teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (263) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +183 -0
  4. teradataml/__init__.py +6 -3
  5. teradataml/_version.py +2 -2
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +275 -40
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +1 -0
  11. teradataml/analytics/json_parser/utils.py +17 -21
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +10 -2
  15. teradataml/analytics/table_operator/__init__.py +3 -2
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +62 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1553 -319
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +276 -319
  22. teradataml/automl/data_transformation.py +163 -81
  23. teradataml/automl/feature_engineering.py +402 -239
  24. teradataml/automl/feature_exploration.py +9 -2
  25. teradataml/automl/model_evaluation.py +48 -51
  26. teradataml/automl/model_training.py +291 -189
  27. teradataml/catalog/byom.py +8 -8
  28. teradataml/catalog/model_cataloging_utils.py +1 -1
  29. teradataml/clients/auth_client.py +133 -0
  30. teradataml/clients/pkce_client.py +1 -1
  31. teradataml/common/aed_utils.py +3 -2
  32. teradataml/common/constants.py +48 -6
  33. teradataml/common/deprecations.py +13 -7
  34. teradataml/common/garbagecollector.py +156 -120
  35. teradataml/common/messagecodes.py +6 -1
  36. teradataml/common/messages.py +3 -1
  37. teradataml/common/sqlbundle.py +1 -1
  38. teradataml/common/utils.py +103 -11
  39. teradataml/common/wrapper_utils.py +1 -1
  40. teradataml/context/context.py +121 -31
  41. teradataml/data/advertising.csv +201 -0
  42. teradataml/data/bank_marketing.csv +11163 -0
  43. teradataml/data/bike_sharing.csv +732 -0
  44. teradataml/data/boston2cols.csv +721 -0
  45. teradataml/data/breast_cancer.csv +570 -0
  46. teradataml/data/complaints_test_tokenized.csv +353 -0
  47. teradataml/data/complaints_tokens_model.csv +348 -0
  48. teradataml/data/covid_confirm_sd.csv +83 -0
  49. teradataml/data/customer_segmentation_test.csv +2628 -0
  50. teradataml/data/customer_segmentation_train.csv +8069 -0
  51. teradataml/data/dataframe_example.json +10 -0
  52. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  53. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  54. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  55. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  56. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  57. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  58. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  59. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  60. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  61. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  62. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  63. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  64. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  65. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  66. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  67. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  68. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  69. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  70. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  71. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  72. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  73. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  74. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  75. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  76. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  77. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  78. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  79. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  80. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  81. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  82. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  83. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  84. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  85. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  86. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  87. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  88. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  89. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  90. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  91. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  92. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  93. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  94. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  95. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  96. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  97. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  98. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  99. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  100. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  101. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  102. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  103. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  104. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  105. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  106. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  107. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  108. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  109. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  110. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  111. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  112. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  113. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  114. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  115. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  116. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  117. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  118. teradataml/data/dwt2d_dataTable.csv +65 -0
  119. teradataml/data/dwt_dataTable.csv +8 -0
  120. teradataml/data/dwt_filterTable.csv +3 -0
  121. teradataml/data/finance_data4.csv +13 -0
  122. teradataml/data/glm_example.json +28 -1
  123. teradataml/data/grocery_transaction.csv +19 -0
  124. teradataml/data/housing_train_segment.csv +201 -0
  125. teradataml/data/idwt2d_dataTable.csv +5 -0
  126. teradataml/data/idwt_dataTable.csv +8 -0
  127. teradataml/data/idwt_filterTable.csv +3 -0
  128. teradataml/data/insect2Cols.csv +61 -0
  129. teradataml/data/interval_data.csv +5 -0
  130. teradataml/data/jsons/paired_functions.json +14 -0
  131. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  132. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  133. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  134. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  135. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  136. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  137. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  138. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  139. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  140. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  141. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  142. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  143. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  144. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  145. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  146. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  147. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  148. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  149. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  150. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  151. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  152. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  153. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  154. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  155. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  156. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  157. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  158. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  159. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  160. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  161. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  162. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  163. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  164. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  165. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  166. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  167. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  168. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  169. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  170. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  171. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  172. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  173. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  174. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  175. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  176. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  177. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  178. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  179. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  180. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  181. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  182. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  183. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  184. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  185. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  186. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  187. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  188. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  189. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  190. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  191. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  192. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  193. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  194. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  195. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  196. teradataml/data/kmeans_example.json +5 -0
  197. teradataml/data/kmeans_table.csv +10 -0
  198. teradataml/data/load_example_data.py +8 -2
  199. teradataml/data/naivebayestextclassifier_example.json +1 -1
  200. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  201. teradataml/data/onehot_encoder_train.csv +4 -0
  202. teradataml/data/openml_example.json +29 -0
  203. teradataml/data/peppers.png +0 -0
  204. teradataml/data/real_values.csv +14 -0
  205. teradataml/data/sax_example.json +8 -0
  206. teradataml/data/scale_attributes.csv +3 -0
  207. teradataml/data/scale_example.json +52 -1
  208. teradataml/data/scale_input_part_sparse.csv +31 -0
  209. teradataml/data/scale_input_partitioned.csv +16 -0
  210. teradataml/data/scale_input_sparse.csv +11 -0
  211. teradataml/data/scale_parameters.csv +3 -0
  212. teradataml/data/scripts/deploy_script.py +21 -2
  213. teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
  214. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
  215. teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
  216. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  217. teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
  218. teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
  219. teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
  220. teradataml/data/star_pivot.csv +8 -0
  221. teradataml/data/templates/open_source_ml.json +2 -1
  222. teradataml/data/teradataml_example.json +97 -1
  223. teradataml/data/timestamp_data.csv +4 -0
  224. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  225. teradataml/data/uaf_example.json +55 -1
  226. teradataml/data/unpivot_example.json +15 -0
  227. teradataml/data/url_data.csv +9 -0
  228. teradataml/data/windowdfft.csv +16 -0
  229. teradataml/data/ztest_example.json +16 -0
  230. teradataml/dataframe/copy_to.py +9 -4
  231. teradataml/dataframe/data_transfer.py +125 -64
  232. teradataml/dataframe/dataframe.py +575 -57
  233. teradataml/dataframe/dataframe_utils.py +47 -9
  234. teradataml/dataframe/fastload.py +273 -90
  235. teradataml/dataframe/functions.py +339 -0
  236. teradataml/dataframe/row.py +160 -0
  237. teradataml/dataframe/setop.py +2 -2
  238. teradataml/dataframe/sql.py +740 -18
  239. teradataml/dataframe/window.py +1 -1
  240. teradataml/dbutils/dbutils.py +324 -18
  241. teradataml/geospatial/geodataframe.py +1 -1
  242. teradataml/geospatial/geodataframecolumn.py +1 -1
  243. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  244. teradataml/lib/aed_0_1.dll +0 -0
  245. teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
  246. teradataml/options/__init__.py +16 -5
  247. teradataml/options/configure.py +39 -6
  248. teradataml/options/display.py +2 -2
  249. teradataml/plot/axis.py +4 -4
  250. teradataml/scriptmgmt/UserEnv.py +26 -19
  251. teradataml/scriptmgmt/lls_utils.py +120 -16
  252. teradataml/table_operators/Script.py +4 -5
  253. teradataml/table_operators/TableOperator.py +160 -26
  254. teradataml/table_operators/table_operator_util.py +88 -41
  255. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  256. teradataml/telemetry_utils/__init__.py +0 -0
  257. teradataml/telemetry_utils/queryband.py +52 -0
  258. teradataml/utils/validators.py +41 -3
  259. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
  260. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
  261. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  262. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  263. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  def GoldfeldQuandt(data=None, data_filter_expr=None,
2
- orig_regr_paramcnt=None, weights=False, formula=None,
3
- algorithm=None, start_idx=None, omit=None,
2
+ const_term=True, algorithm=None,
3
+ start_idx=None, omit=None,
4
4
  significance_level=None, test="GREATER",
5
5
  **generic_arguments):
6
6
  """
@@ -24,35 +24,15 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
24
24
  Specifies the filter expression for "data".
25
25
  Types: ColumnExpression
26
26
 
27
- orig_regr_paramcnt:
28
- Required Argument.
29
- Specifies the number of responses and explanatory variables
30
- present in the original regression.
31
- Types: int
32
-
33
- weights:
27
+ const_term:
34
28
  Optional Argument.
35
- Specifies whether the last series found in the payload
36
- is to be interpreted as a series of weights that can
37
- be used to perform a weighted least squares regression
38
- solution. When set to True, the last series is interpreted
39
- as series of weights, otherwise not.
40
- Default Value: False
29
+ Specifies the indicator of whether the regression performed should
30
+ use a Y-intercept coefficient.
31
+ When set to True, means the regression is performed on “Y=C+aX1+bX2+…”.
32
+ When set to False, means the regression is performed on “Y=aX1+bX2+…”.
33
+ Default Value: True
41
34
  Types: bool
42
35
 
43
- formula:
44
- Required Argument.
45
- Specifies the formula used in the regression operation.
46
- The name of the response variable must always be Y,
47
- and the name of the explanatory variable must always be X1.
48
- For example, "Y = B0 + B1 * X1".
49
- Notes:
50
- * The "formula" argument must be specified along with the
51
- "algorithm" argument.
52
- * Use the following link to refer the formula rules:
53
- "https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Teradata-VantageTM-Unbounded-Array-Framework-Time-Series-Reference-17.20/Mathematic-Operators-and-Functions/Formula-Rules"
54
- Types: str
55
-
56
36
  algorithm:
57
37
  Required Argument.
58
38
  Specifies the algorithm used for the regression.
@@ -205,12 +185,10 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
205
185
  payload_field=["y1", "x1"],
206
186
  payload_content="MULTIVAR_REAL")
207
187
 
208
- # Execute GoldfeldQuandt for TDGenSeries.
188
+ # Execute GoldfeldQuandt.
209
189
  uaf_out = GoldfeldQuandt(data=data_series_df,
210
- formula="Y = B0 + B1*X1",
211
190
  omit=2.0,
212
191
  significance_level=0.05,
213
- orig_regr_paramcnt=2,
214
192
  algorithm="QR")
215
193
 
216
194
  # Print the result DataFrame.
@@ -1,5 +1,5 @@
1
1
  def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=None,
2
- alpha=None, beta=None, gamma=None, seasonal_periods=1,
2
+ alpha=None, beta=None, gamma=None, seasonal_periods=None,
3
3
  init_level=None, init_trend=None, init_season=None,
4
4
  model=None, fit_percentage=100,
5
5
  prediction_intervals="BOTH", fit_metrics=False,
@@ -67,7 +67,6 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
67
67
  parameter is 3. Value must be greater than or equal to 1.
68
68
  Note:
69
69
  Required when "gamma" or "init_season" is specified.
70
- Default Value: 1
71
70
  Types: int
72
71
 
73
72
  init_level:
@@ -248,10 +247,13 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
248
247
 
249
248
  # Print the result DataFrames.
250
249
  print(uaf_out.result)
250
+
251
251
  # Print the model statistics result.
252
252
  print(uaf_out.fitmetadata)
253
+
253
254
  # Print the selection metrics result.
254
255
  print(uaf_out.selmetrics)
256
+
255
257
  # Print the residuals statistics result.
256
258
  print(uaf_out.fitresiduals)
257
259
 
@@ -1,5 +1,5 @@
1
1
  def IDFFT2(data=None, data_filter_expr=None, human_readable=True,
2
- output_fmt_content=None, output_fmt_row_major=1,
2
+ output_fmt_content=None,
3
3
  **generic_arguments):
4
4
  """
5
5
  DESCRIPTION:
@@ -71,13 +71,6 @@ def IDFFT2(data=None, data_filter_expr=None, human_readable=True,
71
71
  MULTIVAR_AMPL_PHASE
72
72
  Types: str
73
73
 
74
- output_fmt_row_major:
75
- Optional Argument.
76
- Specifies whether the matrix output should be in a row-major-centric
77
- or column-major-centric manner.
78
- Default Value: True
79
- Types: bool
80
-
81
74
  **generic_arguments:
82
75
  Specifies the generic keyword arguments of UAF functions.
83
76
  Below are the generic keyword arguments:
@@ -0,0 +1,236 @@
1
+ def IDWT(data1=None, data1_filter_expr=None, data2=None,
2
+ data2_filter_expr=None, wavelet=None, mode="symmetric",
3
+ part=None, input_fmt_input_mode=None,
4
+ output_fmt_index_style="NUMERICAL_SEQUENCE",
5
+ **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ IDWT() is a function that performs inverse discrete wavelet transform (IDWT).
9
+
10
+ PARAMETERS:
11
+ data1:
12
+ Required Argument.
13
+ Specifies the input series. Multiple
14
+ payloads are supported, and each payload column is
15
+ transformed independently. Only REAL or MULTIVAR_REAL
16
+ payload content types are supported.
17
+ Types: TDSeries
18
+
19
+ data1_filter_expr:
20
+ Optional Argument.
21
+ Specifies the filter expression for "data1".
22
+ Types: ColumnExpression
23
+
24
+ data2:
25
+ Optional Argument.
26
+ Specifies the input series. The series specifies the filter.
27
+ It should have two payload columns corresponding to low
28
+ and high pass filters.
29
+ Only MULTIVAR_REAL payload content type is supported.
30
+ Types: TDSeries
31
+
32
+ data2_filter_expr:
33
+ Optional Argument.
34
+ Specifies the filter expression for "data2".
35
+ Types: ColumnExpression
36
+
37
+ wavelet:
38
+ Optional Argument.
39
+ Specifies the name of the wavelet.
40
+ Permitted Values:
41
+ * Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
42
+ * Coiflets: 'coif1', 'coif2', ... , 'coif17'
43
+ * Symlets: 'sym2', 'sym3', ... ,' sym20'
44
+ * Discrete Meyer: 'dmey'
45
+ * Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5',
46
+ 'bior2.2', 'bior2.4', 'bior2.6',
47
+ 'bior2.8', 'bior3.1', 'bior3.3',
48
+ 'bior3.5', 'bior3.7', 'bior3.9',
49
+ 'bior4.4', 'bior5.5', 'bior6.8'
50
+ * Reverse Biorthogonal: 'rbio1.1', 'rbio1.3',
51
+ 'rbio1.5' 'rbio2.2',
52
+ 'rbio2.4', 'rbio2.6',
53
+ 'rbio2.8', 'rbio3.1',
54
+ 'rbio3.3', 'rbio3.5',
55
+ 'rbio3.7','rbio3.9',
56
+ 'rbio4.4', 'rbio5.5',
57
+ 'rbio6.8'
58
+ Note:
59
+ * If 'wavelet' is specified, do not include a second
60
+ input series for the function. Otherwise, include
61
+ a second input series to provide the filter.
62
+ * Data type is case-sensitive.
63
+ Types: str
64
+
65
+ mode:
66
+ Optional Argument.
67
+ Specifies the signal extension mode.
68
+ Data type is case-insensitive.
69
+ Permitted Values:
70
+ * symmetric, sym, symh
71
+ * reflect, symw
72
+ * smooth, spd, sp1
73
+ * constant, sp0
74
+ * zero, zpd
75
+ * periodic, ppd
76
+ * periodization, per
77
+ * antisymmetric, asym, asymh
78
+ * antireflect, asymw
79
+ Default Value: symmetric
80
+ Types: str
81
+
82
+ part:
83
+ Optional Argument.
84
+ Specifies the indicator that the input is partial decomposition
85
+ result.
86
+ Note:
87
+ Data type is case-insensitive.
88
+ Permitted Values:
89
+ * a - the approximation
90
+ * d - the detail of decomposition of result.
91
+ Types: str
92
+
93
+ input_fmt_input_mode:
94
+ Optional Argument.
95
+ Specifies the input mode supported by the function.
96
+ When there are two input series, then the input_fmt_input_mode
97
+ specification is mandatory.
98
+ Permitted Values:
99
+ * ONE2ONE: Both the primary and secondary series
100
+ specifications contain a series name which
101
+ identifies the two series in the function.
102
+ * MANY2ONE: The MANY specification is the primary series
103
+ declaration. The secondary series specification
104
+ contains a series name that identifies the single
105
+ secondary series.
106
+ * MATCH: Both series are defined by their respective series
107
+ specification instance name declarations.
108
+ Types: str
109
+
110
+ output_fmt_index_style:
111
+ Optional Argument.
112
+ Specifies the index style of the output format.
113
+ Permitted Values: NUMERICAL_SEQUENCE
114
+ Default Value: NUMERICAL_SEQUENCE
115
+ Types: str
116
+
117
+ **generic_arguments:
118
+ Specifies the generic keyword arguments of UAF functions.
119
+ Below are the generic keyword arguments:
120
+ persist:
121
+ Optional Argument.
122
+ Specifies whether to persist the results of the
123
+ function in a table or not. When set to True,
124
+ results are persisted in a table; otherwise,
125
+ results are garbage collected at the end of the
126
+ session.
127
+ Note that, when UAF function is executed, an
128
+ analytic result table (ART) is created.
129
+ Default Value: False
130
+ Types: bool
131
+
132
+ volatile:
133
+ Optional Argument.
134
+ Specifies whether to put the results of the
135
+ function in a volatile ART or not. When set to
136
+ True, results are stored in a volatile ART,
137
+ otherwise not.
138
+ Default Value: False
139
+ Types: bool
140
+
141
+ output_table_name:
142
+ Optional Argument.
143
+ Specifies the name of the table to store results.
144
+ If not specified, a unique table name is internally
145
+ generated.
146
+ Types: str
147
+
148
+ output_db_name:
149
+ Optional Argument.
150
+ Specifies the name of the database to create output
151
+ table into. If not specified, table is created into
152
+ database specified by the user at the time of context
153
+ creation or configuration parameter. Argument is ignored,
154
+ if "output_table_name" is not specified.
155
+ Types: str
156
+
157
+
158
+ RETURNS:
159
+ Instance of IDWT.
160
+ Output teradataml DataFrames can be accessed using attribute
161
+ references, such as IDWT_obj.<attribute_name>.
162
+ Output teradataml DataFrame attribute name is:
163
+ 1. result
164
+
165
+
166
+ RAISES:
167
+ TeradataMlException, TypeError, ValueError
168
+
169
+
170
+ EXAMPLES:
171
+ # Notes:
172
+ # 1. Get the connection to Vantage, before importing the
173
+ # function in user space.
174
+ # 2. User can import the function, if it is available on
175
+ # Vantage user is connected to.
176
+ # 3. To check the list of UAF analytic functions available
177
+ # on Vantage user connected to, use
178
+ # "display_analytic_functions()".
179
+
180
+ # Check the list of available UAF analytic functions.
181
+ display_analytic_functions(type="UAF")
182
+
183
+ # Import function IDWT.
184
+ from teradataml import IDWT
185
+
186
+ # Load the example data.
187
+ load_example_data("uaf", ["idwt_dataTable", "idwt_filterTable"])
188
+
189
+ # Create teradataml DataFrame objects.
190
+ data1 = DataFrame.from_table("idwt_dataTable")
191
+ data2 = DataFrame.from_table("idwt_filterTable")
192
+
193
+ # Create teradataml TDSeries objects.
194
+ data1_series_df = TDSeries(data=data1,
195
+ id="id",
196
+ row_index="rowi",
197
+ row_index_style="SEQUENCE",
198
+ payload_field=["approx"],
199
+ payload_content="REAL")
200
+
201
+ data2_series_df = TDSeries(data=data2,
202
+ id="id",
203
+ row_index="seq",
204
+ row_index_style="SEQUENCE",
205
+ payload_field=["lo", "hi"],
206
+ payload_content="MULTIVAR_REAL")
207
+
208
+
209
+ # Example 1: Perform inverse discrete wavelet transform using 2 series as input.
210
+ uaf_out = IDWT(data1=data1_series_df,
211
+ data2=data2_series_df,
212
+ data2_filter_expr=data2.id==1,
213
+ input_fmt_input_mode="MANY2ONE",
214
+ part='a')
215
+
216
+ # Print the result DataFrame.
217
+ print(uaf_out.result)
218
+
219
+ # Example 2: Perform inverse discrete wavelet transform using 1 series as input and wavelet parameter.
220
+
221
+ # Create teradataml TDSeries objects.
222
+ data_series_df = TDSeries(data=data1,
223
+ id="id",
224
+ row_index="rowi",
225
+ row_index_style="SEQUENCE",
226
+ payload_field=["approx", "detail"],
227
+ payload_content="MULTIVAR_REAL")
228
+
229
+ uaf_out = IDWT(data1=data_series_df,
230
+ wavelet='haar')
231
+
232
+ # Print the result DataFrame.
233
+ print(uaf_out.result)
234
+
235
+ """
236
+
@@ -0,0 +1,226 @@
1
+ def IDWT2D(data1=None, data1_filter_expr=None, data2=None,
2
+ data2_filter_expr=None, wavelet=None, mode="symmetric",
3
+ input_fmt_input_mode=None,
4
+ output_fmt_index_style="NUMERICAL_SEQUENCE",
5
+ **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ IDWT2D() function performs inverse discrete wavelet transform
9
+ (IDWT) for two-dimensional data. The algorithm is applied
10
+ first horizontally by row axis, then vertically by column
11
+ axis.
12
+
13
+ PARAMETERS:
14
+ data1:
15
+ Required Argument.
16
+ Specifies the input matrix. Multiple
17
+ payloads are supported, and each payload column is
18
+ transformed independently. Only MULTIVAR_REAL payload
19
+ content type is supported.
20
+ Types: TDMatrix
21
+
22
+ data1_filter_expr:
23
+ Optional Argument.
24
+ Specifies the filter expression for "data1".
25
+ Types: ColumnExpression
26
+
27
+ data2:
28
+ Optional Argument.
29
+ Specifies the input series. The series specifies the filter.
30
+ It should have two payload columns corresponding to low and high
31
+ pass filters. Only MULTIVAR_REAL payload content type is supported.
32
+ Types: TDSeries
33
+
34
+ data2_filter_expr:
35
+ Optional Argument.
36
+ Specifies the filter expression for "data2".
37
+ Types: ColumnExpression
38
+
39
+ wavelet:
40
+ Optional Argument.
41
+ Specifies the name of the wavelet.
42
+ Option families and names are:
43
+ * Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
44
+ * Coiflets: 'coif1', 'coif2', ... , 'coif17'
45
+ * Symlets: 'sym2', 'sym3', ... ,' sym20'
46
+ * Discrete Meyer: 'dmey'
47
+ * Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2',
48
+ 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1',
49
+ 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
50
+ 'bior4.4', 'bior5.5', 'bior6.8'
51
+ * Reverse Biorthogonal: 'rbio1.1', 'rbio1.3', 'rbio1.5'
52
+ 'rbio2.2', 'rbio2.4', 'rbio2.6',
53
+ 'rbio2.8', 'rbio3.1', 'rbio3.3',
54
+ 'rbio3.5', 'rbio3.7','rbio3.9',
55
+ 'rbio4.4', 'rbio5.5', 'rbio6.8'
56
+ Note:
57
+ * If 'wavelet' is specified, do not include a second
58
+ input series for the function. Otherwise, include
59
+ a second input series to provide the filter.
60
+ * Data type is case-sensitive.
61
+ Types: str
62
+
63
+ mode:
64
+ Optional Argument.
65
+ Specifies the signal extension mode.
66
+ Data type is case-insensitive.
67
+ Permitted Values:
68
+ * symmetric, sym, symh
69
+ * reflect, symw
70
+ * smooth, spd, sp1
71
+ * constant, sp0
72
+ * zero, zpd
73
+ * periodic, ppd
74
+ * periodization, per
75
+ * antisymmetric, asym, asymh
76
+ * antireflect, asymw
77
+ Default Value: symmetric
78
+ Types: str
79
+
80
+ input_fmt_input_mode:
81
+ Optional Argument.
82
+ Specifies the input mode supported by the function.
83
+ When there are two input series, then the "input_fmt_input_mode" .
84
+ specification is mandatory.
85
+ Permitted Values:
86
+ * ONE2ONE: Both the primary and secondary series specifications
87
+ contain a series name which identifies the two series
88
+ in the function.
89
+ * MANY2ONE: The MANY specification is the primary series
90
+ declaration. The secondary series specification
91
+ contains a series name that identifies the single
92
+ secondary series.
93
+ * MATCH: Both series are defined by their respective series
94
+ specification instance name declarations.
95
+ Types: str
96
+
97
+ output_fmt_index_style:
98
+ Optional Argument.
99
+ Specifies the index style of the output format.
100
+ Permitted Values: NUMERICAL_SEQUENCE
101
+ Default Value: NUMERICAL_SEQUENCE
102
+ Types: str
103
+
104
+ **generic_arguments:
105
+ Specifies the generic keyword arguments of UAF functions.
106
+ Below are the generic keyword arguments:
107
+ persist:
108
+ Optional Argument.
109
+ Specifies whether to persist the results of the
110
+ function in a table or not. When set to True,
111
+ results are persisted in a table; otherwise,
112
+ results are garbage collected at the end of the
113
+ session.
114
+ Note that, when UAF function is executed, an
115
+ analytic result table (ART) is created.
116
+ Default Value: False
117
+ Types: bool
118
+
119
+ volatile:
120
+ Optional Argument.
121
+ Specifies whether to put the results of the
122
+ function in a volatile ART or not. When set to
123
+ True, results are stored in a volatile ART,
124
+ otherwise not.
125
+ Default Value: False
126
+ Types: bool
127
+
128
+ output_table_name:
129
+ Optional Argument.
130
+ Specifies the name of the table to store results.
131
+ If not specified, a unique table name is internally
132
+ generated.
133
+ Types: str
134
+
135
+ output_db_name:
136
+ Optional Argument.
137
+ Specifies the name of the database to create output
138
+ table into. If not specified, table is created into
139
+ database specified by the user at the time of context
140
+ creation or configuration parameter. Argument is ignored,
141
+ if "output_table_name" is not specified.
142
+ Types: str
143
+
144
+
145
+ RETURNS:
146
+ Instance of IDWT2D.
147
+ Output teradataml DataFrames can be accessed using attribute
148
+ references, such as IDWT2D_obj.<attribute_name>.
149
+ Output teradataml DataFrame attribute name is:
150
+ 1. result
151
+
152
+
153
+ RAISES:
154
+ TeradataMlException, TypeError, ValueError
155
+
156
+
157
+ EXAMPLES:
158
+ # Notes:
159
+ # 1. Get the connection to Vantage, before importing the
160
+ # function in user space.
161
+ # 2. User can import the function, if it is available on
162
+ # Vantage user is connected to.
163
+ # 3. To check the list of UAF analytic functions available
164
+ # on Vantage user connected to, use
165
+ # "display_analytic_functions()".
166
+
167
+ # Check the list of available UAF analytic functions.
168
+ display_analytic_functions(type="UAF")
169
+
170
+ # Import function IDWT2D.
171
+ from teradataml import IDWT2D
172
+
173
+ # Load the example data.
174
+ load_example_data("uaf", ["idwt2d_dataTable", "idwt_filterTable"])
175
+
176
+ # Create teradataml DataFrame objects.
177
+ data1 = DataFrame.from_table("idwt2d_dataTable")
178
+ data2 = DataFrame.from_table("idwt_filterTable")
179
+
180
+ # Create teradataml TDMatrix object.
181
+ data1_matrix_df = TDMatrix(data=data1,
182
+ id="id",
183
+ row_index="y",
184
+ row_index_style="SEQUENCE",
185
+ column_index="x",
186
+ column_index_style="SEQUENCE",
187
+ payload_field="v",
188
+ payload_content="REAL")
189
+
190
+ # Execute DWT2D
191
+ uaf_out = DWT2D(data1=data1_matrix_df,
192
+ wavelet='haar')
193
+
194
+ # Example 1: Perform inverse discrete wavelet transform using TDAnalyticResult
195
+ # from DWT2D() as input and wavelet as 'haar'
196
+
197
+ # Create teradataml TDAnalyticResult object.
198
+ art_df = TDAnalyticResult(data=uaf_out.result)
199
+
200
+ uaf_out = IDWT2D(data1=art_df,
201
+ wavelet='haar')
202
+
203
+ # Print the result DataFrame.
204
+ print(uaf_out.result)
205
+
206
+ # Example 1: Perform inverse discrete wavelet transform using TDAnalyticResult from DWT2D()
207
+ # and TDSeries as input.
208
+
209
+ # Create teradataml TDSeries object.
210
+ data2_series_df = TDSeries(data=data2,
211
+ id="id",
212
+ row_index="seq",
213
+ row_index_style="SEQUENCE",
214
+ payload_field=["lo", "hi"],
215
+ payload_content="MULTIVAR_REAL")
216
+
217
+ uaf_out = IDWT2D(data1=art_df,
218
+ data2=data2_series_df,
219
+ data2_filter_expr=data2.id==1,
220
+ input_fmt_input_mode='MANY2ONE')
221
+
222
+ # Print the result DataFrame.
223
+ print(uaf_out.result)
224
+
225
+ """
226
+