teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +183 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +2 -2
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +275 -40
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +17 -21
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1553 -319
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +276 -319
- teradataml/automl/data_transformation.py +163 -81
- teradataml/automl/feature_engineering.py +402 -239
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +48 -51
- teradataml/automl/model_training.py +291 -189
- teradataml/catalog/byom.py +8 -8
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +48 -6
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +156 -120
- teradataml/common/messagecodes.py +6 -1
- teradataml/common/messages.py +3 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +103 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +121 -31
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/glm_example.json +28 -1
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +21 -2
- teradataml/data/scripts/sklearn/sklearn_fit.py +40 -37
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +22 -30
- teradataml/data/scripts/sklearn/sklearn_function.template +42 -24
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +19 -28
- teradataml/data/scripts/sklearn/sklearn_score.py +32 -32
- teradataml/data/scripts/sklearn/sklearn_transform.py +85 -42
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +97 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +9 -4
- teradataml/dataframe/data_transfer.py +125 -64
- teradataml/dataframe/dataframe.py +575 -57
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +273 -90
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +740 -18
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +324 -18
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +254 -122
- teradataml/options/__init__.py +16 -5
- teradataml/options/configure.py +39 -6
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +26 -19
- teradataml/scriptmgmt/lls_utils.py +120 -16
- teradataml/table_operators/Script.py +4 -5
- teradataml/table_operators/TableOperator.py +160 -26
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +41 -3
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +191 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +263 -185
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -14,7 +14,8 @@
|
|
|
14
14
|
"input_tables": [
|
|
15
15
|
{
|
|
16
16
|
"requiredInputKind": [
|
|
17
|
-
"PartitionByAny"
|
|
17
|
+
"PartitionByAny",
|
|
18
|
+
"PartitionByKey"
|
|
18
19
|
],
|
|
19
20
|
"isOrdered": false,
|
|
20
21
|
"partitionByOne": false,
|
|
@@ -31,15 +32,16 @@
|
|
|
31
32
|
},
|
|
32
33
|
{
|
|
33
34
|
"requiredInputKind": [
|
|
34
|
-
"Dimension"
|
|
35
|
+
"Dimension",
|
|
36
|
+
"PartitionByKey"
|
|
35
37
|
],
|
|
36
38
|
"isOrdered": false,
|
|
37
39
|
"partitionByOne": false,
|
|
38
40
|
"name": "modeltable",
|
|
39
41
|
"alternateNames": [],
|
|
40
42
|
"isRequired": true,
|
|
41
|
-
"rDescription": "Specifies the table containing the model data.",
|
|
42
|
-
"description": "Specifies the table containing the model data.",
|
|
43
|
+
"rDescription": "Specifies the table containing the model data. If InputTable is partition by any, ModelTable must be specified dimension. If InputTable is partition by key, ModelTable must be specified partition by key. ",
|
|
44
|
+
"description": "Specifies the table containing the model data. If InputTable is partition by any, ModelTable must be specified dimension. If InputTable is partition by key, ModelTable must be specified partition by key. ",
|
|
43
45
|
"datatype": "TABLE_ALIAS",
|
|
44
46
|
"allowsLists": false,
|
|
45
47
|
"rName": "object",
|
|
@@ -120,6 +122,47 @@
|
|
|
120
122
|
"rName": "output.responses",
|
|
121
123
|
"useInR": true,
|
|
122
124
|
"rOrderNum": 6
|
|
125
|
+
},
|
|
126
|
+
{
|
|
127
|
+
"targetTable": [
|
|
128
|
+
"InputTable"
|
|
129
|
+
],
|
|
130
|
+
"checkDuplicate": false,
|
|
131
|
+
"allowedTypes": [],
|
|
132
|
+
"allowedTypeGroups": [
|
|
133
|
+
"STRING"
|
|
134
|
+
],
|
|
135
|
+
"matchLengthOfArgument": "",
|
|
136
|
+
"allowPadding": false,
|
|
137
|
+
"name": "PartitionColumn",
|
|
138
|
+
"alternateNames": [],
|
|
139
|
+
"isRequired": false,
|
|
140
|
+
"rDescription": "Specify the name of the InputTable columns on which to partition the input. The name should be consistent with the partition_by_column in the ON clause. If the partition_by_column is unicode with foreign language characters, it is necessary to specify PartitionColumn argument. Note: Column range is not supported for PartitionColumn argument. It is valid when InputTable is partition by key. ",
|
|
141
|
+
"description": "Specify the name of the InputTable columns on which to partition the input. The name should be consistent with the partition_by_column in the ON clause. If the partition_by_column is unicode with foreign language characters, it is necessary to specify PartitionColumn argument. Note: Column range is not supported for PartitionColumn argument. It is valid when InputTable is partition by key. ",
|
|
142
|
+
"datatype": "COLUMNS",
|
|
143
|
+
"allowsLists": false,
|
|
144
|
+
"rName": "partition.column",
|
|
145
|
+
"useInR": true,
|
|
146
|
+
"rOrderNum": 7
|
|
147
|
+
},
|
|
148
|
+
{
|
|
149
|
+
"defaultValue": "GAUSSIAN",
|
|
150
|
+
"permittedValues": [
|
|
151
|
+
"BINOMIAL",
|
|
152
|
+
"GAUSSIAN"
|
|
153
|
+
],
|
|
154
|
+
"isOutputColumn": false,
|
|
155
|
+
"name": "Family",
|
|
156
|
+
"alternateNames": [],
|
|
157
|
+
"isRequired": false,
|
|
158
|
+
"rDescription": "Specify the distribution exponential family. Acceptable values are Gaussian, Binomial.",
|
|
159
|
+
"description": "Specify the distribution exponential family. Acceptable values are Gaussian, Binomial.",
|
|
160
|
+
"datatype": "STRING",
|
|
161
|
+
"allowsLists": false,
|
|
162
|
+
"rName": "family",
|
|
163
|
+
"useInR": true,
|
|
164
|
+
"rOrderNum": 8
|
|
123
165
|
}
|
|
166
|
+
|
|
124
167
|
]
|
|
125
|
-
}
|
|
168
|
+
}
|
|
@@ -57,11 +57,12 @@
|
|
|
57
57
|
"allowedTypeGroups": [
|
|
58
58
|
"STRING"
|
|
59
59
|
],
|
|
60
|
+
"defaultValue": "ColumnName",
|
|
60
61
|
"matchLengthOfArgument": "",
|
|
61
62
|
"allowPadding": false,
|
|
62
63
|
"name": "CategoricalSummaryColumn",
|
|
63
64
|
"alternateNames": [],
|
|
64
|
-
"isRequired":
|
|
65
|
+
"isRequired": false,
|
|
65
66
|
"rDescription": "Column from summarytable which provides names of the columns in input table.",
|
|
66
67
|
"description": "Column from summarytable which provides names of the columns in input table.",
|
|
67
68
|
"datatype": "COLUMNS",
|
|
@@ -71,6 +72,7 @@
|
|
|
71
72
|
"rOrderNum": 3
|
|
72
73
|
},
|
|
73
74
|
{
|
|
75
|
+
"defaultValue": 0.95,
|
|
74
76
|
"lowerBound": 0,
|
|
75
77
|
"upperBound": 1,
|
|
76
78
|
"lowerBoundType": "EXCLUSIVE",
|
|
@@ -78,7 +80,7 @@
|
|
|
78
80
|
"allowNaN": false,
|
|
79
81
|
"name": "ThresholdValue",
|
|
80
82
|
"alternateNames": [],
|
|
81
|
-
"isRequired":
|
|
83
|
+
"isRequired": false,
|
|
82
84
|
"rDescription": "The value upto which a particular column in input table is not considered futile.",
|
|
83
85
|
"description": "The value upto which a particular column in input table is not considered futile.",
|
|
84
86
|
"datatype": "NUMERIC",
|
|
@@ -88,4 +90,4 @@
|
|
|
88
90
|
"rOrderNum": 4
|
|
89
91
|
}
|
|
90
92
|
]
|
|
91
|
-
}
|
|
93
|
+
}
|
|
@@ -28,7 +28,7 @@
|
|
|
28
28
|
"useInR": true,
|
|
29
29
|
"rOrderNum": 1
|
|
30
30
|
},
|
|
31
|
-
|
|
31
|
+
{
|
|
32
32
|
"requiredInputKind": [
|
|
33
33
|
"Dimension"
|
|
34
34
|
],
|
|
@@ -85,7 +85,7 @@
|
|
|
85
85
|
"useInR": true,
|
|
86
86
|
"rOrderNum": 4
|
|
87
87
|
},
|
|
88
|
-
|
|
88
|
+
{
|
|
89
89
|
"targetTable": [
|
|
90
90
|
"InputTable"
|
|
91
91
|
],
|
|
@@ -107,7 +107,7 @@
|
|
|
107
107
|
"useInR": true,
|
|
108
108
|
"rOrderNum": 5
|
|
109
109
|
},
|
|
110
|
-
|
|
110
|
+
{
|
|
111
111
|
"lowerBound": 1,
|
|
112
112
|
"upperBound": 2147483647,
|
|
113
113
|
"lowerBoundType": "EXCLUSIVE",
|
|
@@ -124,7 +124,7 @@
|
|
|
124
124
|
"useInR": true,
|
|
125
125
|
"rOrderNum": 6
|
|
126
126
|
},
|
|
127
|
-
|
|
127
|
+
{
|
|
128
128
|
"lowerBound": 0,
|
|
129
129
|
"upperBound": 2147483647,
|
|
130
130
|
"lowerBoundType": "INCLUSIVE",
|
|
@@ -141,8 +141,8 @@
|
|
|
141
141
|
"useInR": true,
|
|
142
142
|
"rOrderNum": 7
|
|
143
143
|
},
|
|
144
|
-
|
|
145
|
-
|
|
144
|
+
{
|
|
145
|
+
"defaultValue": 0.0395,
|
|
146
146
|
"lowerBound": 0,
|
|
147
147
|
"upperBound": 1.797e+308,
|
|
148
148
|
"lowerBoundType": "INCLUSIVE",
|
|
@@ -159,8 +159,8 @@
|
|
|
159
159
|
"useInR": true,
|
|
160
160
|
"rOrderNum": 8
|
|
161
161
|
},
|
|
162
|
-
|
|
163
|
-
|
|
162
|
+
{
|
|
163
|
+
"defaultValue": 10,
|
|
164
164
|
"lowerBound": 1,
|
|
165
165
|
"upperBound": 2147483647,
|
|
166
166
|
"lowerBoundType": "INCLUSIVE",
|
|
@@ -177,8 +177,8 @@
|
|
|
177
177
|
"useInR": true,
|
|
178
178
|
"rOrderNum": 9
|
|
179
179
|
},
|
|
180
|
-
|
|
181
|
-
|
|
180
|
+
{
|
|
181
|
+
"defaultValue": 1,
|
|
182
182
|
"lowerBound": 1,
|
|
183
183
|
"upperBound": 2147483647,
|
|
184
184
|
"lowerBoundType": "INCLUSIVE",
|
|
@@ -195,7 +195,7 @@
|
|
|
195
195
|
"useInR": true,
|
|
196
196
|
"rOrderNum": 10
|
|
197
197
|
},
|
|
198
|
-
|
|
198
|
+
{
|
|
199
199
|
"defaultValue": false,
|
|
200
200
|
"name": "OutputClusterAssignment",
|
|
201
201
|
"alternateNames": [],
|
|
@@ -207,6 +207,26 @@
|
|
|
207
207
|
"rName": "output.cluster.assignment",
|
|
208
208
|
"useInR": true,
|
|
209
209
|
"rOrderNum": 11
|
|
210
|
+
},
|
|
211
|
+
{
|
|
212
|
+
"permittedValues": [
|
|
213
|
+
"RANDOM",
|
|
214
|
+
"KMEANS++"
|
|
215
|
+
],
|
|
216
|
+
"defaultValue": "RANDOM",
|
|
217
|
+
"isOutputColumn": false,
|
|
218
|
+
"matchLengthOfArgument": "",
|
|
219
|
+
"allowPadding": false,
|
|
220
|
+
"name": "InitialCentroidsMethod",
|
|
221
|
+
"alternateNames": [],
|
|
222
|
+
"isRequired": false,
|
|
223
|
+
"rDescription": "Specifies the initialization method to be used for selecting initial set of centroids.",
|
|
224
|
+
"description": "Specifies the initialization method to be used for selecting initial set of centroids.",
|
|
225
|
+
"datatype": "STRING",
|
|
226
|
+
"allowsLists": false,
|
|
227
|
+
"rName": "initialcentroids.method",
|
|
228
|
+
"useInR": true,
|
|
229
|
+
"rOrderNum": 12
|
|
210
230
|
}
|
|
211
231
|
]
|
|
212
232
|
}
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
{
|
|
2
|
+
"json_schema_major_version": "1",
|
|
3
|
+
"json_schema_minor_version": "1",
|
|
4
|
+
"json_content_version": "1",
|
|
5
|
+
"function_name": "TD_NaiveBayes",
|
|
6
|
+
"function_version": "1.0",
|
|
7
|
+
"function_alias_name": "TD_NaiveBayes",
|
|
8
|
+
"function_type": "fastpath",
|
|
9
|
+
"function_category": "Model Training",
|
|
10
|
+
"function_r_name": "aa.td_naivebayes",
|
|
11
|
+
"short_description": "This function generates classification model using NaiveBayes algorithm.",
|
|
12
|
+
"long_description": "This function generates classification model using NaiveBayes algorithm.",
|
|
13
|
+
"input_tables": [
|
|
14
|
+
{
|
|
15
|
+
"requiredInputKind": [
|
|
16
|
+
"PartitionByAny"
|
|
17
|
+
],
|
|
18
|
+
"isOrdered": false,
|
|
19
|
+
"partitionByOne": false,
|
|
20
|
+
"name": "InputTable",
|
|
21
|
+
"alternateNames": [],
|
|
22
|
+
"isRequired": true,
|
|
23
|
+
"rDescription": "Specifies the table containing the input training data.",
|
|
24
|
+
"description": "Specifies the table containing the input training data.",
|
|
25
|
+
"datatype": "TABLE_ALIAS",
|
|
26
|
+
"allowsLists": false,
|
|
27
|
+
"rName": "data",
|
|
28
|
+
"useInR": true,
|
|
29
|
+
"rOrderNum": 1
|
|
30
|
+
}
|
|
31
|
+
],
|
|
32
|
+
"argument_clauses": [
|
|
33
|
+
{
|
|
34
|
+
"targetTable": [
|
|
35
|
+
"InputTable"
|
|
36
|
+
],
|
|
37
|
+
"checkDuplicate": true,
|
|
38
|
+
"allowedTypes": [],
|
|
39
|
+
"allowedTypeGroups": [
|
|
40
|
+
"INTEGER","STRING"
|
|
41
|
+
],
|
|
42
|
+
"matchLengthOfArgument": "",
|
|
43
|
+
"allowPadding": false,
|
|
44
|
+
"name": "ResponseColumn",
|
|
45
|
+
"alternateNames": [],
|
|
46
|
+
"isRequired": true,
|
|
47
|
+
"rDescription": "Specifies the name of the input table column that contains the response values.",
|
|
48
|
+
"description": "Specifies the name of the input table column that contains the response values.",
|
|
49
|
+
"datatype": "COLUMNS",
|
|
50
|
+
"allowsLists": false,
|
|
51
|
+
"rName": "response.column",
|
|
52
|
+
"useInR": true,
|
|
53
|
+
"rOrderNum": 2
|
|
54
|
+
},
|
|
55
|
+
{
|
|
56
|
+
"targetTable": [
|
|
57
|
+
"InputTable"
|
|
58
|
+
],
|
|
59
|
+
"checkDuplicate": true,
|
|
60
|
+
"allowedTypes": [],
|
|
61
|
+
"allowedTypeGroups": [
|
|
62
|
+
"NUMERIC"
|
|
63
|
+
],
|
|
64
|
+
"matchLengthOfArgument": "",
|
|
65
|
+
"allowPadding": false,
|
|
66
|
+
"name": "NumericInputs",
|
|
67
|
+
"alternateNames": [],
|
|
68
|
+
"isRequired": false,
|
|
69
|
+
"rDescription": "Specifies the name of the input table columns that contains the numeric attributes values.",
|
|
70
|
+
"description": "Specifies the name of the input table columns that contains the numeric attributes values.",
|
|
71
|
+
"datatype": "COLUMNS",
|
|
72
|
+
"allowsLists": true,
|
|
73
|
+
"rName": "numeric.inputs",
|
|
74
|
+
"useInR": true,
|
|
75
|
+
"rOrderNum": 3
|
|
76
|
+
},
|
|
77
|
+
{
|
|
78
|
+
"targetTable": [
|
|
79
|
+
"InputTable"
|
|
80
|
+
],
|
|
81
|
+
"checkDuplicate": true,
|
|
82
|
+
"allowedTypes": [],
|
|
83
|
+
"allowedTypeGroups": [
|
|
84
|
+
"STRING"
|
|
85
|
+
],
|
|
86
|
+
"matchLengthOfArgument": "",
|
|
87
|
+
"allowPadding": false,
|
|
88
|
+
"name": "CategoricalInputs",
|
|
89
|
+
"alternateNames": [],
|
|
90
|
+
"isRequired": false,
|
|
91
|
+
"rDescription": "Specifies the name of the input table columns that contains the categorical attributes values.",
|
|
92
|
+
"description": "Specifies the name of the input table columns that contains the categorical attributes values.",
|
|
93
|
+
"datatype": "COLUMNS",
|
|
94
|
+
"allowsLists": true,
|
|
95
|
+
"rName": "categorical.inputs",
|
|
96
|
+
"useInR": true,
|
|
97
|
+
"rOrderNum": 4
|
|
98
|
+
},
|
|
99
|
+
{
|
|
100
|
+
"targetTable": [
|
|
101
|
+
"InputTable"
|
|
102
|
+
],
|
|
103
|
+
"checkDuplicate": true,
|
|
104
|
+
"allowedTypes": [],
|
|
105
|
+
"allowedTypeGroups": [
|
|
106
|
+
"STRING"
|
|
107
|
+
],
|
|
108
|
+
"matchLengthOfArgument": "",
|
|
109
|
+
"allowPadding": false,
|
|
110
|
+
"name": "AttributeNameColumn",
|
|
111
|
+
"alternateNames": [],
|
|
112
|
+
"isRequired": false,
|
|
113
|
+
"rDescription": "Specifies the name of the input table column that contains the attributes names.",
|
|
114
|
+
"description": "Specifies the name of the input table columns that contains the attributes names.",
|
|
115
|
+
"datatype": "COLUMNS",
|
|
116
|
+
"allowsLists": false,
|
|
117
|
+
"rName": "attribute.name.column",
|
|
118
|
+
"useInR": true,
|
|
119
|
+
"rOrderNum": 5
|
|
120
|
+
},
|
|
121
|
+
{
|
|
122
|
+
"targetTable": [
|
|
123
|
+
"InputTable"
|
|
124
|
+
],
|
|
125
|
+
"checkDuplicate": true,
|
|
126
|
+
"allowedTypes": [],
|
|
127
|
+
"allowedTypeGroups": [
|
|
128
|
+
"NUMERIC","STRING"
|
|
129
|
+
],
|
|
130
|
+
"matchLengthOfArgument": "",
|
|
131
|
+
"allowPadding": false,
|
|
132
|
+
"name": "AttributeValueColumn",
|
|
133
|
+
"alternateNames": [],
|
|
134
|
+
"isRequired": false,
|
|
135
|
+
"rDescription": "Specifies the name of the input table column that contains the attributes values.",
|
|
136
|
+
"description": "Specifies the name of the input table columns that contains the attributes values.",
|
|
137
|
+
"datatype": "COLUMNS",
|
|
138
|
+
"allowsLists": false,
|
|
139
|
+
"rName": "attribute.value.column",
|
|
140
|
+
"useInR": true,
|
|
141
|
+
"rOrderNum": 6
|
|
142
|
+
},
|
|
143
|
+
{
|
|
144
|
+
"permittedValues": [
|
|
145
|
+
"ALLNUMERIC",
|
|
146
|
+
"ALLCATEGORICAL"
|
|
147
|
+
],
|
|
148
|
+
"isOutputColumn": false,
|
|
149
|
+
"matchLengthOfArgument": "",
|
|
150
|
+
"allowPadding": false,
|
|
151
|
+
"name": "AttributeType",
|
|
152
|
+
"alternateNames": [],
|
|
153
|
+
"isRequired": false,
|
|
154
|
+
"rDescription": "Specifies the attribute type as ALLNUMERIC or ALLCATEGORICAL if all the attributes are of numeric type or categorical type respectively.",
|
|
155
|
+
"description": "Specifies the attribute type as ALLNUMERIC or ALLCATEGORICAL if all the attributes are of numeric type or categorical type respectively.",
|
|
156
|
+
"datatype": "STRING",
|
|
157
|
+
"allowsLists": false,
|
|
158
|
+
"rName": "attribute.type",
|
|
159
|
+
"useInR": true,
|
|
160
|
+
"rOrderNum": 7
|
|
161
|
+
},
|
|
162
|
+
{
|
|
163
|
+
"isOutputColumn": false,
|
|
164
|
+
"matchLengthOfArgument": "",
|
|
165
|
+
"allowPadding": false,
|
|
166
|
+
"name": "NumericAttributes",
|
|
167
|
+
"alternateNames": [],
|
|
168
|
+
"isRequired": false,
|
|
169
|
+
"rDescription": "Specifies the numeric attributes names.",
|
|
170
|
+
"description": "Specifies the numeric attributes names.",
|
|
171
|
+
"datatype": "STRING",
|
|
172
|
+
"allowsLists": true,
|
|
173
|
+
"rName": "numeric.attributes",
|
|
174
|
+
"useInR": true,
|
|
175
|
+
"rOrderNum": 8
|
|
176
|
+
},
|
|
177
|
+
{
|
|
178
|
+
"isOutputColumn": false,
|
|
179
|
+
"matchLengthOfArgument": "",
|
|
180
|
+
"allowPadding": false,
|
|
181
|
+
"name": "CategoricalAttributes",
|
|
182
|
+
"alternateNames": [],
|
|
183
|
+
"isRequired": false,
|
|
184
|
+
"rDescription": "Specifies the categorical attributes names.",
|
|
185
|
+
"description": "Specifies the categorical attributes names.",
|
|
186
|
+
"datatype": "STRING",
|
|
187
|
+
"allowsLists": true,
|
|
188
|
+
"rName": "categorical.attributes",
|
|
189
|
+
"useInR": true,
|
|
190
|
+
"rOrderNum": 9
|
|
191
|
+
}
|
|
192
|
+
]
|
|
193
|
+
}
|
|
@@ -0,0 +1,212 @@
|
|
|
1
|
+
{
|
|
2
|
+
"json_schema_major_version": "1",
|
|
3
|
+
"json_schema_minor_version": "1",
|
|
4
|
+
"json_content_version": "1",
|
|
5
|
+
"function_name": "TD_NaiveBayesPredict",
|
|
6
|
+
"function_version": "1.0",
|
|
7
|
+
"function_alias_name": "TDNaiveBayesPredict",
|
|
8
|
+
"function_type": "fastpath",
|
|
9
|
+
"function_category": "Model Scoring",
|
|
10
|
+
"function_r_name": "aa.td_naivebayespredict",
|
|
11
|
+
"ref_function_r_name": "aa.td_naivebayes",
|
|
12
|
+
"short_description": "This function predicts classification label using NaiveBayes model generated by TD_NaiveBayes.",
|
|
13
|
+
"long_description": "This function predicts classification label using NaiveBayes model generated by TD_NaiveBayes.",
|
|
14
|
+
"input_tables": [
|
|
15
|
+
{
|
|
16
|
+
"requiredInputKind": [
|
|
17
|
+
"PartitionByAny"
|
|
18
|
+
],
|
|
19
|
+
"isOrdered": false,
|
|
20
|
+
"partitionByOne": false,
|
|
21
|
+
"name": "InputTable",
|
|
22
|
+
"alternateNames": [],
|
|
23
|
+
"isRequired": true,
|
|
24
|
+
"rDescription": "Specifies the table containing the input test data.",
|
|
25
|
+
"description": "Specifies the table containing the input test data.",
|
|
26
|
+
"datatype": "TABLE_ALIAS",
|
|
27
|
+
"allowsLists": false,
|
|
28
|
+
"rName": "data",
|
|
29
|
+
"useInR": true,
|
|
30
|
+
"rOrderNum": 1
|
|
31
|
+
},
|
|
32
|
+
{
|
|
33
|
+
"requiredInputKind": [
|
|
34
|
+
"Dimension"
|
|
35
|
+
],
|
|
36
|
+
"isOrdered": false,
|
|
37
|
+
"partitionByOne": false,
|
|
38
|
+
"name": "modeltable",
|
|
39
|
+
"alternateNames": [],
|
|
40
|
+
"isRequired": true,
|
|
41
|
+
"rDescription": "Specifies the table containing the model data.",
|
|
42
|
+
"description": "Specifies the table containing the model data.",
|
|
43
|
+
"datatype": "TABLE_ALIAS",
|
|
44
|
+
"allowsLists": false,
|
|
45
|
+
"rName": "object",
|
|
46
|
+
"useInR": true,
|
|
47
|
+
"rOrderNum": 2
|
|
48
|
+
}
|
|
49
|
+
],
|
|
50
|
+
"argument_clauses": [
|
|
51
|
+
{
|
|
52
|
+
"targetTable": [
|
|
53
|
+
"InputTable"
|
|
54
|
+
],
|
|
55
|
+
"checkDuplicate": true,
|
|
56
|
+
"allowedTypes": [],
|
|
57
|
+
"allowedTypeGroups": [
|
|
58
|
+
"ALL"
|
|
59
|
+
],
|
|
60
|
+
"matchLengthOfArgument": "",
|
|
61
|
+
"allowPadding": false,
|
|
62
|
+
"name": "IDColumn",
|
|
63
|
+
"alternateNames": [],
|
|
64
|
+
"isRequired": true,
|
|
65
|
+
"rDescription": "Specifies the name of the column that uniquely identifies an observation in the test table.",
|
|
66
|
+
"description": "Specifies the name of the column that uniquely identifies an observation in the test table..",
|
|
67
|
+
"datatype": "COLUMNS",
|
|
68
|
+
"allowsLists": false,
|
|
69
|
+
"rName": "id.column",
|
|
70
|
+
"useInR": true,
|
|
71
|
+
"rOrderNum": 3
|
|
72
|
+
},
|
|
73
|
+
{
|
|
74
|
+
"targetTable": [
|
|
75
|
+
"InputTable"
|
|
76
|
+
],
|
|
77
|
+
"checkDuplicate": true,
|
|
78
|
+
"allowedTypes": [],
|
|
79
|
+
"allowedTypeGroups": [
|
|
80
|
+
"NUMERIC"
|
|
81
|
+
],
|
|
82
|
+
"matchLengthOfArgument": "",
|
|
83
|
+
"allowPadding": false,
|
|
84
|
+
"name": "NumericInputs",
|
|
85
|
+
"alternateNames": [],
|
|
86
|
+
"isRequired": false,
|
|
87
|
+
"rDescription": "Specifies the name of the input table columns that contains the numeric attributes values.",
|
|
88
|
+
"description": "Specifies the name of the input table columns that contains the numeric attributes values.",
|
|
89
|
+
"datatype": "COLUMNS",
|
|
90
|
+
"allowsLists": true,
|
|
91
|
+
"rName": "numeric.inputs",
|
|
92
|
+
"useInR": true,
|
|
93
|
+
"rOrderNum": 4
|
|
94
|
+
},
|
|
95
|
+
{
|
|
96
|
+
"targetTable": [
|
|
97
|
+
"InputTable"
|
|
98
|
+
],
|
|
99
|
+
"checkDuplicate": true,
|
|
100
|
+
"allowedTypes": [],
|
|
101
|
+
"allowedTypeGroups": [
|
|
102
|
+
"STRING"
|
|
103
|
+
],
|
|
104
|
+
"matchLengthOfArgument": "",
|
|
105
|
+
"allowPadding": false,
|
|
106
|
+
"name": "CategoricalInputs",
|
|
107
|
+
"alternateNames": [],
|
|
108
|
+
"isRequired": false,
|
|
109
|
+
"rDescription": "Specifies the name of the input table columns that contains the categorical attributes values.",
|
|
110
|
+
"description": "Specifies the name of the input table columns that contains the categorical attributes values.",
|
|
111
|
+
"datatype": "COLUMNS",
|
|
112
|
+
"allowsLists": true,
|
|
113
|
+
"rName": "categorical.inputs",
|
|
114
|
+
"useInR": true,
|
|
115
|
+
"rOrderNum": 5
|
|
116
|
+
},
|
|
117
|
+
{
|
|
118
|
+
"targetTable": [
|
|
119
|
+
"InputTable"
|
|
120
|
+
],
|
|
121
|
+
"checkDuplicate": true,
|
|
122
|
+
"allowedTypes": [],
|
|
123
|
+
"allowedTypeGroups": [
|
|
124
|
+
"STRING"
|
|
125
|
+
],
|
|
126
|
+
"matchLengthOfArgument": "",
|
|
127
|
+
"allowPadding": false,
|
|
128
|
+
"name": "AttributeNameColumn",
|
|
129
|
+
"alternateNames": [],
|
|
130
|
+
"isRequired": false,
|
|
131
|
+
"rDescription": "Specifies the name of the input table column that contains the attributes names.",
|
|
132
|
+
"description": "Specifies the name of the input table columns that contains the attributes names.",
|
|
133
|
+
"datatype": "COLUMNS",
|
|
134
|
+
"allowsLists": false,
|
|
135
|
+
"rName": "attribute.name.column",
|
|
136
|
+
"useInR": true,
|
|
137
|
+
"rOrderNum": 6
|
|
138
|
+
},
|
|
139
|
+
{
|
|
140
|
+
"targetTable": [
|
|
141
|
+
"InputTable"
|
|
142
|
+
],
|
|
143
|
+
"checkDuplicate": true,
|
|
144
|
+
"allowedTypes": [],
|
|
145
|
+
"allowedTypeGroups": [
|
|
146
|
+
"NUMERIC","STRING"
|
|
147
|
+
],
|
|
148
|
+
"matchLengthOfArgument": "",
|
|
149
|
+
"allowPadding": false,
|
|
150
|
+
"name": "AttributeValueColumn",
|
|
151
|
+
"alternateNames": [],
|
|
152
|
+
"isRequired": false,
|
|
153
|
+
"rDescription": "Specifies the name of the input table column that contains the attributes values.",
|
|
154
|
+
"description": "Specifies the name of the input table columns that contains the attributes values.",
|
|
155
|
+
"datatype": "COLUMNS",
|
|
156
|
+
"allowsLists": false,
|
|
157
|
+
"rName": "attribute.value.column",
|
|
158
|
+
"useInR": true,
|
|
159
|
+
"rOrderNum": 7
|
|
160
|
+
},
|
|
161
|
+
{
|
|
162
|
+
"isOutputColumn": false,
|
|
163
|
+
"matchLengthOfArgument": "",
|
|
164
|
+
"allowPadding": false,
|
|
165
|
+
"name": "Responses",
|
|
166
|
+
"alternateNames": [],
|
|
167
|
+
"isRequired": false,
|
|
168
|
+
"rDescription": "Specifies a list of Responses to output.",
|
|
169
|
+
"description": "Specifies a list of Responses to output.",
|
|
170
|
+
"datatype": "STRING",
|
|
171
|
+
"allowsLists": true,
|
|
172
|
+
"rName": "responses",
|
|
173
|
+
"useInR": true,
|
|
174
|
+
"rOrderNum": 8
|
|
175
|
+
},
|
|
176
|
+
{
|
|
177
|
+
"defaultValue": false,
|
|
178
|
+
"name": "OutputProb",
|
|
179
|
+
"alternateNames": [],
|
|
180
|
+
"isRequired": false,
|
|
181
|
+
"rDescription": "Specify whether the function should output the probability for each response.",
|
|
182
|
+
"description": "Specify whether the function should output the probability for each response. ",
|
|
183
|
+
"datatype": "BOOLEAN",
|
|
184
|
+
"allowsLists": false,
|
|
185
|
+
"rName": "output.prob",
|
|
186
|
+
"useInR": true,
|
|
187
|
+
"rOrderNum": 9
|
|
188
|
+
},
|
|
189
|
+
{
|
|
190
|
+
"targetTable": [
|
|
191
|
+
"inputtable"
|
|
192
|
+
],
|
|
193
|
+
"checkDuplicate": false,
|
|
194
|
+
"allowedTypes": [],
|
|
195
|
+
"allowedTypeGroups": [
|
|
196
|
+
"ALL"
|
|
197
|
+
],
|
|
198
|
+
"matchLengthOfArgument": "",
|
|
199
|
+
"allowPadding": false,
|
|
200
|
+
"name": "Accumulate",
|
|
201
|
+
"alternateNames": [],
|
|
202
|
+
"isRequired": false,
|
|
203
|
+
"rDescription": "Specify the names of the input table columns that need to be copied from the input test table to output.",
|
|
204
|
+
"description": "Specify the names of the input table columns that need to be copied from the input test table to output.",
|
|
205
|
+
"datatype": "COLUMNS",
|
|
206
|
+
"allowsLists": true,
|
|
207
|
+
"rName": "accumulate",
|
|
208
|
+
"useInR": true,
|
|
209
|
+
"rOrderNum": 10
|
|
210
|
+
}
|
|
211
|
+
]
|
|
212
|
+
}
|
|
@@ -83,12 +83,13 @@
|
|
|
83
83
|
},
|
|
84
84
|
{
|
|
85
85
|
"permittedValues": [],
|
|
86
|
+
"defaultValue": "TD_CombinedValue",
|
|
86
87
|
"isOutputColumn": true,
|
|
87
88
|
"matchLengthOfArgument": "",
|
|
88
89
|
"allowPadding": false,
|
|
89
90
|
"name": "ResultColumn",
|
|
90
91
|
"alternateNames": [],
|
|
91
|
-
"isRequired":
|
|
92
|
+
"isRequired": false,
|
|
92
93
|
"rDescription": "Specifies the name of the new feature column.",
|
|
93
94
|
"description": "Specifies the name of the new feature column.",
|
|
94
95
|
"datatype": "STRING",
|
|
@@ -98,4 +99,4 @@
|
|
|
98
99
|
"rOrderNum": 5
|
|
99
100
|
}
|
|
100
101
|
]
|
|
101
|
-
}
|
|
102
|
+
}
|