teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -1,26 +1,27 @@
|
|
|
1
1
|
{
|
|
2
2
|
"json_schema_major_version": "1",
|
|
3
|
-
"json_schema_minor_version": "
|
|
4
|
-
"json_content_version": "
|
|
3
|
+
"json_schema_minor_version": "2",
|
|
4
|
+
"json_content_version": "2",
|
|
5
5
|
"function_name": "TD_ZTest",
|
|
6
|
-
"
|
|
6
|
+
"function_alias_name": "TD_ZTest",
|
|
7
|
+
"function_version": "2.0",
|
|
8
|
+
"commence_db_version" : "17.20",
|
|
9
|
+
"change_db_version" : "17.20.03.XX",
|
|
7
10
|
"function_type": "fastpath",
|
|
8
11
|
"function_category": "Hypothesis Testing",
|
|
9
|
-
"function_alias_name": "TD_ZTest",
|
|
10
12
|
"function_r_name": "aa.td_ztest",
|
|
11
13
|
"short_description": "hypothesis test function to perform ztest analysis on a data set.",
|
|
12
14
|
"long_description": "fastpath function to perform ztest analysis on a data set.",
|
|
13
15
|
"input_tables": [
|
|
14
16
|
{
|
|
15
|
-
"isOrdered": false,
|
|
16
|
-
"partitionByOne": false,
|
|
17
17
|
"name": "InputTable",
|
|
18
18
|
"alternateNames": [],
|
|
19
19
|
"isRequired": true,
|
|
20
|
-
"rDescription": "The input table for ztest analysis",
|
|
21
|
-
"description": "The input table for ztest analysis.",
|
|
22
20
|
"datatype": "TABLE_ALIAS",
|
|
23
|
-
"
|
|
21
|
+
"partitionByOne": false,
|
|
22
|
+
"isOrdered": false,
|
|
23
|
+
"description": "The input table for ztest analysis.",
|
|
24
|
+
"rDescription": "The input table for ztest analysis",
|
|
24
25
|
"rName": "data",
|
|
25
26
|
"useInR": true,
|
|
26
27
|
"rOrderNum": 1
|
|
@@ -28,27 +29,30 @@
|
|
|
28
29
|
],
|
|
29
30
|
"argument_clauses": [
|
|
30
31
|
{
|
|
31
|
-
"
|
|
32
|
-
"lowerBound": 0,
|
|
33
|
-
"upperBound": 1,
|
|
34
|
-
"lowerBoundType": "INCLUSIVE",
|
|
35
|
-
"upperBoundType": "INCLUSIVE",
|
|
36
|
-
"allowNaN": false,
|
|
37
|
-
"isOutputColumn": false,
|
|
38
|
-
"matchLengthOfArgument": "",
|
|
39
|
-
"allowPadding": false,
|
|
40
|
-
"name": "Alpha",
|
|
32
|
+
"name": "FirstSampleColumn",
|
|
41
33
|
"alternateNames": [],
|
|
42
34
|
"isRequired": false,
|
|
43
|
-
"
|
|
44
|
-
|
|
45
|
-
|
|
35
|
+
"targetTable": [
|
|
36
|
+
"InputTable"
|
|
37
|
+
],
|
|
38
|
+
"checkDuplicate": true,
|
|
39
|
+
"allowedTypes": [],
|
|
40
|
+
"allowedTypeGroups": [
|
|
41
|
+
"NUMERIC"
|
|
42
|
+
],
|
|
43
|
+
"rOrderNum": 2,
|
|
44
|
+
"description": "Specifies the first sample column in z test",
|
|
45
|
+
"rDescription": "Specifies the first sample column in z test",
|
|
46
|
+
"datatype": "COLUMNS",
|
|
46
47
|
"allowsLists": false,
|
|
47
|
-
"rName": "
|
|
48
|
+
"rName": "first.sample.column",
|
|
48
49
|
"useInR": true,
|
|
49
|
-
"
|
|
50
|
+
"rFormulaUsage" : false
|
|
50
51
|
},
|
|
51
52
|
{
|
|
53
|
+
"name": "SecondSampleColumn",
|
|
54
|
+
"alternateNames": [],
|
|
55
|
+
"isRequired": false,
|
|
52
56
|
"targetTable": [
|
|
53
57
|
"InputTable"
|
|
54
58
|
],
|
|
@@ -57,22 +61,39 @@
|
|
|
57
61
|
"allowedTypeGroups": [
|
|
58
62
|
"NUMERIC"
|
|
59
63
|
],
|
|
60
|
-
"
|
|
61
|
-
"
|
|
62
|
-
"
|
|
63
|
-
"
|
|
64
|
-
"name": "FirstSampleColumn",
|
|
65
|
-
"alternateNames": [],
|
|
66
|
-
"isRequired": true,
|
|
67
|
-
"rDescription": "Specifies the first sample column in f test",
|
|
68
|
-
"description": "Specifies the first sample column in f test",
|
|
69
|
-
"datatype": "COLUMN",
|
|
64
|
+
"rOrderNum": 3,
|
|
65
|
+
"description": "Specifies the second sample column in z test",
|
|
66
|
+
"rDescription": "Specifies the second sample column in z test",
|
|
67
|
+
"datatype": "COLUMNS",
|
|
70
68
|
"allowsLists": false,
|
|
71
|
-
"rName": "
|
|
69
|
+
"rName": "second.sample.column",
|
|
72
70
|
"useInR": true,
|
|
73
|
-
"
|
|
71
|
+
"rFormulaUsage" : false
|
|
74
72
|
},
|
|
75
73
|
{
|
|
74
|
+
"name": "SampleNameColumn",
|
|
75
|
+
"alternateNames": [],
|
|
76
|
+
"isRequired": false,
|
|
77
|
+
"targetTable": [
|
|
78
|
+
"InputTable"
|
|
79
|
+
],
|
|
80
|
+
"checkDuplicate": true,
|
|
81
|
+
"allowedTypes": [],
|
|
82
|
+
"allowedTypeGroups": [
|
|
83
|
+
"STRING"
|
|
84
|
+
],
|
|
85
|
+
"rOrderNum": 4,
|
|
86
|
+
"description": "Specifies the input table column containing the names of the samples included in the z test. This argument is used when Input is in sample-value format.",
|
|
87
|
+
"rDescription": "Specifies the input table column containing the names of the samples included in the z test. This argument is used when Input is in sample-value format.",
|
|
88
|
+
"datatype": "COLUMNS",
|
|
89
|
+
"allowsLists": false,
|
|
90
|
+
"rName": "sample.name.column",
|
|
91
|
+
"useInR": true
|
|
92
|
+
},
|
|
93
|
+
{
|
|
94
|
+
"name": "SampleValueColumn",
|
|
95
|
+
"alternateNames": [],
|
|
96
|
+
"isRequired": false,
|
|
76
97
|
"targetTable": [
|
|
77
98
|
"InputTable"
|
|
78
99
|
],
|
|
@@ -81,90 +102,146 @@
|
|
|
81
102
|
"allowedTypeGroups": [
|
|
82
103
|
"NUMERIC"
|
|
83
104
|
],
|
|
84
|
-
"
|
|
85
|
-
"
|
|
86
|
-
"
|
|
87
|
-
"
|
|
88
|
-
"
|
|
105
|
+
"rOrderNum": 5,
|
|
106
|
+
"description": "Specifies the input table column containing the values for each sample member. This argument is used when Input is in sample-value format.",
|
|
107
|
+
"rDescription": "Specifies the input table column containing the values for each sample member. This argument is used when Input is in sample-value format.",
|
|
108
|
+
"datatype": "COLUMNS",
|
|
109
|
+
"allowsLists": false,
|
|
110
|
+
"rName": "sample.value.column",
|
|
111
|
+
"useInR": true
|
|
112
|
+
},
|
|
113
|
+
{
|
|
114
|
+
"name": "FirstSampleName",
|
|
89
115
|
"alternateNames": [],
|
|
90
116
|
"isRequired": false,
|
|
91
|
-
"
|
|
92
|
-
"
|
|
93
|
-
"
|
|
117
|
+
"defaultValue" : "",
|
|
118
|
+
"rOrderNum": 6,
|
|
119
|
+
"description": "Specifies the name of the first sample included in the z test. This argument is used when Input is in sample-value format.",
|
|
120
|
+
"rDescription": "Specifies the name of the first sample included in the z test. This argument is used when Input is in sample-value format.",
|
|
121
|
+
"datatype": "STRING",
|
|
94
122
|
"allowsLists": false,
|
|
95
|
-
"
|
|
123
|
+
"allowPadding": false,
|
|
124
|
+
"rName": "first.sample.name",
|
|
96
125
|
"useInR": true,
|
|
97
|
-
"
|
|
126
|
+
"rDefaultValue" : ""
|
|
98
127
|
},
|
|
99
128
|
{
|
|
100
|
-
|
|
101
|
-
"lower-tailed",
|
|
102
|
-
"two-tailed",
|
|
103
|
-
"upper-tailed"
|
|
104
|
-
],
|
|
105
|
-
"defaultValue": "two-tailed",
|
|
106
|
-
"allowNaN": false,
|
|
107
|
-
"isOutputColumn": false,
|
|
108
|
-
"matchLengthOfArgument": "",
|
|
109
|
-
"allowPadding": false,
|
|
110
|
-
"name": "Alternatehypothesis",
|
|
129
|
+
"name": "SecondSampleName",
|
|
111
130
|
"alternateNames": [],
|
|
112
131
|
"isRequired": false,
|
|
113
|
-
"
|
|
114
|
-
"
|
|
132
|
+
"defaultValue" : "",
|
|
133
|
+
"rOrderNum": 7,
|
|
134
|
+
"description": "Specifies the name of the second sample included in the z test. This argument is used when Input is in sample-value format.",
|
|
135
|
+
"rDescription": "Specifies the name of the second sample included in the z test. This argument is used when Input is in sample-value format.",
|
|
115
136
|
"datatype": "STRING",
|
|
116
137
|
"allowsLists": false,
|
|
117
|
-
"
|
|
138
|
+
"allowPadding": false,
|
|
139
|
+
"rName": "second.sample.name",
|
|
118
140
|
"useInR": true,
|
|
119
|
-
"
|
|
141
|
+
"rDefaultValue" : ""
|
|
120
142
|
},
|
|
121
143
|
{
|
|
144
|
+
"name": "FirstSampleVariance",
|
|
145
|
+
"alternateNames": [],
|
|
146
|
+
"isRequired": false,
|
|
147
|
+
"rOrderNum": 8,
|
|
148
|
+
"lowerBound" : 0,
|
|
149
|
+
"lowerBoundType" : "EXCLUSIVE",
|
|
150
|
+
"upperBound" : 1e10,
|
|
151
|
+
"upperBoundType" : "EXCLUSIVE",
|
|
122
152
|
"allowNaN": false,
|
|
123
153
|
"isOutputColumn": false,
|
|
124
154
|
"matchLengthOfArgument": "",
|
|
125
|
-
"allowPadding": false,
|
|
126
|
-
"name": "FirstSampleVariance",
|
|
127
|
-
"alternateNames": [],
|
|
128
|
-
"isRequired": true,
|
|
129
|
-
"rDescription": "Specifies the first sample variance",
|
|
130
155
|
"description": "Specifies the first sample variance",
|
|
131
|
-
"
|
|
156
|
+
"rDescription": "Specifies the first sample variance",
|
|
157
|
+
"datatype": "DOUBLE",
|
|
132
158
|
"allowsLists": false,
|
|
159
|
+
"allowPadding": false,
|
|
133
160
|
"rName": "first.sample.variance",
|
|
134
161
|
"useInR": true,
|
|
135
|
-
"
|
|
162
|
+
"rDefaultValue" : ""
|
|
136
163
|
},
|
|
137
164
|
{
|
|
138
|
-
"allowNaN": false,
|
|
139
|
-
"isOutputColumn": false,
|
|
140
|
-
"matchLengthOfArgument": "",
|
|
141
|
-
"allowPadding": false,
|
|
142
165
|
"name": "SecondSampleVariance",
|
|
143
166
|
"alternateNames": [],
|
|
144
167
|
"isRequired": false,
|
|
145
|
-
"
|
|
168
|
+
"rOrderNum": 9,
|
|
169
|
+
"lowerBound" : 0,
|
|
170
|
+
"lowerBoundType" : "EXCLUSIVE",
|
|
171
|
+
"upperBound" : 1e10,
|
|
172
|
+
"upperBoundType" : "EXCLUSIVE",
|
|
173
|
+
"allowNaN": false,
|
|
174
|
+
"isOutputColumn": false,
|
|
175
|
+
"matchLengthOfArgument": "",
|
|
146
176
|
"description": "Specifies the second sample variance",
|
|
147
|
-
"
|
|
177
|
+
"rDescription": "Specifies the second sample variance",
|
|
178
|
+
"datatype": "DOUBLE",
|
|
148
179
|
"allowsLists": false,
|
|
180
|
+
"allowPadding": false,
|
|
149
181
|
"rName": "second.sample.variance",
|
|
150
182
|
"useInR": true,
|
|
151
|
-
"
|
|
183
|
+
"rDefaultValue" : ""
|
|
152
184
|
},
|
|
153
185
|
{
|
|
154
|
-
"
|
|
155
|
-
"
|
|
186
|
+
"name": "AlternativeHypothesis",
|
|
187
|
+
"alternateNames": [],
|
|
188
|
+
"isRequired": false,
|
|
189
|
+
"defaultValue": "two-tailed",
|
|
190
|
+
"rOrderNum": 10,
|
|
191
|
+
"permittedValues": [
|
|
192
|
+
"lower-tailed",
|
|
193
|
+
"two-tailed",
|
|
194
|
+
"upper-tailed"
|
|
195
|
+
],
|
|
156
196
|
"matchLengthOfArgument": "",
|
|
197
|
+
"description": "Specifies the alternative hypothesis",
|
|
198
|
+
"rDescription": "Specifies the alternative hypothesis",
|
|
199
|
+
"datatype": "STRING",
|
|
200
|
+
"allowsLists": false,
|
|
157
201
|
"allowPadding": false,
|
|
202
|
+
"rName": "alternate.hypothesis",
|
|
203
|
+
"useInR": true,
|
|
204
|
+
"rDefaultValue" : ""
|
|
205
|
+
},
|
|
206
|
+
{
|
|
158
207
|
"name": "MeanUnderH0",
|
|
159
208
|
"alternateNames": [],
|
|
160
209
|
"isRequired": false,
|
|
161
|
-
"
|
|
210
|
+
"defaultValue": 0,
|
|
211
|
+
"rOrderNum": 11,
|
|
212
|
+
"lowerBound": 0,
|
|
213
|
+
"lowerBoundType": "INCLUSIVE",
|
|
214
|
+
"upperBound": 1,
|
|
215
|
+
"upperBoundType": "INCLUSIVE",
|
|
216
|
+
"allowNaN": false,
|
|
162
217
|
"description": "Specifies the mean under the null hypothesis",
|
|
218
|
+
"rDescription": "Specifies the mean under the null hypothesis",
|
|
163
219
|
"datatype": "NUMERIC",
|
|
164
220
|
"allowsLists": false,
|
|
221
|
+
"allowPadding": false,
|
|
165
222
|
"rName": "mean.under.h0",
|
|
166
223
|
"useInR": true,
|
|
167
|
-
"
|
|
224
|
+
"rDefaultValue" : ""
|
|
225
|
+
},
|
|
226
|
+
{
|
|
227
|
+
"name": "Alpha",
|
|
228
|
+
"alternateNames": [],
|
|
229
|
+
"isRequired": false,
|
|
230
|
+
"defaultValue": 0.05,
|
|
231
|
+
"rOrderNum": 12,
|
|
232
|
+
"lowerBound": 0,
|
|
233
|
+
"lowerBoundType": "INCLUSIVE",
|
|
234
|
+
"upperBound": 1,
|
|
235
|
+
"upperBoundType": "INCLUSIVE",
|
|
236
|
+
"allowNaN": false,
|
|
237
|
+
"description": "Specifies the value of alpha in hypothesis test function",
|
|
238
|
+
"rDescription": "Specifies the value of alpha in hypothesis test function",
|
|
239
|
+
"datatype": "DOUBLE",
|
|
240
|
+
"allowsLists": false,
|
|
241
|
+
"allowPadding": false,
|
|
242
|
+
"rName": "alpha",
|
|
243
|
+
"useInR": true,
|
|
244
|
+
"rDefaultValue" : ""
|
|
168
245
|
}
|
|
169
246
|
]
|
|
170
|
-
}
|
|
247
|
+
}
|
|
@@ -0,0 +1,150 @@
|
|
|
1
|
+
{
|
|
2
|
+
"FuncName": "TD_FILTERFACTORY1D",
|
|
3
|
+
"FuncDescriptionShort": "TD_FILTERFACTORYID creates finite impulse response (FIR) filter coefficients.",
|
|
4
|
+
"FuncDescriptionLong": [
|
|
5
|
+
"The filters are based on certain parameters and stored into a common table for reuse."
|
|
6
|
+
],
|
|
7
|
+
"FunctionVersion": "...",
|
|
8
|
+
"FunctionCategory": "General Utility",
|
|
9
|
+
"JSONVersion": "1",
|
|
10
|
+
"FuncRName": "td_Filter_Factory1d",
|
|
11
|
+
"MaxInputFiles": 0,
|
|
12
|
+
"Input": [],
|
|
13
|
+
"Params":[
|
|
14
|
+
{
|
|
15
|
+
"Name": "FILTERID",
|
|
16
|
+
"Type": "integer",
|
|
17
|
+
"Optional": false,
|
|
18
|
+
"Description": [
|
|
19
|
+
"Filter identifier, based on filter coefficients, stored in the table."
|
|
20
|
+
],
|
|
21
|
+
"LangName": "filter_id"
|
|
22
|
+
},
|
|
23
|
+
{
|
|
24
|
+
"Name": "FILTERTYPE",
|
|
25
|
+
"Type": "string",
|
|
26
|
+
"Optional": false,
|
|
27
|
+
"PermittedValues": [
|
|
28
|
+
"LOWPASS",
|
|
29
|
+
"HIGHPASS",
|
|
30
|
+
"BANDPASS",
|
|
31
|
+
"BANDSTOP"
|
|
32
|
+
],
|
|
33
|
+
"Description": [
|
|
34
|
+
"The type of filter to generate.",
|
|
35
|
+
"Options are:",
|
|
36
|
+
"LOWPASS to remove frequencies above LOWCUTOFF.",
|
|
37
|
+
"HIGHPASS to remove frequencies below HIGHCUTOFF.",
|
|
38
|
+
"BANDPASS to remove frequencies below LOWCUTOFF and above HIGHCUTOFF.",
|
|
39
|
+
"BANDSTOP to remove frequencies between LOWCUTOFF and HIGHCUTOFF."
|
|
40
|
+
],
|
|
41
|
+
"LangName": "filter_type"
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
"Name": "WINDOWTYPE",
|
|
45
|
+
"Type": "string",
|
|
46
|
+
"Optional": true,
|
|
47
|
+
"PermittedValues": [
|
|
48
|
+
"BLACKMAN",
|
|
49
|
+
"HAMMING",
|
|
50
|
+
"HANNING",
|
|
51
|
+
"BARTLETT"
|
|
52
|
+
],
|
|
53
|
+
"Description": [
|
|
54
|
+
"[Optional] Window function to the filter that maintains a smooth drop off to zero, and avoids extra artifacts in the frequency domain.",
|
|
55
|
+
"Window is applied by multiplying W(n) to the n-th coefficient of the filter",
|
|
56
|
+
"Default is to not apply any windowing function to the filter (leave the filter coefficients as they are)",
|
|
57
|
+
"Options are:",
|
|
58
|
+
"BLACKMAN [ W(n) = 0.42 - 1/2*COS(2PI*n/N) + 0.08*COS(4PI * n/N) ]",
|
|
59
|
+
"HAMMING [ W(n) = 0.54 - 0.46 * COS(2PI*n/N) ]",
|
|
60
|
+
"HANNING [ W(n) = 0.5 - 0.5 * COS(2PI*n/N) ]",
|
|
61
|
+
"BARTLETT [ W(n) = ",
|
|
62
|
+
"{",
|
|
63
|
+
" (2 * n/N) , for n < N/2",
|
|
64
|
+
" (2 - 2 * n/N), for n >= N/2",
|
|
65
|
+
"} ]"
|
|
66
|
+
],
|
|
67
|
+
"LangName": "window_type"
|
|
68
|
+
},
|
|
69
|
+
{
|
|
70
|
+
"Name": "FILTERLENGTH",
|
|
71
|
+
"Type": "integer",
|
|
72
|
+
"Optional": true,
|
|
73
|
+
"Description": [
|
|
74
|
+
"[Optional] Length of the filter to generate.",
|
|
75
|
+
"Overrides TRANSITIONBANDWIDTH argument if both are supplied, and renders the other an optional argument.",
|
|
76
|
+
"Default is approximately 4/(TRANSITIONBANDWIDTH/ SAMPLINGFREQUENCY)."
|
|
77
|
+
],
|
|
78
|
+
"LangName": "filter_length"
|
|
79
|
+
},
|
|
80
|
+
{
|
|
81
|
+
"Name": "TRANSITIONBANDWIDTH",
|
|
82
|
+
"Type": "double",
|
|
83
|
+
"Optional": true,
|
|
84
|
+
"LowerBound": 0,
|
|
85
|
+
"LowerBoundType": "EXCLUSIVE",
|
|
86
|
+
"Description": [
|
|
87
|
+
"[Optional] The maximum allowed size for the range of frequencies for filter transitions between a passband and stopband.",
|
|
88
|
+
"This also determines the number of coefficients to be generated.",
|
|
89
|
+
"Value must be greater than 0.",
|
|
90
|
+
"A smaller value produces faster drop off at the cost of more coefficients.",
|
|
91
|
+
"Not used when FILTERLENGTH is supplied.",
|
|
92
|
+
"Default is bandwidth from FILTERLENGTH."
|
|
93
|
+
],
|
|
94
|
+
"LangName": "transition_bandwidth"
|
|
95
|
+
},
|
|
96
|
+
{
|
|
97
|
+
"Name": "LOWCUTOFF",
|
|
98
|
+
"Type": "double",
|
|
99
|
+
"Optional": true,
|
|
100
|
+
"LowerBound": 0,
|
|
101
|
+
"LowerBoundType": "EXCLUSIVE",
|
|
102
|
+
"Description": [
|
|
103
|
+
"[Optional] Determines the lower frequency that change between a passband and stopband occurs.",
|
|
104
|
+
"Must be greater than 0.",
|
|
105
|
+
"Not used by default with HIGHPASS filter."
|
|
106
|
+
],
|
|
107
|
+
"LangName": "low_cutoff"
|
|
108
|
+
},
|
|
109
|
+
{
|
|
110
|
+
"Name": "HIGHCUTOFF",
|
|
111
|
+
"Type": "double",
|
|
112
|
+
"Optional": true,
|
|
113
|
+
"LowerBound": 0,
|
|
114
|
+
"LowerBoundType": "EXCLUSIVE",
|
|
115
|
+
"Description": [
|
|
116
|
+
"[Optional] Determines the higher frequency that change between a passband and stopband occurs.",
|
|
117
|
+
"Must be greater than 0.",
|
|
118
|
+
"Not used by default with LOWPASS filter."
|
|
119
|
+
],
|
|
120
|
+
"LangName": "high_cutoff"
|
|
121
|
+
},
|
|
122
|
+
{
|
|
123
|
+
"Name": "SAMPLINGFREQUENCY",
|
|
124
|
+
"Type": "double",
|
|
125
|
+
"Optional": false,
|
|
126
|
+
"LowerBound": 0,
|
|
127
|
+
"LowerBoundType": "EXCLUSIVE",
|
|
128
|
+
"Description": [
|
|
129
|
+
"The frequency that the data to be filtered was sampled.",
|
|
130
|
+
"Must be greater than 0."
|
|
131
|
+
],
|
|
132
|
+
"LangName": "sampling_frequency"
|
|
133
|
+
},
|
|
134
|
+
{
|
|
135
|
+
"Name": "FILTERDESCRIPTION",
|
|
136
|
+
"Type": "string",
|
|
137
|
+
"Optional": true,
|
|
138
|
+
"Description": [
|
|
139
|
+
"[Optional] Description for the filter coefficients that contain the same filter ID.",
|
|
140
|
+
"Description is only written to one row for each filter generated, and ROW_I is 0.",
|
|
141
|
+
"Default is a string describing parameters."
|
|
142
|
+
],
|
|
143
|
+
"LangName": "filter_description"
|
|
144
|
+
}
|
|
145
|
+
],
|
|
146
|
+
"Output": [],
|
|
147
|
+
"IsPlottable": true,
|
|
148
|
+
"InputFmt": false,
|
|
149
|
+
"OutputFmt": false
|
|
150
|
+
}
|
|
@@ -125,25 +125,8 @@
|
|
|
125
125
|
"For example, if alpha=.05 meaning the 95% level , then confidence intervals are returned where the standard deviation is computed according to Bartlett’s formula.",
|
|
126
126
|
"Passing in a positive number results in a CONFINT result column being returned"
|
|
127
127
|
]
|
|
128
|
-
},
|
|
129
|
-
{
|
|
130
|
-
"Name": "RoundResults",
|
|
131
|
-
"Type": "integer",
|
|
132
|
-
"Optional": true,
|
|
133
|
-
"DefaultValue": 0,
|
|
134
|
-
"PermittedValues": [
|
|
135
|
-
0,
|
|
136
|
-
1
|
|
137
|
-
],
|
|
138
|
-
"AllowNaN": false,
|
|
139
|
-
"Description": [
|
|
140
|
-
"Determines whether rounding should be done or not. Passing in a value of '1' turns it ON.",
|
|
141
|
-
"Passing in a value of '0' turns it OFF.",
|
|
142
|
-
"If RoundResults(1), then results in the output row are rounded before inserting the row into the destination table (ART or response spool). "
|
|
143
|
-
],
|
|
144
|
-
"LangName": "round_results"
|
|
145
128
|
}
|
|
146
129
|
],
|
|
147
130
|
"InputFmt": false,
|
|
148
131
|
"OutputFmt": false
|
|
149
|
-
}
|
|
132
|
+
}
|
|
@@ -22,7 +22,7 @@
|
|
|
22
22
|
{
|
|
23
23
|
"Type": ["SERIES", "ART"],
|
|
24
24
|
"Description": [
|
|
25
|
-
"
|
|
25
|
+
"Also takes two input files: a logical univariate series and an art table from previous TD_ARIMAESTIMATE call. This allows the user to fit the interested series in SERIES_SPEC by existing model in ART_SPEC. In this case, the function's primary result set will be based on the existing model's coefficients"
|
|
26
26
|
],
|
|
27
27
|
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field",
|
|
28
28
|
"Optional": true
|
|
@@ -34,7 +34,6 @@
|
|
|
34
34
|
"PrimaryLayer": true,
|
|
35
35
|
"LayerName": "ARTPRIMARY",
|
|
36
36
|
"ResultTableColumnTypes": [
|
|
37
|
-
|
|
38
37
|
"integer",
|
|
39
38
|
"varchar(120)",
|
|
40
39
|
"float",
|
|
@@ -43,7 +42,6 @@
|
|
|
43
42
|
"float"
|
|
44
43
|
],
|
|
45
44
|
"Description": [
|
|
46
|
-
|
|
47
45
|
"The TD_ARIMAESTIMATE function can create a multilayered ART table. Invoking this UAF Function generates up to five analytical result sets: a primary result set containing the calculated coefficients",
|
|
48
46
|
"The RETURNS TABLE for this primary analytical result set is described in this subsection. The primary analytical result set can be retrieved by issuing a SELECT against the table created by the INTO <tablespec> clause. ",
|
|
49
47
|
"Last two float values are only returned if MLE or OLE is chosen"
|
|
@@ -55,7 +53,6 @@
|
|
|
55
53
|
"PrimaryLayer": false,
|
|
56
54
|
"LayerName": "ARTFITMETADATA",
|
|
57
55
|
"ResultTableColumnTypes": [
|
|
58
|
-
|
|
59
56
|
"integer",
|
|
60
57
|
"integer",
|
|
61
58
|
"float",
|
|
@@ -77,7 +74,6 @@
|
|
|
77
74
|
"varchar(16)"
|
|
78
75
|
],
|
|
79
76
|
"Description": [
|
|
80
|
-
|
|
81
77
|
"a secondary result set containing “goodness of fit” metrics",
|
|
82
78
|
"The RETURNS TABLE for this optional result set, containing 'goodness of fit' metadata, is described in this subsection. This result set is generated in response to the FUNC_PARAMS (FIT_METRICS(1) having a passed in flag value of '1'. The result set can be retrieved by invoking the TD_EXTRACT_RESULTS function against the analytical result table containing the metadata. This layer will be deposited in LAYER1 under the name ARTFITMETADATA.",
|
|
83
79
|
"There is one result row returned for each unique series acted upon. The returned columns are a subset of the columns returned by the independent “TD_FITMETRICS” function. Absent are the multivariate regression related F-statistics, since this is an ARIMA exercise."
|
|
@@ -89,14 +85,12 @@
|
|
|
89
85
|
"PrimaryLayer": false,
|
|
90
86
|
"LayerName": "ARTFITRESIDUALS",
|
|
91
87
|
"ResultTableColumnTypes": [
|
|
92
|
-
|
|
93
88
|
"integer",
|
|
94
89
|
"float",
|
|
95
90
|
"float",
|
|
96
91
|
"float"
|
|
97
92
|
],
|
|
98
93
|
"Description": [
|
|
99
|
-
|
|
100
94
|
"a tertiary result set containing residuals left over from the fitting exercise",
|
|
101
95
|
"The RETURNS TABLE for this optional analytical result set is described in this subsection. This result set is generated in response to the FUNC_PARAMS( RESIDUALS(1)) having a passed in flag value of '1'. The result set can be retrieved by invoking the TD_EXTRACT_RESULTS function against the analytical result table containing the metadata. This result set will be deposited into LAYER2 under the name ARTFITRESIDUALS."
|
|
102
96
|
],
|
|
@@ -107,13 +101,11 @@
|
|
|
107
101
|
"PrimaryLayer": false,
|
|
108
102
|
"LayerName": "ARTMODEL",
|
|
109
103
|
"ResultTableColumnTypes": [
|
|
110
|
-
|
|
111
104
|
"integer",
|
|
112
105
|
"integer",
|
|
113
106
|
"varbyte(64000)"
|
|
114
107
|
],
|
|
115
108
|
"Description": [
|
|
116
|
-
|
|
117
109
|
"a quaternary result set containing the 'validation series'",
|
|
118
110
|
"The RETURNS TABLE for this optional analytical result set is described in this subsection. This result set is always generated and contains the MODEL context which can subsequently be used to facilitate forecasting with the model. Note that the main 'model' context is present in binary form and is not meant for human consumption. The result set can be retrieved by invoking the TD_EXTRACT_RESULTS function against the analytical result table containing the metadata. This result set will be deposited into LAYER2 under the name ARTMODEL."
|
|
119
111
|
],
|
|
@@ -124,17 +116,14 @@
|
|
|
124
116
|
"PrimaryLayer": false,
|
|
125
117
|
"LayerName": "ARTVALDATA",
|
|
126
118
|
"ResultTableColumnTypes": [
|
|
127
|
-
|
|
128
119
|
"integer",
|
|
129
120
|
"float",
|
|
130
121
|
"float",
|
|
131
122
|
"float"
|
|
132
123
|
],
|
|
133
124
|
"Description": [
|
|
134
|
-
|
|
135
125
|
"a quinary result set, containing the validation model context, which is used during the TD_ARIMAVALIDATION processing",
|
|
136
|
-
"The RETURNS TABLE for this optional analytical result set is described in this subsection. This result set is always generated and contains the
|
|
137
|
-
"First column could be integer or flow through type given by input series."
|
|
126
|
+
"The RETURNS TABLE for this optional analytical result set is described in this subsection. This result set is always generated and contains the portion of the original series which has been reserved for 'validation' processing. This result set is mainly intended for internal consumption by the TD_ARIMAVALIDATE function. If however for some reason the data scientist would like access, the result set can be retrieved by invoking the TD_EXTRACT_RESULTS function against the analytical result table containing the metadata. This result set will be deposited into a layer under the name ARTVALDATA"
|
|
138
127
|
],
|
|
139
128
|
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
140
129
|
}
|
|
@@ -164,7 +153,6 @@
|
|
|
164
153
|
"Second value is 'd', the non-seasonal differencing order ",
|
|
165
154
|
"Third value is 'q', the non-seasonal moving average order, MA(q) "
|
|
166
155
|
]
|
|
167
|
-
|
|
168
156
|
}
|
|
169
157
|
]
|
|
170
158
|
},
|
|
@@ -306,7 +294,7 @@
|
|
|
306
294
|
"CSS"
|
|
307
295
|
],
|
|
308
296
|
"Description": [
|
|
309
|
-
"Specifies the approach used by TD_ARIMAESTIMATE to estimate the coefficients.
|
|
297
|
+
"Specifies the approach used by TD_ARIMAESTIMATE to estimate the coefficients. ALGORITHM (OLE) means the sum of least squares approach should be applied. Then, FIXED, INIT will be disabled. ALGORITHM (MLE) means the maximum likelihood approach should be pursued. ALGORITHM (CSS_MLE) means to use conditional sum-of-squares to find a start value and then do maximum likelihood. ALGORITHM (CSS) means conditional sum-of-squares approach should be applied. "
|
|
310
298
|
]
|
|
311
299
|
},
|
|
312
300
|
{
|
|
@@ -391,7 +379,6 @@
|
|
|
391
379
|
],
|
|
392
380
|
"OutputFmt": [
|
|
393
381
|
{
|
|
394
|
-
|
|
395
382
|
"Name": "INDEX_STYLE",
|
|
396
383
|
"Type": "string",
|
|
397
384
|
"Optional": true,
|
|
@@ -30,7 +30,6 @@
|
|
|
30
30
|
"PrimaryLayer": true,
|
|
31
31
|
"LayerName": "ARTPRIMARY",
|
|
32
32
|
"ResultTableColumnTypes": [
|
|
33
|
-
|
|
34
33
|
"<varies>",
|
|
35
34
|
"float",
|
|
36
35
|
"float",
|
|
@@ -39,7 +38,6 @@
|
|
|
39
38
|
"float"
|
|
40
39
|
],
|
|
41
40
|
"Description": [
|
|
42
|
-
|
|
43
41
|
"Invoking this UAF Function only generates a primary result set containing 'forecasted' values. The primary result set can be accessed via a subsequent SELECT statement against the ART table containing the results."
|
|
44
42
|
],
|
|
45
43
|
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
@@ -47,7 +45,6 @@
|
|
|
47
45
|
],
|
|
48
46
|
"IsPlottable": true,
|
|
49
47
|
"Params": [
|
|
50
|
-
|
|
51
48
|
{
|
|
52
49
|
"Name": "FORECAST_PERIODS",
|
|
53
50
|
"Type": "integer",
|