,Yes,26,Yes,Marketing,5,High,4,Cat_2
|
|
1397
|
+
463670,Female,No,26,Yes,Healthcare,,Low,4,Cat_6
|
|
1398
|
+
463689,Female,Yes,41,Yes,Doctor,1,Low,,Cat_6
|
|
1399
|
+
463699,Female,Yes,38,Yes,Marketing,9,Low,3,Cat_6
|
|
1400
|
+
463703,Male,Yes,69,No,Executive,1,High,4,Cat_6
|
|
1401
|
+
463704,Male,No,46,Yes,Artist,0,Low,2,Cat_6
|
|
1402
|
+
463707,Female,No,40,No,Artist,0,Low,1,Cat_5
|
|
1403
|
+
463713,Male,No,25,No,Engineer,9,Low,3,Cat_4
|
|
1404
|
+
463714,Male,Yes,59,No,,1,Average,2,Cat_4
|
|
1405
|
+
463716,Male,No,26,No,Doctor,1,Low,4,Cat_6
|
|
1406
|
+
463718,Female,No,33,Yes,Artist,0,Low,4,Cat_6
|
|
1407
|
+
463722,Male,Yes,56,Yes,Executive,8,High,2,Cat_6
|
|
1408
|
+
463724,Male,No,30,No,Healthcare,0,Low,5,Cat_4
|
|
1409
|
+
463726,Female,No,26,No,Healthcare,0,Low,3,Cat_6
|
|
1410
|
+
463727,Female,No,28,No,Doctor,0,Low,5,Cat_3
|
|
1411
|
+
463728,Female,Yes,28,No,Doctor,0,Average,6,Cat_6
|
|
1412
|
+
463732,Male,No,20,No,Healthcare,1,Low,4,Cat_6
|
|
1413
|
+
463734,Male,Yes,41,No,Executive,1,Average,3,Cat_6
|
|
1414
|
+
463741,Male,Yes,37,Yes,Artist,0,High,3,Cat_6
|
|
1415
|
+
463745,Male,Yes,59,Yes,Artist,1,Average,3,Cat_3
|
|
1416
|
+
463747,Female,Yes,43,Yes,Artist,0,Average,2,Cat_6
|
|
1417
|
+
463748,Male,No,20,No,Healthcare,1,Low,3,Cat_6
|
|
1418
|
+
463753,Female,No,30,Yes,Healthcare,1,Low,5,Cat_2
|
|
1419
|
+
463756,Male,Yes,66,No,Executive,0,Average,2,Cat_6
|
|
1420
|
+
463761,Male,Yes,28,Yes,Artist,1,Average,3,Cat_6
|
|
1421
|
+
463764,Male,Yes,49,Yes,Entertainment,0,Average,3,Cat_6
|
|
1422
|
+
463766,Female,Yes,61,Yes,Artist,0,Average,3,
|
|
1423
|
+
463767,Male,Yes,27,Yes,Artist,9,Average,2,Cat_6
|
|
1424
|
+
463768,Female,Yes,35,No,Engineer,1,Low,1,Cat_4
|
|
1425
|
+
463774,Male,Yes,33,Yes,Healthcare,0,Average,2,Cat_6
|
|
1426
|
+
463776,Female,Yes,36,Yes,Artist,2,Average,2,Cat_6
|
|
1427
|
+
463782,Female,No,27,Yes,Artist,9,Low,1,Cat_6
|
|
1428
|
+
463783,Female,No,29,No,Healthcare,,Low,,
|
|
1429
|
+
463784,Female,No,31,No,Engineer,1,Low,5,Cat_4
|
|
1430
|
+
463785,Female,No,30,No,Healthcare,0,Low,4,Cat_4
|
|
1431
|
+
463786,Female,Yes,43,Yes,Artist,,Average,2,Cat_6
|
|
1432
|
+
463790,Male,Yes,47,No,Executive,1,Low,4,Cat_4
|
|
1433
|
+
463792,Female,No,42,No,Engineer,,Low,1,Cat_6
|
|
1434
|
+
463794,Female,No,33,Yes,Healthcare,,Low,5,Cat_2
|
|
1435
|
+
463799,Female,No,36,Yes,Artist,1,Low,4,Cat_2
|
|
1436
|
+
463800,Female,No,30,Yes,Engineer,1,Low,3,Cat_6
|
|
1437
|
+
463804,Male,Yes,60,Yes,Artist,9,Low,1,Cat_6
|
|
1438
|
+
463807,Female,No,32,Yes,Healthcare,0,Low,3,Cat_4
|
|
1439
|
+
463811,Female,Yes,32,Yes,Artist,0,Average,2,Cat_4
|
|
1440
|
+
463814,Female,No,28,No,Healthcare,7,Low,3,Cat_5
|
|
1441
|
+
463816,Male,Yes,46,Yes,Healthcare,2,High,4,Cat_7
|
|
1442
|
+
463818,Female,Yes,38,Yes,Artist,4,Low,1,Cat_6
|
|
1443
|
+
463819,Male,Yes,28,,Artist,8,Low,,Cat_6
|
|
1444
|
+
463821,Male,Yes,30,Yes,Entertainment,7,Low,2,Cat_6
|
|
1445
|
+
463825,Female,Yes,52,Yes,Artist,0,Average,3,
|
|
1446
|
+
463827,Female,Yes,46,Yes,Engineer,1,Average,4,Cat_6
|
|
1447
|
+
463828,Male,Yes,37,No,Engineer,0,Average,2,Cat_1
|
|
1448
|
+
463830,Female,No,25,Yes,Engineer,2,Low,3,Cat_6
|
|
1449
|
+
463834,Female,Yes,43,Yes,Engineer,1,Average,4,Cat_6
|
|
1450
|
+
463835,Male,No,32,No,Marketing,0,Low,4,Cat_6
|
|
1451
|
+
463842,Female,Yes,50,Yes,Engineer,1,High,4,Cat_6
|
|
1452
|
+
463847,Male,Yes,43,No,Artist,3,Average,3,Cat_6
|
|
1453
|
+
463856,Male,Yes,37,Yes,Artist,0,Average,2,Cat_4
|
|
1454
|
+
463857,Male,Yes,61,No,Healthcare,0,High,4,Cat_7
|
|
1455
|
+
463859,Male,Yes,39,Yes,Artist,5,Average,2,Cat_6
|
|
1456
|
+
463865,Male,Yes,46,Yes,Artist,1,Average,5,Cat_6
|
|
1457
|
+
463877,Male,Yes,37,No,Entertainment,0,Average,4,Cat_4
|
|
1458
|
+
463880,Female,Yes,36,No,Engineer,0,Low,3,Cat_2
|
|
1459
|
+
463884,Female,No,28,No,Artist,0,Low,1,Cat_6
|
|
1460
|
+
463891,Male,Yes,86,Yes,Lawyer,0,Low,1,Cat_6
|
|
1461
|
+
463892,Male,No,42,Yes,Artist,8,Low,1,Cat_6
|
|
1462
|
+
463904,Male,Yes,82,Yes,Executive,1,Low,1,Cat_6
|
|
1463
|
+
463917,Female,No,18,No,Healthcare,1,Low,8,Cat_4
|
|
1464
|
+
463923,Female,No,18,No,Engineer,0,Low,4,Cat_6
|
|
1465
|
+
463924,Female,No,36,Yes,Artist,1,Low,1,Cat_5
|
|
1466
|
+
463926,Female,No,26,No,Engineer,1,Low,6,Cat_6
|
|
1467
|
+
463931,Male,Yes,49,Yes,Entertainment,1,Average,2,Cat_6
|
|
1468
|
+
463932,Female,Yes,69,Yes,Artist,1,Average,3,Cat_6
|
|
1469
|
+
463941,Female,No,29,No,Artist,1,Low,6,Cat_4
|
|
1470
|
+
463943,Male,No,68,Yes,Entertainment,1,Low,2,Cat_6
|
|
1471
|
+
463946,Male,No,33,No,Healthcare,4,Low,3,Cat_4
|
|
1472
|
+
463948,Male,Yes,38,No,Executive,3,High,5,Cat_6
|
|
1473
|
+
463951,Male,Yes,52,No,Entertainment,1,Average,3,Cat_6
|
|
1474
|
+
463955,Male,Yes,28,Yes,Artist,1,Low,2,Cat_6
|
|
1475
|
+
463958,Female,No,27,No,Healthcare,1,Low,5,Cat_2
|
|
1476
|
+
463961,Female,No,28,No,Engineer,0,Low,4,Cat_4
|
|
1477
|
+
463963,Female,Yes,25,No,Engineer,7,High,3,Cat_6
|
|
1478
|
+
463966,Female,No,30,Yes,Artist,8,Low,1,Cat_6
|
|
1479
|
+
463978,Male,Yes,40,Yes,Artist,1,Average,3,Cat_2
|
|
1480
|
+
463980,Female,No,25,Yes,Artist,0,Low,9,Cat_6
|
|
1481
|
+
463981,Female,No,30,Yes,Artist,5,Low,1,
|
|
1482
|
+
463983,Female,Yes,43,No,Engineer,0,Average,2,Cat_4
|
|
1483
|
+
463986,Female,No,26,Yes,Artist,1,Low,4,Cat_6
|
|
1484
|
+
463997,Female,Yes,37,No,Entertainment,0,Average,3,Cat_6
|
|
1485
|
+
464000,Female,No,28,No,Healthcare,1,Low,5,Cat_7
|
|
1486
|
+
464004,Female,Yes,31,No,Marketing,1,Low,5,Cat_4
|
|
1487
|
+
464007,Male,Yes,46,Yes,Artist,1,Low,3,Cat_6
|
|
1488
|
+
464009,Female,Yes,47,Yes,Artist,5,Average,4,Cat_6
|
|
1489
|
+
464010,Male,No,28,No,Healthcare,1,Low,4,Cat_6
|
|
1490
|
+
464013,Male,No,30,No,Healthcare,0,Low,1,Cat_6
|
|
1491
|
+
464016,Female,,29,Yes,Entertainment,1,High,1,Cat_1
|
|
1492
|
+
464019,Male,No,23,No,Artist,2,Low,5,Cat_6
|
|
1493
|
+
464021,Female,No,22,No,Healthcare,1,Low,5,Cat_6
|
|
1494
|
+
464023,Male,No,20,No,Healthcare,1,Low,5,Cat_7
|
|
1495
|
+
464030,Male,No,22,No,Entertainment,1,Low,4,Cat_6
|
|
1496
|
+
464031,Female,No,19,No,Healthcare,0,Low,4,Cat_6
|
|
1497
|
+
464032,Male,No,21,No,Healthcare,1,Low,3,Cat_6
|
|
1498
|
+
464033,Female,No,19,No,Healthcare,0,Low,4,Cat_6
|
|
1499
|
+
464039,Male,No,39,Yes,Artist,1,Low,2,Cat_6
|
|
1500
|
+
464042,Female,Yes,38,Yes,Artist,8,Low,2,Cat_6
|
|
1501
|
+
464046,Male,No,33,Yes,Healthcare,3,Low,1,Cat_6
|
|
1502
|
+
464048,Female,No,38,Yes,Homemaker,4,Low,1,Cat_6
|
|
1503
|
+
464049,Female,No,29,Yes,Healthcare,0,Low,3,Cat_6
|
|
1504
|
+
464053,Female,Yes,35,No,Entertainment,4,Low,1,Cat_6
|
|
1505
|
+
464054,Male,Yes,32,Yes,Artist,9,Average,2,Cat_6
|
|
1506
|
+
464059,Male,Yes,59,Yes,Artist,0,Low,1,Cat_6
|
|
1507
|
+
464063,Female,No,32,Yes,Doctor,0,Low,1,Cat_6
|
|
1508
|
+
464066,Female,No,29,Yes,Healthcare,8,Low,3,Cat_4
|
|
1509
|
+
464067,Female,No,31,Yes,Entertainment,0,Low,4,Cat_2
|
|
1510
|
+
464068,Male,Yes,59,No,Executive,0,High,4,Cat_6
|
|
1511
|
+
464071,Male,Yes,87,Yes,Lawyer,0,High,2,Cat_6
|
|
1512
|
+
464072,Male,Yes,53,Yes,Executive,0,Low,2,Cat_6
|
|
1513
|
+
464076,Male,Yes,83,No,Lawyer,0,High,2,Cat_6
|
|
1514
|
+
464084,Male,No,33,No,Healthcare,1,Low,5,Cat_4
|
|
1515
|
+
464087,Female,No,26,No,Engineer,,Low,4,Cat_6
|
|
1516
|
+
464089,Female,Yes,39,Yes,Artist,7,High,5,
|
|
1517
|
+
464096,Female,No,27,No,Healthcare,1,Low,5,Cat_4
|
|
1518
|
+
464099,Female,Yes,42,Yes,Artist,5,Average,2,Cat_4
|
|
1519
|
+
464103,Male,Yes,46,Yes,Artist,4,Average,2,Cat_6
|
|
1520
|
+
464110,Male,Yes,63,Yes,Doctor,0,High,2,Cat_6
|
|
1521
|
+
464112,Male,No,32,Yes,Doctor,1,Low,2,Cat_6
|
|
1522
|
+
464115,Female,No,38,Yes,Engineer,0,Low,3,Cat_6
|
|
1523
|
+
464118,Male,No,38,Yes,Entertainment,1,Low,2,Cat_6
|
|
1524
|
+
464121,Female,Yes,63,Yes,Engineer,1,Low,1,Cat_6
|
|
1525
|
+
464123,Female,No,45,Yes,Artist,1,Low,1,Cat_6
|
|
1526
|
+
464127,Female,No,33,Yes,Healthcare,1,Low,5,Cat_2
|
|
1527
|
+
464132,Male,No,27,No,Entertainment,0,Low,2,Cat_6
|
|
1528
|
+
464137,Female,Yes,87,No,Artist,7,High,2,Cat_7
|
|
1529
|
+
464139,Female,No,25,No,Healthcare,14,Low,1,Cat_6
|
|
1530
|
+
464144,Male,Yes,61,Yes,Artist,0,Average,4,Cat_6
|
|
1531
|
+
464152,Male,Yes,41,Yes,Artist,1,High,4,Cat_6
|
|
1532
|
+
464162,Male,Yes,86,Yes,Lawyer,,High,2,Cat_6
|
|
1533
|
+
464167,Male,Yes,51,Yes,Executive,4,High,3,Cat_6
|
|
1534
|
+
464169,Male,,83,No,Lawyer,0,High,2,Cat_6
|
|
1535
|
+
464172,Male,Yes,60,Yes,Artist,3,High,3,Cat_6
|
|
1536
|
+
464173,Male,Yes,65,Yes,Artist,6,Average,3,Cat_6
|
|
1537
|
+
464175,Female,No,32,No,Healthcare,1,Low,,Cat_6
|
|
1538
|
+
464176,Female,Yes,41,Yes,Artist,1,Low,1,Cat_6
|
|
1539
|
+
464179,Female,Yes,56,Yes,Artist,0,Average,3,Cat_6
|
|
1540
|
+
464180,Female,Yes,74,No,Lawyer,1,High,2,Cat_6
|
|
1541
|
+
464182,Male,Yes,39,Yes,Artist,4,Average,2,Cat_2
|
|
1542
|
+
464183,Female,No,42,No,Artist,2,Low,2,Cat_6
|
|
1543
|
+
464185,Male,Yes,68,Yes,Artist,5,High,2,Cat_6
|
|
1544
|
+
464195,Male,No,30,Yes,Artist,1,Low,1,Cat_6
|
|
1545
|
+
464200,Female,No,32,No,Healthcare,1,Low,3,Cat_6
|
|
1546
|
+
464202,Male,Yes,43,Yes,Artist,13,Low,1,Cat_6
|
|
1547
|
+
464204,Female,Yes,40,Yes,Artist,3,High,2,Cat_5
|
|
1548
|
+
464205,Female,Yes,87,No,Entertainment,0,High,2,Cat_6
|
|
1549
|
+
464206,Male,Yes,43,No,Entertainment,1,Low,2,Cat_6
|
|
1550
|
+
464211,Male,Yes,48,Yes,Doctor,1,Average,3,Cat_2
|
|
1551
|
+
464212,Female,Yes,58,Yes,Marketing,0,Average,2,Cat_6
|
|
1552
|
+
464216,Male,Yes,52,Yes,Artist,,High,3,Cat_6
|
|
1553
|
+
464217,Female,No,30,No,Healthcare,14,Low,3,Cat_6
|
|
1554
|
+
464223,Female,Yes,53,Yes,Artist,2,Low,2,Cat_6
|
|
1555
|
+
464226,Female,Yes,56,Yes,Artist,3,Average,3,Cat_6
|
|
1556
|
+
464231,Male,Yes,48,Yes,Artist,1,Average,4,Cat_6
|
|
1557
|
+
464232,Male,Yes,28,No,Doctor,1,Low,5,Cat_6
|
|
1558
|
+
464246,Female,Yes,61,Yes,Artist,0,Average,2,Cat_6
|
|
1559
|
+
464254,Male,Yes,62,Yes,Entertainment,1,Average,3,Cat_6
|
|
1560
|
+
464255,Female,Yes,49,Yes,Artist,1,Average,5,Cat_4
|
|
1561
|
+
464257,Male,Yes,40,,Entertainment,0,High,2,Cat_6
|
|
1562
|
+
464265,Male,Yes,62,Yes,Entertainment,1,Low,2,Cat_6
|
|
1563
|
+
464269,Male,No,35,Yes,Entertainment,1,Low,,Cat_1
|
|
1564
|
+
464270,Female,No,48,Yes,Artist,4,Low,1,Cat_6
|
|
1565
|
+
464271,Female,Yes,36,Yes,Artist,1,Average,3,Cat_2
|
|
1566
|
+
464274,Female,Yes,56,Yes,Artist,1,Average,5,Cat_6
|
|
1567
|
+
464276,Female,Yes,66,No,Marketing,0,High,2,Cat_1
|
|
1568
|
+
464283,Male,No,40,Yes,Artist,6,Low,2,Cat_6
|
|
1569
|
+
464286,Female,Yes,57,Yes,Artist,0,Average,2,Cat_6
|
|
1570
|
+
464287,Male,Yes,42,Yes,Artist,,Average,3,Cat_2
|
|
1571
|
+
464289,Male,Yes,35,No,Marketing,1,Low,3,Cat_6
|
|
1572
|
+
464292,Male,Yes,58,Yes,Artist,0,Average,2,Cat_6
|
|
1573
|
+
464297,Male,No,29,No,Artist,8,Low,5,Cat_5
|
|
1574
|
+
464298,Male,No,26,No,Doctor,0,Low,1,Cat_6
|
|
1575
|
+
464308,Female,Yes,84,Yes,Lawyer,1,High,2,Cat_6
|
|
1576
|
+
464318,Male,Yes,86,Yes,Executive,0,Low,1,Cat_6
|
|
1577
|
+
464320,Male,Yes,77,No,Lawyer,1,High,2,Cat_6
|
|
1578
|
+
464326,Female,No,37,Yes,Artist,0,Low,3,Cat_6
|
|
1579
|
+
464332,Male,Yes,74,No,Executive,0,High,2,Cat_6
|
|
1580
|
+
464339,Male,No,27,No,Artist,1,Low,2,Cat_6
|
|
1581
|
+
464344,Female,Yes,56,Yes,Artist,0,Low,1,Cat_6
|
|
1582
|
+
464351,Female,No,27,Yes,Healthcare,0,Low,1,Cat_6
|
|
1583
|
+
464364,Male,Yes,39,Yes,Artist,7,Average,2,Cat_6
|
|
1584
|
+
464368,Male,Yes,35,Yes,Entertainment,3,Average,2,Cat_6
|
|
1585
|
+
464370,Male,Yes,66,Yes,Entertainment,1,Average,2,Cat_6
|
|
1586
|
+
464373,Female,No,47,Yes,Artist,0,Low,2,Cat_6
|
|
1587
|
+
464378,Female,Yes,36,Yes,Artist,8,Average,2,Cat_6
|
|
1588
|
+
464381,Male,Yes,43,Yes,Artist,4,Average,2,Cat_6
|
|
1589
|
+
464382,Female,Yes,55,Yes,Artist,0,Average,4,Cat_6
|
|
1590
|
+
464386,Male,Yes,41,Yes,Doctor,0,Average,3,Cat_6
|
|
1591
|
+
464387,Female,No,26,Yes,Artist,9,Low,5,Cat_6
|
|
1592
|
+
464389,Male,Yes,72,Yes,Artist,0,High,2,Cat_2
|
|
1593
|
+
464392,Male,Yes,59,,Artist,0,Average,2,Cat_6
|
|
1594
|
+
464396,Male,Yes,38,Yes,Entertainment,1,Average,3,Cat_6
|
|
1595
|
+
464412,Male,Yes,72,No,Lawyer,1,Low,2,Cat_6
|
|
1596
|
+
464424,Male,No,31,Yes,Healthcare,1,Low,4,Cat_6
|
|
1597
|
+
464425,Male,No,41,Yes,Artist,9,Low,1,Cat_6
|
|
1598
|
+
464432,Male,No,25,No,Engineer,9,Low,2,Cat_3
|
|
1599
|
+
464433,Male,No,29,Yes,Artist,,Low,,Cat_2
|
|
1600
|
+
464436,Male,Yes,83,Yes,Lawyer,0,High,2,Cat_4
|
|
1601
|
+
464437,Female,Yes,51,Yes,Engineer,0,Average,4,Cat_6
|
|
1602
|
+
464441,Male,Yes,40,Yes,Artist,0,Low,2,Cat_2
|
|
1603
|
+
464451,Female,Yes,76,Yes,Artist,0,Average,2,Cat_6
|
|
1604
|
+
464456,Male,Yes,29,Yes,Artist,1,Low,4,Cat_6
|
|
1605
|
+
464468,Male,Yes,46,Yes,Artist,1,Low,3,Cat_6
|
|
1606
|
+
464473,Female,Yes,58,Yes,Artist,0,Average,4,Cat_6
|
|
1607
|
+
464474,Female,No,46,Yes,Artist,1,Low,1,Cat_6
|
|
1608
|
+
464478,Female,Yes,74,No,Lawyer,0,High,2,Cat_6
|
|
1609
|
+
464481,Male,Yes,53,Yes,Executive,1,High,3,Cat_6
|
|
1610
|
+
464482,Male,Yes,63,Yes,Artist,1,Low,1,Cat_6
|
|
1611
|
+
464483,Female,Yes,49,Yes,Artist,1,Average,3,Cat_6
|
|
1612
|
+
464485,Male,No,25,Yes,Entertainment,5,Low,2,Cat_3
|
|
1613
|
+
464487,Male,No,46,No,Engineer,1,Low,3,Cat_4
|
|
1614
|
+
464488,Female,No,43,Yes,Artist,7,Low,9,Cat_6
|
|
1615
|
+
464494,Female,Yes,58,Yes,Artist,1,Average,4,Cat_3
|
|
1616
|
+
464499,Male,Yes,41,Yes,Executive,1,High,4,Cat_6
|
|
1617
|
+
464501,Female,No,28,No,Healthcare,1,Low,3,Cat_6
|
|
1618
|
+
464504,Male,No,26,Yes,Healthcare,0,Low,4,Cat_6
|
|
1619
|
+
464506,Male,No,29,Yes,Healthcare,9,Low,2,Cat_4
|
|
1620
|
+
464517,Male,No,33,Yes,Healthcare,0,Low,,Cat_5
|
|
1621
|
+
464522,Female,No,39,Yes,Engineer,14,Low,1,Cat_6
|
|
1622
|
+
464526,Male,Yes,51,Yes,Entertainment,0,Average,4,Cat_6
|
|
1623
|
+
464528,Male,Yes,46,Yes,Entertainment,4,High,4,Cat_2
|
|
1624
|
+
464533,Male,Yes,38,No,Executive,,High,6,Cat_6
|
|
1625
|
+
464536,Male,Yes,26,Yes,Artist,1,Average,3,Cat_6
|
|
1626
|
+
464540,Female,Yes,42,Yes,Engineer,1,Average,4,Cat_4
|
|
1627
|
+
464544,Female,Yes,43,Yes,Entertainment,5,Average,3,Cat_6
|
|
1628
|
+
464549,Male,Yes,53,Yes,Executive,1,Low,4,Cat_6
|
|
1629
|
+
464550,Male,Yes,46,Yes,Artist,,Low,4,Cat_6
|
|
1630
|
+
464552,Female,Yes,40,Yes,Artist,1,Average,3,Cat_4
|
|
1631
|
+
464553,Male,Yes,71,Yes,Artist,1,Low,2,Cat_6
|
|
1632
|
+
464555,Male,Yes,32,Yes,Marketing,13,High,4,Cat_4
|
|
1633
|
+
464560,Male,No,41,Yes,Entertainment,9,Low,2,Cat_6
|
|
1634
|
+
464561,Female,No,46,Yes,Entertainment,8,Low,2,Cat_6
|
|
1635
|
+
464566,Male,Yes,40,Yes,Executive,0,High,4,Cat_6
|
|
1636
|
+
464569,Male,No,29,No,Doctor,1,Low,5,Cat_6
|
|
1637
|
+
464570,Male,Yes,25,Yes,Doctor,1,Average,2,Cat_6
|
|
1638
|
+
464572,Female,Yes,52,Yes,Marketing,0,Low,1,Cat_6
|
|
1639
|
+
464576,Male,No,30,Yes,Doctor,9,Low,5,Cat_6
|
|
1640
|
+
464577,Female,Yes,25,Yes,Healthcare,12,High,2,Cat_6
|
|
1641
|
+
464580,Male,No,32,No,Artist,9,Low,4,Cat_6
|
|
1642
|
+
464581,Female,No,33,No,Doctor,,Low,4,Cat_6
|
|
1643
|
+
464586,Female,No,49,Yes,Artist,1,Low,1,Cat_3
|
|
1644
|
+
464593,Female,No,43,Yes,Doctor,1,Low,4,Cat_2
|
|
1645
|
+
464594,Male,Yes,48,Yes,Artist,1,Low,1,Cat_2
|
|
1646
|
+
464597,Male,No,41,No,Artist,5,Low,2,Cat_6
|
|
1647
|
+
464601,Female,No,29,Yes,Healthcare,9,Low,2,Cat_6
|
|
1648
|
+
464603,Female,No,35,Yes,Artist,0,Low,2,Cat_3
|
|
1649
|
+
464606,Male,Yes,41,Yes,Artist,1,Average,2,Cat_6
|
|
1650
|
+
464607,Female,Yes,47,Yes,Artist,1,Average,4,Cat_2
|
|
1651
|
+
464608,Female,Yes,53,Yes,Artist,1,Average,3,Cat_6
|
|
1652
|
+
464618,Male,,40,Yes,Artist,5,Low,1,Cat_6
|
|
1653
|
+
464620,Female,Yes,40,Yes,Artist,0,High,2,Cat_6
|
|
1654
|
+
464621,Male,Yes,46,Yes,Artist,0,Low,1,Cat_6
|
|
1655
|
+
464637,Female,No,36,Yes,Marketing,,Low,4,Cat_4
|
|
1656
|
+
464641,Female,Yes,71,Yes,Lawyer,2,Low,6,Cat_1
|
|
1657
|
+
464652,Female,Yes,30,No,Engineer,5,Average,2,Cat_4
|
|
1658
|
+
464654,Female,Yes,40,No,Engineer,1,Average,4,Cat_4
|
|
1659
|
+
464664,Male,Yes,43,No,Entertainment,0,Average,5,Cat_4
|
|
1660
|
+
464666,Male,Yes,40,Yes,Entertainment,3,Average,3,Cat_4
|
|
1661
|
+
464670,Male,Yes,39,No,Entertainment,1,Average,4,Cat_4
|
|
1662
|
+
464673,Male,Yes,49,No,Executive,1,High,7,Cat_2
|
|
1663
|
+
464674,Male,Yes,51,No,Artist,0,Average,5,Cat_4
|
|
1664
|
+
464675,Female,Yes,39,No,Doctor,1,Average,9,Cat_4
|
|
1665
|
+
464677,Male,Yes,23,No,Healthcare,1,Low,5,Cat_4
|
|
1666
|
+
464683,Male,Yes,53,No,Engineer,0,Average,6,Cat_4
|
|
1667
|
+
464684,Female,No,35,No,Engineer,9,Low,5,Cat_4
|
|
1668
|
+
464685,Male,No,35,No,Executive,2,Low,4,Cat_4
|
|
1669
|
+
464688,Male,Yes,30,Yes,Doctor,1,Low,9,Cat_4
|
|
1670
|
+
464690,Male,Yes,39,No,Engineer,2,Average,,Cat_4
|
|
1671
|
+
464691,Male,No,38,Yes,Artist,1,Low,3,Cat_4
|
|
1672
|
+
464692,Female,No,53,No,Marketing,0,Low,1,Cat_3
|
|
1673
|
+
464693,Female,No,36,Yes,Engineer,8,Low,1,Cat_4
|
|
1674
|
+
464695,Male,No,33,No,Engineer,0,Low,4,Cat_4
|
|
1675
|
+
464696,Female,No,40,Yes,Engineer,1,Low,1,Cat_4
|
|
1676
|
+
464697,Female,Yes,36,Yes,Artist,0,Average,4,Cat_4
|
|
1677
|
+
464699,Male,No,31,No,Doctor,1,Low,5,Cat_4
|
|
1678
|
+
464701,Male,No,31,No,Doctor,1,Low,2,Cat_4
|
|
1679
|
+
464704,Male,Yes,41,Yes,Healthcare,0,Average,4,Cat_4
|
|
1680
|
+
464707,Male,Yes,48,No,,0,Average,4,Cat_4
|
|
1681
|
+
464711,Female,Yes,38,Yes,Artist,5,Average,3,Cat_1
|
|
1682
|
+
464712,Male,Yes,49,No,Artist,1,Low,5,Cat_4
|
|
1683
|
+
464722,Male,Yes,42,Yes,Doctor,1,Low,,Cat_4
|
|
1684
|
+
464726,Male,Yes,28,Yes,Executive,14,High,9,Cat_4
|
|
1685
|
+
464728,Male,Yes,51,No,Entertainment,0,High,4,Cat_4
|
|
1686
|
+
464732,Male,Yes,41,No,Artist,1,Average,2,Cat_4
|
|
1687
|
+
464737,Female,Yes,57,No,Engineer,0,Average,6,Cat_4
|
|
1688
|
+
464739,Male,Yes,67,Yes,Artist,0,Low,1,Cat_4
|
|
1689
|
+
464746,Male,Yes,29,No,Executive,3,Average,5,Cat_4
|
|
1690
|
+
464752,Female,Yes,46,,Marketing,,Low,1,Cat_4
|
|
1691
|
+
464755,Male,Yes,49,Yes,Artist,0,High,2,Cat_6
|
|
1692
|
+
464756,Female,No,28,No,Engineer,6,Low,3,Cat_4
|
|
1693
|
+
464758,Female,Yes,48,No,Engineer,1,Average,4,Cat_4
|
|
1694
|
+
464760,Female,Yes,51,No,Engineer,5,Average,4,Cat_4
|
|
1695
|
+
464765,Female,Yes,48,No,Engineer,5,Average,6,Cat_4
|
|
1696
|
+
464766,Female,Yes,48,No,Engineer,5,Average,5,Cat_4
|
|
1697
|
+
464769,Female,,52,No,Engineer,9,Average,4,Cat_4
|
|
1698
|
+
464772,Female,Yes,39,No,Engineer,8,Average,4,Cat_4
|
|
1699
|
+
464774,Female,Yes,50,No,Engineer,7,Average,5,Cat_4
|
|
1700
|
+
464780,Female,No,33,No,Engineer,1,Low,9,Cat_4
|
|
1701
|
+
464790,Female,No,35,Yes,Artist,,Low,1,Cat_4
|
|
1702
|
+
464792,Male,Yes,30,No,Marketing,2,High,5,Cat_4
|
|
1703
|
+
464794,Female,Yes,46,No,Engineer,8,Average,,Cat_4
|
|
1704
|
+
464799,Male,No,36,No,Marketing,0,Low,4,Cat_4
|
|
1705
|
+
464802,Male,No,43,No,Entertainment,0,Low,1,Cat_4
|
|
1706
|
+
464804,Male,Yes,26,No,Entertainment,1,Low,1,Cat_4
|
|
1707
|
+
464806,Male,Yes,33,No,Executive,0,Low,2,Cat_4
|
|
1708
|
+
464809,Male,Yes,50,,Entertainment,,Average,5,Cat_4
|
|
1709
|
+
464812,Female,Yes,49,Yes,Engineer,1,High,5,Cat_4
|
|
1710
|
+
464813,Male,Yes,48,Yes,Engineer,6,Average,5,Cat_6
|
|
1711
|
+
464817,Male,No,31,Yes,Artist,5,Low,1,Cat_4
|
|
1712
|
+
464818,Female,Yes,38,No,Engineer,,Average,2,Cat_4
|
|
1713
|
+
464825,Female,No,21,No,Healthcare,5,Low,1,Cat_4
|
|
1714
|
+
464827,Female,Yes,50,No,Entertainment,8,Average,5,Cat_4
|
|
1715
|
+
464828,Male,No,23,No,Healthcare,9,Low,6,Cat_4
|
|
1716
|
+
464831,Female,Yes,21,No,Healthcare,0,Low,2,Cat_4
|
|
1717
|
+
464832,Male,Yes,71,No,Lawyer,1,Low,,Cat_4
|
|
1718
|
+
464835,Male,No,20,No,Healthcare,0,Low,6,Cat_4
|
|
1719
|
+
464836,Female,,32,No,Engineer,7,High,5,Cat_4
|
|
1720
|
+
464845,Male,Yes,29,No,Engineer,0,Average,3,Cat_4
|
|
1721
|
+
464849,Male,Yes,42,Yes,Artist,0,Average,4,Cat_4
|
|
1722
|
+
464851,Male,No,20,No,Doctor,0,Low,6,Cat_4
|
|
1723
|
+
464852,Male,Yes,36,No,Executive,1,Low,6,Cat_4
|
|
1724
|
+
464854,Female,Yes,42,No,Engineer,0,High,6,Cat_4
|
|
1725
|
+
464857,Male,No,18,No,Healthcare,7,Low,4,Cat_4
|
|
1726
|
+
464861,Male,No,25,No,Homemaker,,Low,2,Cat_4
|
|
1727
|
+
464864,Female,No,30,No,Engineer,10,Low,8,Cat_4
|
|
1728
|
+
464865,Female,No,28,No,Homemaker,9,Low,9,Cat_4
|
|
1729
|
+
464868,Male,Yes,42,Yes,Entertainment,7,Low,6,Cat_4
|
|
1730
|
+
464872,Male,Yes,38,Yes,Artist,1,Low,4,Cat_4
|
|
1731
|
+
464873,Male,Yes,42,Yes,Artist,1,Average,2,Cat_4
|
|
1732
|
+
464876,Female,Yes,52,No,Engineer,,Average,5,Cat_4
|
|
1733
|
+
464879,Female,Yes,29,Yes,Doctor,0,Average,2,Cat_4
|
|
1734
|
+
464884,Male,Yes,40,Yes,Artist,1,Low,2,Cat_4
|
|
1735
|
+
464885,Female,No,38,No,Engineer,1,Low,2,Cat_4
|
|
1736
|
+
464886,Male,Yes,37,Yes,Engineer,1,Average,4,Cat_4
|
|
1737
|
+
464902,Female,Yes,65,No,Lawyer,1,Low,1,Cat_4
|
|
1738
|
+
464905,Male,,81,No,Executive,,High,2,Cat_4
|
|
1739
|
+
464907,Male,,59,Yes,Engineer,0,Average,2,Cat_4
|
|
1740
|
+
464910,Female,Yes,47,Yes,Artist,1,Average,5,Cat_4
|
|
1741
|
+
464911,Male,Yes,57,Yes,Artist,0,Average,3,Cat_4
|
|
1742
|
+
464915,Male,Yes,39,Yes,Executive,,High,4,Cat_4
|
|
1743
|
+
464916,Female,,32,,Doctor,8,High,2,Cat_4
|
|
1744
|
+
464919,Male,Yes,37,Yes,Artist,9,Low,1,Cat_4
|
|
1745
|
+
464920,Male,No,39,Yes,Artist,4,Low,1,Cat_4
|
|
1746
|
+
464921,Male,Yes,39,No,Doctor,1,Average,5,Cat_4
|
|
1747
|
+
464925,Male,,60,No,Executive,7,Average,2,Cat_4
|
|
1748
|
+
464927,Female,Yes,70,Yes,Artist,1,Average,2,Cat_4
|
|
1749
|
+
464932,Male,Yes,51,Yes,Executive,9,Low,1,Cat_4
|
|
1750
|
+
464938,Male,Yes,48,No,Artist,1,Low,3,Cat_4
|
|
1751
|
+
464939,Male,No,43,No,Entertainment,0,Low,1,Cat_4
|
|
1752
|
+
464940,Female,Yes,29,No,Engineer,1,Low,2,Cat_4
|
|
1753
|
+
464944,Female,Yes,43,Yes,Entertainment,0,Low,2,Cat_4
|
|
1754
|
+
464947,Male,No,25,No,Doctor,5,Low,1,Cat_4
|
|
1755
|
+
464957,Female,Yes,75,No,Lawyer,0,Low,1,Cat_4
|
|
1756
|
+
464960,Female,No,22,No,Healthcare,0,Low,5,Cat_4
|
|
1757
|
+
464961,Male,Yes,86,No,Marketing,1,Low,1,Cat_4
|
|
1758
|
+
464963,Female,Yes,50,Yes,Entertainment,1,Low,2,Cat_4
|
|
1759
|
+
464972,Male,Yes,73,No,Lawyer,1,High,9,Cat_4
|
|
1760
|
+
464973,Male,No,87,,Lawyer,1,Low,2,Cat_4
|
|
1761
|
+
464981,Male,Yes,49,Yes,Artist,0,Average,4,Cat_6
|
|
1762
|
+
464987,Male,Yes,46,Yes,Executive,1,High,5,Cat_6
|
|
1763
|
+
464990,Male,Yes,73,No,Executive,0,High,2,Cat_6
|
|
1764
|
+
464991,Female,Yes,87,Yes,Lawyer,1,High,2,Cat_6
|
|
1765
|
+
464995,Male,Yes,53,No,Executive,2,High,4,Cat_4
|
|
1766
|
+
465001,Male,Yes,84,Yes,Lawyer,1,High,2,Cat_6
|
|
1767
|
+
465005,Male,Yes,47,Yes,Executive,3,High,3,Cat_6
|
|
1768
|
+
465012,Male,Yes,59,No,Executive,1,High,4,Cat_6
|
|
1769
|
+
465014,Male,Yes,82,No,Lawyer,1,Low,1,Cat_6
|
|
1770
|
+
465022,Female,Yes,71,Yes,Lawyer,0,High,2,Cat_6
|
|
1771
|
+
465023,Male,Yes,39,Yes,Artist,9,Average,2,Cat_2
|
|
1772
|
+
465026,Female,No,25,No,Doctor,0,Low,2,Cat_6
|
|
1773
|
+
465032,Male,Yes,67,Yes,Executive,1,High,2,Cat_6
|
|
1774
|
+
465035,Female,Yes,83,Yes,Lawyer,13,High,2,Cat_6
|
|
1775
|
+
465038,Male,Yes,49,No,Executive,0,High,4,Cat_6
|
|
1776
|
+
465039,Female,Yes,87,No,Lawyer,0,High,2,Cat_6
|
|
1777
|
+
465040,Male,Yes,69,No,Lawyer,1,Average,2,Cat_6
|
|
1778
|
+
465045,Male,Yes,40,Yes,Entertainment,9,Average,2,Cat_6
|
|
1779
|
+
465056,Male,Yes,87,Yes,Lawyer,1,High,2,Cat_6
|
|
1780
|
+
465069,Male,Yes,68,Yes,Healthcare,0,Average,3,Cat_6
|
|
1781
|
+
465075,Female,Yes,43,Yes,Artist,,Average,2,Cat_6
|
|
1782
|
+
465076,Male,Yes,67,Yes,Artist,0,High,5,Cat_6
|
|
1783
|
+
465079,Male,Yes,80,Yes,Lawyer,1,Low,1,Cat_6
|
|
1784
|
+
465082,Male,Yes,65,Yes,Lawyer,1,Low,1,Cat_3
|
|
1785
|
+
465087,Male,No,29,Yes,Doctor,0,Low,4,Cat_6
|
|
1786
|
+
465091,Male,Yes,60,Yes,Entertainment,,Average,3,Cat_6
|
|
1787
|
+
465092,Male,Yes,72,Yes,Executive,1,High,2,Cat_6
|
|
1788
|
+
465093,Male,Yes,57,Yes,Doctor,0,Low,1,Cat_6
|
|
1789
|
+
465095,Male,Yes,47,Yes,Executive,1,High,4,Cat_6
|
|
1790
|
+
465099,Male,Yes,39,No,Entertainment,1,Average,2,Cat_6
|
|
1791
|
+
465100,Male,Yes,62,Yes,Artist,0,High,2,Cat_6
|
|
1792
|
+
465101,Female,Yes,81,Yes,Lawyer,1,Low,1,Cat_6
|
|
1793
|
+
465105,Male,Yes,65,No,Executive,8,Average,2,Cat_6
|
|
1794
|
+
465109,Male,No,47,No,Lawyer,,Low,2,Cat_6
|
|
1795
|
+
465111,Female,Yes,40,Yes,Artist,8,Average,2,Cat_6
|
|
1796
|
+
465112,Female,Yes,86,No,Lawyer,0,High,2,Cat_6
|
|
1797
|
+
465113,Male,Yes,67,Yes,Lawyer,0,High,2,Cat_4
|
|
1798
|
+
465119,Female,Yes,45,Yes,Artist,0,Average,5,Cat_6
|
|
1799
|
+
465120,Female,No,27,Yes,Healthcare,1,Low,4,Cat_6
|
|
1800
|
+
465121,Female,No,32,Yes,Artist,7,Low,1,Cat_3
|
|
1801
|
+
465122,Female,Yes,41,Yes,Artist,3,Average,2,Cat_6
|
|
1802
|
+
465124,Female,Yes,27,Yes,Healthcare,6,Average,2,Cat_6
|
|
1803
|
+
465128,Female,Yes,58,No,Artist,0,Average,3,Cat_6
|
|
1804
|
+
465134,Female,Yes,61,Yes,Entertainment,1,Average,5,Cat_6
|
|
1805
|
+
465136,Male,Yes,52,Yes,Artist,0,Average,2,Cat_6
|
|
1806
|
+
465144,Male,No,25,Yes,Doctor,8,Low,1,Cat_6
|
|
1807
|
+
465147,Male,No,33,Yes,Healthcare,2,Low,3,Cat_6
|
|
1808
|
+
465148,Male,No,31,No,Artist,0,Low,,
|
|
1809
|
+
465150,Male,No,37,Yes,Entertainment,1,Low,1,Cat_6
|
|
1810
|
+
465153,Male,Yes,38,Yes,Artist,1,Average,2,Cat_6
|
|
1811
|
+
465155,Male,Yes,81,Yes,Lawyer,0,Low,1,Cat_6
|
|
1812
|
+
465160,Male,Yes,61,Yes,Executive,0,High,3,Cat_6
|
|
1813
|
+
465164,Male,No,20,No,Healthcare,0,Low,3,Cat_6
|
|
1814
|
+
465171,Female,Yes,48,Yes,Artist,8,High,4,Cat_6
|
|
1815
|
+
465172,Female,Yes,43,Yes,Artist,8,Average,2,Cat_6
|
|
1816
|
+
465175,Female,No,22,No,Homemaker,0,Low,4,Cat_6
|
|
1817
|
+
465176,Female,Yes,63,Yes,Artist,1,Average,4,Cat_6
|
|
1818
|
+
465181,Female,No,25,Yes,Healthcare,8,Low,1,Cat_4
|
|
1819
|
+
465182,Female,No,73,Yes,Lawyer,1,Low,1,Cat_6
|
|
1820
|
+
465186,Female,Yes,43,No,Artist,4,Average,4,Cat_1
|
|
1821
|
+
465187,Female,Yes,39,No,Doctor,1,Average,4,Cat_4
|
|
1822
|
+
465188,Female,Yes,49,Yes,Artist,0,Average,4,Cat_6
|
|
1823
|
+
465189,Female,Yes,83,Yes,Lawyer,1,High,2,Cat_6
|
|
1824
|
+
465194,Male,No,22,No,Healthcare,9,Low,6,Cat_2
|
|
1825
|
+
465196,Female,No,31,Yes,Artist,2,Low,2,Cat_4
|
|
1826
|
+
465197,Female,Yes,60,Yes,Artist,1,High,4,Cat_6
|
|
1827
|
+
465201,Male,Yes,42,Yes,Entertainment,1,Average,4,Cat_3
|
|
1828
|
+
465202,Male,No,25,No,Entertainment,7,Low,4,Cat_6
|
|
1829
|
+
465203,Male,No,29,Yes,Healthcare,3,Low,3,Cat_6
|
|
1830
|
+
465204,Male,Yes,29,Yes,Healthcare,1,Low,2,Cat_6
|
|
1831
|
+
465213,Male,Yes,39,Yes,Entertainment,2,Average,2,Cat_6
|
|
1832
|
+
465214,Male,Yes,33,No,Engineer,14,Low,1,Cat_6
|
|
1833
|
+
465216,Male,Yes,35,Yes,Executive,9,High,4,Cat_6
|
|
1834
|
+
465226,Male,Yes,38,No,Entertainment,2,Low,3,Cat_6
|
|
1835
|
+
465228,Male,Yes,59,Yes,Artist,1,High,2,Cat_6
|
|
1836
|
+
465231,Male,Yes,67,No,Artist,1,Average,2,Cat_6
|
|
1837
|
+
465236,Male,Yes,45,Yes,Artist,1,Low,1,Cat_6
|
|
1838
|
+
465237,Male,Yes,70,Yes,Lawyer,,High,2,Cat_6
|
|
1839
|
+
465242,Male,No,19,No,Healthcare,5,Low,4,Cat_3
|
|
1840
|
+
465249,Female,No,23,No,Healthcare,0,Low,4,Cat_6
|
|
1841
|
+
465254,Male,No,22,No,Healthcare,1,Low,4,Cat_7
|
|
1842
|
+
465261,Female,No,23,Yes,Healthcare,1,Low,4,Cat_1
|
|
1843
|
+
465264,Male,Yes,80,No,Executive,0,Low,1,Cat_6
|
|
1844
|
+
465267,Male,Yes,40,No,Engineer,14,Average,5,Cat_4
|
|
1845
|
+
465274,Male,No,36,Yes,Artist,0,Low,1,Cat_4
|
|
1846
|
+
465285,Female,Yes,31,No,Engineer,8,Low,4,Cat_6
|
|
1847
|
+
465288,Female,Yes,20,No,Engineer,1,Low,2,Cat_4
|
|
1848
|
+
465289,Male,Yes,31,Yes,Executive,1,High,2,Cat_6
|
|
1849
|
+
465290,Male,Yes,50,Yes,Executive,0,High,5,Cat_6
|
|
1850
|
+
465294,Male,Yes,67,No,Lawyer,0,Low,2,Cat_6
|
|
1851
|
+
465295,Female,,43,Yes,Doctor,9,Average,1,Cat_6
|
|
1852
|
+
465296,Female,Yes,85,Yes,Lawyer,5,High,3,Cat_6
|
|
1853
|
+
465303,Female,Yes,65,Yes,Artist,1,Average,3,Cat_2
|
|
1854
|
+
465306,Male,Yes,71,No,Executive,1,Average,4,Cat_2
|
|
1855
|
+
465310,Female,No,20,No,Healthcare,1,Low,6,Cat_4
|
|
1856
|
+
465319,Male,No,20,No,Healthcare,0,Low,5,Cat_6
|
|
1857
|
+
465326,Male,Yes,87,Yes,Artist,,Low,1,Cat_6
|
|
1858
|
+
465333,Female,Yes,37,Yes,Artist,4,Low,2,Cat_7
|
|
1859
|
+
465335,Male,Yes,59,No,Entertainment,1,Average,2,Cat_7
|
|
1860
|
+
465340,Female,No,29,Yes,Artist,3,Low,4,Cat_2
|
|
1861
|
+
465342,Male,Yes,85,Yes,Executive,0,High,2,Cat_6
|
|
1862
|
+
465344,Female,Yes,72,Yes,Lawyer,1,High,2,Cat_6
|
|
1863
|
+
465345,Female,No,42,Yes,Artist,0,Low,,Cat_6
|
|
1864
|
+
465351,Female,Yes,45,Yes,Artist,9,Average,2,Cat_6
|
|
1865
|
+
465352,Male,Yes,59,Yes,Entertainment,1,Average,4,Cat_6
|
|
1866
|
+
465354,Male,No,19,No,Doctor,0,Low,5,Cat_2
|
|
1867
|
+
465357,Female,Yes,47,Yes,Artist,0,Average,3,Cat_6
|
|
1868
|
+
465358,Female,Yes,73,Yes,Artist,0,High,2,Cat_6
|
|
1869
|
+
465359,Female,Yes,42,No,Artist,1,Low,1,Cat_6
|
|
1870
|
+
465364,Female,No,37,Yes,Doctor,7,Low,5,Cat_2
|
|
1871
|
+
465366,Female,No,38,Yes,Artist,8,Low,1,Cat_6
|
|
1872
|
+
465371,Female,No,41,Yes,Artist,1,Low,1,Cat_6
|
|
1873
|
+
465372,Female,No,40,Yes,Entertainment,0,Low,1,Cat_6
|
|
1874
|
+
465383,Female,Yes,30,Yes,Entertainment,0,Low,4,Cat_6
|
|
1875
|
+
465384,Male,Yes,56,Yes,Artist,0,High,2,Cat_6
|
|
1876
|
+
465391,Female,Yes,65,Yes,Lawyer,1,High,2,Cat_6
|
|
1877
|
+
465393,Male,Yes,35,Yes,Artist,5,Average,2,Cat_6
|
|
1878
|
+
465395,Female,Yes,37,No,Engineer,0,Average,5,Cat_4
|
|
1879
|
+
465399,Male,No,36,Yes,Entertainment,0,Low,1,Cat_4
|
|
1880
|
+
465405,Female,,26,Yes,Homemaker,1,High,4,Cat_2
|
|
1881
|
+
465408,Male,No,25,No,Executive,,Low,4,Cat_6
|
|
1882
|
+
465410,Male,No,30,No,Healthcare,0,Low,4,Cat_5
|
|
1883
|
+
465417,Male,Yes,37,Yes,Entertainment,,Average,2,Cat_4
|
|
1884
|
+
465419,Male,No,30,No,Artist,0,Low,3,Cat_6
|
|
1885
|
+
465423,Male,Yes,46,Yes,Entertainment,1,Average,4,Cat_7
|
|
1886
|
+
465428,Female,No,38,Yes,Engineer,1,Low,1,Cat_4
|
|
1887
|
+
465433,Female,No,40,Yes,Artist,,Low,1,Cat_2
|
|
1888
|
+
465435,Female,No,31,Yes,Artist,5,Low,1,Cat_6
|
|
1889
|
+
465437,Male,Yes,45,Yes,Executive,4,High,5,Cat_6
|
|
1890
|
+
465440,Male,Yes,55,No,Engineer,1,Low,5,Cat_6
|
|
1891
|
+
465441,Female,Yes,51,Yes,Engineer,2,Low,1,Cat_4
|
|
1892
|
+
465445,Female,No,29,Yes,Homemaker,5,Low,7,Cat_6
|
|
1893
|
+
465458,Female,Yes,74,Yes,Artist,1,High,2,Cat_6
|
|
1894
|
+
465461,Male,Yes,69,No,Entertainment,1,Average,3,Cat_6
|
|
1895
|
+
465463,Female,No,28,No,Doctor,,Low,5,Cat_2
|
|
1896
|
+
465464,Male,Yes,41,Yes,Executive,0,Average,,Cat_4
|
|
1897
|
+
465467,Male,,29,No,Healthcare,1,Low,3,Cat_6
|
|
1898
|
+
465471,Male,Yes,39,Yes,Artist,0,Low,1,Cat_6
|
|
1899
|
+
465472,Female,Yes,74,No,Entertainment,,High,3,Cat_6
|
|
1900
|
+
465473,Female,No,59,Yes,Artist,4,Low,1,Cat_6
|
|
1901
|
+
465477,Male,No,27,No,Healthcare,1,Low,3,Cat_2
|
|
1902
|
+
465479,Male,No,33,No,Artist,0,Low,1,Cat_4
|
|
1903
|
+
465482,Male,No,31,No,Entertainment,9,Low,2,Cat_2
|
|
1904
|
+
465483,Male,Yes,46,No,Artist,0,Average,3,Cat_6
|
|
1905
|
+
465484,Female,Yes,63,Yes,Artist,0,Low,2,Cat_6
|
|
1906
|
+
465488,Male,No,22,No,Healthcare,1,Low,4,Cat_6
|
|
1907
|
+
465489,Female,No,53,Yes,Engineer,1,Low,5,Cat_6
|
|
1908
|
+
465492,Male,Yes,59,No,Entertainment,1,Low,1,Cat_2
|
|
1909
|
+
465496,Male,Yes,84,Yes,Lawyer,,Low,2,Cat_2
|
|
1910
|
+
465505,Male,Yes,63,Yes,Artist,1,Average,4,Cat_6
|
|
1911
|
+
465507,Male,Yes,35,Yes,Artist,8,Low,1,Cat_6
|
|
1912
|
+
465508,Male,No,21,No,Healthcare,1,Low,4,Cat_6
|
|
1913
|
+
465510,Male,Yes,67,No,Lawyer,0,High,2,Cat_6
|
|
1914
|
+
465518,Female,Yes,41,Yes,Artist,1,Average,3,Cat_4
|
|
1915
|
+
465520,Female,No,27,Yes,Artist,0,Low,8,Cat_2
|
|
1916
|
+
465521,Female,Yes,53,Yes,Artist,1,Average,2,Cat_7
|
|
1917
|
+
465522,Female,No,33,Yes,Healthcare,4,Low,8,Cat_5
|
|
1918
|
+
465529,Female,No,32,No,Doctor,0,Low,4,Cat_6
|
|
1919
|
+
465538,Male,Yes,59,No,,5,High,2,Cat_6
|
|
1920
|
+
465539,Female,Yes,50,Yes,Artist,1,High,5,Cat_6
|
|
1921
|
+
465541,Female,Yes,50,Yes,Artist,1,Average,4,Cat_7
|
|
1922
|
+
465543,Female,Yes,41,Yes,Healthcare,1,Average,2,Cat_3
|
|
1923
|
+
465547,Female,Yes,71,,Lawyer,1,Low,1,Cat_6
|
|
1924
|
+
465550,Female,No,33,Yes,Healthcare,1,Low,6,Cat_3
|
|
1925
|
+
465551,Female,Yes,46,Yes,Artist,,Average,2,Cat_3
|
|
1926
|
+
465554,Female,No,78,Yes,Lawyer,1,Low,3,Cat_6
|
|
1927
|
+
465555,Female,Yes,69,No,Lawyer,,High,2,Cat_4
|
|
1928
|
+
465558,Female,No,40,Yes,Healthcare,8,Low,1,Cat_7
|
|
1929
|
+
465568,Male,Yes,43,Yes,Executive,2,High,3,Cat_6
|
|
1930
|
+
465569,Male,Yes,36,Yes,Artist,0,High,3,Cat_6
|
|
1931
|
+
465571,Male,Yes,35,Yes,Entertainment,1,Average,2,Cat_2
|
|
1932
|
+
465577,Male,No,30,No,Healthcare,0,Low,4,Cat_3
|
|
1933
|
+
465584,Male,Yes,47,No,Entertainment,3,Average,2,Cat_6
|
|
1934
|
+
465586,Male,Yes,69,No,Artist,0,Low,1,Cat_6
|
|
1935
|
+
465587,Male,Yes,41,Yes,Entertainment,,Low,5,Cat_3
|
|
1936
|
+
465594,Male,Yes,33,No,Executive,4,Low,6,Cat_3
|
|
1937
|
+
465598,Male,No,27,Yes,Healthcare,6,Low,5,Cat_2
|
|
1938
|
+
465600,Male,Yes,38,Yes,Engineer,6,Low,2,Cat_3
|
|
1939
|
+
465601,Male,Yes,35,Yes,Artist,,Average,4,Cat_3
|
|
1940
|
+
465602,Male,Yes,27,Yes,Artist,10,Low,2,Cat_3
|
|
1941
|
+
465603,Female,Yes,51,Yes,Homemaker,9,Low,,Cat_3
|
|
1942
|
+
465605,Female,Yes,52,Yes,Engineer,4,Low,1,Cat_3
|
|
1943
|
+
465611,Male,No,53,Yes,Doctor,0,Low,1,Cat_6
|
|
1944
|
+
465612,Male,Yes,43,Yes,Artist,8,Average,2,Cat_6
|
|
1945
|
+
465616,Male,Yes,42,Yes,Doctor,8,Low,2,Cat_6
|
|
1946
|
+
465621,Male,No,36,Yes,Doctor,9,Low,1,Cat_6
|
|
1947
|
+
465625,Male,No,36,Yes,Artist,14,Low,2,Cat_6
|
|
1948
|
+
465627,Female,No,40,Yes,Healthcare,1,Low,1,Cat_6
|
|
1949
|
+
465629,Male,Yes,47,Yes,Entertainment,2,Average,3,Cat_6
|
|
1950
|
+
465635,Male,No,30,No,Doctor,1,Low,2,Cat_4
|
|
1951
|
+
465638,Female,Yes,53,Yes,Artist,,Low,,Cat_3
|
|
1952
|
+
465640,Male,Yes,45,Yes,Artist,5,Average,2,Cat_6
|
|
1953
|
+
465644,Male,No,33,Yes,Healthcare,0,Low,5,Cat_6
|
|
1954
|
+
465645,Female,No,40,Yes,Artist,8,Low,2,Cat_6
|
|
1955
|
+
465649,Female,Yes,36,Yes,Marketing,5,Low,1,Cat_6
|
|
1956
|
+
465651,Male,No,32,No,Engineer,0,Low,4,Cat_6
|
|
1957
|
+
465653,Female,Yes,51,Yes,Artist,0,Low,2,Cat_6
|
|
1958
|
+
465655,Female,No,49,Yes,Artist,0,Low,1,Cat_6
|
|
1959
|
+
465656,Male,Yes,81,No,Lawyer,1,Low,,Cat_6
|
|
1960
|
+
465658,Male,Yes,72,Yes,Artist,1,Average,4,Cat_6
|
|
1961
|
+
465663,Female,No,70,Yes,Artist,0,Low,2,Cat_6
|
|
1962
|
+
465667,Male,No,21,No,Healthcare,0,Low,3,Cat_2
|
|
1963
|
+
465668,Male,No,21,No,Healthcare,1,Low,5,Cat_4
|
|
1964
|
+
465669,Female,Yes,41,No,Entertainment,4,Average,4,Cat_4
|
|
1965
|
+
465670,Female,No,49,No,Engineer,12,Low,1,Cat_4
|
|
1966
|
+
465675,Female,No,51,No,Entertainment,0,Low,1,Cat_4
|
|
1967
|
+
465680,Male,Yes,28,No,Healthcare,0,Average,5,Cat_4
|
|
1968
|
+
465685,Male,No,37,Yes,Healthcare,5,Low,2,Cat_3
|
|
1969
|
+
465688,Female,Yes,63,,Artist,1,Average,3,Cat_3
|
|
1970
|
+
465689,Male,No,19,No,Healthcare,8,Low,4,Cat_3
|
|
1971
|
+
465695,Female,No,32,No,Healthcare,,Low,3,Cat_4
|
|
1972
|
+
465697,Female,Yes,51,No,Artist,6,Low,1,Cat_6
|
|
1973
|
+
465703,Male,Yes,26,No,Entertainment,3,Low,2,Cat_4
|
|
1974
|
+
465704,Male,Yes,61,No,Artist,0,Low,1,Cat_6
|
|
1975
|
+
465705,Female,Yes,51,Yes,Artist,0,Average,4,Cat_6
|
|
1976
|
+
465706,Female,Yes,45,Yes,Artist,0,Average,3,Cat_6
|
|
1977
|
+
465721,Male,Yes,29,Yes,Entertainment,1,High,2,Cat_3
|
|
1978
|
+
465722,Male,Yes,47,No,,0,Low,5,Cat_3
|
|
1979
|
+
465725,Male,No,25,Yes,Doctor,1,Low,2,Cat_3
|
|
1980
|
+
465727,Male,No,40,No,Marketing,0,Low,5,Cat_4
|
|
1981
|
+
465728,Male,No,45,Yes,,1,Low,1,Cat_4
|
|
1982
|
+
465733,Male,Yes,32,Yes,Entertainment,1,Average,2,Cat_4
|
|
1983
|
+
465734,Male,Yes,38,Yes,Artist,0,Low,3,Cat_1
|
|
1984
|
+
465736,Female,No,38,Yes,Artist,8,Low,2,Cat_3
|
|
1985
|
+
465737,Female,Yes,48,Yes,Engineer,7,Low,3,Cat_3
|
|
1986
|
+
465740,Female,No,71,Yes,Doctor,0,Low,1,Cat_6
|
|
1987
|
+
465742,Female,Yes,46,Yes,Artist,3,Low,3,Cat_6
|
|
1988
|
+
465751,Female,Yes,46,Yes,Artist,9,Low,2,Cat_6
|
|
1989
|
+
465753,Female,Yes,49,Yes,Artist,7,Low,2,Cat_6
|
|
1990
|
+
465766,Male,Yes,43,No,Entertainment,0,Low,3,Cat_4
|
|
1991
|
+
465768,Female,No,38,Yes,Artist,6,Low,4,Cat_4
|
|
1992
|
+
465769,Male,No,25,Yes,Healthcare,8,Low,4,Cat_6
|
|
1993
|
+
465772,Female,Yes,46,Yes,Engineer,0,Low,4,Cat_1
|
|
1994
|
+
465775,Female,No,28,Yes,Engineer,9,Low,3,Cat_6
|
|
1995
|
+
465776,Female,No,41,Yes,Entertainment,5,Low,4,Cat_6
|
|
1996
|
+
465777,Female,No,32,Yes,Artist,9,Low,5,Cat_6
|
|
1997
|
+
465784,Female,No,21,No,Healthcare,0,Low,4,Cat_3
|
|
1998
|
+
465788,Male,No,22,No,Healthcare,1,Low,6,Cat_4
|
|
1999
|
+
465793,Male,No,27,No,Healthcare,0,Low,5,Cat_4
|
|
2000
|
+
465797,Male,Yes,40,Yes,Artist,0,Average,2,Cat_2
|
|
2001
|
+
465804,Female,Yes,68,No,Engineer,0,Low,1,Cat_4
|
|
2002
|
+
465809,Female,No,25,No,Homemaker,1,Low,7,Cat_4
|
|
2003
|
+
465811,Male,No,28,No,Healthcare,1,Low,4,Cat_4
|
|
2004
|
+
465813,Male,No,28,No,Marketing,2,Low,8,Cat_4
|
|
2005
|
+
465818,Male,No,27,No,Entertainment,1,Low,3,Cat_4
|
|
2006
|
+
465823,Male,Yes,67,No,Entertainment,5,Average,4,Cat_4
|
|
2007
|
+
465826,Male,Yes,46,No,Executive,4,Low,9,Cat_4
|
|
2008
|
+
465828,Female,No,33,No,Entertainment,8,Low,4,Cat_4
|
|
2009
|
+
465829,Female,Yes,40,Yes,Doctor,6,Average,3,Cat_4
|
|
2010
|
+
465830,Female,Yes,48,No,,5,Average,7,Cat_4
|
|
2011
|
+
465831,Male,Yes,42,No,Executive,0,High,5,Cat_4
|
|
2012
|
+
465837,Male,No,56,Yes,,1,Low,1,Cat_6
|
|
2013
|
+
465841,Female,No,51,Yes,Engineer,3,Low,1,Cat_6
|
|
2014
|
+
465848,Female,No,27,Yes,Healthcare,0,Low,1,Cat_7
|
|
2015
|
+
465849,Female,No,25,Yes,Doctor,7,Low,3,Cat_4
|
|
2016
|
+
465851,Female,Yes,51,No,Artist,9,High,2,Cat_4
|
|
2017
|
+
465853,Female,Yes,26,Yes,Healthcare,,Average,2,Cat_6
|
|
2018
|
+
465857,Female,No,35,Yes,Doctor,0,Low,1,Cat_6
|
|
2019
|
+
465860,Female,,25,Yes,Doctor,1,Low,3,Cat_6
|
|
2020
|
+
465863,Male,No,30,No,Healthcare,6,Low,3,Cat_6
|
|
2021
|
+
465865,Female,No,41,Yes,Healthcare,9,Low,1,Cat_6
|
|
2022
|
+
465866,Male,Yes,42,Yes,Artist,6,Low,3,Cat_6
|
|
2023
|
+
465867,Female,Yes,40,Yes,Artist,8,High,5,Cat_6
|
|
2024
|
+
465873,Male,No,36,Yes,Entertainment,13,Low,1,Cat_6
|
|
2025
|
+
465875,Female,No,39,Yes,Artist,9,Low,1,Cat_6
|
|
2026
|
+
465884,Male,Yes,40,Yes,Executive,7,High,3,Cat_6
|
|
2027
|
+
465893,Female,Yes,40,Yes,Engineer,1,Average,2,Cat_6
|
|
2028
|
+
465894,Male,No,28,Yes,Artist,9,Low,6,Cat_6
|
|
2029
|
+
465907,Female,No,31,Yes,Marketing,8,Low,,Cat_1
|
|
2030
|
+
465916,Male,No,41,Yes,Artist,4,Low,1,Cat_6
|
|
2031
|
+
465923,Female,No,28,Yes,Engineer,9,Low,5,Cat_6
|
|
2032
|
+
465925,Male,No,30,Yes,Healthcare,1,Low,1,Cat_6
|
|
2033
|
+
465927,Female,No,30,Yes,Healthcare,1,Low,1,Cat_6
|
|
2034
|
+
465930,Female,No,38,Yes,Artist,9,Low,2,Cat_6
|
|
2035
|
+
465931,Male,Yes,43,Yes,Artist,7,Low,1,Cat_7
|
|
2036
|
+
465935,Male,No,29,Yes,Entertainment,9,Low,1,Cat_6
|
|
2037
|
+
465937,Female,No,30,Yes,Healthcare,9,Low,3,Cat_6
|
|
2038
|
+
465941,Male,Yes,27,Yes,Healthcare,0,Low,2,Cat_6
|
|
2039
|
+
465948,Female,Yes,48,Yes,Artist,0,Average,2,Cat_6
|
|
2040
|
+
465953,Female,No,51,Yes,Artist,1,Low,1,Cat_6
|
|
2041
|
+
465957,Female,No,48,Yes,Marketing,0,Low,1,Cat_6
|
|
2042
|
+
465960,Female,No,28,Yes,Marketing,9,Low,1,Cat_6
|
|
2043
|
+
465961,Female,No,40,Yes,Artist,3,Low,1,Cat_6
|
|
2044
|
+
465963,Male,Yes,51,Yes,Artist,1,Low,2,Cat_6
|
|
2045
|
+
465965,Female,Yes,36,No,Marketing,8,Low,2,Cat_6
|
|
2046
|
+
465972,Female,No,51,Yes,Marketing,9,Low,1,Cat_6
|
|
2047
|
+
465974,Male,Yes,45,Yes,Executive,5,High,4,Cat_4
|
|
2048
|
+
465975,Male,No,40,Yes,Artist,8,Low,1,Cat_6
|
|
2049
|
+
465976,Male,No,40,Yes,Artist,0,Low,1,Cat_7
|
|
2050
|
+
465979,Male,Yes,41,Yes,Artist,2,Low,2,Cat_6
|
|
2051
|
+
465982,Male,Yes,43,Yes,Entertainment,0,Average,4,Cat_6
|
|
2052
|
+
465983,Male,,21,No,Healthcare,1,Low,3,Cat_6
|
|
2053
|
+
465996,Male,No,23,No,Healthcare,1,Low,4,Cat_6
|
|
2054
|
+
465997,Female,No,31,No,Doctor,0,Low,3,Cat_6
|
|
2055
|
+
466001,Female,Yes,42,Yes,Entertainment,6,Low,2,Cat_6
|
|
2056
|
+
466007,Male,Yes,61,No,Artist,0,Low,1,Cat_7
|
|
2057
|
+
466017,Female,Yes,45,Yes,Homemaker,0,Low,1,Cat_3
|
|
2058
|
+
466019,Female,Yes,63,Yes,Artist,5,Low,1,Cat_3
|
|
2059
|
+
466020,Male,Yes,86,No,Lawyer,0,Low,1,Cat_6
|
|
2060
|
+
466022,Female,Yes,67,No,Engineer,,High,3,Cat_7
|
|
2061
|
+
466023,Male,Yes,71,No,Executive,,High,3,Cat_7
|
|
2062
|
+
466024,Female,Yes,43,No,Entertainment,14,Low,2,Cat_3
|
|
2063
|
+
466032,Male,,28,No,Entertainment,,Low,2,Cat_6
|
|
2064
|
+
466042,Male,Yes,47,No,Entertainment,0,Low,2,Cat_6
|
|
2065
|
+
466043,Female,Yes,53,Yes,Artist,0,Average,4,Cat_6
|
|
2066
|
+
466046,Female,Yes,36,No,Entertainment,1,Average,2,Cat_4
|
|
2067
|
+
466058,Male,Yes,35,No,Entertainment,1,Low,,Cat_4
|
|
2068
|
+
466069,Female,Yes,48,Yes,Artist,1,High,4,
|
|
2069
|
+
466071,Female,Yes,60,Yes,Artist,3,Low,3,Cat_4
|
|
2070
|
+
466078,Female,Yes,45,No,Executive,,Low,1,Cat_6
|
|
2071
|
+
466079,Female,Yes,42,No,Engineer,0,Low,2,Cat_6
|
|
2072
|
+
466082,Female,Yes,89,Yes,Lawyer,1,Low,1,Cat_6
|
|
2073
|
+
466083,Female,No,23,No,Marketing,4,Low,2,Cat_3
|
|
2074
|
+
466084,Male,Yes,46,Yes,Homemaker,11,Low,1,Cat_3
|
|
2075
|
+
466085,Male,No,22,No,,8,Low,4,Cat_4
|
|
2076
|
+
466088,Female,No,30,No,Healthcare,0,Low,7,Cat_6
|
|
2077
|
+
466090,Male,Yes,58,Yes,Entertainment,0,Low,,Cat_6
|
|
2078
|
+
466092,Male,Yes,73,Yes,Artist,0,Average,4,Cat_6
|
|
2079
|
+
466099,Female,Yes,71,Yes,Lawyer,0,Low,1,Cat_6
|
|
2080
|
+
466103,Female,Yes,35,No,Engineer,0,Low,5,Cat_6
|
|
2081
|
+
466109,Male,Yes,52,Yes,Entertainment,1,Average,4,Cat_6
|
|
2082
|
+
466111,Male,Yes,84,Yes,Lawyer,0,Low,2,Cat_6
|
|
2083
|
+
466114,Male,Yes,47,Yes,Entertainment,1,Average,5,Cat_6
|
|
2084
|
+
466115,Male,Yes,39,No,Executive,0,Low,2,Cat_6
|
|
2085
|
+
466118,Female,Yes,40,No,Engineer,0,Low,3,Cat_4
|
|
2086
|
+
466124,Female,No,46,Yes,Artist,1,Low,1,Cat_6
|
|
2087
|
+
466128,Male,No,40,Yes,Artist,3,Low,2,Cat_6
|
|
2088
|
+
466130,Female,No,27,No,Artist,1,Low,6,Cat_6
|
|
2089
|
+
466132,Female,No,23,No,Healthcare,4,Low,4,Cat_7
|
|
2090
|
+
466136,Female,No,21,Yes,Artist,1,Low,2,Cat_6
|
|
2091
|
+
466138,Male,Yes,70,No,Lawyer,2,High,2,Cat_6
|
|
2092
|
+
466140,Male,Yes,28,Yes,Entertainment,1,Low,2,Cat_6
|
|
2093
|
+
466141,Female,Yes,58,Yes,Homemaker,1,Low,4,Cat_6
|
|
2094
|
+
466142,Female,Yes,27,Yes,Entertainment,0,Average,2,Cat_6
|
|
2095
|
+
466143,Female,Yes,49,No,Engineer,0,Average,5,
|
|
2096
|
+
466146,Female,Yes,37,No,Engineer,8,Average,3,Cat_6
|
|
2097
|
+
466148,Male,Yes,39,No,Entertainment,1,Average,4,Cat_6
|
|
2098
|
+
466149,Female,No,28,No,Doctor,2,Low,4,Cat_6
|
|
2099
|
+
466153,Male,Yes,73,No,Entertainment,0,Average,2,Cat_6
|
|
2100
|
+
466154,Female,Yes,51,Yes,Artist,1,Average,5,Cat_3
|
|
2101
|
+
466156,Female,Yes,48,Yes,Doctor,8,Average,3,Cat_2
|
|
2102
|
+
466157,Male,Yes,72,Yes,Homemaker,9,Low,,
|
|
2103
|
+
466161,Male,Yes,47,No,Artist,1,Average,,Cat_6
|
|
2104
|
+
466162,Female,Yes,67,Yes,Doctor,0,Low,1,Cat_4
|
|
2105
|
+
466166,Male,Yes,77,Yes,Lawyer,0,High,2,Cat_4
|
|
2106
|
+
466172,Male,Yes,46,Yes,Artist,3,Average,3,Cat_6
|
|
2107
|
+
466178,Female,Yes,52,Yes,Artist,1,Average,4,Cat_6
|
|
2108
|
+
466180,Male,Yes,67,No,Lawyer,1,Low,1,Cat_6
|
|
2109
|
+
466185,Male,Yes,62,Yes,Doctor,0,Average,4,Cat_6
|
|
2110
|
+
466200,Male,Yes,45,Yes,Doctor,8,Average,3,Cat_4
|
|
2111
|
+
466201,Male,Yes,40,Yes,Doctor,1,Average,5,Cat_4
|
|
2112
|
+
466206,Female,Yes,60,Yes,Artist,4,Average,2,Cat_3
|
|
2113
|
+
466207,Female,Yes,37,Yes,Doctor,8,Average,4,Cat_2
|
|
2114
|
+
466208,Male,Yes,69,No,Executive,2,High,1,Cat_6
|
|
2115
|
+
466210,Female,Yes,58,Yes,Artist,1,High,4,Cat_6
|
|
2116
|
+
466211,Male,Yes,52,Yes,Artist,1,Low,,Cat_6
|
|
2117
|
+
466213,Male,No,20,No,Healthcare,2,Low,5,Cat_6
|
|
2118
|
+
466218,Female,,23,No,Healthcare,6,Low,4,Cat_2
|
|
2119
|
+
466223,Male,Yes,66,Yes,Artist,0,Low,1,Cat_4
|
|
2120
|
+
466225,Male,No,19,No,Healthcare,1,Low,3,Cat_2
|
|
2121
|
+
466226,Female,Yes,53,Yes,Artist,0,Average,5,Cat_6
|
|
2122
|
+
466233,Female,Yes,59,Yes,Homemaker,6,Low,1,Cat_6
|
|
2123
|
+
466235,Female,Yes,61,Yes,Artist,0,Average,4,Cat_4
|
|
2124
|
+
466236,Female,Yes,68,Yes,Engineer,1,Low,2,Cat_4
|
|
2125
|
+
466238,Male,No,20,No,Healthcare,1,Low,3,Cat_4
|
|
2126
|
+
466246,Male,No,20,No,Healthcare,1,Low,4,Cat_2
|
|
2127
|
+
466247,Female,,49,Yes,Artist,0,Low,4,Cat_2
|
|
2128
|
+
466253,Male,No,19,No,Healthcare,1,Low,3,Cat_2
|
|
2129
|
+
466257,Female,No,27,No,Healthcare,1,Low,4,Cat_6
|
|
2130
|
+
466264,Male,Yes,32,Yes,,1,Low,2,Cat_3
|
|
2131
|
+
466268,Female,Yes,67,Yes,Artist,0,Average,3,Cat_4
|
|
2132
|
+
466271,Male,No,27,No,Entertainment,1,Low,3,Cat_2
|
|
2133
|
+
466274,Male,Yes,72,Yes,Executive,0,Low,,Cat_6
|
|
2134
|
+
466276,Female,No,32,No,Doctor,1,Low,5,Cat_4
|
|
2135
|
+
466278,Female,No,28,No,,0,Low,2,Cat_3
|
|
2136
|
+
466282,Male,Yes,29,Yes,Healthcare,8,Low,,Cat_6
|
|
2137
|
+
466285,Female,No,19,No,Healthcare,1,Low,5,Cat_2
|
|
2138
|
+
466286,Female,Yes,52,Yes,Artist,1,Average,5,Cat_2
|
|
2139
|
+
466287,Female,Yes,47,Yes,Doctor,1,Average,2,Cat_2
|
|
2140
|
+
466289,Male,No,19,No,Healthcare,3,Low,5,Cat_2
|
|
2141
|
+
466290,Female,No,18,No,Healthcare,5,Low,,Cat_4
|
|
2142
|
+
466292,Female,Yes,79,No,Lawyer,1,High,2,Cat_6
|
|
2143
|
+
466297,Female,No,19,No,Healthcare,1,Low,4,Cat_4
|
|
2144
|
+
466300,Female,Yes,48,Yes,Artist,0,Low,3,Cat_2
|
|
2145
|
+
466301,Male,Yes,52,Yes,Artist,1,Average,3,Cat_2
|
|
2146
|
+
466306,Male,No,23,No,Healthcare,1,Low,4,Cat_6
|
|
2147
|
+
466313,Female,Yes,58,Yes,Artist,1,Low,1,Cat_4
|
|
2148
|
+
466315,Female,Yes,69,Yes,Engineer,1,Low,1,Cat_6
|
|
2149
|
+
466317,Male,Yes,37,Yes,Entertainment,4,Low,1,Cat_6
|
|
2150
|
+
466318,Female,No,30,No,Healthcare,0,Low,3,Cat_6
|
|
2151
|
+
466319,Female,,25,No,Healthcare,0,Low,4,Cat_6
|
|
2152
|
+
466320,Female,No,39,Yes,Engineer,8,Low,2,Cat_4
|
|
2153
|
+
466321,Male,Yes,43,Yes,Entertainment,3,Low,2,Cat_4
|
|
2154
|
+
466324,Female,No,32,No,Engineer,0,Low,1,Cat_4
|
|
2155
|
+
466326,Male,No,23,No,Healthcare,0,Low,5,Cat_3
|
|
2156
|
+
466335,Female,No,30,No,Healthcare,1,Low,3,Cat_4
|
|
2157
|
+
466337,Female,Yes,41,No,Engineer,1,Low,2,Cat_4
|
|
2158
|
+
466341,Male,Yes,49,Yes,Artist,1,Average,2,Cat_5
|
|
2159
|
+
466347,Male,Yes,66,No,Executive,6,Low,3,Cat_4
|
|
2160
|
+
466352,Female,Yes,67,Yes,Doctor,1,Low,2,Cat_6
|
|
2161
|
+
466355,Male,No,30,Yes,Healthcare,0,Low,2,Cat_6
|
|
2162
|
+
466367,Female,No,39,Yes,Doctor,6,Low,1,Cat_2
|
|
2163
|
+
466370,Female,,52,Yes,Artist,0,Low,4,Cat_2
|
|
2164
|
+
466372,Female,Yes,57,Yes,Artist,0,Average,5,Cat_6
|
|
2165
|
+
466373,Male,Yes,63,Yes,Executive,1,High,1,Cat_6
|
|
2166
|
+
466376,Female,Yes,52,No,Homemaker,4,High,3,Cat_6
|
|
2167
|
+
466377,Male,Yes,61,Yes,,8,Average,2,Cat_6
|
|
2168
|
+
466380,Male,Yes,35,Yes,Entertainment,7,Low,2,Cat_6
|
|
2169
|
+
466381,Male,Yes,52,Yes,Artist,4,Average,2,Cat_6
|
|
2170
|
+
466382,Female,Yes,45,Yes,Engineer,2,High,2,Cat_4
|
|
2171
|
+
466387,Male,Yes,37,Yes,Entertainment,8,Average,2,Cat_6
|
|
2172
|
+
466389,Female,Yes,45,Yes,Engineer,1,Average,2,Cat_6
|
|
2173
|
+
466391,Female,Yes,55,Yes,Engineer,0,Average,,Cat_6
|
|
2174
|
+
466392,Female,Yes,49,Yes,Engineer,4,Average,,Cat_3
|
|
2175
|
+
466393,Female,Yes,42,No,Entertainment,1,Low,6,Cat_3
|
|
2176
|
+
466395,Female,Yes,39,Yes,Doctor,3,High,2,Cat_4
|
|
2177
|
+
466397,Male,No,18,No,Healthcare,0,Low,3,Cat_3
|
|
2178
|
+
466400,Male,Yes,43,No,Artist,1,Average,3,Cat_3
|
|
2179
|
+
466401,Male,Yes,50,No,Executive,1,Average,4,Cat_6
|
|
2180
|
+
466402,Male,Yes,37,Yes,Artist,1,Average,4,Cat_6
|
|
2181
|
+
466404,Female,No,37,Yes,Engineer,1,Low,1,Cat_6
|
|
2182
|
+
466406,Male,Yes,63,Yes,Entertainment,0,Low,3,Cat_6
|
|
2183
|
+
466408,Male,Yes,83,Yes,Lawyer,1,Low,2,Cat_3
|
|
2184
|
+
466411,Male,Yes,55,Yes,Artist,1,Average,3,Cat_3
|
|
2185
|
+
466414,Male,Yes,71,Yes,Artist,1,Low,3,Cat_6
|
|
2186
|
+
466418,Male,Yes,87,No,Lawyer,1,Low,1,Cat_4
|
|
2187
|
+
466419,Female,Yes,49,Yes,Entertainment,2,Average,5,Cat_3
|
|
2188
|
+
466422,Male,Yes,27,No,Doctor,0,Low,4,Cat_4
|
|
2189
|
+
466427,Female,Yes,25,No,Marketing,1,Low,4,Cat_4
|
|
2190
|
+
466429,Male,Yes,42,No,Healthcare,0,Low,2,Cat_3
|
|
2191
|
+
466443,Female,Yes,66,Yes,Artist,4,Low,2,Cat_6
|
|
2192
|
+
466450,Female,No,32,Yes,Healthcare,1,Low,1,Cat_6
|
|
2193
|
+
466455,Female,Yes,32,Yes,Doctor,4,Low,2,Cat_6
|
|
2194
|
+
466456,Female,Yes,37,No,Doctor,8,Low,1,Cat_2
|
|
2195
|
+
466457,Female,Yes,62,,Lawyer,9,Low,5,Cat_6
|
|
2196
|
+
466463,Female,No,33,Yes,Healthcare,3,Low,4,Cat_4
|
|
2197
|
+
466464,Female,Yes,45,Yes,Homemaker,2,Average,2,Cat_3
|
|
2198
|
+
466466,Female,,18,No,Healthcare,5,Low,5,Cat_3
|
|
2199
|
+
466467,Female,Yes,37,Yes,Artist,0,Average,3,Cat_3
|
|
2200
|
+
466468,Male,No,30,Yes,Doctor,4,Low,4,Cat_3
|
|
2201
|
+
466474,Male,No,31,Yes,Entertainment,5,Low,3,Cat_6
|
|
2202
|
+
466478,Female,Yes,48,Yes,Artist,0,Average,4,Cat_3
|
|
2203
|
+
466483,Male,No,31,Yes,Healthcare,,Low,1,Cat_3
|
|
2204
|
+
466486,Female,Yes,36,Yes,Doctor,8,Low,2,Cat_4
|
|
2205
|
+
466488,Male,Yes,61,Yes,Entertainment,0,Average,6,Cat_6
|
|
2206
|
+
466490,Female,Yes,83,No,Lawyer,0,High,2,Cat_6
|
|
2207
|
+
466493,Male,Yes,77,No,Lawyer,1,High,2,Cat_6
|
|
2208
|
+
466500,Female,Yes,46,Yes,Artist,3,High,3,Cat_4
|
|
2209
|
+
466501,Male,Yes,48,Yes,Engineer,0,Average,3,Cat_3
|
|
2210
|
+
466502,Male,No,19,No,Healthcare,0,Low,5,Cat_3
|
|
2211
|
+
466516,Male,No,21,No,Healthcare,1,Low,3,Cat_6
|
|
2212
|
+
466517,Female,No,40,No,Engineer,,Low,1,Cat_6
|
|
2213
|
+
466526,Male,No,27,No,Healthcare,0,Low,5,Cat_2
|
|
2214
|
+
466527,Female,Yes,49,No,Marketing,0,Low,1,Cat_5
|
|
2215
|
+
466530,Male,No,19,No,Healthcare,1,Low,4,
|
|
2216
|
+
466533,Female,No,53,Yes,Entertainment,1,Low,1,Cat_6
|
|
2217
|
+
466535,Male,No,29,Yes,Artist,8,Low,1,Cat_6
|
|
2218
|
+
466536,Male,No,23,No,Healthcare,3,Low,4,Cat_4
|
|
2219
|
+
466538,Male,Yes,84,Yes,Lawyer,1,High,2,Cat_6
|
|
2220
|
+
466541,Male,No,38,Yes,Entertainment,0,Low,4,Cat_6
|
|
2221
|
+
466543,Male,No,26,Yes,Doctor,11,Low,2,Cat_7
|
|
2222
|
+
466545,Female,No,19,No,Healthcare,1,Low,4,Cat_2
|
|
2223
|
+
466550,Female,,22,No,Healthcare,1,Low,4,Cat_6
|
|
2224
|
+
466552,Male,Yes,20,No,Entertainment,0,Low,2,Cat_6
|
|
2225
|
+
466553,Male,Yes,36,Yes,Healthcare,0,Low,3,Cat_6
|
|
2226
|
+
466556,Male,No,18,No,Healthcare,1,Low,3,Cat_6
|
|
2227
|
+
466562,Female,No,20,No,Healthcare,7,Low,4,Cat_6
|
|
2228
|
+
466564,Female,No,18,No,Marketing,1,Low,4,Cat_6
|
|
2229
|
+
466565,Male,Yes,32,No,Artist,7,Average,2,Cat_6
|
|
2230
|
+
466576,Female,No,18,No,Healthcare,0,Low,4,Cat_6
|
|
2231
|
+
466586,Male,No,18,No,Healthcare,0,Low,2,Cat_6
|
|
2232
|
+
466588,Female,No,21,No,Healthcare,8,Low,4,Cat_6
|
|
2233
|
+
466596,Female,Yes,75,Yes,Artist,1,High,2,Cat_6
|
|
2234
|
+
466603,Male,Yes,37,Yes,Engineer,0,Average,2,Cat_6
|
|
2235
|
+
466606,Female,Yes,35,Yes,Engineer,1,Low,3,Cat_3
|
|
2236
|
+
466613,Male,No,20,No,Healthcare,9,Low,3,Cat_6
|
|
2237
|
+
466623,Male,Yes,58,,Entertainment,2,Average,4,Cat_3
|
|
2238
|
+
466628,Male,No,33,No,Healthcare,8,Low,4,
|
|
2239
|
+
466631,Male,Yes,58,Yes,Artist,0,Low,3,Cat_6
|
|
2240
|
+
466634,Male,No,20,No,Healthcare,1,Low,5,Cat_6
|
|
2241
|
+
466635,Male,Yes,50,Yes,Artist,4,Average,2,Cat_6
|
|
2242
|
+
466644,Female,No,51,Yes,Homemaker,0,Low,,Cat_6
|
|
2243
|
+
466650,Female,No,27,No,Healthcare,8,Low,3,Cat_4
|
|
2244
|
+
466652,Female,Yes,58,Yes,Doctor,1,Average,2,Cat_6
|
|
2245
|
+
466655,Male,Yes,62,No,Executive,1,Low,2,Cat_6
|
|
2246
|
+
466656,Male,Yes,79,Yes,Marketing,0,High,2,Cat_6
|
|
2247
|
+
466658,Female,No,19,No,Healthcare,1,Low,4,Cat_6
|
|
2248
|
+
466662,Female,No,33,No,Engineer,0,Low,,Cat_4
|
|
2249
|
+
466665,Male,Yes,36,Yes,Artist,1,Average,2,Cat_6
|
|
2250
|
+
466666,Female,Yes,29,Yes,Healthcare,1,Low,2,Cat_6
|
|
2251
|
+
466671,Female,,28,No,Healthcare,3,Low,3,Cat_2
|
|
2252
|
+
466686,Female,No,22,No,Healthcare,0,Low,4,Cat_6
|
|
2253
|
+
466687,Male,No,21,No,Healthcare,1,Low,3,Cat_6
|
|
2254
|
+
466688,Male,No,22,No,Healthcare,0,Low,3,Cat_4
|
|
2255
|
+
466689,Male,No,28,Yes,Artist,9,Low,3,Cat_6
|
|
2256
|
+
466696,Female,Yes,48,Yes,Artist,3,Average,4,Cat_6
|
|
2257
|
+
466704,Male,Yes,48,Yes,Doctor,3,Average,2,Cat_6
|
|
2258
|
+
466705,Male,Yes,66,No,Lawyer,0,Low,3,Cat_6
|
|
2259
|
+
466707,Female,Yes,47,Yes,Homemaker,1,Low,4,Cat_6
|
|
2260
|
+
466713,Female,Yes,68,Yes,Artist,1,High,4,Cat_6
|
|
2261
|
+
466718,Male,Yes,73,,Executive,0,High,2,Cat_6
|
|
2262
|
+
466720,Female,Yes,59,No,Lawyer,0,Low,1,Cat_2
|
|
2263
|
+
466721,Male,Yes,38,Yes,Doctor,7,Average,2,Cat_6
|
|
2264
|
+
466725,Female,Yes,76,No,Lawyer,1,High,2,Cat_6
|
|
2265
|
+
466731,Female,Yes,40,Yes,Engineer,3,Low,2,Cat_4
|
|
2266
|
+
466732,Female,Yes,49,Yes,Engineer,0,High,2,Cat_4
|
|
2267
|
+
466733,Female,No,33,No,Homemaker,0,Low,,Cat_4
|
|
2268
|
+
466735,Male,No,18,No,Healthcare,1,Low,,Cat_6
|
|
2269
|
+
466746,Female,Yes,69,Yes,Lawyer,0,High,2,Cat_6
|
|
2270
|
+
466749,Male,No,22,,Healthcare,1,Low,5,Cat_3
|
|
2271
|
+
466750,Female,No,18,,Healthcare,0,Low,3,Cat_3
|
|
2272
|
+
466751,Female,No,20,,Healthcare,1,Low,4,Cat_6
|
|
2273
|
+
466752,Male,Yes,36,Yes,Healthcare,1,Low,1,Cat_6
|
|
2274
|
+
466753,Female,Yes,67,Yes,Artist,0,Average,2,Cat_3
|
|
2275
|
+
466754,Female,Yes,37,Yes,Artist,1,Average,3,Cat_6
|
|
2276
|
+
466759,Female,No,26,No,Healthcare,2,Low,,Cat_6
|
|
2277
|
+
466760,Male,Yes,51,Yes,Doctor,1,Average,4,Cat_6
|
|
2278
|
+
466765,Female,Yes,67,Yes,Lawyer,1,Low,2,Cat_6
|
|
2279
|
+
466769,Female,No,29,Yes,Entertainment,1,Low,4,Cat_6
|
|
2280
|
+
466775,Female,Yes,76,Yes,Lawyer,0,Low,2,Cat_6
|
|
2281
|
+
466776,Male,Yes,86,Yes,Lawyer,0,Low,1,Cat_6
|
|
2282
|
+
466777,Female,Yes,51,Yes,Homemaker,9,Average,2,Cat_6
|
|
2283
|
+
466778,Male,Yes,35,Yes,Entertainment,1,Low,2,Cat_3
|
|
2284
|
+
466788,Male,No,30,No,Doctor,3,Low,2,Cat_6
|
|
2285
|
+
466790,Male,Yes,47,Yes,Doctor,0,Average,2,Cat_3
|
|
2286
|
+
466791,Male,Yes,81,No,Lawyer,0,Low,1,Cat_6
|
|
2287
|
+
466792,Female,Yes,85,No,Lawyer,0,Low,1,Cat_6
|
|
2288
|
+
466795,Male,,60,Yes,Entertainment,,Average,5,Cat_6
|
|
2289
|
+
466799,Female,No,21,No,Healthcare,2,Low,3,Cat_6
|
|
2290
|
+
466802,Female,,40,Yes,Engineer,0,Low,1,Cat_6
|
|
2291
|
+
466804,Female,,35,Yes,Homemaker,4,Low,1,Cat_3
|
|
2292
|
+
466807,Female,,35,Yes,Healthcare,0,Low,1,Cat_4
|
|
2293
|
+
466808,Female,No,41,No,Engineer,1,Low,1,Cat_6
|
|
2294
|
+
466810,Male,No,18,No,Healthcare,0,Low,3,Cat_6
|
|
2295
|
+
466811,Male,No,22,No,Healthcare,0,Low,,Cat_4
|
|
2296
|
+
466813,Male,Yes,61,Yes,Artist,0,Low,,Cat_6
|
|
2297
|
+
466814,Male,No,23,No,Healthcare,0,Low,3,Cat_6
|
|
2298
|
+
466815,Male,No,31,No,Healthcare,1,Low,5,Cat_4
|
|
2299
|
+
466816,Male,Yes,82,Yes,Lawyer,0,High,2,Cat_6
|
|
2300
|
+
466818,Male,Yes,84,No,Executive,1,High,2,Cat_6
|
|
2301
|
+
466826,Male,Yes,41,Yes,Entertainment,1,Low,2,Cat_6
|
|
2302
|
+
466832,Female,Yes,66,Yes,Artist,0,Average,2,Cat_4
|
|
2303
|
+
466833,Male,Yes,57,Yes,Artist,5,Low,2,Cat_6
|
|
2304
|
+
466846,Male,No,20,No,Healthcare,3,Low,4,Cat_2
|
|
2305
|
+
466863,Female,No,32,No,Homemaker,14,Low,1,Cat_6
|
|
2306
|
+
466867,Female,No,29,No,Homemaker,11,Low,1,Cat_6
|
|
2307
|
+
466871,Male,Yes,36,Yes,Executive,,High,4,Cat_6
|
|
2308
|
+
466874,Male,Yes,38,Yes,Entertainment,1,Average,3,Cat_6
|
|
2309
|
+
466884,Female,Yes,43,No,Doctor,1,Low,1,Cat_6
|
|
2310
|
+
466886,Female,No,42,No,Marketing,1,Low,1,Cat_6
|
|
2311
|
+
466891,Female,Yes,48,No,Homemaker,8,Low,1,Cat_6
|
|
2312
|
+
466905,Male,Yes,62,Yes,Artist,0,Low,1,Cat_6
|
|
2313
|
+
466906,Male,No,63,Yes,Artist,0,Low,2,Cat_6
|
|
2314
|
+
466908,Male,Yes,60,Yes,Entertainment,1,Low,2,Cat_6
|
|
2315
|
+
466909,Male,Yes,63,Yes,Artist,1,Low,2,Cat_6
|
|
2316
|
+
466910,Male,Yes,62,Yes,Entertainment,9,Low,1,Cat_6
|
|
2317
|
+
466917,Male,Yes,40,No,Executive,4,Low,,Cat_6
|
|
2318
|
+
466918,Male,Yes,63,Yes,Artist,0,Average,1,Cat_6
|
|
2319
|
+
466920,Male,No,19,No,Healthcare,6,Low,4,Cat_3
|
|
2320
|
+
466923,Female,No,21,No,Homemaker,8,Low,1,Cat_6
|
|
2321
|
+
466926,Male,No,21,No,Healthcare,1,Low,,Cat_6
|
|
2322
|
+
466927,Male,No,22,No,Engineer,6,Low,5,Cat_2
|
|
2323
|
+
466936,Male,Yes,60,No,Lawyer,1,High,3,Cat_6
|
|
2324
|
+
466938,Male,Yes,59,Yes,Artist,8,Low,1,Cat_6
|
|
2325
|
+
466939,Male,Yes,73,No,Lawyer,1,High,2,Cat_6
|
|
2326
|
+
466951,Female,Yes,52,Yes,Artist,0,High,3,Cat_6
|
|
2327
|
+
466954,Female,Yes,66,No,Doctor,9,Average,2,Cat_6
|
|
2328
|
+
466955,Male,Yes,61,No,Entertainment,1,Low,4,Cat_3
|
|
2329
|
+
466956,Female,Yes,61,Yes,Artist,1,Low,1,Cat_6
|
|
2330
|
+
466961,Female,Yes,61,Yes,Artist,2,Average,2,Cat_6
|
|
2331
|
+
466966,Male,Yes,59,Yes,Entertainment,1,Average,2,Cat_6
|
|
2332
|
+
466967,Male,Yes,51,Yes,Artist,1,Low,1,Cat_6
|
|
2333
|
+
466970,Female,Yes,36,Yes,Homemaker,9,Low,2,Cat_4
|
|
2334
|
+
466971,Male,No,71,Yes,Executive,9,Low,3,Cat_6
|
|
2335
|
+
466975,Male,Yes,48,Yes,Artist,1,Average,2,Cat_6
|
|
2336
|
+
466990,Male,Yes,43,Yes,Entertainment,9,Average,2,Cat_6
|
|
2337
|
+
466996,Female,No,36,Yes,Artist,9,Low,1,Cat_6
|
|
2338
|
+
466998,Female,Yes,57,No,Artist,,Average,3,Cat_6
|
|
2339
|
+
466999,Male,No,33,Yes,Healthcare,1,Low,3,Cat_6
|
|
2340
|
+
467000,Female,No,31,Yes,Artist,1,Low,6,Cat_4
|
|
2341
|
+
467008,Male,Yes,57,Yes,Artist,1,Average,3,Cat_6
|
|
2342
|
+
467009,Female,No,33,No,Homemaker,2,Low,4,Cat_3
|
|
2343
|
+
467022,Male,No,30,Yes,Artist,1,Low,5,Cat_6
|
|
2344
|
+
467023,Male,Yes,26,No,Doctor,8,Average,2,Cat_6
|
|
2345
|
+
467025,Female,No,29,No,Engineer,1,Low,3,Cat_6
|
|
2346
|
+
467044,Female,No,42,Yes,Marketing,0,Low,1,Cat_7
|
|
2347
|
+
467046,Female,No,30,No,Doctor,0,Low,5,Cat_3
|
|
2348
|
+
467050,Female,No,18,No,Engineer,1,Low,5,Cat_2
|
|
2349
|
+
467053,Male,No,18,No,Healthcare,5,Low,4,Cat_6
|
|
2350
|
+
467058,Male,Yes,80,No,Executive,0,High,2,Cat_6
|
|
2351
|
+
467060,Male,No,35,No,Engineer,7,Low,2,Cat_6
|
|
2352
|
+
467063,Male,Yes,45,Yes,Entertainment,1,Average,2,Cat_6
|
|
2353
|
+
467073,Male,No,42,Yes,Engineer,8,Low,1,Cat_6
|
|
2354
|
+
467078,Female,Yes,26,No,Healthcare,,High,2,Cat_7
|
|
2355
|
+
467079,Male,Yes,38,Yes,Artist,1,Low,2,Cat_6
|
|
2356
|
+
467084,Male,Yes,41,Yes,Artist,1,Average,7,Cat_6
|
|
2357
|
+
467085,Male,No,45,Yes,Entertainment,1,Low,2,Cat_6
|
|
2358
|
+
467088,Male,Yes,57,Yes,Artist,1,Low,1,Cat_3
|
|
2359
|
+
467092,Female,No,33,Yes,Healthcare,5,Low,4,Cat_6
|
|
2360
|
+
467093,Female,Yes,51,Yes,Artist,8,Average,2,Cat_6
|
|
2361
|
+
467098,Male,Yes,85,No,Executive,1,Low,2,Cat_6
|
|
2362
|
+
467099,Female,No,30,No,Entertainment,0,Low,3,Cat_6
|
|
2363
|
+
467107,Male,Yes,38,Yes,Engineer,1,Average,3,Cat_4
|
|
2364
|
+
467111,Male,Yes,66,Yes,Artist,1,Low,1,Cat_6
|
|
2365
|
+
467112,Male,No,40,Yes,Artist,0,Low,2,Cat_2
|
|
2366
|
+
467113,Male,Yes,83,Yes,Lawyer,,Low,1,Cat_6
|
|
2367
|
+
467114,Male,Yes,61,Yes,Marketing,1,Average,3,Cat_6
|
|
2368
|
+
467116,Male,Yes,65,Yes,Executive,1,High,2,Cat_6
|
|
2369
|
+
467119,Male,Yes,37,No,Marketing,0,High,4,Cat_7
|
|
2370
|
+
467121,Male,Yes,47,Yes,Doctor,0,Low,,Cat_6
|
|
2371
|
+
467125,Male,Yes,51,No,Entertainment,1,Average,4,Cat_3
|
|
2372
|
+
467127,Male,Yes,73,No,Lawyer,,Low,1,Cat_6
|
|
2373
|
+
467129,Female,,49,No,Marketing,1,Average,3,Cat_4
|
|
2374
|
+
467132,Female,Yes,73,Yes,Engineer,0,Low,2,Cat_6
|
|
2375
|
+
467136,Male,Yes,37,No,Entertainment,1,Average,4,Cat_4
|
|
2376
|
+
467137,Female,Yes,55,Yes,Engineer,0,Low,1,Cat_6
|
|
2377
|
+
467138,Female,No,32,No,Homemaker,12,Low,1,Cat_6
|
|
2378
|
+
467139,Female,No,28,Yes,Artist,0,Low,3,Cat_6
|
|
2379
|
+
467143,Female,No,50,No,Lawyer,0,Low,3,Cat_6
|
|
2380
|
+
467144,Male,Yes,38,Yes,Entertainment,1,Low,2,Cat_6
|
|
2381
|
+
467146,Female,No,28,No,Homemaker,8,Low,1,Cat_6
|
|
2382
|
+
467147,Male,No,46,Yes,Entertainment,1,Low,1,Cat_6
|
|
2383
|
+
467153,Female,Yes,47,Yes,Artist,0,Low,,Cat_6
|
|
2384
|
+
467157,Male,Yes,39,Yes,Executive,8,High,6,Cat_7
|
|
2385
|
+
467158,Female,No,26,No,Healthcare,1,Low,,Cat_6
|
|
2386
|
+
467159,Female,Yes,37,Yes,Homemaker,9,High,2,Cat_6
|
|
2387
|
+
467160,Male,Yes,43,No,,1,Average,2,Cat_3
|
|
2388
|
+
467165,Female,No,27,No,Homemaker,,Low,1,Cat_6
|
|
2389
|
+
467167,Male,Yes,69,Yes,Artist,1,Average,,Cat_3
|
|
2390
|
+
467168,Male,Yes,47,Yes,Artist,9,Average,2,Cat_1
|
|
2391
|
+
467172,Male,No,36,,Artist,9,Low,2,Cat_6
|
|
2392
|
+
467180,Male,Yes,43,Yes,Healthcare,1,Low,3,Cat_3
|
|
2393
|
+
467183,Male,Yes,42,Yes,Entertainment,3,Average,4,Cat_6
|
|
2394
|
+
467185,Male,No,29,Yes,Artist,0,Low,3,Cat_6
|
|
2395
|
+
467189,Female,Yes,45,Yes,Artist,1,High,4,Cat_6
|
|
2396
|
+
467193,Male,Yes,88,Yes,Artist,1,Low,2,Cat_6
|
|
2397
|
+
467201,Female,No,33,Yes,Engineer,,Low,5,Cat_7
|
|
2398
|
+
467202,Male,Yes,18,No,Doctor,0,Low,4,Cat_6
|
|
2399
|
+
467208,Female,Yes,41,Yes,Homemaker,,High,2,Cat_6
|
|
2400
|
+
467212,Female,No,28,Yes,Doctor,1,Low,3,Cat_6
|
|
2401
|
+
467216,Female,No,30,Yes,Entertainment,0,Low,1,Cat_6
|
|
2402
|
+
467217,Female,Yes,79,Yes,Lawyer,,High,2,Cat_6
|
|
2403
|
+
467218,Female,No,27,Yes,Artist,8,Low,1,Cat_6
|
|
2404
|
+
467223,Female,Yes,53,Yes,Engineer,0,Average,4,Cat_6
|
|
2405
|
+
467227,Female,No,43,Yes,Artist,14,Low,1,Cat_4
|
|
2406
|
+
467230,Male,No,19,No,Healthcare,1,Low,4,Cat_6
|
|
2407
|
+
467232,Male,No,26,No,Entertainment,1,Low,2,Cat_6
|
|
2408
|
+
467233,Female,No,67,No,Artist,1,Low,2,Cat_6
|
|
2409
|
+
467235,Female,No,32,Yes,Artist,1,Low,2,Cat_5
|
|
2410
|
+
467238,Female,No,26,No,Doctor,7,Low,4,Cat_6
|
|
2411
|
+
467239,Female,No,29,No,Engineer,0,Low,3,Cat_6
|
|
2412
|
+
467241,Female,No,33,Yes,Artist,9,Low,1,Cat_6
|
|
2413
|
+
467242,Male,No,22,No,Doctor,0,Low,3,Cat_6
|
|
2414
|
+
467247,Female,No,27,No,Engineer,0,Low,2,Cat_6
|
|
2415
|
+
467256,Male,No,30,No,Healthcare,1,Low,4,Cat_2
|
|
2416
|
+
467260,Male,No,25,No,Doctor,8,Low,4,Cat_6
|
|
2417
|
+
467263,Female,No,32,No,Marketing,,Low,1,Cat_4
|
|
2418
|
+
467268,Male,Yes,85,Yes,Lawyer,,Low,1,Cat_6
|
|
2419
|
+
467275,Male,No,29,Yes,Healthcare,,Low,,Cat_6
|
|
2420
|
+
467281,Male,Yes,56,Yes,Lawyer,0,Low,4,Cat_6
|
|
2421
|
+
467283,Male,Yes,52,Yes,Artist,0,Average,3,Cat_2
|
|
2422
|
+
467288,Female,No,25,No,Healthcare,,Low,5,Cat_6
|
|
2423
|
+
467296,Female,Yes,65,Yes,Artist,,Average,2,Cat_3
|
|
2424
|
+
467300,Female,Yes,49,Yes,Artist,1,Low,1,Cat_6
|
|
2425
|
+
467301,Female,Yes,73,No,Lawyer,1,Low,2,Cat_6
|
|
2426
|
+
467303,Male,Yes,36,Yes,Doctor,2,Average,2,Cat_6
|
|
2427
|
+
467309,Female,No,36,Yes,Engineer,4,Low,1,Cat_7
|
|
2428
|
+
467311,Male,Yes,71,Yes,Lawyer,1,High,3,Cat_6
|
|
2429
|
+
467312,Female,Yes,55,Yes,Artist,0,Low,2,Cat_6
|
|
2430
|
+
467313,Male,Yes,35,Yes,Entertainment,1,Average,2,Cat_6
|
|
2431
|
+
467314,Male,Yes,41,No,Artist,0,Average,2,Cat_6
|
|
2432
|
+
467317,Male,No,42,Yes,Artist,1,Low,1,Cat_2
|
|
2433
|
+
467318,Male,Yes,35,Yes,Doctor,,Low,2,Cat_6
|
|
2434
|
+
467322,Female,Yes,48,Yes,Artist,1,Average,2,Cat_1
|
|
2435
|
+
467325,Female,Yes,73,Yes,Lawyer,1,High,2,Cat_6
|
|
2436
|
+
467329,Female,No,40,Yes,Doctor,1,Low,1,Cat_6
|
|
2437
|
+
467338,Female,No,29,Yes,Healthcare,3,Low,6,Cat_6
|
|
2438
|
+
467339,Male,,62,Yes,Artist,1,Average,3,Cat_6
|
|
2439
|
+
467344,Male,Yes,89,Yes,Lawyer,0,Low,2,Cat_6
|
|
2440
|
+
467345,Male,Yes,86,Yes,Lawyer,0,Low,1,Cat_6
|
|
2441
|
+
467346,Male,Yes,38,Yes,Artist,0,Average,3,Cat_6
|
|
2442
|
+
467352,Male,Yes,45,Yes,Executive,0,High,4,Cat_6
|
|
2443
|
+
467355,Male,No,26,No,Healthcare,0,Low,4,Cat_6
|
|
2444
|
+
467357,Male,Yes,55,Yes,,1,Low,2,Cat_6
|
|
2445
|
+
467358,Female,Yes,52,Yes,Artist,1,Average,5,Cat_6
|
|
2446
|
+
467359,Male,Yes,43,Yes,Artist,5,Average,2,Cat_6
|
|
2447
|
+
467365,Male,No,35,Yes,Artist,1,Low,1,Cat_6
|
|
2448
|
+
467367,Male,Yes,73,Yes,Lawyer,1,Low,2,Cat_6
|
|
2449
|
+
467369,Male,No,41,Yes,Artist,4,Low,3,Cat_6
|
|
2450
|
+
467373,Male,No,27,Yes,Healthcare,,Low,1,Cat_6
|
|
2451
|
+
467375,Male,Yes,35,Yes,Entertainment,6,Low,3,Cat_6
|
|
2452
|
+
467378,Female,Yes,63,Yes,Artist,0,Average,2,Cat_6
|
|
2453
|
+
467384,Male,No,41,Yes,,,Low,1,Cat_6
|
|
2454
|
+
467385,Male,No,53,No,Artist,1,Low,,Cat_4
|
|
2455
|
+
467389,Male,No,42,No,Engineer,0,Low,,Cat_6
|
|
2456
|
+
467393,Female,Yes,46,Yes,Artist,0,Average,4,Cat_6
|
|
2457
|
+
467398,Male,Yes,38,No,Entertainment,0,Low,2,Cat_6
|
|
2458
|
+
467399,Male,Yes,25,Yes,Doctor,1,Low,3,Cat_6
|
|
2459
|
+
467403,Female,Yes,40,Yes,Artist,7,Average,3,Cat_4
|
|
2460
|
+
467410,Female,Yes,55,Yes,Lawyer,1,Low,2,Cat_6
|
|
2461
|
+
467415,Female,No,29,Yes,Healthcare,0,Low,1,Cat_6
|
|
2462
|
+
467419,Female,Yes,39,Yes,Artist,2,Low,1,Cat_6
|
|
2463
|
+
467421,Male,Yes,50,No,Doctor,1,Average,3,Cat_6
|
|
2464
|
+
467422,Female,Yes,61,Yes,Artist,1,Average,2,Cat_6
|
|
2465
|
+
467423,Male,Yes,56,Yes,Artist,0,Low,1,Cat_6
|
|
2466
|
+
467434,Male,No,40,Yes,Entertainment,1,Low,3,Cat_1
|
|
2467
|
+
467437,Female,Yes,86,Yes,Lawyer,0,High,2,Cat_6
|
|
2468
|
+
467438,Male,No,27,No,Entertainment,5,Low,3,Cat_6
|
|
2469
|
+
467441,Male,No,35,Yes,Artist,,Low,1,Cat_6
|
|
2470
|
+
467442,Male,Yes,56,Yes,Artist,,Average,2,Cat_6
|
|
2471
|
+
467444,Female,Yes,36,Yes,Artist,,Low,2,Cat_6
|
|
2472
|
+
467445,Male,Yes,32,No,Doctor,9,Low,2,Cat_2
|
|
2473
|
+
467449,Female,Yes,85,Yes,Lawyer,1,Low,2,Cat_6
|
|
2474
|
+
467451,Female,Yes,51,Yes,Artist,0,Low,1,Cat_1
|
|
2475
|
+
467455,Female,No,41,Yes,Artist,8,Low,2,Cat_6
|
|
2476
|
+
467456,Male,Yes,42,No,Executive,5,High,4,Cat_6
|
|
2477
|
+
467457,Female,No,30,Yes,Marketing,0,Low,6,Cat_6
|
|
2478
|
+
467459,Male,Yes,42,Yes,Executive,,High,5,Cat_6
|
|
2479
|
+
467463,Female,Yes,42,Yes,Artist,9,Average,3,Cat_6
|
|
2480
|
+
467468,Female,No,25,No,Healthcare,,Low,5,Cat_7
|
|
2481
|
+
467472,Male,Yes,60,Yes,Executive,4,High,4,Cat_6
|
|
2482
|
+
467474,Male,No,18,No,Healthcare,2,Low,5,Cat_6
|
|
2483
|
+
467479,Male,Yes,36,Yes,Executive,0,Average,4,Cat_6
|
|
2484
|
+
467481,Male,Yes,49,Yes,Artist,0,Average,2,Cat_6
|
|
2485
|
+
467482,Male,Yes,42,Yes,Executive,1,High,3,Cat_6
|
|
2486
|
+
467487,Male,Yes,42,No,Artist,1,Average,5,Cat_4
|
|
2487
|
+
467488,Female,Yes,39,Yes,Entertainment,,Average,2,Cat_2
|
|
2488
|
+
467492,Female,Yes,62,Yes,Doctor,1,Low,2,Cat_7
|
|
2489
|
+
467493,Male,Yes,47,Yes,Executive,0,High,4,
|
|
2490
|
+
467499,Male,Yes,39,Yes,Artist,,Low,3,Cat_6
|
|
2491
|
+
467500,Female,Yes,25,Yes,Artist,3,High,2,Cat_6
|
|
2492
|
+
467503,Female,No,27,Yes,Artist,1,Low,4,Cat_6
|
|
2493
|
+
467504,Female,,31,No,Doctor,0,Low,4,Cat_6
|
|
2494
|
+
467505,Male,Yes,36,Yes,Artist,0,Low,4,Cat_6
|
|
2495
|
+
467510,Male,Yes,51,Yes,Entertainment,3,Low,3,Cat_6
|
|
2496
|
+
467511,Male,Yes,63,Yes,Entertainment,,Low,1,Cat_6
|
|
2497
|
+
467514,Male,No,40,Yes,Artist,,Low,4,Cat_6
|
|
2498
|
+
467518,Male,No,22,No,Doctor,1,Low,,Cat_6
|
|
2499
|
+
467532,Male,Yes,52,Yes,Artist,9,Low,1,Cat_6
|
|
2500
|
+
467533,Male,Yes,89,Yes,Lawyer,4,Low,1,Cat_6
|
|
2501
|
+
467537,Female,Yes,65,No,Lawyer,,High,3,Cat_6
|
|
2502
|
+
467539,Male,Yes,48,Yes,Artist,,Average,4,Cat_7
|
|
2503
|
+
467540,Male,Yes,48,Yes,Healthcare,1,Average,4,Cat_6
|
|
2504
|
+
467542,Male,No,31,Yes,Healthcare,8,Low,1,Cat_6
|
|
2505
|
+
467557,Female,Yes,62,Yes,Artist,,Average,2,Cat_6
|
|
2506
|
+
467559,Male,Yes,58,Yes,Executive,0,Average,4,Cat_6
|
|
2507
|
+
467565,Male,Yes,60,Yes,Artist,0,Low,3,Cat_6
|
|
2508
|
+
467569,Male,No,19,No,Healthcare,,Low,4,Cat_6
|
|
2509
|
+
467570,Male,No,18,No,Healthcare,14,Low,,Cat_6
|
|
2510
|
+
467576,Male,Yes,48,Yes,Doctor,1,Average,3,Cat_6
|
|
2511
|
+
467579,Male,No,35,Yes,Doctor,5,Low,1,Cat_6
|
|
2512
|
+
467580,Male,No,27,Yes,Doctor,,Low,3,Cat_6
|
|
2513
|
+
467588,Male,Yes,60,Yes,Artist,0,Average,4,Cat_6
|
|
2514
|
+
467589,Male,No,32,No,Entertainment,0,Low,1,Cat_6
|
|
2515
|
+
467592,Male,Yes,40,Yes,Entertainment,7,Low,2,Cat_6
|
|
2516
|
+
467595,Female,No,25,Yes,Healthcare,0,Low,1,Cat_6
|
|
2517
|
+
467596,Male,Yes,42,No,Artist,1,Low,5,Cat_3
|
|
2518
|
+
467604,Male,No,26,No,Healthcare,8,Low,8,Cat_4
|
|
2519
|
+
467608,Male,No,27,Yes,Engineer,6,Low,1,Cat_6
|
|
2520
|
+
467609,Male,No,42,No,Artist,2,Low,4,Cat_6
|
|
2521
|
+
467610,Female,Yes,77,Yes,Lawyer,4,Low,1,Cat_6
|
|
2522
|
+
467612,Male,Yes,70,Yes,Executive,0,Low,,Cat_7
|
|
2523
|
+
467614,Male,Yes,36,No,Artist,4,Average,2,Cat_6
|
|
2524
|
+
467620,Male,Yes,57,Yes,Lawyer,6,Low,3,Cat_6
|
|
2525
|
+
467621,Male,Yes,76,Yes,Lawyer,1,Low,1,Cat_6
|
|
2526
|
+
467623,Male,Yes,77,Yes,,0,High,2,Cat_6
|
|
2527
|
+
467629,Male,Yes,52,Yes,Artist,1,Low,1,Cat_6
|
|
2528
|
+
467635,Female,No,35,Yes,Artist,9,Low,1,Cat_6
|
|
2529
|
+
467641,Male,Yes,43,Yes,Doctor,9,Average,2,Cat_6
|
|
2530
|
+
467643,Male,No,43,Yes,Artist,14,Low,1,Cat_3
|
|
2531
|
+
467654,Female,Yes,62,Yes,Artist,,High,4,Cat_6
|
|
2532
|
+
467657,Male,No,21,No,Healthcare,0,Low,4,Cat_3
|
|
2533
|
+
467658,Male,No,23,No,Healthcare,0,Low,4,Cat_3
|
|
2534
|
+
467659,Male,Yes,65,Yes,Entertainment,0,Average,2,Cat_6
|
|
2535
|
+
467664,Male,Yes,35,Yes,Executive,4,High,4,Cat_6
|
|
2536
|
+
467666,Male,Yes,48,Yes,Executive,4,High,3,Cat_6
|
|
2537
|
+
467667,Male,Yes,33,No,Doctor,9,Low,2,Cat_6
|
|
2538
|
+
467669,Male,Yes,82,No,Lawyer,1,High,2,Cat_6
|
|
2539
|
+
467673,Male,Yes,45,No,Executive,1,High,4,Cat_6
|
|
2540
|
+
467678,Male,No,56,No,Marketing,1,Low,2,Cat_6
|
|
2541
|
+
467679,Female,Yes,49,Yes,Artist,,Average,4,Cat_2
|
|
2542
|
+
467683,Male,Yes,30,Yes,Healthcare,8,High,3,Cat_2
|
|
2543
|
+
467684,Male,No,37,Yes,Healthcare,8,Low,3,Cat_2
|
|
2544
|
+
467685,Male,Yes,51,No,Marketing,0,High,6,Cat_4
|
|
2545
|
+
467693,Male,Yes,59,Yes,Entertainment,5,High,5,Cat_6
|
|
2546
|
+
467694,Male,Yes,56,Yes,Executive,0,High,2,Cat_6
|
|
2547
|
+
467699,Female,Yes,29,Yes,Doctor,0,Average,2,Cat_4
|
|
2548
|
+
467705,Male,Yes,31,Yes,Artist,,Low,2,Cat_6
|
|
2549
|
+
467706,Female,Yes,35,Yes,Artist,,Average,4,Cat_6
|
|
2550
|
+
467707,Male,Yes,89,Yes,Lawyer,7,High,2,Cat_6
|
|
2551
|
+
467710,Female,No,38,Yes,Artist,9,Low,4,Cat_6
|
|
2552
|
+
467715,Male,Yes,45,Yes,Executive,4,High,3,Cat_6
|
|
2553
|
+
467721,Male,No,37,Yes,Entertainment,0,Low,1,Cat_4
|
|
2554
|
+
467723,Male,Yes,74,No,Executive,1,Low,7,Cat_6
|
|
2555
|
+
467726,Male,Yes,82,Yes,Lawyer,0,High,2,Cat_6
|
|
2556
|
+
467727,Male,Yes,53,Yes,Artist,7,High,4,Cat_3
|
|
2557
|
+
467728,Female,Yes,43,No,Engineer,0,High,5,Cat_6
|
|
2558
|
+
467729,Male,Yes,62,Yes,Entertainment,2,Average,6,Cat_6
|
|
2559
|
+
467733,Male,Yes,56,No,Executive,8,High,3,Cat_6
|
|
2560
|
+
467734,Male,Yes,88,Yes,Lawyer,3,High,2,Cat_6
|
|
2561
|
+
467735,Male,No,28,Yes,Doctor,0,Low,2,Cat_6
|
|
2562
|
+
467737,Female,Yes,51,Yes,Entertainment,5,Average,2,Cat_6
|
|
2563
|
+
467739,Female,Yes,60,No,Artist,0,Average,4,Cat_6
|
|
2564
|
+
467740,Male,No,19,No,Healthcare,0,Low,3,Cat_6
|
|
2565
|
+
467741,Male,No,23,No,Healthcare,1,Low,3,Cat_4
|
|
2566
|
+
467749,Male,No,20,No,Healthcare,0,Low,9,Cat_7
|
|
2567
|
+
467763,Female,No,50,Yes,Artist,1,Low,1,Cat_2
|
|
2568
|
+
467767,Female,No,21,No,Marketing,4,Low,4,Cat_6
|
|
2569
|
+
467768,Male,Yes,62,Yes,Doctor,0,Average,2,Cat_6
|
|
2570
|
+
467769,Female,No,36,Yes,Doctor,1,Low,1,Cat_3
|
|
2571
|
+
467772,Female,No,31,No,Marketing,0,Low,2,Cat_6
|
|
2572
|
+
467779,Male,Yes,52,Yes,Doctor,4,Average,3,Cat_6
|
|
2573
|
+
467789,Male,No,20,No,Healthcare,1,Low,5,Cat_6
|
|
2574
|
+
467798,Female,No,23,No,,,Low,2,Cat_6
|
|
2575
|
+
467802,Female,Yes,48,Yes,Artist,1,High,5,Cat_6
|
|
2576
|
+
467803,Female,Yes,40,Yes,Entertainment,6,Average,2,Cat_6
|
|
2577
|
+
467806,Male,Yes,55,Yes,Artist,1,High,2,Cat_6
|
|
2578
|
+
467808,Female,Yes,62,Yes,Artist,1,Average,2,Cat_6
|
|
2579
|
+
467812,Male,No,48,Yes,Artist,0,Low,1,Cat_2
|
|
2580
|
+
467813,Male,Yes,36,Yes,Entertainment,1,Low,2,Cat_4
|
|
2581
|
+
467815,Female,Yes,73,Yes,Artist,0,Low,2,Cat_6
|
|
2582
|
+
467825,Female,No,23,No,Marketing,0,Low,8,Cat_6
|
|
2583
|
+
467828,Female,Yes,25,Yes,Artist,0,Average,2,Cat_2
|
|
2584
|
+
467838,Male,Yes,60,Yes,Artist,0,Average,2,Cat_6
|
|
2585
|
+
467848,Male,No,37,Yes,Artist,14,Low,1,Cat_6
|
|
2586
|
+
467849,Female,Yes,39,Yes,Doctor,0,Low,1,Cat_2
|
|
2587
|
+
467852,Female,No,39,Yes,Artist,12,Low,1,Cat_6
|
|
2588
|
+
467856,Male,Yes,58,Yes,Artist,0,Low,2,Cat_6
|
|
2589
|
+
467860,Female,No,33,Yes,Entertainment,0,Low,1,Cat_7
|
|
2590
|
+
467861,Female,No,29,No,Artist,,Low,4,Cat_4
|
|
2591
|
+
467864,Female,Yes,66,Yes,Lawyer,1,High,2,Cat_6
|
|
2592
|
+
467865,Female,No,40,Yes,Artist,2,Low,1,Cat_4
|
|
2593
|
+
467868,Female,Yes,66,Yes,Entertainment,0,High,2,Cat_6
|
|
2594
|
+
467876,Female,Yes,50,Yes,Artist,9,High,2,Cat_6
|
|
2595
|
+
467879,Female,Yes,51,Yes,Artist,,High,4,Cat_6
|
|
2596
|
+
467880,Female,Yes,50,Yes,Artist,0,Average,2,Cat_6
|
|
2597
|
+
467882,Female,No,39,Yes,Artist,1,Low,1,Cat_6
|
|
2598
|
+
467883,Female,Yes,46,Yes,Artist,0,Average,2,Cat_6
|
|
2599
|
+
467888,Male,No,29,No,Doctor,0,Low,4,Cat_6
|
|
2600
|
+
467891,Female,No,29,Yes,Doctor,0,Low,5,Cat_6
|
|
2601
|
+
467892,Male,No,23,No,Doctor,1,Low,5,Cat_6
|
|
2602
|
+
467894,Male,Yes,57,Yes,Artist,1,Average,2,Cat_6
|
|
2603
|
+
467895,Female,No,31,Yes,Healthcare,1,Low,4,Cat_6
|
|
2604
|
+
467898,Female,Yes,69,Yes,Artist,1,Low,1,Cat_6
|
|
2605
|
+
467901,Female,No,28,Yes,Entertainment,0,Low,4,Cat_6
|
|
2606
|
+
467904,Female,No,31,Yes,Artist,14,Low,1,Cat_6
|
|
2607
|
+
467905,Male,Yes,37,Yes,Executive,0,High,3,Cat_6
|
|
2608
|
+
467911,Male,Yes,58,Yes,Healthcare,0,Low,4,Cat_6
|
|
2609
|
+
467913,Male,Yes,48,Yes,Artist,3,Low,1,Cat_6
|
|
2610
|
+
467915,Female,No,18,No,Doctor,1,Low,4,Cat_6
|
|
2611
|
+
467917,Female,No,27,Yes,Healthcare,2,Low,4,Cat_1
|
|
2612
|
+
467927,Male,No,30,Yes,Doctor,8,Low,6,Cat_2
|
|
2613
|
+
467929,Female,Yes,36,Yes,Artist,1,Average,2,Cat_6
|
|
2614
|
+
467930,Male,Yes,45,Yes,Entertainment,4,Average,2,Cat_6
|
|
2615
|
+
467932,Female,No,26,No,Healthcare,1,Low,4,Cat_6
|
|
2616
|
+
467933,Female,No,23,No,Healthcare,0,Low,3,Cat_6
|
|
2617
|
+
467934,Female,No,42,Yes,Artist,0,Low,1,Cat_6
|
|
2618
|
+
467938,Male,Yes,46,Yes,Entertainment,5,Low,1,Cat_2
|
|
2619
|
+
467940,Female,No,27,No,Marketing,8,Low,4,Cat_2
|
|
2620
|
+
467946,Female,Yes,42,Yes,Artist,0,Low,2,Cat_6
|
|
2621
|
+
467948,Female,No,19,No,Healthcare,0,Low,3,Cat_6
|
|
2622
|
+
467949,Male,No,21,No,Healthcare,1,Low,4,Cat_4
|
|
2623
|
+
467950,Female,No,35,Yes,Entertainment,1,Low,2,Cat_6
|
|
2624
|
+
467954,Male,No,29,No,Healthcare,9,Low,4,Cat_6
|
|
2625
|
+
467958,Female,No,35,Yes,Doctor,1,Low,1,Cat_6
|
|
2626
|
+
467960,Female,No,53,Yes,Entertainment,,Low,2,Cat_6
|
|
2627
|
+
467961,Male,Yes,47,Yes,Executive,1,High,5,Cat_4
|
|
2628
|
+
467968,Female,No,43,Yes,Healthcare,9,Low,3,Cat_7
|