teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,7 @@
|
|
|
1
|
-
def ZTest(data=None, alpha=0.
|
|
1
|
+
def ZTest(data=None, alpha=0.05, first_sample_column=None, second_sample_column=None,
|
|
2
2
|
alternate_hypothesis="two-tailed", first_sample_variance=None,
|
|
3
|
-
second_sample_variance=None, mean_under_h0=None,
|
|
3
|
+
second_sample_variance=None, mean_under_h0=0, sample_name_column=None,
|
|
4
|
+
sample_value_column=None, first_sample_name=None, second_sample_name=None,
|
|
4
5
|
**generic_arguments):
|
|
5
6
|
|
|
6
7
|
"""
|
|
@@ -20,17 +21,17 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
20
21
|
alpha:
|
|
21
22
|
Optional Argument.
|
|
22
23
|
Specifies the value of alpha in hypothesis test function.
|
|
23
|
-
Default Value: 0.
|
|
24
|
+
Default Value: 0.05
|
|
24
25
|
Types: float
|
|
25
26
|
|
|
26
27
|
first_sample_column:
|
|
27
|
-
|
|
28
|
-
Specifies the first sample column in
|
|
28
|
+
Optional Argument.
|
|
29
|
+
Specifies the first sample column in Z-Test.
|
|
29
30
|
Types: str
|
|
30
31
|
|
|
31
32
|
second_sample_column:
|
|
32
33
|
Optional Argument.
|
|
33
|
-
Specifies the second sample column in
|
|
34
|
+
Specifies the second sample column in Z-Test.
|
|
34
35
|
Types: str
|
|
35
36
|
|
|
36
37
|
alternate_hypothesis:
|
|
@@ -48,7 +49,7 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
48
49
|
Types: str
|
|
49
50
|
|
|
50
51
|
first_sample_variance:
|
|
51
|
-
|
|
52
|
+
Optional Argument.
|
|
52
53
|
Specifies the first sample variance.
|
|
53
54
|
Types: float
|
|
54
55
|
|
|
@@ -60,8 +61,42 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
60
61
|
mean_under_h0:
|
|
61
62
|
Optional Argument.
|
|
62
63
|
Specifies the mean under the null hypothesis.
|
|
64
|
+
Default Value: 0
|
|
63
65
|
Types: float
|
|
64
66
|
|
|
67
|
+
sample_name_column:
|
|
68
|
+
Optional Argument.
|
|
69
|
+
Specifies the column in the "data" containing the names of the samples
|
|
70
|
+
included in the Z-Test.
|
|
71
|
+
Note:
|
|
72
|
+
* This argument is used when data contains sample names in a column
|
|
73
|
+
and sample values in another column.
|
|
74
|
+
Types: str
|
|
75
|
+
|
|
76
|
+
sample_value_column:
|
|
77
|
+
Optional Argument.
|
|
78
|
+
Specifies the column in the "data" containing the values for each sample member.
|
|
79
|
+
Note:
|
|
80
|
+
* This argument is used when data contains sample names in a column
|
|
81
|
+
and sample values in another column.
|
|
82
|
+
Types: str
|
|
83
|
+
|
|
84
|
+
first_sample_name:
|
|
85
|
+
Optional Argument.
|
|
86
|
+
Specifies the name of the first sample included in the Z-Test.
|
|
87
|
+
Note:
|
|
88
|
+
* This argument is used when data contains sample names in a column
|
|
89
|
+
and sample values in another column.
|
|
90
|
+
Types: str
|
|
91
|
+
|
|
92
|
+
second_sample_name:
|
|
93
|
+
Optional Argument.
|
|
94
|
+
Specifies the name of the second sample included in the Z-Test.
|
|
95
|
+
Note:
|
|
96
|
+
* This argument is used when data contains sample names in a column
|
|
97
|
+
and sample values in another column.
|
|
98
|
+
Types: str
|
|
99
|
+
|
|
65
100
|
**generic_arguments:
|
|
66
101
|
Specifies the generic keyword arguments SQLE functions accept.
|
|
67
102
|
Below are the generic keyword arguments:
|
|
@@ -113,9 +148,11 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
113
148
|
|
|
114
149
|
# Load the example data.
|
|
115
150
|
load_example_data("teradataml", ["titanic"])
|
|
151
|
+
load_example_data('ztest', 'boston2cols')
|
|
116
152
|
|
|
117
153
|
# Create teradataml DataFrame object.
|
|
118
154
|
titanic_data = DataFrame.from_table("titanic")
|
|
155
|
+
bostonCol = DataFrame.from_table("boston2cols")
|
|
119
156
|
|
|
120
157
|
# Check the list of available analytic functions.
|
|
121
158
|
display_analytic_functions()
|
|
@@ -152,4 +189,32 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
152
189
|
# Print the result DataFrame.
|
|
153
190
|
print(obj.result)
|
|
154
191
|
|
|
192
|
+
# Example 3: Perform ZTest analysis on input data column that
|
|
193
|
+
# contains data for the first and second sample
|
|
194
|
+
# population and variance of the first and second sample
|
|
195
|
+
# population by specifying sample_name_column, sample_value_column,
|
|
196
|
+
# first_sample_name and second_sample_name.
|
|
197
|
+
obj = ZTest(data=bostonCol,
|
|
198
|
+
first_sample_name='NOX',
|
|
199
|
+
second_sample_name='RM',
|
|
200
|
+
sample_name_column='groupName',
|
|
201
|
+
sample_value_column='groupValue')
|
|
202
|
+
|
|
203
|
+
# Print the result DataFrame.
|
|
204
|
+
print(obj.result)
|
|
205
|
+
|
|
206
|
+
# ExPerform ZTest analysis on input data column that
|
|
207
|
+
# contains data for the first sample population and
|
|
208
|
+
# variance of the first sample population by specifying
|
|
209
|
+
# sample_name_column, sample_value_column.
|
|
210
|
+
obj = ZTest(data=boston,
|
|
211
|
+
first_sample_name='NOX',
|
|
212
|
+
sample_name_column='groupName',
|
|
213
|
+
sample_value_column='groupValue')
|
|
214
|
+
|
|
215
|
+
# Print the result DataFrame.
|
|
216
|
+
print(obj.result)
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
|
|
155
220
|
"""
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
def ACF(data=None, data_filter_expr=None, max_lags=None,
|
|
2
2
|
func_type=False, unbiased=False, demean=True,
|
|
3
|
-
qstat=False, alpha=None,
|
|
3
|
+
qstat=False, alpha=None,
|
|
4
4
|
**generic_arguments):
|
|
5
5
|
"""
|
|
6
6
|
DESCRIPTION:
|
|
@@ -96,15 +96,6 @@ def ACF(data=None, data_filter_expr=None, max_lags=None,
|
|
|
96
96
|
* The function does not return confidence intervals.
|
|
97
97
|
Types: float
|
|
98
98
|
|
|
99
|
-
round_results:
|
|
100
|
-
Optional Argument.
|
|
101
|
-
Specifies whether rounding should be done or not.
|
|
102
|
-
When set to True, results in the output row are
|
|
103
|
-
rounded before inserting the rows into dataframe,
|
|
104
|
-
otherwise not.
|
|
105
|
-
Default Value: False
|
|
106
|
-
Types: bool
|
|
107
|
-
|
|
108
99
|
**generic_arguments:
|
|
109
100
|
Specifies the generic keyword arguments of UAF functions.
|
|
110
101
|
Below are the generic keyword arguments:
|
|
@@ -312,7 +312,7 @@ def ArimaEstimate(data1=None, data1_filter_expr=None, data2=None,
|
|
|
312
312
|
references, such as ArimaEstimate_obj.<attribute_name>.
|
|
313
313
|
Output teradataml DataFrame attribute names are:
|
|
314
314
|
1. result
|
|
315
|
-
2. fitmetadata - Available when "
|
|
315
|
+
2. fitmetadata - Available when "fit_metrics" is set to True, otherwise not.
|
|
316
316
|
3. fitresiduals - Available when "residuals" is set to True, otherwise not.
|
|
317
317
|
4. model
|
|
318
318
|
5. valdata
|
|
@@ -118,6 +118,9 @@ def ArimaForecast(data=None, data_filter_expr=None, forecast_periods=None,
|
|
|
118
118
|
payload_field="magnitude",
|
|
119
119
|
payload_content="REAL")
|
|
120
120
|
|
|
121
|
+
# Example 1: Forecast 2 periods based on the model fitted by ArimaEstimate.
|
|
122
|
+
# As the fit_percentage is greater than or equal to 100,
|
|
123
|
+
# output of ArimaEstimate is used for ArimaForecast.
|
|
121
124
|
# Execute ArimaEstimate function.
|
|
122
125
|
arima_estimate_op = ArimaEstimate(data1=data_series_df,
|
|
123
126
|
nonseasonal_model_order=[2,0,0],
|
|
@@ -128,15 +131,42 @@ def ArimaForecast(data=None, data_filter_expr=None, forecast_periods=None,
|
|
|
128
131
|
residuals=True,
|
|
129
132
|
fit_percentage=100)
|
|
130
133
|
|
|
131
|
-
# Example 1: Forecast 2 periods based on the model fitted by ArimaEstimate.
|
|
132
|
-
# As the fit_percentage is greater than or equal to 100,
|
|
133
|
-
# output of ArimaEstimate is used for ArimaForecast.
|
|
134
|
-
|
|
135
134
|
# Create teradataml TDAnalyticResult object over the result attribute of 'arima_estimate_op'
|
|
136
135
|
data_art_df = TDAnalyticResult(data=arima_estimate_op.result)
|
|
137
136
|
|
|
138
|
-
uaf_out = ArimaForecast(data=data_art_df,
|
|
137
|
+
uaf_out = ArimaForecast(data=data_art_df,
|
|
138
|
+
forecast_periods=2)
|
|
139
139
|
|
|
140
140
|
# Print the result DataFrame.
|
|
141
141
|
print(uaf_out.result)
|
|
142
|
+
|
|
143
|
+
# Example 2: Forecast 2 periods based on the model fitted by ArimaValidate.
|
|
144
|
+
# As the fit_percentage is less than 100,
|
|
145
|
+
# output of ArimaEstimate is used for ArimaValidate and
|
|
146
|
+
# output of ArimaValidate is used for ArimaForecast.
|
|
147
|
+
# Execute ArimaEstimate function.
|
|
148
|
+
arima_estimate_op = ArimaEstimate(data1=data_series_df,
|
|
149
|
+
nonseasonal_model_order=[2,0,0],
|
|
150
|
+
constant=False,
|
|
151
|
+
algorithm="MLE",
|
|
152
|
+
coeff_stats=True,
|
|
153
|
+
fit_metrics=True,
|
|
154
|
+
residuals=True,
|
|
155
|
+
fit_percentage=80)
|
|
156
|
+
|
|
157
|
+
# Create TDAnalyticResult object over the result attribute of 'arima_estimate_op'.
|
|
158
|
+
data_art_df = TDAnalyticResult(data=arima_estimate_op.result)
|
|
159
|
+
|
|
160
|
+
# Execute ArimaValidate function.
|
|
161
|
+
arima_validate_op = ArimaValidate(data=data_art_df,
|
|
162
|
+
fit_metrics=TRUE,
|
|
163
|
+
residuals=TRUE)
|
|
164
|
+
|
|
165
|
+
data_art_df1 = TDAnalyticResult(data=arima_validate_op.result)
|
|
166
|
+
|
|
167
|
+
uaf_out = ArimaForecast(data=data_art_df1,
|
|
168
|
+
forecast_periods=2)
|
|
169
|
+
|
|
170
|
+
# Print the result DataFrames.
|
|
171
|
+
print(uaf_out.result)
|
|
142
172
|
"""
|
|
@@ -149,7 +149,9 @@ def ArimaValidate(data=None, data_filter_expr=None, fit_metrics=False,
|
|
|
149
149
|
# Create teradataml TDAnalyticResult object over the result attribute of 'arima_estimate_op'.
|
|
150
150
|
data_art_df = TDAnalyticResult(data=arima_estimate_op.result)
|
|
151
151
|
|
|
152
|
-
uaf_out = ArimaValidate(data=data_art_df,
|
|
152
|
+
uaf_out = ArimaValidate(data=data_art_df,
|
|
153
|
+
fit_metrics=True,
|
|
154
|
+
residuals=True)
|
|
153
155
|
|
|
154
156
|
# Print the result DataFrames.
|
|
155
157
|
print(uaf_out.result)
|
|
@@ -0,0 +1,293 @@
|
|
|
1
|
+
def ArimaXEstimate(data1=None, data1_filter_expr=None, data2=None,
|
|
2
|
+
data2_filter_expr=None, nonseasonal_model_order=None,
|
|
3
|
+
seasonal_model_order=None, seasonal_period=None,
|
|
4
|
+
xreg=None, init=None, fixed=None, constant=False,
|
|
5
|
+
algorithm=None, max_iterations=100, coeff_stats=False,
|
|
6
|
+
fit_percentage=100, fit_metrics=False, residuals=False,
|
|
7
|
+
input_fmt_input_mode=None,
|
|
8
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
9
|
+
**generic_arguments):
|
|
10
|
+
"""
|
|
11
|
+
DESCRIPTION:
|
|
12
|
+
ArimaXEstimate() function extends the capability of ArimaEstimate() by
|
|
13
|
+
allowing to include external regressors or covariates to an ARIMA model.
|
|
14
|
+
The external regressors are specified in TDSeries payload specification
|
|
15
|
+
after targeting the univariate series.
|
|
16
|
+
The following procedure is an example of how to use:
|
|
17
|
+
1. Run the ArimaXEstimate() function to estimate the coefficients
|
|
18
|
+
of ARIMAX model.
|
|
19
|
+
2. Run the ArimaXForecast() function with the estimated coefficient
|
|
20
|
+
as first input, and the regular input time series table (TDSeries) that
|
|
21
|
+
contains the future value of exogenous variables as second input.
|
|
22
|
+
|
|
23
|
+
PARAMETERS:
|
|
24
|
+
data1:
|
|
25
|
+
Required Argument.
|
|
26
|
+
Specifies the input series.
|
|
27
|
+
Types: TDSeries
|
|
28
|
+
|
|
29
|
+
data1_filter_expr:
|
|
30
|
+
Optional Argument.
|
|
31
|
+
Specifies the filter expression for "data1".
|
|
32
|
+
Types: ColumnExpression
|
|
33
|
+
|
|
34
|
+
data2:
|
|
35
|
+
Optional Argument.
|
|
36
|
+
Specifies a logical univariate
|
|
37
|
+
series and an art table from previous
|
|
38
|
+
ArimaXEstimate() call. This allows the user to fit
|
|
39
|
+
the interested series in TDSeries by existing model
|
|
40
|
+
in TDAnalyticResult. In this case, the function's primary
|
|
41
|
+
result set will be based on the existing model's
|
|
42
|
+
coefficients.
|
|
43
|
+
Types: TDSeries, TDAnalyticResult
|
|
44
|
+
|
|
45
|
+
data2_filter_expr:
|
|
46
|
+
Optional Argument.
|
|
47
|
+
Specifies the filter expression for "data2".
|
|
48
|
+
Types: ColumnExpression
|
|
49
|
+
|
|
50
|
+
nonseasonal_model_order:
|
|
51
|
+
Required Argument.
|
|
52
|
+
Specifies the non-seasonal values for the model.
|
|
53
|
+
A list containing three integer values, which are each greater than or equal to 0:
|
|
54
|
+
• p-value: The order of the non-seasonal autoregression
|
|
55
|
+
(AR) component.
|
|
56
|
+
• d-value: The order of the non-seasonal differences
|
|
57
|
+
between consecutive components.
|
|
58
|
+
• q-value: The order of the non-seasonal moving
|
|
59
|
+
average (MA) component.
|
|
60
|
+
Types: int, list of int
|
|
61
|
+
|
|
62
|
+
seasonal_model_order:
|
|
63
|
+
Required Argument.
|
|
64
|
+
Specifies the seasonal values for the model.
|
|
65
|
+
A list containing three integer values, which are each greater than or equal to 0:
|
|
66
|
+
• P-value: The order of the seasonal auto-regression
|
|
67
|
+
(SAR) component.
|
|
68
|
+
• D-value: The order of the seasonal differences
|
|
69
|
+
between consecutive components.
|
|
70
|
+
• Q-value: The order of the seasonal moving average
|
|
71
|
+
(SMA) component.
|
|
72
|
+
Types: int, list of int
|
|
73
|
+
|
|
74
|
+
seasonal_period:
|
|
75
|
+
Optional Argument.
|
|
76
|
+
Specifies the number of periods per season.
|
|
77
|
+
Types: int
|
|
78
|
+
|
|
79
|
+
xreg:
|
|
80
|
+
Required Argument.
|
|
81
|
+
Specifies the number of covariates in external regressors.
|
|
82
|
+
Note:
|
|
83
|
+
* If value is 0, then it suggests to use ArimaEstimate().
|
|
84
|
+
The input number should match with the number
|
|
85
|
+
of (payload-1). Otherwise, an error occurs with
|
|
86
|
+
the message “Unexpected XREG input.”
|
|
87
|
+
* Maximum number for this argument is 10.
|
|
88
|
+
Types: int
|
|
89
|
+
|
|
90
|
+
init:
|
|
91
|
+
Optional Argument.
|
|
92
|
+
Specifies the position-sensitive list that specifies the initial
|
|
93
|
+
values to be associated with the non-seasonal AR
|
|
94
|
+
regression coefficients, followed by the non-seasonal
|
|
95
|
+
MA coefficients, the seasonal SAR regression
|
|
96
|
+
coefficients and the SMA coefficients. The formula is
|
|
97
|
+
as follows: 'p+q+P+Q+CONSTANT-length-init-list'
|
|
98
|
+
Types: float, list of float
|
|
99
|
+
|
|
100
|
+
fixed:
|
|
101
|
+
Optional Argument.
|
|
102
|
+
Specifies the position-sensitive list that contains the
|
|
103
|
+
fixed values to be associated with the non-seasonal
|
|
104
|
+
AR regression coefficients, followed by the nonseasonal
|
|
105
|
+
MA coefficients, the SAR coefficients and
|
|
106
|
+
the SMA coefficients.
|
|
107
|
+
If an intercept is needed, one more value is added at
|
|
108
|
+
the end to specify the intercept coefficient initial value.
|
|
109
|
+
The formula is as follows: 'p+q+P+Q+CONSTANT-length-fixed-list'
|
|
110
|
+
Types: float, list of float
|
|
111
|
+
|
|
112
|
+
constant:
|
|
113
|
+
Optional Argument.
|
|
114
|
+
Specifies the indicator for the ArimaXEstimate() function to
|
|
115
|
+
calculate an intercept. When set to True, it indicates intercept
|
|
116
|
+
should be calculated otherwise it indicates no
|
|
117
|
+
intercept should be calculated.
|
|
118
|
+
Default Value: False
|
|
119
|
+
Types: bool
|
|
120
|
+
|
|
121
|
+
algorithm:
|
|
122
|
+
Required Argument.
|
|
123
|
+
Specifies the method to estimate the coefficients.
|
|
124
|
+
Permitted Values: OLE, MLE, MLE_CSS, CSS
|
|
125
|
+
Types: str
|
|
126
|
+
|
|
127
|
+
max_iterations:
|
|
128
|
+
Optional Argument.
|
|
129
|
+
Specifies the limit on the maximum number of
|
|
130
|
+
iterations that can be employed to estimate the
|
|
131
|
+
ARIMA parameters. Only relevant for "algorithm" value 'MLE'
|
|
132
|
+
processing.
|
|
133
|
+
Default Value: 100
|
|
134
|
+
Types: int
|
|
135
|
+
|
|
136
|
+
coeff_stats:
|
|
137
|
+
Optional Argument.
|
|
138
|
+
Specifies the flag indicating whether to return coefficient
|
|
139
|
+
statistical columns STD_ERROR, TSTAT_VALUE and
|
|
140
|
+
TSTAT_PROB. When set to True, function returns the columns,
|
|
141
|
+
otherwise does not return the columns.
|
|
142
|
+
Default Value: False
|
|
143
|
+
Types: bool
|
|
144
|
+
|
|
145
|
+
fit_percentage:
|
|
146
|
+
Optional Argument.
|
|
147
|
+
Specifies the percentage of passed-in sample points
|
|
148
|
+
that are used for the model fitting and parameter estimation.
|
|
149
|
+
Default Value: 100
|
|
150
|
+
Types: int
|
|
151
|
+
|
|
152
|
+
fit_metrics:
|
|
153
|
+
Optional Argument.
|
|
154
|
+
Specifies the indicator to generate the secondary result
|
|
155
|
+
set that contains the model metadata statistics.
|
|
156
|
+
When set to True, the function generates the secondary result set
|
|
157
|
+
otherwise does not generate the secondary result set.
|
|
158
|
+
The generated result set is retrieved by issuing the
|
|
159
|
+
ExtractResults function on the analytical result
|
|
160
|
+
table containing the results.
|
|
161
|
+
Default Value: False
|
|
162
|
+
Types: bool
|
|
163
|
+
|
|
164
|
+
residuals:
|
|
165
|
+
Optional Argument.
|
|
166
|
+
Specifies the indicator to generate the tertiary result set
|
|
167
|
+
that contains the model residuals. When set to True, function
|
|
168
|
+
generates the tertiary result set otherwise, does
|
|
169
|
+
not generate the tertiary result set.
|
|
170
|
+
Default Value: False
|
|
171
|
+
Types: bool
|
|
172
|
+
|
|
173
|
+
input_fmt_input_mode:
|
|
174
|
+
Required Argument.
|
|
175
|
+
Specifies the input mode supported by the function.
|
|
176
|
+
Permitted Values: MANY2ONE, ONE2ONE, MATCH
|
|
177
|
+
Types: str
|
|
178
|
+
|
|
179
|
+
output_fmt_index_style:
|
|
180
|
+
Optional Argument.
|
|
181
|
+
Specifies the "index_style" of the output format.
|
|
182
|
+
Permitted Values: NUMERICAL_SEQUENCE, FLOW_THROUGH
|
|
183
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
184
|
+
Types: str
|
|
185
|
+
|
|
186
|
+
**generic_arguments:
|
|
187
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
188
|
+
Below are the generic keyword arguments:
|
|
189
|
+
persist:
|
|
190
|
+
Optional Argument.
|
|
191
|
+
Specifies whether to persist the results of the
|
|
192
|
+
function in a table or not. When set to True,
|
|
193
|
+
results are persisted in a table; otherwise,
|
|
194
|
+
results are garbage collected at the end of the
|
|
195
|
+
session.
|
|
196
|
+
Note that, when UAF function is executed, an
|
|
197
|
+
analytic result table (ART) is created.
|
|
198
|
+
Default Value: False
|
|
199
|
+
Types: bool
|
|
200
|
+
|
|
201
|
+
volatile:
|
|
202
|
+
Optional Argument.
|
|
203
|
+
Specifies whether to put the results of the
|
|
204
|
+
function in a volatile ART or not. When set to
|
|
205
|
+
True, results are stored in a volatile ART,
|
|
206
|
+
otherwise not.
|
|
207
|
+
Default Value: False
|
|
208
|
+
Types: bool
|
|
209
|
+
|
|
210
|
+
output_table_name:
|
|
211
|
+
Optional Argument.
|
|
212
|
+
Specifies the name of the table to store results.
|
|
213
|
+
If not specified, a unique table name is internally
|
|
214
|
+
generated.
|
|
215
|
+
Types: str
|
|
216
|
+
|
|
217
|
+
output_db_name:
|
|
218
|
+
Optional Argument.
|
|
219
|
+
Specifies the name of the database to create output
|
|
220
|
+
table into. If not specified, table is created into
|
|
221
|
+
database specified by the user at the time of context
|
|
222
|
+
creation or configuration parameter. Argument is ignored,
|
|
223
|
+
if "output_table_name" is not specified.
|
|
224
|
+
Types: str
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
RETURNS:
|
|
228
|
+
Instance of ArimaXEstimate.
|
|
229
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
230
|
+
references, such as ArimaXEstimate_obj.<attribute_name>.
|
|
231
|
+
Output teradataml DataFrame attribute names are:
|
|
232
|
+
1. result
|
|
233
|
+
2. fitmetadata
|
|
234
|
+
3. fitresiduals
|
|
235
|
+
4. model
|
|
236
|
+
5. valdata
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
RAISES:
|
|
240
|
+
TeradataMlException, TypeError, ValueError
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
EXAMPLES:
|
|
244
|
+
# Notes:
|
|
245
|
+
# 1. Get the connection to Vantage, before importing the
|
|
246
|
+
# function in user space.
|
|
247
|
+
# 2. User can import the function, if it is available on
|
|
248
|
+
# Vantage user is connected to.
|
|
249
|
+
# 3. To check the list of UAF analytic functions available
|
|
250
|
+
# on Vantage user connected to, use
|
|
251
|
+
# "display_analytic_functions()".
|
|
252
|
+
|
|
253
|
+
# Check the list of available UAF analytic functions.
|
|
254
|
+
display_analytic_functions(type="UAF")
|
|
255
|
+
|
|
256
|
+
# Import function ArimaXEstimate.
|
|
257
|
+
from teradataml import ArimaXEstimate
|
|
258
|
+
|
|
259
|
+
# Load the example data.
|
|
260
|
+
load_example_data("uaf", "blood2ageandweight")
|
|
261
|
+
|
|
262
|
+
# Create teradataml DataFrame objects.
|
|
263
|
+
data1 = DataFrame.from_table("blood2ageandweight")
|
|
264
|
+
|
|
265
|
+
# Create teradataml TDSeries objects.
|
|
266
|
+
data1_series_df = TDSeries(data=data1,
|
|
267
|
+
id="PatientID",
|
|
268
|
+
row_index="SeqNo",
|
|
269
|
+
row_index_style="SEQUENCE",
|
|
270
|
+
payload_field=["BloodFat", "Age"],
|
|
271
|
+
payload_content="MULTIVAR_REAL")
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
# Example 1: Execute ArimaXEstimate with single input.
|
|
275
|
+
uaf_out = ArimaXEstimate(data1=data1_series_df,
|
|
276
|
+
nonseasonal_model_order=[2,0,1],
|
|
277
|
+
xreg=True,
|
|
278
|
+
fit_metrics=True,
|
|
279
|
+
residuals=True,
|
|
280
|
+
constant=True
|
|
281
|
+
algorithm=MLE,
|
|
282
|
+
fit_percentage=80
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
# Print the result DataFrames.
|
|
286
|
+
print(uaf_out.result)
|
|
287
|
+
print(uaf_out.fitmetadata)
|
|
288
|
+
print(uaf_out.fitresiduals)
|
|
289
|
+
print(uaf_out.model)
|
|
290
|
+
print(uaf_out.valdata)
|
|
291
|
+
|
|
292
|
+
"""
|
|
293
|
+
|