semantic-link-labs 0.6.0__py3-none-any.whl → 0.7.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (104) hide show
  1. semantic_link_labs-0.7.1.dist-info/METADATA +148 -0
  2. semantic_link_labs-0.7.1.dist-info/RECORD +111 -0
  3. {semantic_link_labs-0.6.0.dist-info → semantic_link_labs-0.7.1.dist-info}/WHEEL +1 -1
  4. sempy_labs/__init__.py +26 -2
  5. sempy_labs/_ai.py +3 -65
  6. sempy_labs/_bpa_translation/_translations_am-ET.po +828 -0
  7. sempy_labs/_bpa_translation/_translations_ar-AE.po +860 -0
  8. sempy_labs/_bpa_translation/_translations_cs-CZ.po +894 -0
  9. sempy_labs/_bpa_translation/_translations_da-DK.po +894 -0
  10. sempy_labs/_bpa_translation/_translations_de-DE.po +933 -0
  11. sempy_labs/_bpa_translation/_translations_el-GR.po +936 -0
  12. sempy_labs/_bpa_translation/_translations_es-ES.po +915 -0
  13. sempy_labs/_bpa_translation/_translations_fa-IR.po +883 -0
  14. sempy_labs/_bpa_translation/_translations_fr-FR.po +938 -0
  15. sempy_labs/_bpa_translation/_translations_ga-IE.po +912 -0
  16. sempy_labs/_bpa_translation/_translations_he-IL.po +855 -0
  17. sempy_labs/_bpa_translation/_translations_hi-IN.po +892 -0
  18. sempy_labs/_bpa_translation/_translations_hu-HU.po +910 -0
  19. sempy_labs/_bpa_translation/_translations_is-IS.po +887 -0
  20. sempy_labs/_bpa_translation/_translations_it-IT.po +931 -0
  21. sempy_labs/_bpa_translation/_translations_ja-JP.po +805 -0
  22. sempy_labs/_bpa_translation/_translations_nl-NL.po +924 -0
  23. sempy_labs/_bpa_translation/_translations_pl-PL.po +913 -0
  24. sempy_labs/_bpa_translation/_translations_pt-BR.po +909 -0
  25. sempy_labs/_bpa_translation/_translations_pt-PT.po +904 -0
  26. sempy_labs/_bpa_translation/_translations_ru-RU.po +909 -0
  27. sempy_labs/_bpa_translation/_translations_ta-IN.po +922 -0
  28. sempy_labs/_bpa_translation/_translations_te-IN.po +896 -0
  29. sempy_labs/_bpa_translation/_translations_th-TH.po +873 -0
  30. sempy_labs/_bpa_translation/_translations_zh-CN.po +767 -0
  31. sempy_labs/_bpa_translation/_translations_zu-ZA.po +916 -0
  32. sempy_labs/_clear_cache.py +9 -4
  33. sempy_labs/_generate_semantic_model.py +30 -56
  34. sempy_labs/_helper_functions.py +361 -14
  35. sempy_labs/_icons.py +10 -1
  36. sempy_labs/_list_functions.py +539 -260
  37. sempy_labs/_model_bpa.py +194 -18
  38. sempy_labs/_model_bpa_bulk.py +367 -0
  39. sempy_labs/_model_bpa_rules.py +19 -8
  40. sempy_labs/_model_dependencies.py +12 -10
  41. sempy_labs/_one_lake_integration.py +7 -7
  42. sempy_labs/_query_scale_out.py +61 -96
  43. sempy_labs/_refresh_semantic_model.py +7 -0
  44. sempy_labs/_translations.py +154 -1
  45. sempy_labs/_vertipaq.py +103 -90
  46. sempy_labs/directlake/__init__.py +5 -1
  47. sempy_labs/directlake/_directlake_schema_compare.py +27 -31
  48. sempy_labs/directlake/_directlake_schema_sync.py +55 -66
  49. sempy_labs/directlake/_dl_helper.py +233 -0
  50. sempy_labs/directlake/_get_directlake_lakehouse.py +6 -7
  51. sempy_labs/directlake/_get_shared_expression.py +1 -1
  52. sempy_labs/directlake/_guardrails.py +17 -13
  53. sempy_labs/directlake/_update_directlake_partition_entity.py +54 -30
  54. sempy_labs/directlake/_warm_cache.py +1 -1
  55. sempy_labs/lakehouse/__init__.py +2 -0
  56. sempy_labs/lakehouse/_get_lakehouse_tables.py +61 -69
  57. sempy_labs/lakehouse/_lakehouse.py +66 -9
  58. sempy_labs/lakehouse/_shortcuts.py +1 -1
  59. sempy_labs/migration/_create_pqt_file.py +174 -182
  60. sempy_labs/migration/_migrate_calctables_to_lakehouse.py +236 -268
  61. sempy_labs/migration/_migrate_calctables_to_semantic_model.py +75 -73
  62. sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +442 -426
  63. sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +91 -97
  64. sempy_labs/migration/_refresh_calc_tables.py +92 -101
  65. sempy_labs/report/_BPAReportTemplate.json +232 -0
  66. sempy_labs/report/__init__.py +6 -2
  67. sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json +9 -0
  68. sempy_labs/report/_bpareporttemplate/.platform +11 -0
  69. sempy_labs/report/_bpareporttemplate/StaticResources/SharedResources/BaseThemes/CY24SU06.json +710 -0
  70. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/page.json +11 -0
  71. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/1b08bce3bebabb0a27a8/visual.json +191 -0
  72. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/2f22ddb70c301693c165/visual.json +438 -0
  73. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/3b1182230aa6c600b43a/visual.json +127 -0
  74. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/58577ba6380c69891500/visual.json +576 -0
  75. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/a2a8fa5028b3b776c96c/visual.json +207 -0
  76. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/adfd47ef30652707b987/visual.json +506 -0
  77. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/b6a80ee459e716e170b1/visual.json +127 -0
  78. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/ce3130a721c020cc3d81/visual.json +513 -0
  79. sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/page.json +8 -0
  80. sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/visuals/66e60dfb526437cd78d1/visual.json +112 -0
  81. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/page.json +11 -0
  82. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/07deb8bce824e1be37d7/visual.json +513 -0
  83. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0b1c68838818b32ad03b/visual.json +352 -0
  84. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0c171de9d2683d10b930/visual.json +37 -0
  85. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0efa01be0510e40a645e/visual.json +542 -0
  86. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/6bf2f0eb830ab53cc668/visual.json +221 -0
  87. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/88d8141cb8500b60030c/visual.json +127 -0
  88. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/a753273590beed656a03/visual.json +576 -0
  89. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/b8fdc82cddd61ac447bc/visual.json +127 -0
  90. sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/page.json +9 -0
  91. sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/visuals/ce8532a7e25020271077/visual.json +38 -0
  92. sempy_labs/report/_bpareporttemplate/definition/pages/pages.json +10 -0
  93. sempy_labs/report/_bpareporttemplate/definition/report.json +176 -0
  94. sempy_labs/report/_bpareporttemplate/definition/version.json +4 -0
  95. sempy_labs/report/_bpareporttemplate/definition.pbir +14 -0
  96. sempy_labs/report/_generate_report.py +255 -139
  97. sempy_labs/report/_report_functions.py +26 -33
  98. sempy_labs/report/_report_rebind.py +31 -26
  99. sempy_labs/tom/_model.py +75 -58
  100. semantic_link_labs-0.6.0.dist-info/METADATA +0 -22
  101. semantic_link_labs-0.6.0.dist-info/RECORD +0 -54
  102. sempy_labs/directlake/_fallback.py +0 -60
  103. {semantic_link_labs-0.6.0.dist-info → semantic_link_labs-0.7.1.dist-info}/LICENSE +0 -0
  104. {semantic_link_labs-0.6.0.dist-info → semantic_link_labs-0.7.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,148 @@
1
+ Metadata-Version: 2.1
2
+ Name: semantic-link-labs
3
+ Version: 0.7.1
4
+ Summary: Semantic Link Labs for Microsoft Fabric
5
+ Author: Microsoft Corporation
6
+ License: MIT License
7
+ Project-URL: Repository, https://github.com/microsoft/semantic-link-labs.git
8
+ Classifier: Development Status :: 3 - Alpha
9
+ Classifier: Intended Audience :: Developers
10
+ Classifier: Intended Audience :: Education
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3 :: Only
14
+ Classifier: Framework :: Jupyter
15
+ Requires-Python: <3.12,>=3.10
16
+ Description-Content-Type: text/markdown
17
+ License-File: LICENSE
18
+ Requires-Dist: semantic-link-sempy >=0.7.7
19
+ Requires-Dist: anytree
20
+ Requires-Dist: powerbiclient
21
+ Requires-Dist: polib
22
+ Provides-Extra: test
23
+ Requires-Dist: pytest >=8.2.1 ; extra == 'test'
24
+
25
+ # Semantic Link Labs
26
+
27
+ [![PyPI version](https://badge.fury.io/py/semantic-link-labs.svg)](https://badge.fury.io/py/semantic-link-labs)
28
+ [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.7.1&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
29
+ [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
30
+ [![Downloads](https://static.pepy.tech/badge/semantic-link-labs)](https://pepy.tech/project/semantic-link-labs)
31
+
32
+ ---
33
+ [Read the documentation on ReadTheDocs!](https://semantic-link-labs.readthedocs.io/en/stable/)
34
+ ---
35
+
36
+ This is a python library intended to be used in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library was originally intended to solely contain functions used for [migrating semantic models to Direct Lake mode](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration). However, it quickly became apparent that functions within such a library could support many other useful activities in the realm of semantic models, reports, lakehouses and really anything Fabric-related. As such, this library contains a variety of functions ranging from running [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.import_vertipaq_analyzer) or the [Best Practice Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa) against a semantic model to seeing if any [lakehouse tables hit Direct Lake guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables) or accessing the [Tabular Object Model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html) and more!
37
+
38
+ Instructions for migrating import/DirectQuery semantic models to Direct Lake mode can be found [here](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration).
39
+
40
+ If you encounter any issues, please [raise a bug](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=bug_report.md&title=).
41
+
42
+ If you have ideas for new features/functions, please [request a feature](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=).
43
+
44
+ ## Install the library in a Fabric notebook
45
+ ```python
46
+ %pip install semantic-link-labs
47
+ ```
48
+
49
+ ## Once installed, run this code to import the library into your notebook
50
+ ```python
51
+ import sempy_labs as labs
52
+ from sempy_labs import migration, directlake
53
+ from sempy_labs import lakehouse as lake
54
+ from sempy_labs import report as rep
55
+ from sempy_labs.tom import connect_semantic_model
56
+ ```
57
+
58
+ ## Load semantic-link-labs into a custom [Fabric environment](https://learn.microsoft.com/fabric/data-engineering/create-and-use-environment)
59
+ An even better way to ensure the semantic-link-labs library is available in your workspace/notebooks is to load it as a library in a custom Fabric environment. If you do this, you will not have to run the above '%pip install' code every time in your notebook. Please follow the steps below.
60
+
61
+ #### Create a custom environment
62
+ 1. Navigate to your Fabric workspace
63
+ 2. Click 'New' -> More options
64
+ 3. Within 'Data Science', click 'Environment'
65
+ 4. Name your environment, click 'Create'
66
+
67
+ #### Add semantic-link-labs as a library to the environment
68
+ 1. Within 'Public libraries', click 'Add from PyPI'
69
+ 2. Enter 'semantic-link-labs'.
70
+ 3. Click 'Save' at the top right of the screen
71
+ 4. Click 'Publish' at the top right of the screen
72
+ 5. Click 'Publish All'
73
+
74
+ #### Update your notebook to use the new environment (*must wait for the environment to finish publishing*)
75
+ 1. Navigate to your Notebook
76
+ 2. Select your newly created environment within the 'Environment' drop down in the navigation bar at the top of the notebook
77
+
78
+ ---
79
+ ## Direct Lake migration
80
+
81
+ The following process automates the migration of an import/DirectQuery model to a new [Direct Lake](https://learn.microsoft.com/power-bi/enterprise/directlake-overview) model. The first step is specifically applicable to models which use Power Query to perform data transformations. If your model does not use Power Query, you must migrate the base tables used in your semantic model to a Fabric lakehouse.
82
+
83
+ Check out [Nikola Ilic](https://twitter.com/DataMozart)'s terrific [blog post](https://data-mozart.com/migrate-existing-power-bi-semantic-models-to-direct-lake-a-step-by-step-guide/) on this topic!
84
+
85
+ Check out my [blog post](https://www.elegantbi.com/post/direct-lake-migration) on this topic!
86
+
87
+ [![Direct Lake Migration Video](https://img.youtube.com/vi/gGIxMrTVyyI/0.jpg)](https://www.youtube.com/watch?v=gGIxMrTVyyI?t=495)
88
+
89
+ ### Prerequisites
90
+
91
+ * Make sure you [enable XMLA Read/Write](https://learn.microsoft.com/power-bi/enterprise/service-premium-connect-tools#enable-xmla-read-write) for your capacity
92
+ * Make sure you have a [lakehouse](https://learn.microsoft.com/fabric/onelake/create-lakehouse-onelake#create-a-lakehouse) in a Fabric workspace
93
+ * Enable the following [setting](https://learn.microsoft.com/power-bi/transform-model/service-edit-data-models#enable-the-preview-feature): Workspace -> Workspace Settings -> General -> Data model settings -> Users can edit data models in the Power BI service
94
+
95
+ ### Instructions
96
+
97
+ 1. Download this [notebook](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Migration%20to%20Direct%20Lake.ipynb).
98
+ 2. Make sure you are in the ['Data Engineering' persona](https://learn.microsoft.com/fabric/get-started/microsoft-fabric-overview#components-of-microsoft-fabric). Click the icon at the bottom left corner of your Workspace screen and select 'Data Engineering'
99
+ 3. In your workspace, select 'New -> Import notebook' and import the notebook from step 1.
100
+ 4. [Add your lakehouse](https://learn.microsoft.com/fabric/data-engineering/lakehouse-notebook-explore#add-or-remove-a-lakehouse) to your Fabric notebook
101
+ 5. Follow the instructions within the notebook.
102
+
103
+ ### The migration process
104
+
105
+ > [!NOTE]
106
+ > The first 4 steps are only necessary if you have logic in Power Query. Otherwise, you will need to migrate your semantic model source tables to lakehouse tables.
107
+
108
+ 1. The first step of the notebook creates a Power Query Template (.pqt) file which eases the migration of Power Query logic to Dataflows Gen2.
109
+ 2. After the .pqt file is created, sync files from your [OneLake file explorer](https://www.microsoft.com/download/details.aspx?id=105222)
110
+ 3. Navigate to your lakehouse (this is critical!). From your lakehouse, create a new Dataflows Gen2, and import the Power Query Template file. Doing this step from your lakehouse will automatically set the destination for all tables to this lakehouse (instead of having to manually map each one).
111
+ 4. Publish the Dataflow Gen2 and wait for it to finish creating the delta lake tables in your lakehouse.
112
+ 5. Back in the notebook, the next step will create your new Direct Lake semantic model with the name of your choice, taking all the relevant properties from the orignal semantic model and refreshing/framing your new semantic model.
113
+
114
+ > [!NOTE]
115
+ > As of version 0.2.1, calculated tables are also migrated to Direct Lake (as data tables with their DAX expression stored as model annotations in the new semantic model). Additionally, Field Parameters are migrated as they were in the original semantic model (as a calculated table).
116
+
117
+ 6. Finally, you can easily rebind your all reports which use the import/DQ semantic model to the new Direct Lake semantic model in one click.
118
+
119
+ ### Completing these steps will do the following:
120
+ * Offload your Power Query logic to Dataflows Gen2 inside of Fabric (where it can be maintained and development can continue).
121
+ * Dataflows Gen2 will create delta tables in your Fabric lakehouse. These tables can then be used for your Direct Lake model.
122
+ * Create a new semantic model in Direct Lake mode containing all the standard tables and columns, calculation groups, measures, relationships, hierarchies, roles, row level security, perspectives, and translations from your original semantic model.
123
+ * Viable calculated tables are migrated to the new semantic model as data tables. Delta tables are dynamically generated in the lakehouse to support the Direct Lake model. The calculated table DAX logic is stored as model annotations in the new semantic model.
124
+ * Field parameters are migrated to the new semantic model as they were in the original semantic model (as calculated tables). Any calculated columns used in field parameters are automatically removed in the new semantic model's field parameter(s).
125
+ * Non-supported objects are not transferred (i.e. calculated columns, relationships using columns with unsupported data types etc.).
126
+ * Reports used by your original semantic model will be rebinded to your new semantic model.
127
+
128
+ ## Contributing
129
+
130
+ This project welcomes contributions and suggestions. Most contributions require you to agree to a
131
+ Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
132
+ the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
133
+
134
+ When you submit a pull request, a CLA bot will automatically determine whether you need to provide
135
+ a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
136
+ provided by the bot. You will only need to do this once across all repos using our CLA.
137
+
138
+ This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
139
+ For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
140
+ contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
141
+
142
+ ## Trademarks
143
+
144
+ This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft
145
+ trademarks or logos is subject to and must follow
146
+ [Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
147
+ Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship.
148
+ Any use of third-party trademarks or logos are subject to those third-party's policies.
@@ -0,0 +1,111 @@
1
+ sempy_labs/__init__.py,sha256=RHVPI2-N-m4tiNOEqMHwWmHoXtTec9-hr3ls-8MGeQ0,5675
2
+ sempy_labs/_ai.py,sha256=CjlFebT35Rzbw90BmsDy7PjLiAZMZ-B7wZ_EoI444bw,16271
3
+ sempy_labs/_clear_cache.py,sha256=NckXmtDCgRqlNL5FvLTut2XWLI0Hft3O4sAaXS1tPfo,1743
4
+ sempy_labs/_connections.py,sha256=w1dFC4WeTNFmLGD2EL_Syk0Wb1Eij18we2FVn_VaCD8,7641
5
+ sempy_labs/_dax.py,sha256=dt1GgHceyM7f6phRBPxRKnmQy_KYKpcgFQHuOjGbpLo,2029
6
+ sempy_labs/_generate_semantic_model.py,sha256=igKsVX-5Nqpipjg0taLFro8OsD3ogwSwKsyVAmuRwG4,8647
7
+ sempy_labs/_helper_functions.py,sha256=DFfThu8nIvRTGACP8gCJ4tObyzsCrd4Ox9Tk3CmIwyk,24909
8
+ sempy_labs/_icons.py,sha256=UK7chr_tEkZd4Y7Es_KyTc4dFgtYS4f31ggWxyqC9uY,853
9
+ sempy_labs/_list_functions.py,sha256=MKw5JLHnRVRiOwzsvUmyesyOWUpatcPB8WHg1QXS83w,92070
10
+ sempy_labs/_model_auto_build.py,sha256=fX3bCLFCOMQHuheKIoB48fUABG7XAT7qqsMbUiWSrY0,5071
11
+ sempy_labs/_model_bpa.py,sha256=U9rHoGzuAmV1dtJvgSVk3BiUwDp6WTFt1l0CbkmKcdE,20439
12
+ sempy_labs/_model_bpa_bulk.py,sha256=b0Y6XbzKQawExSW6yEpwgBlptFe7Y7rFtY3mombBun4,15023
13
+ sempy_labs/_model_bpa_rules.py,sha256=jujUiwUbIJW16UR3tUgxmj21PdSUxjzfiEFEEf-w40Q,48095
14
+ sempy_labs/_model_dependencies.py,sha256=nZdqq2iMhZejnS_LCd2rpK6r1B7jWpa3URkxobRPifY,12986
15
+ sempy_labs/_one_lake_integration.py,sha256=eIuLxlw8eXfUH2avKhsyLmXZbTllSwGsz2j_HMAikpQ,6234
16
+ sempy_labs/_query_scale_out.py,sha256=EKU0saCRfKy2yyTpdbBVC_MwiHXxycSa_4k2O1pOqJg,13967
17
+ sempy_labs/_refresh_semantic_model.py,sha256=2qzP9KqmwA20RuL1o6Lt9bIjC-KtdX8ZgcTvJParg-w,7157
18
+ sempy_labs/_translations.py,sha256=BcrVIrBNSKtbFz4Y9t1Dh1SZCu0K4NHu7n01Z6O76IY,19665
19
+ sempy_labs/_vertipaq.py,sha256=zMKtcCQ2gpgoDLisTbTjFNe60Cg2PlAQ6HvkSlbpKPo,33660
20
+ sempy_labs/_bpa_translation/_translations_am-ET.po,sha256=XW0Djm-jlLZRXEnhZvk8r1aWd2I36mr97XxFt9yZ-N0,36831
21
+ sempy_labs/_bpa_translation/_translations_ar-AE.po,sha256=mPQR83IulMmT2qSXTSOXWahjwqy7dg3AjtFmAxbraOI,34753
22
+ sempy_labs/_bpa_translation/_translations_cs-CZ.po,sha256=D3WiV3LVbAQzy9hjszOEA2GtOsrtUjBYJfF_7a0N0jU,29695
23
+ sempy_labs/_bpa_translation/_translations_da-DK.po,sha256=f-6mncit2OkEJR73_kZTu8CfEXvpEZMrKcPSVGGZMVU,28680
24
+ sempy_labs/_bpa_translation/_translations_de-DE.po,sha256=SEoAyp72awJlboDMRKaZEu-BhOGlRTLCne1P3H7IT6M,30917
25
+ sempy_labs/_bpa_translation/_translations_el-GR.po,sha256=BDlrTp3MvI_NzHG67QVxdwK3LG1NUdrLJiqvn8Yj0Dk,43355
26
+ sempy_labs/_bpa_translation/_translations_es-ES.po,sha256=JlxqiFF7HYEBhmgqddy5HmvJb6o9OjQLpaZqehgh69U,30023
27
+ sempy_labs/_bpa_translation/_translations_fa-IR.po,sha256=kWXO5Oe1_YJ_HK231Co14EaSJS3zuiHUp97_Zt9FDOw,36620
28
+ sempy_labs/_bpa_translation/_translations_fr-FR.po,sha256=lwAPshENCPwZzbwgQk_WNc1UDkXvTOk9jkbEK6wL2bs,31551
29
+ sempy_labs/_bpa_translation/_translations_ga-IE.po,sha256=W_ed6zTDa7BpnOI9QtDS3NmmGaRgKwUiKow89JRrxGY,30786
30
+ sempy_labs/_bpa_translation/_translations_he-IL.po,sha256=amaKGtkie9qDWIxT-Jz_EnDP5VveMRt9oVBNENBMLwU,33492
31
+ sempy_labs/_bpa_translation/_translations_hi-IN.po,sha256=skaR59KMw__cgO7e77ejIW7_ZG2ztuyeb-J-Q3v6pzs,49292
32
+ sempy_labs/_bpa_translation/_translations_hu-HU.po,sha256=vTEkRCJ0Dqy1kJzzKkvGU0y4Sf0HP9hulluK1NE-f9U,30973
33
+ sempy_labs/_bpa_translation/_translations_is-IS.po,sha256=2565DYm_VfM6sXju4YwA7oOb9_JIXYkskSZVTyFj1VI,28992
34
+ sempy_labs/_bpa_translation/_translations_it-IT.po,sha256=7SBempvRLlLWvd2WVb1927ph9RdqqrpbJLi4wsVafl4,30700
35
+ sempy_labs/_bpa_translation/_translations_ja-JP.po,sha256=XJRbXywLBrlUubDACCWTDr37bcfluUdDVzOmI6DVZA8,33218
36
+ sempy_labs/_bpa_translation/_translations_nl-NL.po,sha256=9tqJh81FHndDSa8ZR3kkQnWVvyEM4-s_WsCB3EOYN2M,30242
37
+ sempy_labs/_bpa_translation/_translations_pl-PL.po,sha256=YQxixTn1AVT-ds20CJMpQweoO4qiHh6JxVuLIVarNh4,30393
38
+ sempy_labs/_bpa_translation/_translations_pt-BR.po,sha256=o_fKzTd1AWAvZIM_Na0BC_DTkVQwoG0pcIwclwIEUBc,29644
39
+ sempy_labs/_bpa_translation/_translations_pt-PT.po,sha256=CtAHtWmxCZ_nK2GS_9Y5y-DQVPqq0BfRKX8hj52m-VY,29583
40
+ sempy_labs/_bpa_translation/_translations_ru-RU.po,sha256=pesyfVvCut22mCRxOSbpziy2T-4KCoAJXPoIjdXrhTc,41374
41
+ sempy_labs/_bpa_translation/_translations_ta-IN.po,sha256=8xcyOLO3SVWXTxuwouLquINnA_QtgOH1kwhPLyraxPQ,56195
42
+ sempy_labs/_bpa_translation/_translations_te-IN.po,sha256=j7Zk29lTWZmJoN8MPz1iEzv7rU9X7zcbIp-Ui_X4Q5Y,51377
43
+ sempy_labs/_bpa_translation/_translations_th-TH.po,sha256=oleGJikyzARW36mq8hgwHqJKVZ5zkPPUgJVc1G_8BCc,47689
44
+ sempy_labs/_bpa_translation/_translations_zh-CN.po,sha256=OVrLt1-mCGjeha-o3d7Nt5hq0H9nDq4fUHtZayp1oMw,25548
45
+ sempy_labs/_bpa_translation/_translations_zu-ZA.po,sha256=ZpZTmhkRg7U7esS6ZxVxEgGldB0JhpfdhLE7daJyGSM,29609
46
+ sempy_labs/directlake/__init__.py,sha256=R2AGiGFSQzHNMdeWHcr_bJT6tNPYWvKgCgi6s_vY_nc,1924
47
+ sempy_labs/directlake/_directlake_schema_compare.py,sha256=lsuDsPG4xVNNrT2yhJmSuILyeMiuBxRKqdnmudcLA-c,4448
48
+ sempy_labs/directlake/_directlake_schema_sync.py,sha256=NqciV_O0K7aJ8EbWxQVZIv2dbRuRDRONH5ttgmHr1cw,4380
49
+ sempy_labs/directlake/_dl_helper.py,sha256=2Y6SVVCaE9uh1qv7lawYOdnOJ4gomAm0EEDXaXKIALU,8760
50
+ sempy_labs/directlake/_get_directlake_lakehouse.py,sha256=sovI4ds2SEgkp4Fi465jtJ4seRvQxdYgcixRDvsUwNM,2321
51
+ sempy_labs/directlake/_get_shared_expression.py,sha256=Xl2_GYqRll95cN7JjwLlULbcRXM71Ij9JkrYAp7cNJM,1943
52
+ sempy_labs/directlake/_guardrails.py,sha256=0zqqkEDk02_jb4MzWJCKRNcDtfPGBcWUcxuQcDbgWns,2390
53
+ sempy_labs/directlake/_list_directlake_model_calc_tables.py,sha256=_rpnbgsFAz2W16PpgIOB0Rj_Fs1ZKrDbz3DUaaR_bfU,2143
54
+ sempy_labs/directlake/_show_unsupported_directlake_objects.py,sha256=QNj2wHzFGtjnsAICmlc7BuhCYkw0An0XnditDTCG2JM,3358
55
+ sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py,sha256=b_Y5_GSfWC25wH6R7L37-AHO9fvKkmxRGaP6dVDC7-w,3233
56
+ sempy_labs/directlake/_update_directlake_partition_entity.py,sha256=Pbx7LCdKyqEfX1npLvhw0WzFnOEbluwB3_xW0ELvHL4,8580
57
+ sempy_labs/directlake/_warm_cache.py,sha256=ZgPricISRszx-yDERXihBDGVhEFB9yX-nBtLX0ZJTXI,8258
58
+ sempy_labs/lakehouse/__init__.py,sha256=6LVQltQ3cjyiuxvjXTuNdJ163zSqi4h_tEZY4zsxuSw,647
59
+ sempy_labs/lakehouse/_get_lakehouse_columns.py,sha256=Bb_iCTlNwl0wdN4dW_E7tVnfbHhHwQT_l0SUqvcbYpo,2582
60
+ sempy_labs/lakehouse/_get_lakehouse_tables.py,sha256=1IXa_u1c4CJSlmP1rxBCMcOrQw-vmRXjqd5U5xsx_5c,8800
61
+ sempy_labs/lakehouse/_lakehouse.py,sha256=qtCVr1cM0TWY6z5YS57w0nj3DEfXT5xmyDtr3676kAk,5172
62
+ sempy_labs/lakehouse/_shortcuts.py,sha256=MT_Cqog5cTMz9fN3M_ZjAaQSjXXiyCyPWGY8LbaXZsI,6977
63
+ sempy_labs/migration/__init__.py,sha256=w4vvGk6wTWXVfofJDmio2yIFvSSJsxOpjv6mvNGmrOI,1043
64
+ sempy_labs/migration/_create_pqt_file.py,sha256=oYoKD78K9Ox1fqtkh-BfU_G5nUIoK_-5ChvCKDsYsWU,9257
65
+ sempy_labs/migration/_migrate_calctables_to_lakehouse.py,sha256=p24PBg26gQHoj6VNcoK61o2ILJrVbVrJQ_n3PH4o0p0,17530
66
+ sempy_labs/migration/_migrate_calctables_to_semantic_model.py,sha256=cm3ny8i4b6D-Ew22-WZKyEFPLDr0wovkrlqTazYSbR8,5982
67
+ sempy_labs/migration/_migrate_model_objects_to_semantic_model.py,sha256=-JkxmM8PbEpLBeCssUgkIcnGHYnxHruqrMWp1CdiT6s,23123
68
+ sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py,sha256=G5cfmaK5ThLJc49SV9JMr2mX0--an3fFDr44n8gI1WQ,6349
69
+ sempy_labs/migration/_migration_validation.py,sha256=phbUUIYA5z4dZvEKrVbByMTPPwMscY7Dy9HVxE8z_HM,2483
70
+ sempy_labs/migration/_refresh_calc_tables.py,sha256=eDj0OJQ07Tum4umZH0NsUW5Rx_YXEpGnAu8OVVoQ4yk,5190
71
+ sempy_labs/report/_BPAReportTemplate.json,sha256=9Uh-7E6d2ooxQ7j5JRayv_ayEULc7Gzg42kZGKdOqH8,63920
72
+ sempy_labs/report/__init__.py,sha256=GQcTHbB3SjLEeCH0id_jlmqQ7S1iPCpoISUQfAHI2T8,960
73
+ sempy_labs/report/_generate_report.py,sha256=7H2xQ5nHDK1_2RjvNNHX3IwWyNSRbTGMpGWxMmmjdOk,12189
74
+ sempy_labs/report/_report_functions.py,sha256=YK9UdpVDro_XC7ZAqNLHB4ZbAPwCwEm2YLn6RzJWkA8,29868
75
+ sempy_labs/report/_report_rebind.py,sha256=t33liDvBitOhwxGPPLWJYzcccu9tBTjRFTAZkX6UYv8,4809
76
+ sempy_labs/report/_bpareporttemplate/.platform,sha256=kWRa6B_KwSYLsvVFDx372mQriQO8v7dJ_YzQV_cfD-Q,303
77
+ sempy_labs/report/_bpareporttemplate/definition.pbir,sha256=bttyHZYKqjA8OBb_cezGlX4H82cDvGZVCl1QB3fij4E,343
78
+ sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json,sha256=kzjBlNdjbsSBBSHBwbQc298AJCr9Vp6Ex0D5PemUuT0,1578
79
+ sempy_labs/report/_bpareporttemplate/StaticResources/SharedResources/BaseThemes/CY24SU06.json,sha256=4N6sT5nLlYBobGmZ1Xb68uOMVVCBEyheR535js_et28,13467
80
+ sempy_labs/report/_bpareporttemplate/definition/report.json,sha256=-8BK5blTE-nc0Y4-M0pTHD8Znt3pHZ-u2veRppxPDBQ,3975
81
+ sempy_labs/report/_bpareporttemplate/definition/version.json,sha256=yL3ZZqhfHqq0MS0glrbXtQgkPk17xaTSWvPPyxBWpOc,152
82
+ sempy_labs/report/_bpareporttemplate/definition/pages/pages.json,sha256=jBLscHaA4wAQwusHXA3oYFaTsk3LL6S--k6wvvehJhk,311
83
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/page.json,sha256=5qfUCQXMdeDAKtfdLxQZt06-e111OTSP07gsmG1dfpY,313
84
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/1b08bce3bebabb0a27a8/visual.json,sha256=wyB8w15elLuJorCx3lnQYD7OOXqNsoVgqNaDdukO4G8,4455
85
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/2f22ddb70c301693c165/visual.json,sha256=v-DCEtln1r6EVG7-KlfWBCbxnWzk9LyjycHjAmowObs,10977
86
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/3b1182230aa6c600b43a/visual.json,sha256=3cg4bTS_7OAMuWYKtPFqZeBbZoNczLg59zQClNqgAw8,2858
87
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/58577ba6380c69891500/visual.json,sha256=ynOggnusTsTBxaXh9Q1n3zmsixHNhIohwku2y40Z-Js,14453
88
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/a2a8fa5028b3b776c96c/visual.json,sha256=DU_t1cr5eczWFy9EI0R1v7S-cbNIdSyll0az5jKJRf4,5090
89
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/adfd47ef30652707b987/visual.json,sha256=0HnplDEjDGa3htdufUksOxzC7iZGERNxgf3k81_kJ7E,12829
90
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/b6a80ee459e716e170b1/visual.json,sha256=kl45g9-GF8wNrQRM2PrsS-Rf0cYhP5b3-lqAeXJfmN8,2866
91
+ sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/ce3130a721c020cc3d81/visual.json,sha256=id6U55GALhCx5BwtM_aCFjMkiVkhSvR79o2pbrMwNyA,12981
92
+ sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/page.json,sha256=7pk03j28AwlE2HIwxei08Pz5VseRPO8eziOC6dgEJfs,249
93
+ sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/visuals/66e60dfb526437cd78d1/visual.json,sha256=7ZqozO6t9Ossms8Y20xGea3tdSAESSkxkejqTDRW15E,2982
94
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/page.json,sha256=dNExLBlxFRHASVCz8DUZ2Voq_ZCCuGu1YZmw2HdwCww,314
95
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/07deb8bce824e1be37d7/visual.json,sha256=nZaj33KCp6bqxG0_nplUyi8-AGavN1iOp2lVkI0gLvw,12928
96
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0b1c68838818b32ad03b/visual.json,sha256=xaykDc6T5qwe8qENlAaAd-Ivw8oF1dderfrhSbUKGW4,10102
97
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0c171de9d2683d10b930/visual.json,sha256=Fk7MWX8LhbftzHe_6KCFkSp2jYzRMYnZSWeElnFWLbw,915
98
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0efa01be0510e40a645e/visual.json,sha256=O4wgVQuf-tAGDjVuzlnoOGi8GLPG2Vxz6y-JubTRQfY,14305
99
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/6bf2f0eb830ab53cc668/visual.json,sha256=twzhLrEcCzUikeiKJ5sSEmQZ1otKXxgTtdz0uX4AKes,5445
100
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/88d8141cb8500b60030c/visual.json,sha256=3dS2XcsYWMEity0zFs0hxrv_w0Tnwe50iZFYvotfsWY,2856
101
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/a753273590beed656a03/visual.json,sha256=Y59BS3bx16gzmZn-3-JqJZ_BRxeqVuoaVlysZvVAZAQ,14451
102
+ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/b8fdc82cddd61ac447bc/visual.json,sha256=zOVrg0CaoOSxedwwyD8Msm94sqFVM0l-6IXX51EMRZY,2866
103
+ sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/page.json,sha256=wBVuNc8S2NaUA0FC708w6stmR2djNZp8nAsHMqesgsc,293
104
+ sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/visuals/ce8532a7e25020271077/visual.json,sha256=mlY6t9OlSe-Y6_QmXJpS1vggU6Y3FjISUKECL8FVSg8,931
105
+ sempy_labs/tom/__init__.py,sha256=Qbs8leW0fjzvWwOjyWK3Hjeehu7IvpB1beASGsi28bk,121
106
+ sempy_labs/tom/_model.py,sha256=M-es2bES3Usj5uVmt5vwNmtm9vWzeqtVtKREpxjnjiI,151050
107
+ semantic_link_labs-0.7.1.dist-info/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
108
+ semantic_link_labs-0.7.1.dist-info/METADATA,sha256=fIK5PQeOgEH9rm-JPDN3noaIiYaMidQE5AKDjdPlDrE,11241
109
+ semantic_link_labs-0.7.1.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
110
+ semantic_link_labs-0.7.1.dist-info/top_level.txt,sha256=kiQX1y42Dbein1l3Q8jMUYyRulDjdlc2tMepvtrvixQ,11
111
+ semantic_link_labs-0.7.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (71.1.0)
2
+ Generator: setuptools (74.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
sempy_labs/__init__.py CHANGED
@@ -13,6 +13,7 @@ from sempy_labs._generate_semantic_model import (
13
13
  get_semantic_model_bim,
14
14
  )
15
15
  from sempy_labs._list_functions import (
16
+ list_reports_using_semantic_model,
16
17
  delete_custom_pool,
17
18
  list_semantic_model_objects,
18
19
  list_shortcuts,
@@ -51,9 +52,12 @@ from sempy_labs._list_functions import (
51
52
  update_workspace_user,
52
53
  list_workspace_users,
53
54
  assign_workspace_to_dataflow_storage,
55
+ get_notebook_definition,
56
+ import_notebook_from_web,
54
57
  )
55
58
 
56
59
  from sempy_labs._helper_functions import (
60
+ resolve_workspace_capacity,
57
61
  create_abfss_path,
58
62
  format_dax_object_name,
59
63
  create_relationship_name,
@@ -66,10 +70,19 @@ from sempy_labs._helper_functions import (
66
70
  resolve_dataset_name,
67
71
  resolve_report_id,
68
72
  resolve_report_name,
73
+ is_default_semantic_model,
74
+ resolve_item_type,
75
+ get_capacity_id,
76
+ get_capacity_name,
77
+ resolve_capacity_name,
69
78
  # language_validate
70
79
  )
71
80
 
72
81
  # from sempy_labs._model_auto_build import model_auto_build
82
+ from sempy_labs._model_bpa_bulk import (
83
+ run_model_bpa_bulk,
84
+ create_model_bpa_semantic_model,
85
+ )
73
86
  from sempy_labs._model_bpa import run_model_bpa
74
87
  from sempy_labs._model_bpa_rules import model_bpa_rules
75
88
  from sempy_labs._model_dependencies import (
@@ -145,7 +158,7 @@ __all__ = [
145
158
  "resolve_dataset_name",
146
159
  "resolve_report_id",
147
160
  "resolve_report_name",
148
- #'language_validate',
161
+ # 'language_validate',
149
162
  # "model_auto_build",
150
163
  "model_bpa_rules",
151
164
  "run_model_bpa",
@@ -164,7 +177,7 @@ __all__ = [
164
177
  "cancel_dataset_refresh",
165
178
  "translate_semantic_model",
166
179
  "vertipaq_analyzer",
167
- #'visualize_vertipaq',
180
+ # 'visualize_vertipaq',
168
181
  "import_vertipaq_analyzer",
169
182
  "list_semantic_model_objects",
170
183
  "list_shortcuts",
@@ -181,4 +194,15 @@ __all__ = [
181
194
  "list_workspace_users",
182
195
  "assign_workspace_to_dataflow_storage",
183
196
  "list_capacities",
197
+ "is_default_semantic_model",
198
+ "resolve_item_type",
199
+ "get_notebook_definition",
200
+ "import_notebook_from_web",
201
+ "list_reports_using_semantic_model",
202
+ "resolve_workspace_capacity",
203
+ "get_capacity_id",
204
+ "get_capacity_name",
205
+ "resolve_capacity_name",
206
+ "run_model_bpa_bulk",
207
+ "create_model_bpa_semantic_model",
184
208
  ]
sempy_labs/_ai.py CHANGED
@@ -12,7 +12,7 @@ import sempy_labs._icons as icons
12
12
  def optimize_semantic_model(dataset: str, workspace: Optional[str] = None):
13
13
 
14
14
  from ._model_bpa import run_model_bpa
15
- from .directlake._fallback import check_fallback_reason
15
+ from .directlake._dl_helper import check_fallback_reason
16
16
  from ._helper_functions import format_dax_object_name
17
17
 
18
18
  modelBPA = run_model_bpa(
@@ -65,68 +65,6 @@ def optimize_semantic_model(dataset: str, workspace: Optional[str] = None):
65
65
  print(f"{icons.green_dot} The '{rule}' rule has been followed.")
66
66
 
67
67
 
68
- def generate_measure_descriptions(
69
- dataset: str,
70
- measures: Union[str, List[str]],
71
- gpt_model: Optional[str] = "gpt-35-turbo",
72
- workspace: Optional[str] = None,
73
- ):
74
-
75
- service_name = "synapseml-openai"
76
-
77
- if isinstance(measures, str):
78
- measures = [measures]
79
-
80
- validModels = ["gpt-35-turbo", "gpt-35-turbo-16k", "gpt-4"]
81
- if gpt_model not in validModels:
82
- raise ValueError(
83
- f"{icons.red_dot} The '{gpt_model}' model is not a valid model. Enter a gpt_model from this list: {validModels}."
84
- )
85
-
86
- dfM = fabric.list_measures(dataset=dataset, workspace=workspace)
87
-
88
- if measures is not None:
89
- dfM_filt = dfM[dfM["Measure Name"].isin(measures)]
90
- else:
91
- dfM_filt = dfM
92
-
93
- df = dfM_filt[["Table Name", "Measure Name", "Measure Expression"]]
94
-
95
- df["prompt"] = (
96
- "The following is DAX code used by Microsoft Power BI. Please explain this code in simple terms:"
97
- + df["Measure Expression"]
98
- )
99
-
100
- # Generate new column in df dataframe which has the AI-generated descriptions
101
- completion = {
102
- OpenAICompletion()
103
- .setDeploymentName(gpt_model)
104
- .setMaxTokens(200)
105
- .setCustomServiceName(service_name)
106
- .setPromptCol("prompt")
107
- .setErrorCol("error")
108
- .setOutputCol("completions")
109
- }
110
-
111
- completed_df = completion.transform(df).cache()
112
- completed_df.select(
113
- col("prompt"),
114
- col("error"),
115
- col("completions.choices.text").getItem(0).alias("text"),
116
- )
117
-
118
- # Update the model to use the new descriptions
119
- # with connect_semantic_model(dataset=dataset, workspace=workspace, readonly=False) as tom:
120
-
121
- # for t in m.Tables:
122
- # tName = t.Name
123
- # for ms in t.Measures:
124
- # mName = ms.Name
125
- # mDesc = promptValue
126
-
127
- # m.SaveChanges()
128
-
129
-
130
68
  def generate_aggs(
131
69
  dataset: str,
132
70
  table_name: str,
@@ -257,7 +195,7 @@ def generate_aggs(
257
195
  delta_table_name=lakeTName,
258
196
  )
259
197
  df = spark.read.format("delta").load(fromTablePath)
260
- tempTableName = "delta_table_" + lakeTName
198
+ tempTableName = f"delta_table_{lakeTName}"
261
199
  df.createOrReplaceTempView(tempTableName)
262
200
  sqlQuery = f"{query} \n FROM {tempTableName} {groupBy}"
263
201
 
@@ -460,7 +398,7 @@ def generate_aggs(
460
398
  print(expr)
461
399
  print(newExpr)
462
400
 
463
- aggMName = mName + aggSuffix
401
+ aggMName = f"{mName}{aggSuffix}"
464
402
  measure = TOM.Measure()
465
403
  measure.Name = aggMName
466
404
  measure.IsHidden = True