teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
2
|
-
|
|
3
|
-
|
|
2
|
+
const_term=True, algorithm=None,
|
|
3
|
+
start_idx=None, omit=None,
|
|
4
4
|
significance_level=None, test="GREATER",
|
|
5
5
|
**generic_arguments):
|
|
6
6
|
"""
|
|
@@ -24,35 +24,15 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
|
24
24
|
Specifies the filter expression for "data".
|
|
25
25
|
Types: ColumnExpression
|
|
26
26
|
|
|
27
|
-
|
|
28
|
-
Required Argument.
|
|
29
|
-
Specifies the number of responses and explanatory variables
|
|
30
|
-
present in the original regression.
|
|
31
|
-
Types: int
|
|
32
|
-
|
|
33
|
-
weights:
|
|
27
|
+
const_term:
|
|
34
28
|
Optional Argument.
|
|
35
|
-
Specifies
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
Default Value: False
|
|
29
|
+
Specifies the indicator of whether the regression performed should
|
|
30
|
+
use a Y-intercept coefficient.
|
|
31
|
+
When set to True, means the regression is performed on “Y=C+aX1+bX2+…”.
|
|
32
|
+
When set to False, means the regression is performed on “Y=aX1+bX2+…”.
|
|
33
|
+
Default Value: True
|
|
41
34
|
Types: bool
|
|
42
35
|
|
|
43
|
-
formula:
|
|
44
|
-
Required Argument.
|
|
45
|
-
Specifies the formula used in the regression operation.
|
|
46
|
-
The name of the response variable must always be Y,
|
|
47
|
-
and the name of the explanatory variable must always be X1.
|
|
48
|
-
For example, "Y = B0 + B1 * X1".
|
|
49
|
-
Notes:
|
|
50
|
-
* The "formula" argument must be specified along with the
|
|
51
|
-
"algorithm" argument.
|
|
52
|
-
* Use the following link to refer the formula rules:
|
|
53
|
-
"https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Teradata-VantageTM-Unbounded-Array-Framework-Time-Series-Reference-17.20/Mathematic-Operators-and-Functions/Formula-Rules"
|
|
54
|
-
Types: str
|
|
55
|
-
|
|
56
36
|
algorithm:
|
|
57
37
|
Required Argument.
|
|
58
38
|
Specifies the algorithm used for the regression.
|
|
@@ -205,12 +185,10 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
|
205
185
|
payload_field=["y1", "x1"],
|
|
206
186
|
payload_content="MULTIVAR_REAL")
|
|
207
187
|
|
|
208
|
-
# Execute GoldfeldQuandt
|
|
188
|
+
# Execute GoldfeldQuandt.
|
|
209
189
|
uaf_out = GoldfeldQuandt(data=data_series_df,
|
|
210
|
-
formula="Y = B0 + B1*X1",
|
|
211
190
|
omit=2.0,
|
|
212
191
|
significance_level=0.05,
|
|
213
|
-
orig_regr_paramcnt=2,
|
|
214
192
|
algorithm="QR")
|
|
215
193
|
|
|
216
194
|
# Print the result DataFrame.
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=None,
|
|
2
|
-
alpha=None, beta=None, gamma=None, seasonal_periods=
|
|
2
|
+
alpha=None, beta=None, gamma=None, seasonal_periods=None,
|
|
3
3
|
init_level=None, init_trend=None, init_season=None,
|
|
4
4
|
model=None, fit_percentage=100,
|
|
5
5
|
prediction_intervals="BOTH", fit_metrics=False,
|
|
@@ -67,7 +67,6 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
67
67
|
parameter is 3. Value must be greater than or equal to 1.
|
|
68
68
|
Note:
|
|
69
69
|
Required when "gamma" or "init_season" is specified.
|
|
70
|
-
Default Value: 1
|
|
71
70
|
Types: int
|
|
72
71
|
|
|
73
72
|
init_level:
|
|
@@ -248,10 +247,13 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
248
247
|
|
|
249
248
|
# Print the result DataFrames.
|
|
250
249
|
print(uaf_out.result)
|
|
250
|
+
|
|
251
251
|
# Print the model statistics result.
|
|
252
252
|
print(uaf_out.fitmetadata)
|
|
253
|
+
|
|
253
254
|
# Print the selection metrics result.
|
|
254
255
|
print(uaf_out.selmetrics)
|
|
256
|
+
|
|
255
257
|
# Print the residuals statistics result.
|
|
256
258
|
print(uaf_out.fitresiduals)
|
|
257
259
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
def IDFFT2(data=None, data_filter_expr=None, human_readable=True,
|
|
2
|
-
output_fmt_content=None,
|
|
2
|
+
output_fmt_content=None,
|
|
3
3
|
**generic_arguments):
|
|
4
4
|
"""
|
|
5
5
|
DESCRIPTION:
|
|
@@ -71,13 +71,6 @@ def IDFFT2(data=None, data_filter_expr=None, human_readable=True,
|
|
|
71
71
|
MULTIVAR_AMPL_PHASE
|
|
72
72
|
Types: str
|
|
73
73
|
|
|
74
|
-
output_fmt_row_major:
|
|
75
|
-
Optional Argument.
|
|
76
|
-
Specifies whether the matrix output should be in a row-major-centric
|
|
77
|
-
or column-major-centric manner.
|
|
78
|
-
Default Value: True
|
|
79
|
-
Types: bool
|
|
80
|
-
|
|
81
74
|
**generic_arguments:
|
|
82
75
|
Specifies the generic keyword arguments of UAF functions.
|
|
83
76
|
Below are the generic keyword arguments:
|
|
@@ -0,0 +1,236 @@
|
|
|
1
|
+
def IDWT(data1=None, data1_filter_expr=None, data2=None,
|
|
2
|
+
data2_filter_expr=None, wavelet=None, mode="symmetric",
|
|
3
|
+
part=None, input_fmt_input_mode=None,
|
|
4
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
5
|
+
**generic_arguments):
|
|
6
|
+
"""
|
|
7
|
+
DESCRIPTION:
|
|
8
|
+
IDWT() is a function that performs inverse discrete wavelet transform (IDWT).
|
|
9
|
+
|
|
10
|
+
PARAMETERS:
|
|
11
|
+
data1:
|
|
12
|
+
Required Argument.
|
|
13
|
+
Specifies the input series. Multiple
|
|
14
|
+
payloads are supported, and each payload column is
|
|
15
|
+
transformed independently. Only REAL or MULTIVAR_REAL
|
|
16
|
+
payload content types are supported.
|
|
17
|
+
Types: TDSeries
|
|
18
|
+
|
|
19
|
+
data1_filter_expr:
|
|
20
|
+
Optional Argument.
|
|
21
|
+
Specifies the filter expression for "data1".
|
|
22
|
+
Types: ColumnExpression
|
|
23
|
+
|
|
24
|
+
data2:
|
|
25
|
+
Optional Argument.
|
|
26
|
+
Specifies the input series. The series specifies the filter.
|
|
27
|
+
It should have two payload columns corresponding to low
|
|
28
|
+
and high pass filters.
|
|
29
|
+
Only MULTIVAR_REAL payload content type is supported.
|
|
30
|
+
Types: TDSeries
|
|
31
|
+
|
|
32
|
+
data2_filter_expr:
|
|
33
|
+
Optional Argument.
|
|
34
|
+
Specifies the filter expression for "data2".
|
|
35
|
+
Types: ColumnExpression
|
|
36
|
+
|
|
37
|
+
wavelet:
|
|
38
|
+
Optional Argument.
|
|
39
|
+
Specifies the name of the wavelet.
|
|
40
|
+
Permitted Values:
|
|
41
|
+
* Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
|
|
42
|
+
* Coiflets: 'coif1', 'coif2', ... , 'coif17'
|
|
43
|
+
* Symlets: 'sym2', 'sym3', ... ,' sym20'
|
|
44
|
+
* Discrete Meyer: 'dmey'
|
|
45
|
+
* Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5',
|
|
46
|
+
'bior2.2', 'bior2.4', 'bior2.6',
|
|
47
|
+
'bior2.8', 'bior3.1', 'bior3.3',
|
|
48
|
+
'bior3.5', 'bior3.7', 'bior3.9',
|
|
49
|
+
'bior4.4', 'bior5.5', 'bior6.8'
|
|
50
|
+
* Reverse Biorthogonal: 'rbio1.1', 'rbio1.3',
|
|
51
|
+
'rbio1.5' 'rbio2.2',
|
|
52
|
+
'rbio2.4', 'rbio2.6',
|
|
53
|
+
'rbio2.8', 'rbio3.1',
|
|
54
|
+
'rbio3.3', 'rbio3.5',
|
|
55
|
+
'rbio3.7','rbio3.9',
|
|
56
|
+
'rbio4.4', 'rbio5.5',
|
|
57
|
+
'rbio6.8'
|
|
58
|
+
Note:
|
|
59
|
+
* If 'wavelet' is specified, do not include a second
|
|
60
|
+
input series for the function. Otherwise, include
|
|
61
|
+
a second input series to provide the filter.
|
|
62
|
+
* Data type is case-sensitive.
|
|
63
|
+
Types: str
|
|
64
|
+
|
|
65
|
+
mode:
|
|
66
|
+
Optional Argument.
|
|
67
|
+
Specifies the signal extension mode.
|
|
68
|
+
Data type is case-insensitive.
|
|
69
|
+
Permitted Values:
|
|
70
|
+
* symmetric, sym, symh
|
|
71
|
+
* reflect, symw
|
|
72
|
+
* smooth, spd, sp1
|
|
73
|
+
* constant, sp0
|
|
74
|
+
* zero, zpd
|
|
75
|
+
* periodic, ppd
|
|
76
|
+
* periodization, per
|
|
77
|
+
* antisymmetric, asym, asymh
|
|
78
|
+
* antireflect, asymw
|
|
79
|
+
Default Value: symmetric
|
|
80
|
+
Types: str
|
|
81
|
+
|
|
82
|
+
part:
|
|
83
|
+
Optional Argument.
|
|
84
|
+
Specifies the indicator that the input is partial decomposition
|
|
85
|
+
result.
|
|
86
|
+
Note:
|
|
87
|
+
Data type is case-insensitive.
|
|
88
|
+
Permitted Values:
|
|
89
|
+
* a - the approximation
|
|
90
|
+
* d - the detail of decomposition of result.
|
|
91
|
+
Types: str
|
|
92
|
+
|
|
93
|
+
input_fmt_input_mode:
|
|
94
|
+
Optional Argument.
|
|
95
|
+
Specifies the input mode supported by the function.
|
|
96
|
+
When there are two input series, then the input_fmt_input_mode
|
|
97
|
+
specification is mandatory.
|
|
98
|
+
Permitted Values:
|
|
99
|
+
* ONE2ONE: Both the primary and secondary series
|
|
100
|
+
specifications contain a series name which
|
|
101
|
+
identifies the two series in the function.
|
|
102
|
+
* MANY2ONE: The MANY specification is the primary series
|
|
103
|
+
declaration. The secondary series specification
|
|
104
|
+
contains a series name that identifies the single
|
|
105
|
+
secondary series.
|
|
106
|
+
* MATCH: Both series are defined by their respective series
|
|
107
|
+
specification instance name declarations.
|
|
108
|
+
Types: str
|
|
109
|
+
|
|
110
|
+
output_fmt_index_style:
|
|
111
|
+
Optional Argument.
|
|
112
|
+
Specifies the index style of the output format.
|
|
113
|
+
Permitted Values: NUMERICAL_SEQUENCE
|
|
114
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
115
|
+
Types: str
|
|
116
|
+
|
|
117
|
+
**generic_arguments:
|
|
118
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
119
|
+
Below are the generic keyword arguments:
|
|
120
|
+
persist:
|
|
121
|
+
Optional Argument.
|
|
122
|
+
Specifies whether to persist the results of the
|
|
123
|
+
function in a table or not. When set to True,
|
|
124
|
+
results are persisted in a table; otherwise,
|
|
125
|
+
results are garbage collected at the end of the
|
|
126
|
+
session.
|
|
127
|
+
Note that, when UAF function is executed, an
|
|
128
|
+
analytic result table (ART) is created.
|
|
129
|
+
Default Value: False
|
|
130
|
+
Types: bool
|
|
131
|
+
|
|
132
|
+
volatile:
|
|
133
|
+
Optional Argument.
|
|
134
|
+
Specifies whether to put the results of the
|
|
135
|
+
function in a volatile ART or not. When set to
|
|
136
|
+
True, results are stored in a volatile ART,
|
|
137
|
+
otherwise not.
|
|
138
|
+
Default Value: False
|
|
139
|
+
Types: bool
|
|
140
|
+
|
|
141
|
+
output_table_name:
|
|
142
|
+
Optional Argument.
|
|
143
|
+
Specifies the name of the table to store results.
|
|
144
|
+
If not specified, a unique table name is internally
|
|
145
|
+
generated.
|
|
146
|
+
Types: str
|
|
147
|
+
|
|
148
|
+
output_db_name:
|
|
149
|
+
Optional Argument.
|
|
150
|
+
Specifies the name of the database to create output
|
|
151
|
+
table into. If not specified, table is created into
|
|
152
|
+
database specified by the user at the time of context
|
|
153
|
+
creation or configuration parameter. Argument is ignored,
|
|
154
|
+
if "output_table_name" is not specified.
|
|
155
|
+
Types: str
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
RETURNS:
|
|
159
|
+
Instance of IDWT.
|
|
160
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
161
|
+
references, such as IDWT_obj.<attribute_name>.
|
|
162
|
+
Output teradataml DataFrame attribute name is:
|
|
163
|
+
1. result
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
RAISES:
|
|
167
|
+
TeradataMlException, TypeError, ValueError
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
EXAMPLES:
|
|
171
|
+
# Notes:
|
|
172
|
+
# 1. Get the connection to Vantage, before importing the
|
|
173
|
+
# function in user space.
|
|
174
|
+
# 2. User can import the function, if it is available on
|
|
175
|
+
# Vantage user is connected to.
|
|
176
|
+
# 3. To check the list of UAF analytic functions available
|
|
177
|
+
# on Vantage user connected to, use
|
|
178
|
+
# "display_analytic_functions()".
|
|
179
|
+
|
|
180
|
+
# Check the list of available UAF analytic functions.
|
|
181
|
+
display_analytic_functions(type="UAF")
|
|
182
|
+
|
|
183
|
+
# Import function IDWT.
|
|
184
|
+
from teradataml import IDWT
|
|
185
|
+
|
|
186
|
+
# Load the example data.
|
|
187
|
+
load_example_data("uaf", ["idwt_dataTable", "idwt_filterTable"])
|
|
188
|
+
|
|
189
|
+
# Create teradataml DataFrame objects.
|
|
190
|
+
data1 = DataFrame.from_table("idwt_dataTable")
|
|
191
|
+
data2 = DataFrame.from_table("idwt_filterTable")
|
|
192
|
+
|
|
193
|
+
# Create teradataml TDSeries objects.
|
|
194
|
+
data1_series_df = TDSeries(data=data1,
|
|
195
|
+
id="id",
|
|
196
|
+
row_index="rowi",
|
|
197
|
+
row_index_style="SEQUENCE",
|
|
198
|
+
payload_field=["approx"],
|
|
199
|
+
payload_content="REAL")
|
|
200
|
+
|
|
201
|
+
data2_series_df = TDSeries(data=data2,
|
|
202
|
+
id="id",
|
|
203
|
+
row_index="seq",
|
|
204
|
+
row_index_style="SEQUENCE",
|
|
205
|
+
payload_field=["lo", "hi"],
|
|
206
|
+
payload_content="MULTIVAR_REAL")
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
# Example 1: Perform inverse discrete wavelet transform using 2 series as input.
|
|
210
|
+
uaf_out = IDWT(data1=data1_series_df,
|
|
211
|
+
data2=data2_series_df,
|
|
212
|
+
data2_filter_expr=data2.id==1,
|
|
213
|
+
input_fmt_input_mode="MANY2ONE",
|
|
214
|
+
part='a')
|
|
215
|
+
|
|
216
|
+
# Print the result DataFrame.
|
|
217
|
+
print(uaf_out.result)
|
|
218
|
+
|
|
219
|
+
# Example 2: Perform inverse discrete wavelet transform using 1 series as input and wavelet parameter.
|
|
220
|
+
|
|
221
|
+
# Create teradataml TDSeries objects.
|
|
222
|
+
data_series_df = TDSeries(data=data1,
|
|
223
|
+
id="id",
|
|
224
|
+
row_index="rowi",
|
|
225
|
+
row_index_style="SEQUENCE",
|
|
226
|
+
payload_field=["approx", "detail"],
|
|
227
|
+
payload_content="MULTIVAR_REAL")
|
|
228
|
+
|
|
229
|
+
uaf_out = IDWT(data1=data_series_df,
|
|
230
|
+
wavelet='haar')
|
|
231
|
+
|
|
232
|
+
# Print the result DataFrame.
|
|
233
|
+
print(uaf_out.result)
|
|
234
|
+
|
|
235
|
+
"""
|
|
236
|
+
|
|
@@ -0,0 +1,226 @@
|
|
|
1
|
+
def IDWT2D(data1=None, data1_filter_expr=None, data2=None,
|
|
2
|
+
data2_filter_expr=None, wavelet=None, mode="symmetric",
|
|
3
|
+
input_fmt_input_mode=None,
|
|
4
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
5
|
+
**generic_arguments):
|
|
6
|
+
"""
|
|
7
|
+
DESCRIPTION:
|
|
8
|
+
IDWT2D() function performs inverse discrete wavelet transform
|
|
9
|
+
(IDWT) for two-dimensional data. The algorithm is applied
|
|
10
|
+
first horizontally by row axis, then vertically by column
|
|
11
|
+
axis.
|
|
12
|
+
|
|
13
|
+
PARAMETERS:
|
|
14
|
+
data1:
|
|
15
|
+
Required Argument.
|
|
16
|
+
Specifies the input matrix. Multiple
|
|
17
|
+
payloads are supported, and each payload column is
|
|
18
|
+
transformed independently. Only MULTIVAR_REAL payload
|
|
19
|
+
content type is supported.
|
|
20
|
+
Types: TDMatrix
|
|
21
|
+
|
|
22
|
+
data1_filter_expr:
|
|
23
|
+
Optional Argument.
|
|
24
|
+
Specifies the filter expression for "data1".
|
|
25
|
+
Types: ColumnExpression
|
|
26
|
+
|
|
27
|
+
data2:
|
|
28
|
+
Optional Argument.
|
|
29
|
+
Specifies the input series. The series specifies the filter.
|
|
30
|
+
It should have two payload columns corresponding to low and high
|
|
31
|
+
pass filters. Only MULTIVAR_REAL payload content type is supported.
|
|
32
|
+
Types: TDSeries
|
|
33
|
+
|
|
34
|
+
data2_filter_expr:
|
|
35
|
+
Optional Argument.
|
|
36
|
+
Specifies the filter expression for "data2".
|
|
37
|
+
Types: ColumnExpression
|
|
38
|
+
|
|
39
|
+
wavelet:
|
|
40
|
+
Optional Argument.
|
|
41
|
+
Specifies the name of the wavelet.
|
|
42
|
+
Option families and names are:
|
|
43
|
+
* Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
|
|
44
|
+
* Coiflets: 'coif1', 'coif2', ... , 'coif17'
|
|
45
|
+
* Symlets: 'sym2', 'sym3', ... ,' sym20'
|
|
46
|
+
* Discrete Meyer: 'dmey'
|
|
47
|
+
* Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2',
|
|
48
|
+
'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1',
|
|
49
|
+
'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
|
|
50
|
+
'bior4.4', 'bior5.5', 'bior6.8'
|
|
51
|
+
* Reverse Biorthogonal: 'rbio1.1', 'rbio1.3', 'rbio1.5'
|
|
52
|
+
'rbio2.2', 'rbio2.4', 'rbio2.6',
|
|
53
|
+
'rbio2.8', 'rbio3.1', 'rbio3.3',
|
|
54
|
+
'rbio3.5', 'rbio3.7','rbio3.9',
|
|
55
|
+
'rbio4.4', 'rbio5.5', 'rbio6.8'
|
|
56
|
+
Note:
|
|
57
|
+
* If 'wavelet' is specified, do not include a second
|
|
58
|
+
input series for the function. Otherwise, include
|
|
59
|
+
a second input series to provide the filter.
|
|
60
|
+
* Data type is case-sensitive.
|
|
61
|
+
Types: str
|
|
62
|
+
|
|
63
|
+
mode:
|
|
64
|
+
Optional Argument.
|
|
65
|
+
Specifies the signal extension mode.
|
|
66
|
+
Data type is case-insensitive.
|
|
67
|
+
Permitted Values:
|
|
68
|
+
* symmetric, sym, symh
|
|
69
|
+
* reflect, symw
|
|
70
|
+
* smooth, spd, sp1
|
|
71
|
+
* constant, sp0
|
|
72
|
+
* zero, zpd
|
|
73
|
+
* periodic, ppd
|
|
74
|
+
* periodization, per
|
|
75
|
+
* antisymmetric, asym, asymh
|
|
76
|
+
* antireflect, asymw
|
|
77
|
+
Default Value: symmetric
|
|
78
|
+
Types: str
|
|
79
|
+
|
|
80
|
+
input_fmt_input_mode:
|
|
81
|
+
Optional Argument.
|
|
82
|
+
Specifies the input mode supported by the function.
|
|
83
|
+
When there are two input series, then the "input_fmt_input_mode" .
|
|
84
|
+
specification is mandatory.
|
|
85
|
+
Permitted Values:
|
|
86
|
+
* ONE2ONE: Both the primary and secondary series specifications
|
|
87
|
+
contain a series name which identifies the two series
|
|
88
|
+
in the function.
|
|
89
|
+
* MANY2ONE: The MANY specification is the primary series
|
|
90
|
+
declaration. The secondary series specification
|
|
91
|
+
contains a series name that identifies the single
|
|
92
|
+
secondary series.
|
|
93
|
+
* MATCH: Both series are defined by their respective series
|
|
94
|
+
specification instance name declarations.
|
|
95
|
+
Types: str
|
|
96
|
+
|
|
97
|
+
output_fmt_index_style:
|
|
98
|
+
Optional Argument.
|
|
99
|
+
Specifies the index style of the output format.
|
|
100
|
+
Permitted Values: NUMERICAL_SEQUENCE
|
|
101
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
102
|
+
Types: str
|
|
103
|
+
|
|
104
|
+
**generic_arguments:
|
|
105
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
106
|
+
Below are the generic keyword arguments:
|
|
107
|
+
persist:
|
|
108
|
+
Optional Argument.
|
|
109
|
+
Specifies whether to persist the results of the
|
|
110
|
+
function in a table or not. When set to True,
|
|
111
|
+
results are persisted in a table; otherwise,
|
|
112
|
+
results are garbage collected at the end of the
|
|
113
|
+
session.
|
|
114
|
+
Note that, when UAF function is executed, an
|
|
115
|
+
analytic result table (ART) is created.
|
|
116
|
+
Default Value: False
|
|
117
|
+
Types: bool
|
|
118
|
+
|
|
119
|
+
volatile:
|
|
120
|
+
Optional Argument.
|
|
121
|
+
Specifies whether to put the results of the
|
|
122
|
+
function in a volatile ART or not. When set to
|
|
123
|
+
True, results are stored in a volatile ART,
|
|
124
|
+
otherwise not.
|
|
125
|
+
Default Value: False
|
|
126
|
+
Types: bool
|
|
127
|
+
|
|
128
|
+
output_table_name:
|
|
129
|
+
Optional Argument.
|
|
130
|
+
Specifies the name of the table to store results.
|
|
131
|
+
If not specified, a unique table name is internally
|
|
132
|
+
generated.
|
|
133
|
+
Types: str
|
|
134
|
+
|
|
135
|
+
output_db_name:
|
|
136
|
+
Optional Argument.
|
|
137
|
+
Specifies the name of the database to create output
|
|
138
|
+
table into. If not specified, table is created into
|
|
139
|
+
database specified by the user at the time of context
|
|
140
|
+
creation or configuration parameter. Argument is ignored,
|
|
141
|
+
if "output_table_name" is not specified.
|
|
142
|
+
Types: str
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
RETURNS:
|
|
146
|
+
Instance of IDWT2D.
|
|
147
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
148
|
+
references, such as IDWT2D_obj.<attribute_name>.
|
|
149
|
+
Output teradataml DataFrame attribute name is:
|
|
150
|
+
1. result
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
RAISES:
|
|
154
|
+
TeradataMlException, TypeError, ValueError
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
EXAMPLES:
|
|
158
|
+
# Notes:
|
|
159
|
+
# 1. Get the connection to Vantage, before importing the
|
|
160
|
+
# function in user space.
|
|
161
|
+
# 2. User can import the function, if it is available on
|
|
162
|
+
# Vantage user is connected to.
|
|
163
|
+
# 3. To check the list of UAF analytic functions available
|
|
164
|
+
# on Vantage user connected to, use
|
|
165
|
+
# "display_analytic_functions()".
|
|
166
|
+
|
|
167
|
+
# Check the list of available UAF analytic functions.
|
|
168
|
+
display_analytic_functions(type="UAF")
|
|
169
|
+
|
|
170
|
+
# Import function IDWT2D.
|
|
171
|
+
from teradataml import IDWT2D
|
|
172
|
+
|
|
173
|
+
# Load the example data.
|
|
174
|
+
load_example_data("uaf", ["idwt2d_dataTable", "idwt_filterTable"])
|
|
175
|
+
|
|
176
|
+
# Create teradataml DataFrame objects.
|
|
177
|
+
data1 = DataFrame.from_table("idwt2d_dataTable")
|
|
178
|
+
data2 = DataFrame.from_table("idwt_filterTable")
|
|
179
|
+
|
|
180
|
+
# Create teradataml TDMatrix object.
|
|
181
|
+
data1_matrix_df = TDMatrix(data=data1,
|
|
182
|
+
id="id",
|
|
183
|
+
row_index="y",
|
|
184
|
+
row_index_style="SEQUENCE",
|
|
185
|
+
column_index="x",
|
|
186
|
+
column_index_style="SEQUENCE",
|
|
187
|
+
payload_field="v",
|
|
188
|
+
payload_content="REAL")
|
|
189
|
+
|
|
190
|
+
# Execute DWT2D
|
|
191
|
+
uaf_out = DWT2D(data1=data1_matrix_df,
|
|
192
|
+
wavelet='haar')
|
|
193
|
+
|
|
194
|
+
# Example 1: Perform inverse discrete wavelet transform using TDAnalyticResult
|
|
195
|
+
# from DWT2D() as input and wavelet as 'haar'
|
|
196
|
+
|
|
197
|
+
# Create teradataml TDAnalyticResult object.
|
|
198
|
+
art_df = TDAnalyticResult(data=uaf_out.result)
|
|
199
|
+
|
|
200
|
+
uaf_out = IDWT2D(data1=art_df,
|
|
201
|
+
wavelet='haar')
|
|
202
|
+
|
|
203
|
+
# Print the result DataFrame.
|
|
204
|
+
print(uaf_out.result)
|
|
205
|
+
|
|
206
|
+
# Example 1: Perform inverse discrete wavelet transform using TDAnalyticResult from DWT2D()
|
|
207
|
+
# and TDSeries as input.
|
|
208
|
+
|
|
209
|
+
# Create teradataml TDSeries object.
|
|
210
|
+
data2_series_df = TDSeries(data=data2,
|
|
211
|
+
id="id",
|
|
212
|
+
row_index="seq",
|
|
213
|
+
row_index_style="SEQUENCE",
|
|
214
|
+
payload_field=["lo", "hi"],
|
|
215
|
+
payload_content="MULTIVAR_REAL")
|
|
216
|
+
|
|
217
|
+
uaf_out = IDWT2D(data1=art_df,
|
|
218
|
+
data2=data2_series_df,
|
|
219
|
+
data2_filter_expr=data2.id==1,
|
|
220
|
+
input_fmt_input_mode='MANY2ONE')
|
|
221
|
+
|
|
222
|
+
# Print the result DataFrame.
|
|
223
|
+
print(uaf_out.result)
|
|
224
|
+
|
|
225
|
+
"""
|
|
226
|
+
|