teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (263) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +183 -0
  4. teradataml/__init__.py +6 -3
  5. teradataml/_version.py +2 -2
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +275 -40
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +1 -0
  11. teradataml/analytics/json_parser/utils.py +17 -21
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +10 -2
  15. teradataml/analytics/table_operator/__init__.py +3 -2
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +62 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1553 -319
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +276 -319
  22. teradataml/automl/data_transformation.py +163 -81
  23. teradataml/automl/feature_engineering.py +402 -239
  24. teradataml/automl/feature_exploration.py +9 -2
  25. teradataml/automl/model_evaluation.py +48 -51
  26. teradataml/automl/model_training.py +291 -189
  27. teradataml/catalog/byom.py +8 -8
  28. teradataml/catalog/model_cataloging_utils.py +1 -1
  29. teradataml/clients/auth_client.py +133 -0
  30. teradataml/clients/pkce_client.py +1 -1
  31. teradataml/common/aed_utils.py +3 -2
  32. teradataml/common/constants.py +48 -6
  33. teradataml/common/deprecations.py +13 -7
  34. teradataml/common/garbagecollector.py +156 -120
  35. teradataml/common/messagecodes.py +6 -1
  36. teradataml/common/messages.py +3 -1
  37. teradataml/common/sqlbundle.py +1 -1
  38. teradataml/common/utils.py +103 -11
  39. teradataml/common/wrapper_utils.py +1 -1
  40. teradataml/context/context.py +121 -31
  41. teradataml/data/advertising.csv +201 -0
  42. teradataml/data/bank_marketing.csv +11163 -0
  43. teradataml/data/bike_sharing.csv +732 -0
  44. teradataml/data/boston2cols.csv +721 -0
  45. teradataml/data/breast_cancer.csv +570 -0
  46. teradataml/data/complaints_test_tokenized.csv +353 -0
  47. teradataml/data/complaints_tokens_model.csv +348 -0
  48. teradataml/data/covid_confirm_sd.csv +83 -0
  49. teradataml/data/customer_segmentation_test.csv +2628 -0
  50. teradataml/data/customer_segmentation_train.csv +8069 -0
  51. teradataml/data/dataframe_example.json +10 -0
  52. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  53. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  54. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  55. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  56. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  57. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  58. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  59. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  60. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  61. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  62. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  63. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  64. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  65. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  66. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  67. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  68. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  69. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  70. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  71. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  72. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  73. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  74. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  75. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  76. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  77. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  78. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  79. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  80. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  81. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  82. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  83. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  84. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  85. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  86. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  87. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  88. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  89. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  90. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  91. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  92. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  93. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  94. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  95. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  96. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  97. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  98. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  99. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  100. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  101. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  102. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  103. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  104. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  105. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  106. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  107. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  108. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  109. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  110. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  111. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  112. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  113. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  114. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  115. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  116. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  117. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  118. teradataml/data/dwt2d_dataTable.csv +65 -0
  119. teradataml/data/dwt_dataTable.csv +8 -0
  120. teradataml/data/dwt_filterTable.csv +3 -0
  121. teradataml/data/finance_data4.csv +13 -0
  122. teradataml/data/glm_example.json +28 -1
  123. teradataml/data/grocery_transaction.csv +19 -0
  124. teradataml/data/housing_train_segment.csv +201 -0
  125. teradataml/data/idwt2d_dataTable.csv +5 -0
  126. teradataml/data/idwt_dataTable.csv +8 -0
  127. teradataml/data/idwt_filterTable.csv +3 -0
  128. teradataml/data/insect2Cols.csv +61 -0
  129. teradataml/data/interval_data.csv +5 -0
  130. teradataml/data/jsons/paired_functions.json +14 -0
  131. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  132. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  133. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  134. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  135. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  136. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  137. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  138. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  139. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  140. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  141. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  142. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  143. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  144. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  145. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  146. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  147. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  148. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  149. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  150. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  151. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  152. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  153. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  154. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  155. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  156. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  157. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  158. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  159. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  160. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  161. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  162. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  163. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  164. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  165. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  166. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  167. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  168. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  169. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  170. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  171. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  172. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  173. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  174. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  175. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  176. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  177. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  178. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  179. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  180. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  181. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  182. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  183. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  184. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  185. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  186. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  187. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  188. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  189. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  190. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  191. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  192. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  193. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  194. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  195. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  196. teradataml/data/kmeans_example.json +5 -0
  197. teradataml/data/kmeans_table.csv +10 -0
  198. teradataml/data/load_example_data.py +8 -2
  199. teradataml/data/naivebayestextclassifier_example.json +1 -1
  200. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  201. teradataml/data/onehot_encoder_train.csv +4 -0
  202. teradataml/data/openml_example.json +29 -0
  203. teradataml/data/peppers.png +0 -0
  204. teradataml/data/real_values.csv +14 -0
  205. teradataml/data/sax_example.json +8 -0
  206. teradataml/data/scale_attributes.csv +3 -0
  207. teradataml/data/scale_example.json +52 -1
  208. teradataml/data/scale_input_part_sparse.csv +31 -0
  209. teradataml/data/scale_input_partitioned.csv +16 -0
  210. teradataml/data/scale_input_sparse.csv +11 -0
  211. teradataml/data/scale_parameters.csv +3 -0
  212. teradataml/data/scripts/deploy_script.py +21 -2
  213. teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
  214. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
  215. teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
  216. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  217. teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
  218. teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
  219. teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
  220. teradataml/data/star_pivot.csv +8 -0
  221. teradataml/data/templates/open_source_ml.json +2 -1
  222. teradataml/data/teradataml_example.json +97 -1
  223. teradataml/data/timestamp_data.csv +4 -0
  224. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  225. teradataml/data/uaf_example.json +55 -1
  226. teradataml/data/unpivot_example.json +15 -0
  227. teradataml/data/url_data.csv +9 -0
  228. teradataml/data/windowdfft.csv +16 -0
  229. teradataml/data/ztest_example.json +16 -0
  230. teradataml/dataframe/copy_to.py +9 -4
  231. teradataml/dataframe/data_transfer.py +125 -64
  232. teradataml/dataframe/dataframe.py +575 -57
  233. teradataml/dataframe/dataframe_utils.py +47 -9
  234. teradataml/dataframe/fastload.py +273 -90
  235. teradataml/dataframe/functions.py +339 -0
  236. teradataml/dataframe/row.py +160 -0
  237. teradataml/dataframe/setop.py +2 -2
  238. teradataml/dataframe/sql.py +740 -18
  239. teradataml/dataframe/window.py +1 -1
  240. teradataml/dbutils/dbutils.py +324 -18
  241. teradataml/geospatial/geodataframe.py +1 -1
  242. teradataml/geospatial/geodataframecolumn.py +1 -1
  243. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  244. teradataml/lib/aed_0_1.dll +0 -0
  245. teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
  246. teradataml/options/__init__.py +16 -5
  247. teradataml/options/configure.py +39 -6
  248. teradataml/options/display.py +2 -2
  249. teradataml/plot/axis.py +4 -4
  250. teradataml/scriptmgmt/UserEnv.py +26 -19
  251. teradataml/scriptmgmt/lls_utils.py +120 -16
  252. teradataml/table_operators/Script.py +4 -5
  253. teradataml/table_operators/TableOperator.py +160 -26
  254. teradataml/table_operators/table_operator_util.py +88 -41
  255. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  256. teradataml/telemetry_utils/__init__.py +0 -0
  257. teradataml/telemetry_utils/queryband.py +52 -0
  258. teradataml/utils/validators.py +41 -3
  259. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
  260. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
  261. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  262. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  263. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -0,0 +1,235 @@
1
+ def DWT(data1=None, data1_filter_expr=None, data2=None,
2
+ data2_filter_expr=None, wavelet=None, mode="symmetric",
3
+ level=1, part=None, input_fmt_input_mode=None,
4
+ output_fmt_index_style="NUMERICAL_SEQUENCE",
5
+ **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ DWT() is a function that performs discrete wavelet
9
+ transform (DWT).
10
+
11
+ PARAMETERS:
12
+ data1:
13
+ Required Argument.
14
+ Specifies the series to be used as an input.
15
+ Multiple payloads are supported, and each payload column is
16
+ transformed independently. Only REAL or MULTIVAR_REAL
17
+ payload content types are supported.
18
+ Types: TDSeries
19
+
20
+ data1_filter_expr:
21
+ Optional Argument.
22
+ Specifies the filter expression for "data1".
23
+ Types: ColumnExpression
24
+
25
+ data2:
26
+ Optional Argument.
27
+ Specifies the series to be used as an input. The
28
+ series specifies the filter. It should have two payload
29
+ columns corresponding to low and high pass
30
+ filters. Only MULTIVAR_REAL payload content type is
31
+ supported.
32
+ Types: TDSeries
33
+
34
+ data2_filter_expr:
35
+ Optional Argument.
36
+ Specifies the filter expression for "data2".
37
+ Types: ColumnExpression
38
+
39
+ wavelet:
40
+ Optional Argument.
41
+ Specifies the name of the wavelet.
42
+ Option families and names are:
43
+ * Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
44
+ * Coiflets: 'coif1', 'coif2', ... , 'coif17'
45
+ * Symlets: 'sym2', 'sym3', ... ,' sym20'
46
+ * Discrete Meyer: 'dmey'
47
+ * Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5',
48
+ 'bior2.2', 'bior2.4', 'bior2.6',
49
+ 'bior2.8', 'bior3.1', 'bior3.3',
50
+ 'bior3.5', 'bior3.7', 'bior3.9',
51
+ 'bior4.4', 'bior5.5', 'bior6.8'
52
+ * Reverse Biorthogonal: 'rbio1.1', 'rbio1.3',
53
+ 'rbio1.5' 'rbio2.2',
54
+ 'rbio2.4', 'rbio2.6',
55
+ 'rbio2.8', 'rbio3.1',
56
+ 'rbio3.3', 'rbio3.5',
57
+ 'rbio3.7','rbio3.9',
58
+ 'rbio4.4', 'rbio5.5',
59
+ 'rbio6.8'
60
+ Note:
61
+ * If 'wavelet' is specified, do not include a second
62
+ input series for the function. Otherwise, include
63
+ a second input series to provide the filter.
64
+ * Data type is case-sensitive.
65
+ Types: str
66
+
67
+ mode:
68
+ Optional Argument.
69
+ Specifies the signal extension mode. Data type is
70
+ case-insensitive.
71
+ Permitted Values:
72
+ * symmetric, sym, symh
73
+ * reflect, symw
74
+ * smooth, spd, sp1
75
+ * constant, sp0
76
+ * zero, zpd
77
+ * periodic, ppd
78
+ * periodization, per
79
+ * antisymmetric, asym, asymh
80
+ * antireflect, asymw
81
+ Default Value: symmetric
82
+ Types: str
83
+
84
+ level:
85
+ Optional Argument.
86
+ Specifies the level of decomposition.
87
+ Valid values are [1,15].
88
+ Default Value: 1
89
+ Types: int
90
+
91
+ part:
92
+ Optional Argument.
93
+ Specifies the indicator that the input is partial decomposition
94
+ result.
95
+ Note:
96
+ Data type is case-insensitive.
97
+ Permitted Values:
98
+ * a - the approximation
99
+ * d - the detail of decomposition of result.
100
+ Types: str
101
+
102
+ input_fmt_input_mode:
103
+ Optional Argument.
104
+ Specifies the input mode supported by the function.
105
+ When there are two input series, then the input_fmt_input_mode
106
+ specification is mandatory.
107
+ Permitted Values:
108
+ The input_fmt_input_mode parameter has the following options:
109
+ * ONE2ONE: Both the primary and secondary series
110
+ specifications contain a series name which
111
+ identifies the two series in the function.
112
+ * MANY2ONE: The MANY specification is the primary series
113
+ declaration. The secondary series specification
114
+ contains a series name that identifies the single
115
+ secondary series.
116
+ * MATCH: Both series are defined by their respective series
117
+ specification instance name declarations.
118
+ Types: str
119
+
120
+ output_fmt_index_style:
121
+ Optional Argument.
122
+ Specifies the index style of the output format.
123
+ Permitted Values: NUMERICAL_SEQUENCE
124
+ Default Value: NUMERICAL_SEQUENCE
125
+ Types: str
126
+
127
+ **generic_arguments:
128
+ Specifies the generic keyword arguments of UAF functions.
129
+ Below are the generic keyword arguments:
130
+ persist:
131
+ Optional Argument.
132
+ Specifies whether to persist the results of the
133
+ function in a table or not. When set to True,
134
+ results are persisted in a table; otherwise,
135
+ results are garbage collected at the end of the
136
+ session.
137
+ Note that, when UAF function is executed, an
138
+ analytic result table (ART) is created.
139
+ Default Value: False
140
+ Types: bool
141
+
142
+ volatile:
143
+ Optional Argument.
144
+ Specifies whether to put the results of the
145
+ function in a volatile ART or not. When set to
146
+ True, results are stored in a volatile ART,
147
+ otherwise not.
148
+ Default Value: False
149
+ Types: bool
150
+
151
+ output_table_name:
152
+ Optional Argument.
153
+ Specifies the name of the table to store results.
154
+ If not specified, a unique table name is internally
155
+ generated.
156
+ Types: str
157
+
158
+ output_db_name:
159
+ Optional Argument.
160
+ Specifies the name of the database to create output
161
+ table into. If not specified, table is created into
162
+ database specified by the user at the time of context
163
+ creation or configuration parameter. Argument is ignored,
164
+ if "output_table_name" is not specified.
165
+ Types: str
166
+
167
+
168
+ RETURNS:
169
+ Instance of DWT.
170
+ Output teradataml DataFrames can be accessed using attribute
171
+ references, such as DWT_obj.<attribute_name>.
172
+ Output teradataml DataFrame attribute name is:
173
+ 1. result
174
+
175
+
176
+ RAISES:
177
+ TeradataMlException, TypeError, ValueError
178
+
179
+
180
+ EXAMPLES:
181
+ # Notes:
182
+ # 1. Get the connection to Vantage, before importing the
183
+ # function in user space.
184
+ # 2. User can import the function, if it is available on
185
+ # Vantage user is connected to.
186
+ # 3. To check the list of UAF analytic functions available
187
+ # on Vantage user connected to, use
188
+ # "display_analytic_functions()".
189
+
190
+ # Check the list of available UAF analytic functions.
191
+ display_analytic_functions(type="UAF")
192
+
193
+ # Import function DWT.
194
+ from teradataml import DWT
195
+
196
+ # Load the example data.
197
+ load_example_data("uaf", ["dwt_dataTable", "dwt_filterTable"])
198
+
199
+ # Create teradataml DataFrame objects.
200
+ data1 = DataFrame.from_table("dwt_dataTable")
201
+ data2 = DataFrame.from_table("dwt_filterTable")
202
+
203
+ # Create teradataml TDSeries objects.
204
+ data1_series_df = TDSeries(data=data1,
205
+ id="id",
206
+ row_index="rowi",
207
+ row_index_style="SEQUENCE",
208
+ payload_field="v",
209
+ payload_content="REAL")
210
+
211
+ data2_series_df = TDSeries(data=data2,
212
+ id="id",
213
+ row_index="seq",
214
+ row_index_style="SEQUENCE",
215
+ payload_field=["lo", "hi"],
216
+ payload_content="MULTIVAR_REAL")
217
+
218
+ # Example 1: Perform discrete wavelet transform using two series as input.
219
+ uaf_out = DWT(data1=data1_series_df,
220
+ data2=data2_series_df,
221
+ data2_filter_expr=data2_series_df.id==1,
222
+ input_fmt_input_mode='MANY2ONE')
223
+
224
+ # Print the result DataFrame.
225
+ print(uaf_out.result)
226
+
227
+ # Example 2: Perform discrete wavelet transform using single series as input and the wavelet parameter.
228
+ uaf_out = DWT(data1=data1_series_df,
229
+ wavelet='haar')
230
+
231
+ # Print the result DataFrame.
232
+ print(uaf_out.result)
233
+
234
+ """
235
+
@@ -0,0 +1,214 @@
1
+ def DWT2D(data1=None, data1_filter_expr=None, data2=None,
2
+ data2_filter_expr=None, wavelet=None, mode="symmetric",
3
+ level=1, input_fmt_input_mode=None,
4
+ output_fmt_index_style="NUMERICAL_SEQUENCE",
5
+ **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ DWT2D() function performs discrete wavelet transform (DWT) for
9
+ two-dimensional data. The algorithm is applied first
10
+ vertically by column axis, then horizontally by row axis.
11
+
12
+
13
+ PARAMETERS:
14
+ data1:
15
+ Required Argument.
16
+ Specifies the input matrix. Multiple payloads are supported,
17
+ and each payload column is transformed independently.
18
+ Only REAL or MULTIVAR_REAL payload content types are supported.
19
+ Types: TDMatrix
20
+
21
+ data1_filter_expr:
22
+ Optional Argument.
23
+ Specifies the filter expression for "data1".
24
+ Types: ColumnExpression
25
+
26
+ data2:
27
+ Optional Argument.
28
+ Specifies the input series. The series specifies the filter.
29
+ It should have two payload columns corresponding to low and high
30
+ pass filters. Only MULTIVAR_REAL payload content type is supported.
31
+ Types: TDSeries
32
+
33
+ data2_filter_expr:
34
+ Optional Argument.
35
+ Specifies the filter expression for "data2".
36
+ Types: ColumnExpression
37
+
38
+ wavelet:
39
+ Optional Argument.
40
+ Specifies the name of the wavelet.
41
+ Permitted families and names are:
42
+ * Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
43
+ * Coiflets: 'coif1', 'coif2', ... , 'coif17'
44
+ * Symlets: 'sym2', 'sym3', ... ,' sym20'
45
+ * Discrete Meyer: 'dmey'
46
+ * Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2',
47
+ 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1',
48
+ 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
49
+ 'bior4.4', 'bior5.5', 'bior6.8'
50
+ * Reverse Biorthogonal: 'rbio1.1', 'rbio1.3', 'rbio1.5'
51
+ 'rbio2.2', 'rbio2.4', 'rbio2.6',
52
+ 'rbio2.8', 'rbio3.1', 'rbio3.3',
53
+ 'rbio3.5', 'rbio3.7','rbio3.9',
54
+ 'rbio4.4', 'rbio5.5', 'rbio6.8'
55
+ Note:
56
+ * If 'wavelet' is specified, do not include a second
57
+ input series for the function. Otherwise, include
58
+ a second input series to provide the filter.
59
+ * Data type is case-sensitive.
60
+ Types: str
61
+
62
+ mode:
63
+ Optional Argument.
64
+ Specifies the signal extension mode. Data type is case-insensitive.
65
+ Permitted Values:
66
+ * symmetric, sym, symh
67
+ * reflect, symw
68
+ * smooth, spd, sp1
69
+ * constant, sp0
70
+ * zero, zpd
71
+ * periodic, ppd
72
+ * periodization, per
73
+ * antisymmetric, asym, asymh
74
+ * antireflect, asymw
75
+ Default Value: symmetric
76
+ Types: str
77
+
78
+ level:
79
+ Optional Argument.
80
+ Specifies the level of decomposition. Valid values are [1,15].
81
+ Default Value: 1
82
+ Types: int
83
+
84
+ input_fmt_input_mode:
85
+ Optional Argument.
86
+ Specifies the input mode supported by the function.
87
+ When there are two input series, then the "input_fmt_input_mode"
88
+ specification is mandatory.
89
+ Permitted Values:
90
+ * ONE2ONE: Both the primary and secondary series specifications
91
+ contain a series name which identifies the two series
92
+ in the function.
93
+ * MANY2ONE: The MANY specification is the primary series
94
+ declaration. The secondary series specification
95
+ contains a series name that identifies the single
96
+ secondary series.
97
+ * MATCH: Both series are defined by their respective series
98
+ specification instance name declarations.
99
+ Types: str
100
+
101
+ output_fmt_index_style:
102
+ Optional Argument.
103
+ Specifies the index style of the output format.
104
+ Permitted Values: NUMERICAL_SEQUENCE
105
+ Default Value: NUMERICAL_SEQUENCE
106
+ Types: str
107
+
108
+ **generic_arguments:
109
+ Specifies the generic keyword arguments of UAF functions.
110
+ Below are the generic keyword arguments:
111
+ persist:
112
+ Optional Argument.
113
+ Specifies whether to persist the results of the
114
+ function in a table or not. When set to True,
115
+ results are persisted in a table; otherwise,
116
+ results are garbage collected at the end of the
117
+ session.
118
+ Note that, when UAF function is executed, an
119
+ analytic result table (ART) is created.
120
+ Default Value: False
121
+ Types: bool
122
+
123
+ volatile:
124
+ Optional Argument.
125
+ Specifies whether to put the results of the
126
+ function in a volatile ART or not. When set to
127
+ True, results are stored in a volatile ART,
128
+ otherwise not.
129
+ Default Value: False
130
+ Types: bool
131
+
132
+ output_table_name:
133
+ Optional Argument.
134
+ Specifies the name of the table to store results.
135
+ If not specified, a unique table name is internally
136
+ generated.
137
+ Types: str
138
+
139
+ output_db_name:
140
+ Optional Argument.
141
+ Specifies the name of the database to create output
142
+ table into. If not specified, table is created into
143
+ database specified by the user at the time of context
144
+ creation or configuration parameter. Argument is ignored,
145
+ if "output_table_name" is not specified.
146
+ Types: str
147
+
148
+
149
+ RETURNS:
150
+ Instance of DWT2D.
151
+ Output teradataml DataFrames can be accessed using attribute
152
+ references, such as DWT2D_obj.<attribute_name>.
153
+ Output teradataml DataFrame attribute name is:
154
+ 1. result
155
+
156
+
157
+ RAISES:
158
+ TeradataMlException, TypeError, ValueError
159
+
160
+
161
+ EXAMPLES:
162
+ # Notes:
163
+ # 1. Get the connection to Vantage, before importing the
164
+ # function in user space.
165
+ # 2. User can import the function, if it is available on
166
+ # Vantage user is connected to.
167
+ # 3. To check the list of UAF analytic functions available
168
+ # on Vantage user connected to, use
169
+ # "display_analytic_functions()".
170
+
171
+ # Check the list of available UAF analytic functions.
172
+ display_analytic_functions(type="UAF")
173
+
174
+ # Load the example data.
175
+ load_example_data("uaf", ["dwt2d_dataTable", "dwt_filterTable"])
176
+
177
+ # Create teradataml DataFrame objects.
178
+ data1 = DataFrame.from_table("dwt2d_dataTable")
179
+ data2 = DataFrame.from_table("dwt_filterTable")
180
+
181
+ # Create teradataml TDSeries object.
182
+ data2_series_df = TDSeries(data=data2,
183
+ id="id",
184
+ row_index="seq",
185
+ row_index_style="SEQUENCE",
186
+ payload_field=["lo", "hi"],
187
+ payload_content="MULTIVAR_REAL")
188
+
189
+ # Create teradataml TDMatrix object.
190
+ data1_matrix_df = TDMatrix(data=data1,
191
+ id="id",
192
+ row_index="y",
193
+ row_index_style="SEQUENCE",
194
+ column_index="x",
195
+ column_index_style="SEQUENCE",
196
+ payload_field="v",
197
+ payload_content="REAL")
198
+
199
+ # Example 1: Perform discrete wavelet transform (DWT) for two-dimensional data using both inputs.
200
+ uaf_out = DWT2D(data1=data1_matrix_df,
201
+ data2=data2_series_df,
202
+ data2_filter_expr=data2.id==1,
203
+ input_fmt_input_mode="MANY2ONE")
204
+
205
+ # Example 1: Perform discrete wavelet transform (DWT) for two-dimensional data
206
+ # using only one matrix as input and wavelet as 'haar'.
207
+ uaf_out = DWT2D(data1=data1_matrix_df,
208
+ wavelet='haar')
209
+
210
+ # Print the result DataFrame.
211
+ print(uaf_out.result)
212
+
213
+ """
214
+
@@ -28,7 +28,7 @@ def DurbinWatson(data=None, data_filter_expr=None, explanatory_count=None,
28
28
  explanatory_count:
29
29
  Required Argument.
30
30
  Specifies the number of explanatory variables in the original regression.
31
- The number of explanatory variables along with the "include_contant"
31
+ The number of explanatory variables along with the "include_constant"
32
32
  information is needed to perform the lookup in the Durbin-Watson data.
33
33
  Types: int
34
34
 
@@ -10,7 +10,7 @@ def ExtractResults(data=None, data_filter_expr=None, **generic_arguments):
10
10
 
11
11
  The functions that have multiple layers are shown in the table.
12
12
  Layers of each function can be extracted from the function output,
13
- i.e. "result" attribute, using the layer name specified below:
13
+ i.e., "result" attribute, using the layer name specified below:
14
14
 
15
15
  ------------------------------------------------------------------
16
16
  | Function | Layers |
@@ -0,0 +1,160 @@
1
+ def FilterFactory1d(filter_id=None, filter_type=None,
2
+ window_type=None, filter_length=None,
3
+ transition_bandwidth=None, low_cutoff=None,
4
+ high_cutoff=None, sampling_frequency=None,
5
+ filter_description=None, **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ FilterFactory1d() function creates finite impulse response (FIR)
9
+ filter coefficients. The filters are based on certain parameters
10
+ and stored into a common table for reuse.
11
+ Note:
12
+ User needs EXECUTE PROCEDURE privelge on SYSLIB
13
+
14
+ PARAMETERS:
15
+ filter_id:
16
+ Required Argument.
17
+ Specifies the filter identifier, based on filter coefficients
18
+ stored in the table.
19
+ Types: int
20
+
21
+ filter_type:
22
+ Required Argument.
23
+ Specifies the type of filter to generate.
24
+ Permitted Values:
25
+ * LOWPASS - To remove frequencies above low_cutoff.
26
+ * HIGHPASS - To remove frequencies below high_cutoff.
27
+ * BANDPASS - To remove frequencies below low_cutoff and
28
+ above high_cutoff.
29
+ * BANDSTOP - To remove frequencies between low_cutoff
30
+ and high_cutoff.
31
+ Types: str
32
+
33
+ window_type:
34
+ Optional Argument.
35
+ Specifies the window function to the filter that maintains a
36
+ smooth drop-off to zero, and avoids extra artifacts in the
37
+ frequency domain. The default is to leave the filter
38
+ coefficients as they are, and not apply any windowing function.
39
+ Permitted Values: BLACKMAN, HAMMING, HANNING, BARTLETT
40
+ Types: str
41
+
42
+ filter_length:
43
+ Optional Argument.
44
+ Specifies the length of the filter to generate.
45
+ Overrides "transition_bandwidth" argument if both are supplied,
46
+ and renders the other an optional argument.
47
+ Default is approximately 4/("transition_bandwidth"/
48
+ "sampling_frequency").
49
+ Types: int
50
+
51
+ transition_bandwidth:
52
+ Optional Argument.
53
+ Specifies the maximum allowed size for the range of
54
+ frequencies for filter transitions between a passband and stopband.
55
+ This also determines the number of coefficients to be generated.
56
+ Value must be greater than 0.
57
+ A smaller value produces faster drop off at the cost of more coefficients.
58
+ Not used when "filter_length" is supplied.
59
+ Default is bandwidth from "filter_length".
60
+ Types: float
61
+
62
+ low_cutoff:
63
+ Optional Argument.
64
+ Specifies the lower frequency that change between a passband
65
+ and stopband occurs. It must be greater
66
+ than 0. It is not used by default with 'HIGHPASS' filter.
67
+ Types: float
68
+
69
+ high_cutoff:
70
+ Optional Argument.
71
+ Specifies the higher frequency that change
72
+ between a passband and stopband occurs. It must be greater
73
+ than 0 and not used by default with 'LOWPASS' filter.
74
+ Types: float
75
+
76
+ sampling_frequency:
77
+ Required Argument.
78
+ Specifies the frequency that the data to be filtered was
79
+ sampled. It must be greater than 0.
80
+ Types: float
81
+
82
+ filter_description:
83
+ Optional Argument.
84
+ Specifies the description for the filter coefficients
85
+ that contain the same filter ID. Description is only
86
+ written to one row for each filter generated, and
87
+ ROW_I is 0. Default is a string describing parameters.
88
+ Types: str
89
+
90
+ **generic_arguments:
91
+ Specifies the generic keyword arguments of UAF functions.
92
+ Below are the generic keyword arguments:
93
+ persist:
94
+ Optional Argument.
95
+ Specifies whether to persist the results of the
96
+ function in a table or not. When set to True,
97
+ results are persisted in a table; otherwise,
98
+ results are garbage collected at the end of the
99
+ session.
100
+ Note that, when UAF function is executed, an
101
+ analytic result table (ART) is created.
102
+ Default Value: False
103
+ Types: bool
104
+
105
+ volatile:
106
+ Optional Argument.
107
+ Specifies whether to put the results of the
108
+ function in a volatile ART or not. When set to
109
+ True, results are stored in a volatile ART,
110
+ otherwise not.
111
+ Default Value: False
112
+ Types: bool
113
+
114
+ output_table_name:
115
+ Optional Argument.
116
+ Specifies the name of the table to store results.
117
+ If not specified, a unique table name is internally
118
+ generated.
119
+ Types: str
120
+
121
+ output_db_name:
122
+ Optional Argument.
123
+ Specifies the name of the database to create output
124
+ table into. If not specified, table is created into
125
+ database specified by the user at the time of context
126
+ creation or configuration parameter. Argument is ignored,
127
+ if "output_table_name" is not specified.
128
+ Types: str
129
+
130
+ RAISES:
131
+ TeradataMlException, TypeError, ValueError
132
+
133
+
134
+ EXAMPLES:
135
+ # Notes:
136
+ # 1. Get the connection to Vantage, before importing the
137
+ # function in user space.
138
+ # 2. User can import the function, if it is available on
139
+ # Vantage user is connected to.
140
+ # 3. To check the list of UAF analytic functions available
141
+ # on Vantage user connected to, use
142
+ # "display_analytic_functions()".
143
+
144
+ # Check the list of available UAF analytic functions.
145
+ display_analytic_functions(type="UAF")
146
+
147
+ # Import function FilterFactory1d.
148
+ from teradataml import FilterFactory1d
149
+
150
+ # Example 1: Create finite impulse response (FIR) filter coefficients.
151
+ res = FilterFactory1d(filter_id = 33,
152
+ filter_type = 'lowpass',
153
+ window_type = 'blackman',
154
+ transition_bandwidth = 20.0,
155
+ low_cutoff = 40.0,
156
+ sampling_frequency = 200)
157
+ print(res.result)
158
+
159
+ """
160
+
@@ -19,7 +19,7 @@ def GenseriesSinusoids(data=None, data_filter_expr=None, periodicities=None,
19
19
  exclude from the data set.
20
20
  * Use the BinarySeriesOp() function to subtract the generated series
21
21
  from the original series using "mathop" argument value as 'SUB'.
22
- * User the PowerSpec() function to verify that target periodicities
22
+ * Use the PowerSpec() function to verify that target periodicities
23
23
  have been removed from the original series.
24
24
 
25
25