teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
teradataml/LICENSE-3RD-PARTY.pdf
CHANGED
|
Binary file
|
teradataml/LICENSE.pdf
CHANGED
|
Binary file
|
teradataml/README.md
CHANGED
|
@@ -16,6 +16,189 @@ Copyright 2024, Teradata. All Rights Reserved.
|
|
|
16
16
|
* [License](#license)
|
|
17
17
|
|
|
18
18
|
## Release Notes:
|
|
19
|
+
#### teradataml 20.00.00.02
|
|
20
|
+
|
|
21
|
+
* teradataml will no longer be supported with SQLAlchemy < 2.0.
|
|
22
|
+
* teradataml no longer shows the warnings from Vantage by default.
|
|
23
|
+
* Users should set `display.suppress_vantage_runtime_warnings` to `False` to display warnings.
|
|
24
|
+
|
|
25
|
+
* ##### New Features/Functionality
|
|
26
|
+
* ##### teradataml: SQLE Engine Analytic Functions
|
|
27
|
+
* New Analytics Database Analytic Functions:
|
|
28
|
+
* `TFIDF()`
|
|
29
|
+
* `Pivoting()`
|
|
30
|
+
* `UnPivoting()`
|
|
31
|
+
* New Unbounded Array Framework(UAF) Functions:
|
|
32
|
+
* `AutoArima()`
|
|
33
|
+
* `DWT()`
|
|
34
|
+
* `DWT2D()`
|
|
35
|
+
* `FilterFactory1d()`
|
|
36
|
+
* `IDWT()`
|
|
37
|
+
* `IDWT2D()`
|
|
38
|
+
* `IQR()`
|
|
39
|
+
* `Matrix2Image()`
|
|
40
|
+
* `SAX()`
|
|
41
|
+
* `WindowDFFT()`
|
|
42
|
+
* ###### teradataml: Functions
|
|
43
|
+
* `udf()` - Creates a user defined function (UDF) and returns ColumnExpression.
|
|
44
|
+
* `set_session_param()` is added to set the database session parameters.
|
|
45
|
+
* `unset_session_param()` is added to unset database session parameters.
|
|
46
|
+
|
|
47
|
+
* ###### teradataml: DataFrame
|
|
48
|
+
* `materialize()` - Persists DataFrame into database for current session.
|
|
49
|
+
* `create_temp_view()` - Creates a temporary view for session on the DataFrame.
|
|
50
|
+
|
|
51
|
+
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
|
52
|
+
* _Date Time Functions_
|
|
53
|
+
* `DataFrameColumn.to_timestamp()` - Converts string or integer value to a TIMESTAMP data type or TIMESTAMP WITH TIME ZONE data type.
|
|
54
|
+
* `DataFrameColumn.extract()` - Extracts date component to a numeric value.
|
|
55
|
+
* `DataFrameColumn.to_interval()` - Converts a numeric value or string value into an INTERVAL_DAY_TO_SECOND or INTERVAL_YEAR_TO_MONTH value.
|
|
56
|
+
* _String Functions_
|
|
57
|
+
* `DataFrameColumn.parse_url()` - Extracts a part from a URL.
|
|
58
|
+
* _Arithmetic Functions_
|
|
59
|
+
* `DataFrameColumn.log` - Returns the logarithm value of the column with respect to 'base'.
|
|
60
|
+
|
|
61
|
+
* ##### teradataml: AutoML
|
|
62
|
+
* New methods added for `AutoML()`, `AutoRegressor()` and `AutoClassifier()`:
|
|
63
|
+
* `evaluate()` - Performs evaluation on the data using the best model or the model of users choice
|
|
64
|
+
from the leaderboard.
|
|
65
|
+
* `load()`: Loads the saved model from database.
|
|
66
|
+
* `deploy()`: Saves the trained model inside database.
|
|
67
|
+
* `remove_saved_model()`: Removes the saved model in database.
|
|
68
|
+
* `model_hyperparameters()`: Returns the hyperparameter of fitted or loaded models.
|
|
69
|
+
|
|
70
|
+
* ##### Updates
|
|
71
|
+
* ##### teradataml: AutoML
|
|
72
|
+
* `AutoML()`, `AutoRegressor()`
|
|
73
|
+
* New performance metrics added for task type regression i.e., "MAPE", "MPE", "ME", "EV", "MPD" and "MGD".
|
|
74
|
+
* `AutoML()`, `AutoRegressor()` and `AutoClassifier`
|
|
75
|
+
* New arguments added: `volatile`, `persist`.
|
|
76
|
+
* `predict()` - Data input is now mandatory for generating predictions. Default model
|
|
77
|
+
evaluation is now removed.
|
|
78
|
+
* `DataFrameColumn.cast()`: Accepts 2 new arguments `format` and `timezone`.
|
|
79
|
+
* `DataFrame.assign()`: Accepts ColumnExpressions returned by `udf()`.
|
|
80
|
+
|
|
81
|
+
* ##### teradataml: Options
|
|
82
|
+
* `set_config_params()`
|
|
83
|
+
* Following arguments will be deprecated in the future:
|
|
84
|
+
* `ues_url`
|
|
85
|
+
* `auth_token`
|
|
86
|
+
|
|
87
|
+
* ###### Database Utility
|
|
88
|
+
* `list_td_reserved_keywords()` - Accepts a list of strings as argument.
|
|
89
|
+
|
|
90
|
+
* ##### Updates to existing UAF Functions:
|
|
91
|
+
* `ACF()` - `round_results` parameter removed as it was used for internal testing.
|
|
92
|
+
* `BreuschGodfrey()` - Added default_value 0.05 for parameter `significance_level`.
|
|
93
|
+
* `GoldfeldQuandt()` -
|
|
94
|
+
* Removed parameters `weights` and `formula`.
|
|
95
|
+
Replaced parameter `orig_regr_paramcnt` with `const_term`.
|
|
96
|
+
Changed description for parameter `algorithm`. Please refer document for more details.
|
|
97
|
+
* Note: This will break backward compatibility.
|
|
98
|
+
* `HoltWintersForecaster()` - Default value of parameter `seasonal_periods` removed.
|
|
99
|
+
* `IDFFT2()` - Removed parameter `output_fmt_row_major` as it is used for internal testing.
|
|
100
|
+
* `Resample()` - Added parameter `output_fmt_index_style`.
|
|
101
|
+
|
|
102
|
+
* ##### Bug Fixes
|
|
103
|
+
* KNN `predict()` function can now predict on test data which does not contain target column.
|
|
104
|
+
* Metrics functions are supported on the Lake system.
|
|
105
|
+
* The following OpensourceML functions from different sklearn modules are fixed.
|
|
106
|
+
* `sklearn.ensemble`:
|
|
107
|
+
* ExtraTreesClassifier - `apply()`
|
|
108
|
+
* ExtraTreesRegressor - `apply()`
|
|
109
|
+
* RandomForestClassifier - `apply()`
|
|
110
|
+
* RandomForestRegressor - `apply()`
|
|
111
|
+
* `sklearn.impute`:
|
|
112
|
+
* SimpleImputer - `transform()`, `fit_transform()`, `inverse_transform()`
|
|
113
|
+
* MissingIndicator - `transform()`, `fit_transform()`
|
|
114
|
+
* `sklearn.kernel_approximations`:
|
|
115
|
+
* Nystroem - `transform()`, `fit_transform()`
|
|
116
|
+
* PolynomialCountSketch - `transform()`, `fit_transform()`
|
|
117
|
+
* RBFSampler - `transform()`, `fit_transform()`
|
|
118
|
+
* `sklearn.neighbours`:
|
|
119
|
+
* KNeighborsTransformer - `transform()`, `fit_transform()`
|
|
120
|
+
* RadiusNeighborsTransformer - `transform()`, `fit_transform()`
|
|
121
|
+
* `sklearn.preprocessing`:
|
|
122
|
+
* KernelCenterer - `transform()`
|
|
123
|
+
* OneHotEncoder - `transform()`, `inverse_transform()`
|
|
124
|
+
* OpensourceML returns teradataml objects for model attributes and functions instead of sklearn
|
|
125
|
+
objects so that the user can perform further operations like `score()`, `predict()` etc on top
|
|
126
|
+
of the returned objects.
|
|
127
|
+
* AutoML `predict()` function now generates correct ROC-AUC value for positive class.
|
|
128
|
+
* `deploy()` method of `Script` and `Apply` classes retries model deployment if there is any
|
|
129
|
+
intermittent network issues.
|
|
130
|
+
|
|
131
|
+
#### teradataml 20.00.00.01
|
|
132
|
+
* teradataml no longer supports Python versions less than 3.8.
|
|
133
|
+
|
|
134
|
+
* ##### New Features/Functionality
|
|
135
|
+
* ##### Personal Access Token (PAT) support in teradataml
|
|
136
|
+
* `set_auth_token()` - teradataml now supports authentication via PAT in addition to
|
|
137
|
+
OAuth 2.0 Device Authorization Grant (formerly known as the Device Flow).
|
|
138
|
+
* It accepts UES URL, Personal AccessToken (PAT) and Private Key file generated from VantageCloud Lake Console
|
|
139
|
+
and optional argument `username` and `expiration_time` in seconds.
|
|
140
|
+
|
|
141
|
+
* ##### Updates
|
|
142
|
+
* ##### teradataml: SQLE Engine Analytic Functions
|
|
143
|
+
* `ANOVA()`
|
|
144
|
+
* New arguments added: `group_name_column`, `group_value_name`, `group_names`, `num_groups` for data containing group values and group names.
|
|
145
|
+
* `FTest()`
|
|
146
|
+
* New arguments added: `sample_name_column`, `sample_name_value`, `first_sample_name`, `second_sample_name`.
|
|
147
|
+
* `GLM()`
|
|
148
|
+
* Supports stepwise regression and accept new arguments `stepwise_direction`, `max_steps_num` and `initial_stepwise_columns`.
|
|
149
|
+
* New arguments added: `attribute_data`, `parameter_data`, `iteration_mode` and `partition_column`.
|
|
150
|
+
* `GetFutileColumns()`
|
|
151
|
+
* Arguments `category_summary_column` and `threshold_value` are now optional.
|
|
152
|
+
* `KMeans()`
|
|
153
|
+
* New argument added: `initialcentroids_method`.
|
|
154
|
+
* `NonLinearCombineFit()`
|
|
155
|
+
* Argument `result_column` is now optional.
|
|
156
|
+
* `ROC()`
|
|
157
|
+
* Argument `positive_class` is now optional.
|
|
158
|
+
* `SVMPredict()`
|
|
159
|
+
* New argument added: `model_type`.
|
|
160
|
+
* `ScaleFit()`
|
|
161
|
+
* New arguments added: `ignoreinvalid_locationscale`, `unused_attributes`, `attribute_name_column`, `attribute_value_column`.
|
|
162
|
+
* Arguments `attribute_name_column`, `attribute_value_column` and `target_attributes` are supported for sparse input.
|
|
163
|
+
* Arguments `attribute_data`, `parameter_data` and `partition_column` are supported for partitioning.
|
|
164
|
+
* `ScaleTransform()`
|
|
165
|
+
* New arguments added: `attribute_name_column` and `attribute_value_column` support for sparse input.
|
|
166
|
+
* `TDGLMPredict()`
|
|
167
|
+
* New arguments added: `family` and `partition_column`.
|
|
168
|
+
* `XGBoost()`
|
|
169
|
+
* New argument `base_score` is added for initial prediction value for all data points.
|
|
170
|
+
* `XGBoostPredict()`
|
|
171
|
+
* New argument `detailed` is added for detailed information of each prediction.
|
|
172
|
+
* `ZTest()`
|
|
173
|
+
* New arguments added: `sample_name_column`, `sample_value_column`, `first_sample_name` and `second_sample_name`.
|
|
174
|
+
* ##### teradataml: AutoML
|
|
175
|
+
* `AutoML()`, `AutoRegressor()` and `AutoClassifier()`
|
|
176
|
+
* New argument `max_models` is added as an early stopping criterion to limit the maximum number of models to be trained.
|
|
177
|
+
* ##### teradataml: DataFrame functions
|
|
178
|
+
* `DataFrame.agg()`
|
|
179
|
+
* Accepts ColumnExpressions and list of ColumnExpressions as arguments.
|
|
180
|
+
* ##### teradataml: General Functions
|
|
181
|
+
* Data Transfer Utility
|
|
182
|
+
* `fastload()` - Improved error and warning table handling with below-mentioned new arguments.
|
|
183
|
+
* `err_staging_db`
|
|
184
|
+
* `err_tbl_name`
|
|
185
|
+
* `warn_tbl_name`
|
|
186
|
+
* `err_tbl_1_suffix`
|
|
187
|
+
* `err_tbl_2_suffix`
|
|
188
|
+
* `fastload()` - Change in behaviour of `save_errors` argument.
|
|
189
|
+
When `save_errors` is set to `True`, error information will be available in two persistent tables `ERR_1` and `ERR_2`.
|
|
190
|
+
When `save_errors` is set to `False`, error information will be available in single pandas dataframe.
|
|
191
|
+
* Garbage collector location is now configurable.
|
|
192
|
+
User can set configure.local_storage to a desired location.
|
|
193
|
+
|
|
194
|
+
* ##### Bug Fixes
|
|
195
|
+
* UAF functions now work if the database name has special characters.
|
|
196
|
+
* OpensourceML can now read and process NULL/nan values.
|
|
197
|
+
* Boolean values output will now be returned as VARBYTE column with 0 or 1 values in OpensourceML.
|
|
198
|
+
* Fixed bug for `Apply`'s `deploy()`.
|
|
199
|
+
* Issue with volatile table creation is fixed where it is created in the right database, i.e., user's spool space, regardless of the temp database specified.
|
|
200
|
+
* `ColumnTransformer` function now processes its arguments in the order they are passed.
|
|
201
|
+
|
|
19
202
|
#### teradataml 20.00.00.00
|
|
20
203
|
* ##### New Features/Functionality
|
|
21
204
|
* ###### teradataml OpenML: Run Opensource packages through Teradata Vantage
|
teradataml/__init__.py
CHANGED
|
@@ -64,7 +64,10 @@ from teradataml.opensource import *
|
|
|
64
64
|
# Import AutoML
|
|
65
65
|
from teradataml.automl import AutoML, AutoRegressor, AutoClassifier
|
|
66
66
|
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
67
|
+
# Import global variable representing session_queryband.
|
|
68
|
+
from teradataml.telemetry_utils.queryband import session_queryband
|
|
69
|
+
# Configure app name and app version for teradataml querybands.
|
|
70
70
|
session_queryband.configure_queryband_parameters(app_name="TDML", app_version=__version__)
|
|
71
|
+
|
|
72
|
+
# Import functions.
|
|
73
|
+
from teradataml.dataframe.functions import *
|
teradataml/_version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# ##################################################################
|
|
2
2
|
#
|
|
3
|
-
# Copyright
|
|
3
|
+
# Copyright 2024 Teradata. All rights reserved.
|
|
4
4
|
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
5
5
|
#
|
|
6
6
|
# Primary Owner: Pankaj Purandare (PankajVinod.Purandare@teradata.com)
|
|
@@ -8,4 +8,4 @@
|
|
|
8
8
|
#
|
|
9
9
|
# ##################################################################
|
|
10
10
|
|
|
11
|
-
version = "20.00.00.
|
|
11
|
+
version = "20.00.00.02"
|
teradataml/analytics/__init__.py
CHANGED
|
@@ -22,7 +22,7 @@ from .Transformations import Binning, Derive, OneHotEncoder, FillNa, LabelEncode
|
|
|
22
22
|
Retain, Sigmoid, ZScore
|
|
23
23
|
from teradataml.analytics.json_parser.utils import _get_json_data_from_tdml_repo, _process_paired_functions
|
|
24
24
|
from teradataml.analytics.analytic_function_executor import _SQLEFunctionExecutor, _TableOperatorExecutor,\
|
|
25
|
-
_UAFFunctionExecutor, _BYOMFunctionExecutor
|
|
25
|
+
_UAFFunctionExecutor, _BYOMFunctionExecutor, _StoredProcedureExecutor
|
|
26
26
|
from teradataml.common.constants import TeradataAnalyticFunctionTypes
|
|
27
27
|
|
|
28
28
|
|
|
@@ -76,6 +76,7 @@ def _get_executor_class_name(function_type):
|
|
|
76
76
|
TeradataAnalyticFunctionTypes.SQLE.value: _SQLEFunctionExecutor,
|
|
77
77
|
TeradataAnalyticFunctionTypes.TABLEOPERATOR.value: _TableOperatorExecutor,
|
|
78
78
|
TeradataAnalyticFunctionTypes.UAF.value: _UAFFunctionExecutor,
|
|
79
|
-
TeradataAnalyticFunctionTypes.BYOM.value: _BYOMFunctionExecutor
|
|
79
|
+
TeradataAnalyticFunctionTypes.BYOM.value: _BYOMFunctionExecutor,
|
|
80
|
+
TeradataAnalyticFunctionTypes.STORED_PROCEDURE.value: _StoredProcedureExecutor
|
|
80
81
|
}
|
|
81
82
|
return func_type_to_executor.get(function_type.upper(), _SQLEFunctionExecutor).__name__
|