teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,246 @@
|
|
|
1
|
+
def SAX(data=None, data_filter_expr=None, window_type='GLOBAL',
|
|
2
|
+
output_type='STRING', mean=None, std_dev=None,
|
|
3
|
+
window_size=None, output_frequency=1,
|
|
4
|
+
points_per_symbol=1, symbols_per_window=1,
|
|
5
|
+
alphabet_size=4, bitmap_level=2, code_stats=0,
|
|
6
|
+
breakpoints=None,
|
|
7
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
8
|
+
**generic_arguments):
|
|
9
|
+
"""
|
|
10
|
+
DESCRIPTION:
|
|
11
|
+
SAX() function uses Piecewise Aggregate Approximation (PAA) and
|
|
12
|
+
transform a timeseries into sequence of symbols.
|
|
13
|
+
The symbols can be characters, string, and bitmap.
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
PARAMETERS:
|
|
17
|
+
data:
|
|
18
|
+
Required Argument.
|
|
19
|
+
Specifies the time series whose value can be REAL or MULTIVAR_REAL.
|
|
20
|
+
Types: TDSeries
|
|
21
|
+
|
|
22
|
+
data_filter_expr:
|
|
23
|
+
Optional Argument.
|
|
24
|
+
Specifies the filter expression for "data".
|
|
25
|
+
Types: ColumnExpression
|
|
26
|
+
|
|
27
|
+
window_type:
|
|
28
|
+
Optional Argument.
|
|
29
|
+
Specifies the window type used in the SAX transformation.
|
|
30
|
+
Default Value: GLOBAL
|
|
31
|
+
Permitted Values: GLOBAL, SLIDING
|
|
32
|
+
Types: str
|
|
33
|
+
|
|
34
|
+
output_type:
|
|
35
|
+
Optional Argument.
|
|
36
|
+
Specifies the output format of the result.
|
|
37
|
+
Default Value: STRING
|
|
38
|
+
Permitted Values: STRING, BITMAP, O_CHARS
|
|
39
|
+
Types: str
|
|
40
|
+
|
|
41
|
+
mean:
|
|
42
|
+
Optional Argument.
|
|
43
|
+
Specifies the global mean values that used to
|
|
44
|
+
calculate the SAX code for every partition.
|
|
45
|
+
Note:
|
|
46
|
+
* If "mean" not specified, the function calculates the mean values
|
|
47
|
+
for every partition.
|
|
48
|
+
* If "mean" specifies a single value but there are multiple payloads,
|
|
49
|
+
the specified value will apply to all payloads.
|
|
50
|
+
* If "mean" specifies multiple values, each value will be
|
|
51
|
+
applied to its corresponding payload.
|
|
52
|
+
Types: float, list of float
|
|
53
|
+
|
|
54
|
+
std_dev:
|
|
55
|
+
Optional Argument.
|
|
56
|
+
Specifies the global standard deviation values that used to
|
|
57
|
+
calculate the SAX code for every partition.
|
|
58
|
+
Note:
|
|
59
|
+
* If "std_dev" not specified, the function calculates the standard
|
|
60
|
+
deviation values for every partition.
|
|
61
|
+
* If "std_dev" specifies a single value but there are multiple payloads,
|
|
62
|
+
the specified value will apply to all payloads.
|
|
63
|
+
* If "std_dev" specifies multiple values, each value will be
|
|
64
|
+
applied to its corresponding payload.
|
|
65
|
+
Types: float, list of float
|
|
66
|
+
|
|
67
|
+
window_size:
|
|
68
|
+
Optional Argument, Required if "window_type" is SLIDING.
|
|
69
|
+
Specifies the size of the window used in the SAX
|
|
70
|
+
transformation. Maximum value is 64000.
|
|
71
|
+
Types: int
|
|
72
|
+
|
|
73
|
+
output_frequency:
|
|
74
|
+
Optional Argument.
|
|
75
|
+
Specifies the number of data points that the window slides
|
|
76
|
+
between successive outputs.
|
|
77
|
+
Note:
|
|
78
|
+
* "output_frequency" is valid only for SLIDING "window_type".
|
|
79
|
+
Default Value: 1
|
|
80
|
+
Types: int
|
|
81
|
+
|
|
82
|
+
points_per_symbol:
|
|
83
|
+
Optional Argument.
|
|
84
|
+
Specifies the number of data points to be converted to one SAX
|
|
85
|
+
symbol.
|
|
86
|
+
Note:
|
|
87
|
+
* "points_per_symbol" is valid for GLOBAL "window_type".
|
|
88
|
+
Default Value: 1
|
|
89
|
+
Types: int
|
|
90
|
+
|
|
91
|
+
symbols_per_window:
|
|
92
|
+
Optional Argument.
|
|
93
|
+
Specifies the number of SAX symbols to be generated for each
|
|
94
|
+
window.
|
|
95
|
+
Note:
|
|
96
|
+
* "symbols_per_window" is valid for SLIDING "window_type".
|
|
97
|
+
Default Value: 1
|
|
98
|
+
Types: int
|
|
99
|
+
|
|
100
|
+
alphabet_size:
|
|
101
|
+
Optional Argument.
|
|
102
|
+
Specifies the number of symbols in the SAX alphabet.
|
|
103
|
+
The alphabet consists of letters from 'a' to 't'.
|
|
104
|
+
The size of the alphabet must be less than or equal to 20
|
|
105
|
+
and greater than or equal to 2.
|
|
106
|
+
Default Value: 4
|
|
107
|
+
Types: int
|
|
108
|
+
|
|
109
|
+
bitmap_level:
|
|
110
|
+
Optional Argument.
|
|
111
|
+
Specifies the level of the bitmap. The bitmap level
|
|
112
|
+
determines the number of consecutive symbols to be
|
|
113
|
+
converted to one symbol on a bitmap.
|
|
114
|
+
"bitmap_level" must be greater than or equal to 1 and less than or equal to 4.
|
|
115
|
+
Default Value: 2
|
|
116
|
+
Types: int
|
|
117
|
+
|
|
118
|
+
code_stats:
|
|
119
|
+
Optional Argument.
|
|
120
|
+
Specifies whether to print the mean and standard deviation
|
|
121
|
+
Default Value: 0
|
|
122
|
+
Types: int
|
|
123
|
+
|
|
124
|
+
breakpoints:
|
|
125
|
+
Optional Argument.
|
|
126
|
+
Specifies the breakpoints to form the SAX code based on "data".
|
|
127
|
+
Types: float, list of float
|
|
128
|
+
|
|
129
|
+
output_fmt_index_style:
|
|
130
|
+
Optional Argument.
|
|
131
|
+
Specifies the index style of the output format.
|
|
132
|
+
Permitted Values: NUMERICAL_SEQUENCE
|
|
133
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
134
|
+
Types: str
|
|
135
|
+
|
|
136
|
+
**generic_arguments:
|
|
137
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
138
|
+
Below are the generic keyword arguments:
|
|
139
|
+
persist:
|
|
140
|
+
Optional Argument.
|
|
141
|
+
Specifies whether to persist the results of the
|
|
142
|
+
function in a table or not. When set to True,
|
|
143
|
+
results are persisted in a table; otherwise,
|
|
144
|
+
results are garbage collected at the end of the
|
|
145
|
+
session.
|
|
146
|
+
Note that, when UAF function is executed, an
|
|
147
|
+
analytic result table (ART) is created.
|
|
148
|
+
Default Value: False
|
|
149
|
+
Types: bool
|
|
150
|
+
|
|
151
|
+
volatile:
|
|
152
|
+
Optional Argument.
|
|
153
|
+
Specifies whether to put the results of the
|
|
154
|
+
function in a volatile ART or not. When set to
|
|
155
|
+
True, results are stored in a volatile ART,
|
|
156
|
+
otherwise not.
|
|
157
|
+
Default Value: False
|
|
158
|
+
Types: bool
|
|
159
|
+
|
|
160
|
+
output_table_name:
|
|
161
|
+
Optional Argument.
|
|
162
|
+
Specifies the name of the table to store results.
|
|
163
|
+
If not specified, a unique table name is internally
|
|
164
|
+
generated.
|
|
165
|
+
Types: str
|
|
166
|
+
|
|
167
|
+
output_db_name:
|
|
168
|
+
Optional Argument.
|
|
169
|
+
Specifies the name of the database to create output
|
|
170
|
+
table into. If not specified, table is created into
|
|
171
|
+
database specified by the user at the time of context
|
|
172
|
+
creation or configuration parameter. Argument is ignored,
|
|
173
|
+
if "output_table_name" is not specified.
|
|
174
|
+
Types: str
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
RETURNS:
|
|
178
|
+
Instance of SAX.
|
|
179
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
180
|
+
references, such as SAX_obj.<attribute_name>.
|
|
181
|
+
Output teradataml DataFrame attribute name is:
|
|
182
|
+
1. result
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
RAISES:
|
|
186
|
+
TeradataMlException, TypeError, ValueError
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
EXAMPLES:
|
|
190
|
+
# Notes:
|
|
191
|
+
# 1. Get the connection to Vantage, before importing the
|
|
192
|
+
# function in user space.
|
|
193
|
+
# 2. User can import the function, if it is available on
|
|
194
|
+
# Vantage user is connected to.
|
|
195
|
+
# 3. To check the list of UAF analytic functions available
|
|
196
|
+
# on Vantage user connected to, use
|
|
197
|
+
# "display_analytic_functions()".
|
|
198
|
+
|
|
199
|
+
# Check the list of available UAF analytic functions.
|
|
200
|
+
display_analytic_functions(type="UAF")
|
|
201
|
+
|
|
202
|
+
# Import function SAX.
|
|
203
|
+
from teradataml import SAX
|
|
204
|
+
|
|
205
|
+
# Load the example data.
|
|
206
|
+
load_example_data("sax", ["finance_data4"])
|
|
207
|
+
|
|
208
|
+
# Create teradataml DataFrame object.
|
|
209
|
+
data = DataFrame.from_table("finance_data4")
|
|
210
|
+
|
|
211
|
+
# Create teradataml TDSeries object.
|
|
212
|
+
data_series_df = TDSeries(data=data,
|
|
213
|
+
id="id",
|
|
214
|
+
row_index="period",
|
|
215
|
+
row_index_style="SEQUENCE",
|
|
216
|
+
payload_field=["expenditure", "income", "investment"],
|
|
217
|
+
payload_content="MULTIVAR_REAL")
|
|
218
|
+
|
|
219
|
+
# Example 1: Execute SAX() function on the TDSeries to transform the
|
|
220
|
+
# time series into sequence of symbols using GLOBAL window.
|
|
221
|
+
uaf_out = SAX(data=data_series_df,
|
|
222
|
+
window_type='GLOBAL',
|
|
223
|
+
output_type='STRING',
|
|
224
|
+
mean=[2045.16666, 2387.41666,759.083333],
|
|
225
|
+
std_dev=[256.612489,317.496587,113.352594],
|
|
226
|
+
output_frequency=1,
|
|
227
|
+
points_per_symbol=2,
|
|
228
|
+
alphabet_size=10,
|
|
229
|
+
code_stats=True)
|
|
230
|
+
|
|
231
|
+
# Print the result DataFrame.
|
|
232
|
+
print(uaf_out.result)
|
|
233
|
+
|
|
234
|
+
# Example 2: Execute SAX() function on the TDSeries to transform the
|
|
235
|
+
# time series into sequence of symbols using SLIDING window.
|
|
236
|
+
uaf_out1 = SAX(data=data_series_df,
|
|
237
|
+
window_type='SLIDING',
|
|
238
|
+
window_size=4,
|
|
239
|
+
symbols_per_window=5,
|
|
240
|
+
code_stats=True)
|
|
241
|
+
|
|
242
|
+
# Print the result DataFrame.
|
|
243
|
+
print(uaf_out1.result)
|
|
244
|
+
|
|
245
|
+
"""
|
|
246
|
+
|
|
@@ -4,24 +4,31 @@ def SeasonalNormalize(data=None, data_filter_expr=None, season_cycle=None,
|
|
|
4
4
|
**generic_arguments):
|
|
5
5
|
"""
|
|
6
6
|
DESCRIPTION:
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
7
|
+
SeasonalNormalize() takes a non-stationary series and normalizes the
|
|
8
|
+
series by first dividing the series into cycles and intervals, then averaging
|
|
9
|
+
and normalizing with respect to each interval over all cycles.
|
|
10
|
+
This form of normalization is effective relative to eliminating
|
|
11
|
+
non-stationary properties such as unit roots and periodicities.
|
|
12
12
|
|
|
13
13
|
The following procedure is an example of how to use SeasonalNormalize():
|
|
14
14
|
1. Detect the unit roots using DickeyFuller().
|
|
15
|
-
2. Use
|
|
16
|
-
3. Use
|
|
17
|
-
|
|
15
|
+
2. Use SeasonalNormalize() to create a series with potentially the unit roots eliminated.
|
|
16
|
+
3. Use DickeyFuller() to verify that unit roots were eliminated from the newly-formed normalized series.
|
|
17
|
+
4. Use ArimaEstimate() and ArimaValidate() to create an ARIMA model from the normalized series.
|
|
18
|
+
5. Use ArimaForecast() to forecast the normalized series.
|
|
19
|
+
6. Use Unnormalize() passing in the forecasted series and the original unnormalized series to
|
|
20
|
+
produce a forecasted series with the effects of SeasonalNormalize() removed.
|
|
18
21
|
|
|
19
22
|
|
|
20
23
|
PARAMETERS:
|
|
21
24
|
data:
|
|
22
25
|
Required Argument.
|
|
23
|
-
|
|
24
|
-
|
|
26
|
+
Single input source that contains univariate series instances.
|
|
27
|
+
The associated "payload_content" is 'REAL'.
|
|
28
|
+
The payload is the series element magnitude.
|
|
29
|
+
TDSeries must include the usage of the "interval" parameter
|
|
30
|
+
that is the interval to used by the function to divide the
|
|
31
|
+
series cycles into intervals.
|
|
25
32
|
Types: TDSeries
|
|
26
33
|
|
|
27
34
|
data_filter_expr:
|
|
@@ -16,7 +16,7 @@ def SignifPeriodicities(data=None, data_filter_expr=None,
|
|
|
16
16
|
SignifPeriodicities():
|
|
17
17
|
1. Use ArimaEstimate() to identify spectral candidates.
|
|
18
18
|
2. Use ArimaValidate() to validate spectral candidates.
|
|
19
|
-
3. Use
|
|
19
|
+
3. Use DataFrame.plot() to plot the results.
|
|
20
20
|
4. Compute the test statistic.
|
|
21
21
|
5. Use SignifPeriodicities() on the periodicities of interest.
|
|
22
22
|
More than one periodicities can be entered using the
|
|
@@ -161,7 +161,9 @@ def WhitesGeneral(data=None, data_filter_expr=None, variables_count=None,
|
|
|
161
161
|
payload_field=["ACTUAL_VALUE","CALC_VALUE","RESIDUAL"],
|
|
162
162
|
payload_content="MULTIVAR_REAL")
|
|
163
163
|
|
|
164
|
-
uaf_out1 = WhitesGeneral(data=data_series_df,
|
|
164
|
+
uaf_out1 = WhitesGeneral(data=data_series_df,
|
|
165
|
+
variables_count=3,
|
|
166
|
+
significance_level=0.05)
|
|
165
167
|
|
|
166
168
|
# Print the result DataFrame.
|
|
167
169
|
print(uaf_out1.result)
|
|
@@ -0,0 +1,368 @@
|
|
|
1
|
+
def WindowDFFT(data=None, data_filter_expr=None, dfft_algorithm=None,
|
|
2
|
+
dfft_zero_padding_ok=True, dfft_freq_style="K_INTEGRAL",
|
|
3
|
+
dfft_hertz_sample_rate=None, dfft_human_readable=True,
|
|
4
|
+
window_size_num=None, window_size_perc=None,
|
|
5
|
+
window_overlap=0, window_is_symmetric=True,
|
|
6
|
+
window_scale=None, window_type=None,
|
|
7
|
+
window_exponential_center=None,
|
|
8
|
+
window_exponential_tau=None, window_gaussian_std=None,
|
|
9
|
+
window_general_cosine_coeff=None,
|
|
10
|
+
window_general_gaussian_shape=None,
|
|
11
|
+
window_general_gaussian_sigma=None,
|
|
12
|
+
window_general_hamming_alpha=None,
|
|
13
|
+
window_kaiser_beta=None, window_taylor_num_sidelobes=4,
|
|
14
|
+
window_taylor_sidelobe_suppression=30,
|
|
15
|
+
window_taylor_norm=True, window_tukey_alpha=None,
|
|
16
|
+
output_fmt_content=None, **generic_arguments):
|
|
17
|
+
"""
|
|
18
|
+
DESCRIPTION:
|
|
19
|
+
WindowDFFT() function applies a user-selected window to data before
|
|
20
|
+
processing it with DFFT(). Windows are used to remove
|
|
21
|
+
noise or spectral leakage. The window type is determined
|
|
22
|
+
for the specific use case based on signal frequency,
|
|
23
|
+
amplitude, strength and so on.
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
PARAMETERS:
|
|
27
|
+
data:
|
|
28
|
+
Required Argument.
|
|
29
|
+
Specifies the time series or spatial series.
|
|
30
|
+
Types: TDSeries, TDAnalyticResult
|
|
31
|
+
|
|
32
|
+
data_filter_expr:
|
|
33
|
+
Optional Argument.
|
|
34
|
+
Specifies the filter expression for "data".
|
|
35
|
+
Types: ColumnExpression
|
|
36
|
+
|
|
37
|
+
dfft_algorithm:
|
|
38
|
+
Optional Argument.
|
|
39
|
+
Specifies the user-defined algorithm that bypasses the
|
|
40
|
+
internal DFFT planner, and influences the core DFFT
|
|
41
|
+
algorithm associated with the primary DFFT calculation.
|
|
42
|
+
Note:
|
|
43
|
+
* When "dfft_algorithm" is not passed, then the internal DFFT planner selects
|
|
44
|
+
the most efficient algorithm for the operation.
|
|
45
|
+
Permitted Values: COOLEY_TUKEY, SINGLETON
|
|
46
|
+
Types: str
|
|
47
|
+
|
|
48
|
+
dfft_zero_padding_ok:
|
|
49
|
+
Optional Argument.
|
|
50
|
+
Specifies whether to add zeros to the end of a given
|
|
51
|
+
series to achieve a more efficient computation for the
|
|
52
|
+
Fast Fourier Transform coefficients.
|
|
53
|
+
Default Value: True
|
|
54
|
+
Types: bool
|
|
55
|
+
|
|
56
|
+
dfft_freq_style:
|
|
57
|
+
Optional Argument.
|
|
58
|
+
Specifies the format or values associated with the x-axis of the
|
|
59
|
+
output.
|
|
60
|
+
Permitted Values:
|
|
61
|
+
* K_INTEGRAL: Integer representation.
|
|
62
|
+
* K_SAMPLE_RATE: Integer normalized to number entries, with ranges from -0.5 to +0.5.
|
|
63
|
+
* K_RADIANS: Radian ranges from -π to +π.
|
|
64
|
+
* K_HERTZ: Frequency in hertz. Must be used in conjunction with "dfft_hertz_sample_rate".
|
|
65
|
+
Default Value: K_INTEGRAL
|
|
66
|
+
Types: str
|
|
67
|
+
|
|
68
|
+
dfft_hertz_sample_rate:
|
|
69
|
+
Optional Argument.
|
|
70
|
+
Specifies the sample rate as a floating point constant, in
|
|
71
|
+
hertz. A value of 10000.0 indicates that the sample
|
|
72
|
+
points were obtained by sampling at a rate of 10,000
|
|
73
|
+
hertz.
|
|
74
|
+
Note:
|
|
75
|
+
* "dfft_hertz_sample_rate" is only valid with "dfft_freq_style".
|
|
76
|
+
Types: float
|
|
77
|
+
|
|
78
|
+
dfft_human_readable:
|
|
79
|
+
Optional Argument.
|
|
80
|
+
Specifies whether the produced output rows are in human-readable or raw form.
|
|
81
|
+
Human-readable output is symmetric around 0, such as -3, -2, -1, 0, 1, 2, 3 whereas
|
|
82
|
+
raw output is sequential, starting at zero, such as 0, 1, 2, 3.
|
|
83
|
+
Permitted Values:
|
|
84
|
+
* True: Human-readable output.
|
|
85
|
+
* False: Raw output.
|
|
86
|
+
Default Value: True
|
|
87
|
+
Types: bool
|
|
88
|
+
|
|
89
|
+
window_size_num:
|
|
90
|
+
Optional Argument.
|
|
91
|
+
Specifies the size of the window.
|
|
92
|
+
Note:
|
|
93
|
+
* "window_size_num" must be greater than zero.
|
|
94
|
+
* "window_size_num" and "window_size_perc" are mutually exclusive.
|
|
95
|
+
Types: int
|
|
96
|
+
|
|
97
|
+
window_size_perc:
|
|
98
|
+
Optional Argument.
|
|
99
|
+
Specifies the size of the window within a series as a percentage.
|
|
100
|
+
Note:
|
|
101
|
+
* "window_size_perc" must be greater than zero.
|
|
102
|
+
* "window_size_num" and "window_size_perc" are mutually exclusive.
|
|
103
|
+
Types: float
|
|
104
|
+
|
|
105
|
+
window_overlap:
|
|
106
|
+
Optional Argument.
|
|
107
|
+
Specifies the number of values by which the window slides down for
|
|
108
|
+
each DFFT calculation within a series.
|
|
109
|
+
Note:
|
|
110
|
+
* The value must be less than the window size.
|
|
111
|
+
* To use fraction form, use "window_size_perc".
|
|
112
|
+
Default Value: 0
|
|
113
|
+
Types: int
|
|
114
|
+
|
|
115
|
+
window_is_symmetric:
|
|
116
|
+
Optional Argument.
|
|
117
|
+
Specifies whether to use a symmetric or periodic window.
|
|
118
|
+
Permitted Values:
|
|
119
|
+
* False: Periodic
|
|
120
|
+
* True: Symmetric
|
|
121
|
+
Default Value: True
|
|
122
|
+
Types: bool
|
|
123
|
+
|
|
124
|
+
window_scale:
|
|
125
|
+
Optional Argument.
|
|
126
|
+
Specifies the spectral density type applied to the result values.
|
|
127
|
+
Permitted Values: DENSITY, SPECTRUM
|
|
128
|
+
Types: str
|
|
129
|
+
|
|
130
|
+
window_type:
|
|
131
|
+
Optional Argument.
|
|
132
|
+
Specifies the type of window to use.
|
|
133
|
+
Note:
|
|
134
|
+
* Some windows have additional options such as Taylor, in which case refer
|
|
135
|
+
to the Taylor parameter for specific Taylor window options.
|
|
136
|
+
Permitted Values:
|
|
137
|
+
* BARTHANN
|
|
138
|
+
* BARTLETT,
|
|
139
|
+
* BLACKMAN,
|
|
140
|
+
* BLACKMANHARRIS,
|
|
141
|
+
* BOHMAN,
|
|
142
|
+
* BOXCAR,
|
|
143
|
+
* COSINE,
|
|
144
|
+
* EXPONENTIAL,
|
|
145
|
+
* FLATTOP,
|
|
146
|
+
* GAUSSIAN,
|
|
147
|
+
* GENERAL_COSINE,
|
|
148
|
+
* GENERAL_GAUSSIAN,
|
|
149
|
+
* GENERAL_HAMMING,
|
|
150
|
+
* HAMMING, HANN,
|
|
151
|
+
* KAISER,
|
|
152
|
+
* NUTTALL,
|
|
153
|
+
* PARZEN,
|
|
154
|
+
* TAYLOR,
|
|
155
|
+
* TRIANG,
|
|
156
|
+
* TUKEY
|
|
157
|
+
Types: str
|
|
158
|
+
|
|
159
|
+
window_exponential_center:
|
|
160
|
+
Optional Argument.
|
|
161
|
+
Specifies the center of the window.
|
|
162
|
+
It is a parameter for "window_type" as EXPONENTIAL.
|
|
163
|
+
The default value is (windowSize - 1 ) / 2.
|
|
164
|
+
Types: float
|
|
165
|
+
|
|
166
|
+
window_exponential_tau:
|
|
167
|
+
Optional Argument.
|
|
168
|
+
Specifies the amount of window decay.
|
|
169
|
+
It is a parameter for window_type as EXPONENTIAL.
|
|
170
|
+
If the "window_exponential_center" is zero, then use ( windowSize - 1 ) / ln( x ) if x is the
|
|
171
|
+
fractional part of the window remaining at the end of
|
|
172
|
+
the window.
|
|
173
|
+
Types: float
|
|
174
|
+
|
|
175
|
+
window_gaussian_std:
|
|
176
|
+
Optional Argument. Required if "window_type" is GAUSSIAN.
|
|
177
|
+
Specifies the standard deviation of the Gaussian window.
|
|
178
|
+
Types: float
|
|
179
|
+
|
|
180
|
+
window_general_cosine_coeff:
|
|
181
|
+
Optional Argument. Required if "window_type" is GENERAL_GUASSIAN.
|
|
182
|
+
Specifies the list of weighing coefficients.
|
|
183
|
+
Types: float, list of float
|
|
184
|
+
|
|
185
|
+
window_general_gaussian_shape:
|
|
186
|
+
Optional Argument. Required if "window_type" is GENERAL_GUASSIAN.
|
|
187
|
+
specifies the gaussian shape.
|
|
188
|
+
Types: float
|
|
189
|
+
|
|
190
|
+
window_general_gaussian_sigma:
|
|
191
|
+
Optional Argument. Required if "window_type" is GENERAL_GUASSIAN.
|
|
192
|
+
Specifies the standard deviation value.
|
|
193
|
+
Types: float
|
|
194
|
+
|
|
195
|
+
window_general_hamming_alpha:
|
|
196
|
+
Optional Argument. Required if "window_type" is GENERAL_HAMMING.
|
|
197
|
+
Specifies the value of the window coefficient.
|
|
198
|
+
Types: float
|
|
199
|
+
|
|
200
|
+
window_kaiser_beta:
|
|
201
|
+
Optional Argument. Required if "window_type" is KAISER.
|
|
202
|
+
Specifies the shape between the main lobe width and side
|
|
203
|
+
lobe level.
|
|
204
|
+
Types: float
|
|
205
|
+
|
|
206
|
+
window_taylor_num_sidelobes:
|
|
207
|
+
Optional Argument.
|
|
208
|
+
Specifies the number of nearly constant level sidelobes
|
|
209
|
+
adjacent to the main lobe.
|
|
210
|
+
Default Value: 4
|
|
211
|
+
Types: int
|
|
212
|
+
|
|
213
|
+
window_taylor_sidelobe_suppression:
|
|
214
|
+
Optional Argument.
|
|
215
|
+
Specifies the suppression level of the side lobe in decibels
|
|
216
|
+
relative to the DC gain of the main lobe.
|
|
217
|
+
Default Value: 30
|
|
218
|
+
Types: float
|
|
219
|
+
|
|
220
|
+
window_taylor_norm:
|
|
221
|
+
Optional Argument.
|
|
222
|
+
Specifies the normalization factor for the Taylor window.
|
|
223
|
+
Permitted Values:
|
|
224
|
+
* False: For an even sized window, divides the window by the
|
|
225
|
+
value that would occur between the two middle values.
|
|
226
|
+
* True : For an odd sized window, divides the window by the
|
|
227
|
+
largest (middle) value.
|
|
228
|
+
Default Value: True
|
|
229
|
+
Types: bool
|
|
230
|
+
|
|
231
|
+
window_tukey_alpha:
|
|
232
|
+
Optional Argument. Required if "window_type" is TUKEY.
|
|
233
|
+
Specifies the shape of the window inside the cosine-tapered region.
|
|
234
|
+
A value of 0 is a rectangular window and value of 1 is the same as a Hann window.
|
|
235
|
+
Types: float
|
|
236
|
+
|
|
237
|
+
output_fmt_content:
|
|
238
|
+
Optional Argument.
|
|
239
|
+
Specifies how the Fourier coefficients should be output.
|
|
240
|
+
Permitted Values:
|
|
241
|
+
* COMPLEX
|
|
242
|
+
* AMPL_PHASE_RADIANS
|
|
243
|
+
* AMPL_PHASE_DEGREES
|
|
244
|
+
* AMPL_PHASE
|
|
245
|
+
* MULTIVAR_COMPLEX
|
|
246
|
+
* MULTIVAR_AMPL_PHASE_RADIANS
|
|
247
|
+
* MULTIVAR_AMPL_PHASE_DEGREES
|
|
248
|
+
* MULTIVAR_AMPL_PHASE
|
|
249
|
+
Types: str
|
|
250
|
+
|
|
251
|
+
**generic_arguments:
|
|
252
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
253
|
+
Below are the generic keyword arguments:
|
|
254
|
+
persist:
|
|
255
|
+
Optional Argument.
|
|
256
|
+
Specifies whether to persist the results of the
|
|
257
|
+
function in a table or not. When set to True,
|
|
258
|
+
results are persisted in a table; otherwise,
|
|
259
|
+
results are garbage collected at the end of the
|
|
260
|
+
session.
|
|
261
|
+
Note that, when UAF function is executed, an
|
|
262
|
+
analytic result table (ART) is created.
|
|
263
|
+
Default Value: False
|
|
264
|
+
Types: bool
|
|
265
|
+
|
|
266
|
+
volatile:
|
|
267
|
+
Optional Argument.
|
|
268
|
+
Specifies whether to put the results of the
|
|
269
|
+
function in a volatile ART or not. When set to
|
|
270
|
+
True, results are stored in a volatile ART,
|
|
271
|
+
otherwise not.
|
|
272
|
+
Default Value: False
|
|
273
|
+
Types: bool
|
|
274
|
+
|
|
275
|
+
output_table_name:
|
|
276
|
+
Optional Argument.
|
|
277
|
+
Specifies the name of the table to store results.
|
|
278
|
+
If not specified, a unique table name is internally
|
|
279
|
+
generated.
|
|
280
|
+
Types: str
|
|
281
|
+
|
|
282
|
+
output_db_name:
|
|
283
|
+
Optional Argument.
|
|
284
|
+
Specifies the name of the database to create output
|
|
285
|
+
table into. If not specified, table is created into
|
|
286
|
+
database specified by the user at the time of context
|
|
287
|
+
creation or configuration parameter. Argument is ignored,
|
|
288
|
+
if "output_table_name" is not specified.
|
|
289
|
+
Types: str
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
RETURNS:
|
|
293
|
+
Instance of WindowDFFT.
|
|
294
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
295
|
+
references, such as WindowDFFT_obj.<attribute_name>.
|
|
296
|
+
Output teradataml DataFrame attribute name is:
|
|
297
|
+
1. result
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
RAISES:
|
|
301
|
+
TeradataMlException, TypeError, ValueError
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
EXAMPLES:
|
|
305
|
+
# Notes:
|
|
306
|
+
# 1. Get the connection to Vantage, before importing the
|
|
307
|
+
# function in user space.
|
|
308
|
+
# 2. User can import the function, if it is available on
|
|
309
|
+
# Vantage user is connected to.
|
|
310
|
+
# 3. To check the list of UAF analytic functions available
|
|
311
|
+
# on Vantage user connected to, use
|
|
312
|
+
# "display_analytic_functions()".
|
|
313
|
+
|
|
314
|
+
# Check the list of available UAF analytic functions.
|
|
315
|
+
display_analytic_functions(type="UAF")
|
|
316
|
+
|
|
317
|
+
# Import function WindowDFFT.
|
|
318
|
+
from teradataml import WindowDFFT
|
|
319
|
+
|
|
320
|
+
# Load the example data.
|
|
321
|
+
load_example_data("uaf", ["windowdfft"])
|
|
322
|
+
|
|
323
|
+
# Create teradataml DataFrame object.
|
|
324
|
+
data = DataFrame.from_table("windowdfft")
|
|
325
|
+
|
|
326
|
+
# Create teradataml TDSeries object.
|
|
327
|
+
data_series_df = TDSeries(data=data,
|
|
328
|
+
id="id",
|
|
329
|
+
row_index="row_i",
|
|
330
|
+
row_index_style="SEQUENCE",
|
|
331
|
+
payload_field=["v2"],
|
|
332
|
+
payload_content="REAL")
|
|
333
|
+
|
|
334
|
+
# Example 1: Execute WindowDFFT() function to apply a window to the data before processing it with DFFT()
|
|
335
|
+
# with window_type as BOHMAN and dfft_human_readable is True.
|
|
336
|
+
uaf_out = WindowDFFT(data=data_series_df,
|
|
337
|
+
window_size_num=15,
|
|
338
|
+
window_overlap=2,
|
|
339
|
+
window_type="BOHMAN",
|
|
340
|
+
window_is_symmetric=True,
|
|
341
|
+
window_scale="SPECTRUM",
|
|
342
|
+
dfft_algorithm="SINGLETON",
|
|
343
|
+
dfft_zero_padding_ok=True,
|
|
344
|
+
dfft_freq_style="K_INTEGRAL",
|
|
345
|
+
dfft_human_readable=True)
|
|
346
|
+
|
|
347
|
+
# Print the result DataFrame.
|
|
348
|
+
print(uaf_out.result)
|
|
349
|
+
|
|
350
|
+
# Example 2: Execute WindowDFFT() function to apply a window to the data before processing it with DFFT()
|
|
351
|
+
# with additional window parameters for window_type as GENERAL_COSINE and dfft_human_readable is False.
|
|
352
|
+
uaf_out1 = WindowDFFT(data=data_series_df,
|
|
353
|
+
window_size_num=15,
|
|
354
|
+
window_overlap=2,
|
|
355
|
+
window_type="GENERAL_COSINE",
|
|
356
|
+
window_general_cosine_coeff=[2.3,3.7],
|
|
357
|
+
window_is_symmetric=True,
|
|
358
|
+
window_scale="SPECTRUM",
|
|
359
|
+
dfft_algorithm="SINGLETON",
|
|
360
|
+
dfft_zero_padding_ok=True,
|
|
361
|
+
dfft_freq_style="K_INTEGRAL",
|
|
362
|
+
dfft_human_readable=False)
|
|
363
|
+
|
|
364
|
+
# Print the result DataFrame.
|
|
365
|
+
print(uaf_out1.result)
|
|
366
|
+
|
|
367
|
+
"""
|
|
368
|
+
|