scipy 1.16.2__cp313-cp313t-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp313t-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp313t-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp313t-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp313t-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp313t-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp313t-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp313t-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp313t-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp313t-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp313t-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp313t-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp313t-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp313t-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp313t-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp313t-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp313t-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp313t-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp313t-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp313t-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp313t-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp313t-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp313t-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp313t-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp313t-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp313t-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp313t-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp313t-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp313t-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp313t-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp313t-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp313t-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp313t-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp313t-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp313t-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp313t-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp313t-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp313t-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp313t-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp313t-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp313t-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp313t-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp313t-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp313t-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp313t-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp313t-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp313t-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp313t-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp313t-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp313t-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp313t-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp313t-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp313t-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp313t-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp313t-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp313t-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp313t-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp313t-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp313t-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp313t-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp313t-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp313t-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp313t-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp313t-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp313t-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp313t-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp313t-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp313t-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp313t-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp313t-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp313t-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp313t-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp313t-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp313t-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp313t-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp313t-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp313t-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp313t-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp313t-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp313t-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp313t-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp313t-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp313t-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp313t-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp313t-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp313t-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp313t-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp313t-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp313t-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp313t-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp313t-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp313t-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp313t-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp313t-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp313t-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp313t-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp313t-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp313t-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp313t-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp313t-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp313t-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp313t-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp313t-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp313t-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp313t-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp313t-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp313t-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp313t-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp313t-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp313t-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp313t-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp313t-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp313t-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp313t-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp313t-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp313t-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp313t-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp313t-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp313t-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp313t-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp313t-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp313t-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp313t-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp313t-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp313t-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp313t-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp313t-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp313t-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp313t-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp313t-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp313t-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp313t-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp313t-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp313t-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp313t-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp313t-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp313t-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp313t-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp313t-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp313t-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp313t-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp313t-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp313t-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp313t-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp313t-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp313t-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp313t-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp313t-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp313t-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp313t-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp313t-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp313t-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp313t-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp313t-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp313t-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp313t-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp313t-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp313t-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp313t-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp313t-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp313t-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp313t-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp313t-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp313t-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp313t-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp313t-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp313t-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp313t-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp313t-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp313t-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp313t-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp313t-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp313t-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp313t-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp313t-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp313t-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp313t-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp313t-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp313t-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp313t-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp313t-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp313t-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp313t-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp313t-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp313t-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp313t-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp313t-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp313t-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp313t-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp313t-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp313t-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp313t-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp313t-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp313t-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp313t-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp313t-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp313t-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp313t-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp313t-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp313t-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp313t-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp313t-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp313t-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp313t-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp313t-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp313t-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp313t-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp313t-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp313t-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp313t-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp313t-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp313t-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp313t-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp313t-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp313t-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp313t-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp313t-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp313t-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp313t-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp313t-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp313t-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp313t-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp313t-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp313t-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp313t-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp313t-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp313t-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp313t-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp313t-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,1129 @@
1
+ # mypy: disable-error-code="attr-defined"
2
+ import warnings
3
+ import numpy as np
4
+ import scipy._lib._elementwise_iterative_method as eim
5
+ from scipy._lib._util import _RichResult
6
+ from scipy._lib._array_api import array_namespace, xp_copy, xp_promote
7
+ import scipy._lib.array_api_extra as xpx
8
+
9
+ _EERRORINCREASE = -1 # used in derivative
10
+
11
+ def _derivative_iv(f, x, args, tolerances, maxiter, order, initial_step,
12
+ step_factor, step_direction, preserve_shape, callback):
13
+ # Input validation for `derivative`
14
+ xp = array_namespace(x)
15
+
16
+ if not callable(f):
17
+ raise ValueError('`f` must be callable.')
18
+
19
+ if not np.iterable(args):
20
+ args = (args,)
21
+
22
+ tolerances = {} if tolerances is None else tolerances
23
+ atol = tolerances.get('atol', None)
24
+ rtol = tolerances.get('rtol', None)
25
+
26
+ # tolerances are floats, not arrays; OK to use NumPy
27
+ message = 'Tolerances and step parameters must be non-negative scalars.'
28
+ tols = np.asarray([atol if atol is not None else 1,
29
+ rtol if rtol is not None else 1,
30
+ step_factor])
31
+ if (not np.issubdtype(tols.dtype, np.number) or np.any(tols < 0)
32
+ or np.any(np.isnan(tols)) or tols.shape != (3,)):
33
+ raise ValueError(message)
34
+ step_factor = float(tols[2])
35
+
36
+ maxiter_int = int(maxiter)
37
+ if maxiter != maxiter_int or maxiter <= 0:
38
+ raise ValueError('`maxiter` must be a positive integer.')
39
+
40
+ order_int = int(order)
41
+ if order_int != order or order <= 0:
42
+ raise ValueError('`order` must be a positive integer.')
43
+
44
+ step_direction = xp.asarray(step_direction)
45
+ initial_step = xp.asarray(initial_step)
46
+ temp = xp.broadcast_arrays(x, step_direction, initial_step)
47
+ x, step_direction, initial_step = temp
48
+
49
+ message = '`preserve_shape` must be True or False.'
50
+ if preserve_shape not in {True, False}:
51
+ raise ValueError(message)
52
+
53
+ if callback is not None and not callable(callback):
54
+ raise ValueError('`callback` must be callable.')
55
+
56
+ return (f, x, args, atol, rtol, maxiter_int, order_int, initial_step,
57
+ step_factor, step_direction, preserve_shape, callback)
58
+
59
+
60
+ def derivative(f, x, *, args=(), tolerances=None, maxiter=10,
61
+ order=8, initial_step=0.5, step_factor=2.0,
62
+ step_direction=0, preserve_shape=False, callback=None):
63
+ """Evaluate the derivative of a elementwise, real scalar function numerically.
64
+
65
+ For each element of the output of `f`, `derivative` approximates the first
66
+ derivative of `f` at the corresponding element of `x` using finite difference
67
+ differentiation.
68
+
69
+ This function works elementwise when `x`, `step_direction`, and `args` contain
70
+ (broadcastable) arrays.
71
+
72
+ Parameters
73
+ ----------
74
+ f : callable
75
+ The function whose derivative is desired. The signature must be::
76
+
77
+ f(xi: ndarray, *argsi) -> ndarray
78
+
79
+ where each element of ``xi`` is a finite real number and ``argsi`` is a tuple,
80
+ which may contain an arbitrary number of arrays that are broadcastable with
81
+ ``xi``. `f` must be an elementwise function: each scalar element ``f(xi)[j]``
82
+ must equal ``f(xi[j])`` for valid indices ``j``. It must not mutate the array
83
+ ``xi`` or the arrays in ``argsi``.
84
+ x : float array_like
85
+ Abscissae at which to evaluate the derivative. Must be broadcastable with
86
+ `args` and `step_direction`.
87
+ args : tuple of array_like, optional
88
+ Additional positional array arguments to be passed to `f`. Arrays
89
+ must be broadcastable with one another and the arrays of `init`.
90
+ If the callable for which the root is desired requires arguments that are
91
+ not broadcastable with `x`, wrap that callable with `f` such that `f`
92
+ accepts only `x` and broadcastable ``*args``.
93
+ tolerances : dictionary of floats, optional
94
+ Absolute and relative tolerances. Valid keys of the dictionary are:
95
+
96
+ - ``atol`` - absolute tolerance on the derivative
97
+ - ``rtol`` - relative tolerance on the derivative
98
+
99
+ Iteration will stop when ``res.error < atol + rtol * abs(res.df)``. The default
100
+ `atol` is the smallest normal number of the appropriate dtype, and
101
+ the default `rtol` is the square root of the precision of the
102
+ appropriate dtype.
103
+ order : int, default: 8
104
+ The (positive integer) order of the finite difference formula to be
105
+ used. Odd integers will be rounded up to the next even integer.
106
+ initial_step : float array_like, default: 0.5
107
+ The (absolute) initial step size for the finite difference derivative
108
+ approximation.
109
+ step_factor : float, default: 2.0
110
+ The factor by which the step size is *reduced* in each iteration; i.e.
111
+ the step size in iteration 1 is ``initial_step/step_factor``. If
112
+ ``step_factor < 1``, subsequent steps will be greater than the initial
113
+ step; this may be useful if steps smaller than some threshold are
114
+ undesirable (e.g. due to subtractive cancellation error).
115
+ maxiter : int, default: 10
116
+ The maximum number of iterations of the algorithm to perform. See
117
+ Notes.
118
+ step_direction : integer array_like
119
+ An array representing the direction of the finite difference steps (for
120
+ use when `x` lies near to the boundary of the domain of the function.)
121
+ Must be broadcastable with `x` and all `args`.
122
+ Where 0 (default), central differences are used; where negative (e.g.
123
+ -1), steps are non-positive; and where positive (e.g. 1), all steps are
124
+ non-negative.
125
+ preserve_shape : bool, default: False
126
+ In the following, "arguments of `f`" refers to the array ``xi`` and
127
+ any arrays within ``argsi``. Let ``shape`` be the broadcasted shape
128
+ of `x` and all elements of `args` (which is conceptually
129
+ distinct from ``xi` and ``argsi`` passed into `f`).
130
+
131
+ - When ``preserve_shape=False`` (default), `f` must accept arguments
132
+ of *any* broadcastable shapes.
133
+
134
+ - When ``preserve_shape=True``, `f` must accept arguments of shape
135
+ ``shape`` *or* ``shape + (n,)``, where ``(n,)`` is the number of
136
+ abscissae at which the function is being evaluated.
137
+
138
+ In either case, for each scalar element ``xi[j]`` within ``xi``, the array
139
+ returned by `f` must include the scalar ``f(xi[j])`` at the same index.
140
+ Consequently, the shape of the output is always the shape of the input
141
+ ``xi``.
142
+
143
+ See Examples.
144
+ callback : callable, optional
145
+ An optional user-supplied function to be called before the first
146
+ iteration and after each iteration.
147
+ Called as ``callback(res)``, where ``res`` is a ``_RichResult``
148
+ similar to that returned by `derivative` (but containing the current
149
+ iterate's values of all variables). If `callback` raises a
150
+ ``StopIteration``, the algorithm will terminate immediately and
151
+ `derivative` will return a result. `callback` must not mutate
152
+ `res` or its attributes.
153
+
154
+ Returns
155
+ -------
156
+ res : _RichResult
157
+ An object similar to an instance of `scipy.optimize.OptimizeResult` with the
158
+ following attributes. The descriptions are written as though the values will
159
+ be scalars; however, if `f` returns an array, the outputs will be
160
+ arrays of the same shape.
161
+
162
+ success : bool array
163
+ ``True`` where the algorithm terminated successfully (status ``0``);
164
+ ``False`` otherwise.
165
+ status : int array
166
+ An integer representing the exit status of the algorithm.
167
+
168
+ - ``0`` : The algorithm converged to the specified tolerances.
169
+ - ``-1`` : The error estimate increased, so iteration was terminated.
170
+ - ``-2`` : The maximum number of iterations was reached.
171
+ - ``-3`` : A non-finite value was encountered.
172
+ - ``-4`` : Iteration was terminated by `callback`.
173
+ - ``1`` : The algorithm is proceeding normally (in `callback` only).
174
+
175
+ df : float array
176
+ The derivative of `f` at `x`, if the algorithm terminated
177
+ successfully.
178
+ error : float array
179
+ An estimate of the error: the magnitude of the difference between
180
+ the current estimate of the derivative and the estimate in the
181
+ previous iteration.
182
+ nit : int array
183
+ The number of iterations of the algorithm that were performed.
184
+ nfev : int array
185
+ The number of points at which `f` was evaluated.
186
+ x : float array
187
+ The value at which the derivative of `f` was evaluated
188
+ (after broadcasting with `args` and `step_direction`).
189
+
190
+ See Also
191
+ --------
192
+ jacobian, hessian
193
+
194
+ Notes
195
+ -----
196
+ The implementation was inspired by jacobi [1]_, numdifftools [2]_, and
197
+ DERIVEST [3]_, but the implementation follows the theory of Taylor series
198
+ more straightforwardly (and arguably naively so).
199
+ In the first iteration, the derivative is estimated using a finite
200
+ difference formula of order `order` with maximum step size `initial_step`.
201
+ Each subsequent iteration, the maximum step size is reduced by
202
+ `step_factor`, and the derivative is estimated again until a termination
203
+ condition is reached. The error estimate is the magnitude of the difference
204
+ between the current derivative approximation and that of the previous
205
+ iteration.
206
+
207
+ The stencils of the finite difference formulae are designed such that
208
+ abscissae are "nested": after `f` is evaluated at ``order + 1``
209
+ points in the first iteration, `f` is evaluated at only two new points
210
+ in each subsequent iteration; ``order - 1`` previously evaluated function
211
+ values required by the finite difference formula are reused, and two
212
+ function values (evaluations at the points furthest from `x`) are unused.
213
+
214
+ Step sizes are absolute. When the step size is small relative to the
215
+ magnitude of `x`, precision is lost; for example, if `x` is ``1e20``, the
216
+ default initial step size of ``0.5`` cannot be resolved. Accordingly,
217
+ consider using larger initial step sizes for large magnitudes of `x`.
218
+
219
+ The default tolerances are challenging to satisfy at points where the
220
+ true derivative is exactly zero. If the derivative may be exactly zero,
221
+ consider specifying an absolute tolerance (e.g. ``atol=1e-12``) to
222
+ improve convergence.
223
+
224
+ References
225
+ ----------
226
+ .. [1] Hans Dembinski (@HDembinski). jacobi.
227
+ https://github.com/HDembinski/jacobi
228
+ .. [2] Per A. Brodtkorb and John D'Errico. numdifftools.
229
+ https://numdifftools.readthedocs.io/en/latest/
230
+ .. [3] John D'Errico. DERIVEST: Adaptive Robust Numerical Differentiation.
231
+ https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
232
+ .. [4] Numerical Differentition. Wikipedia.
233
+ https://en.wikipedia.org/wiki/Numerical_differentiation
234
+
235
+ Examples
236
+ --------
237
+ Evaluate the derivative of ``np.exp`` at several points ``x``.
238
+
239
+ >>> import numpy as np
240
+ >>> from scipy.differentiate import derivative
241
+ >>> f = np.exp
242
+ >>> df = np.exp # true derivative
243
+ >>> x = np.linspace(1, 2, 5)
244
+ >>> res = derivative(f, x)
245
+ >>> res.df # approximation of the derivative
246
+ array([2.71828183, 3.49034296, 4.48168907, 5.75460268, 7.3890561 ])
247
+ >>> res.error # estimate of the error
248
+ array([7.13740178e-12, 9.16600129e-12, 1.17594823e-11, 1.51061386e-11,
249
+ 1.94262384e-11])
250
+ >>> abs(res.df - df(x)) # true error
251
+ array([2.53130850e-14, 3.55271368e-14, 5.77315973e-14, 5.59552404e-14,
252
+ 6.92779167e-14])
253
+
254
+ Show the convergence of the approximation as the step size is reduced.
255
+ Each iteration, the step size is reduced by `step_factor`, so for
256
+ sufficiently small initial step, each iteration reduces the error by a
257
+ factor of ``1/step_factor**order`` until finite precision arithmetic
258
+ inhibits further improvement.
259
+
260
+ >>> import matplotlib.pyplot as plt
261
+ >>> iter = list(range(1, 12)) # maximum iterations
262
+ >>> hfac = 2 # step size reduction per iteration
263
+ >>> hdir = [-1, 0, 1] # compare left-, central-, and right- steps
264
+ >>> order = 4 # order of differentiation formula
265
+ >>> x = 1
266
+ >>> ref = df(x)
267
+ >>> errors = [] # true error
268
+ >>> for i in iter:
269
+ ... res = derivative(f, x, maxiter=i, step_factor=hfac,
270
+ ... step_direction=hdir, order=order,
271
+ ... # prevent early termination
272
+ ... tolerances=dict(atol=0, rtol=0))
273
+ ... errors.append(abs(res.df - ref))
274
+ >>> errors = np.array(errors)
275
+ >>> plt.semilogy(iter, errors[:, 0], label='left differences')
276
+ >>> plt.semilogy(iter, errors[:, 1], label='central differences')
277
+ >>> plt.semilogy(iter, errors[:, 2], label='right differences')
278
+ >>> plt.xlabel('iteration')
279
+ >>> plt.ylabel('error')
280
+ >>> plt.legend()
281
+ >>> plt.show()
282
+ >>> (errors[1, 1] / errors[0, 1], 1 / hfac**order)
283
+ (0.06215223140159822, 0.0625)
284
+
285
+ The implementation is vectorized over `x`, `step_direction`, and `args`.
286
+ The function is evaluated once before the first iteration to perform input
287
+ validation and standardization, and once per iteration thereafter.
288
+
289
+ >>> def f(x, p):
290
+ ... f.nit += 1
291
+ ... return x**p
292
+ >>> f.nit = 0
293
+ >>> def df(x, p):
294
+ ... return p*x**(p-1)
295
+ >>> x = np.arange(1, 5)
296
+ >>> p = np.arange(1, 6).reshape((-1, 1))
297
+ >>> hdir = np.arange(-1, 2).reshape((-1, 1, 1))
298
+ >>> res = derivative(f, x, args=(p,), step_direction=hdir, maxiter=1)
299
+ >>> np.allclose(res.df, df(x, p))
300
+ True
301
+ >>> res.df.shape
302
+ (3, 5, 4)
303
+ >>> f.nit
304
+ 2
305
+
306
+ By default, `preserve_shape` is False, and therefore the callable
307
+ `f` may be called with arrays of any broadcastable shapes.
308
+ For example:
309
+
310
+ >>> shapes = []
311
+ >>> def f(x, c):
312
+ ... shape = np.broadcast_shapes(x.shape, c.shape)
313
+ ... shapes.append(shape)
314
+ ... return np.sin(c*x)
315
+ >>>
316
+ >>> c = [1, 5, 10, 20]
317
+ >>> res = derivative(f, 0, args=(c,))
318
+ >>> shapes
319
+ [(4,), (4, 8), (4, 2), (3, 2), (2, 2), (1, 2)]
320
+
321
+ To understand where these shapes are coming from - and to better
322
+ understand how `derivative` computes accurate results - note that
323
+ higher values of ``c`` correspond with higher frequency sinusoids.
324
+ The higher frequency sinusoids make the function's derivative change
325
+ faster, so more function evaluations are required to achieve the target
326
+ accuracy:
327
+
328
+ >>> res.nfev
329
+ array([11, 13, 15, 17], dtype=int32)
330
+
331
+ The initial ``shape``, ``(4,)``, corresponds with evaluating the
332
+ function at a single abscissa and all four frequencies; this is used
333
+ for input validation and to determine the size and dtype of the arrays
334
+ that store results. The next shape corresponds with evaluating the
335
+ function at an initial grid of abscissae and all four frequencies.
336
+ Successive calls to the function evaluate the function at two more
337
+ abscissae, increasing the effective order of the approximation by two.
338
+ However, in later function evaluations, the function is evaluated at
339
+ fewer frequencies because the corresponding derivative has already
340
+ converged to the required tolerance. This saves function evaluations to
341
+ improve performance, but it requires the function to accept arguments of
342
+ any shape.
343
+
344
+ "Vector-valued" functions are unlikely to satisfy this requirement.
345
+ For example, consider
346
+
347
+ >>> def f(x):
348
+ ... return [x, np.sin(3*x), x+np.sin(10*x), np.sin(20*x)*(x-1)**2]
349
+
350
+ This integrand is not compatible with `derivative` as written; for instance,
351
+ the shape of the output will not be the same as the shape of ``x``. Such a
352
+ function *could* be converted to a compatible form with the introduction of
353
+ additional parameters, but this would be inconvenient. In such cases,
354
+ a simpler solution would be to use `preserve_shape`.
355
+
356
+ >>> shapes = []
357
+ >>> def f(x):
358
+ ... shapes.append(x.shape)
359
+ ... x0, x1, x2, x3 = x
360
+ ... return [x0, np.sin(3*x1), x2+np.sin(10*x2), np.sin(20*x3)*(x3-1)**2]
361
+ >>>
362
+ >>> x = np.zeros(4)
363
+ >>> res = derivative(f, x, preserve_shape=True)
364
+ >>> shapes
365
+ [(4,), (4, 8), (4, 2), (4, 2), (4, 2), (4, 2)]
366
+
367
+ Here, the shape of ``x`` is ``(4,)``. With ``preserve_shape=True``, the
368
+ function may be called with argument ``x`` of shape ``(4,)`` or ``(4, n)``,
369
+ and this is what we observe.
370
+
371
+ """
372
+ # TODO (followup):
373
+ # - investigate behavior at saddle points
374
+ # - multivariate functions?
375
+ # - relative steps?
376
+ # - show example of `np.vectorize`
377
+
378
+ res = _derivative_iv(f, x, args, tolerances, maxiter, order, initial_step,
379
+ step_factor, step_direction, preserve_shape, callback)
380
+ (func, x, args, atol, rtol, maxiter, order,
381
+ h0, fac, hdir, preserve_shape, callback) = res
382
+
383
+ # Initialization
384
+ # Since f(x) (no step) is not needed for central differences, it may be
385
+ # possible to eliminate this function evaluation. However, it's useful for
386
+ # input validation and standardization, and everything else is designed to
387
+ # reduce function calls, so let's keep it simple.
388
+ temp = eim._initialize(func, (x,), args, preserve_shape=preserve_shape)
389
+ func, xs, fs, args, shape, dtype, xp = temp
390
+
391
+ finfo = xp.finfo(dtype)
392
+ atol = finfo.smallest_normal if atol is None else atol
393
+ rtol = finfo.eps**0.5 if rtol is None else rtol # keep same as `hessian`
394
+
395
+ x, f = xs[0], fs[0]
396
+ df = xp.full_like(f, xp.nan)
397
+
398
+ # Ideally we'd broadcast the shape of `hdir` in `_elementwise_algo_init`, but
399
+ # it's simpler to do it here than to generalize `_elementwise_algo_init` further.
400
+ # `hdir` and `x` are already broadcasted in `_derivative_iv`, so we know
401
+ # that `hdir` can be broadcasted to the final shape. Same with `h0`.
402
+ hdir = xp.broadcast_to(hdir, shape)
403
+ hdir = xp.reshape(hdir, (-1,))
404
+ hdir = xp.astype(xp.sign(hdir), dtype)
405
+ h0 = xp.broadcast_to(h0, shape)
406
+ h0 = xp.reshape(h0, (-1,))
407
+ h0 = xp.astype(h0, dtype)
408
+ h0 = xpx.at(h0)[h0 <= 0].set(xp.nan)
409
+
410
+ status = xp.full_like(x, eim._EINPROGRESS, dtype=xp.int32) # in progress
411
+ nit, nfev = 0, 1 # one function evaluations performed above
412
+ # Boolean indices of left, central, right, and (all) one-sided steps
413
+ il = hdir < 0
414
+ ic = hdir == 0
415
+ ir = hdir > 0
416
+ io = il | ir
417
+
418
+ # Most of these attributes are reasonably obvious, but:
419
+ # - `fs` holds all the function values of all active `x`. The zeroth
420
+ # axis corresponds with active points `x`, the first axis corresponds
421
+ # with the different steps (in the order described in
422
+ # `_derivative_weights`).
423
+ # - `terms` (which could probably use a better name) is half the `order`,
424
+ # which is always even.
425
+ work = _RichResult(x=x, df=df, fs=f[:, xp.newaxis], error=xp.nan, h=h0,
426
+ df_last=xp.nan, error_last=xp.nan, fac=fac,
427
+ atol=atol, rtol=rtol, nit=nit, nfev=nfev,
428
+ status=status, dtype=dtype, terms=(order+1)//2,
429
+ hdir=hdir, il=il, ic=ic, ir=ir, io=io,
430
+ # Store the weights in an object so they can't get compressed
431
+ # Using RichResult to allow dot notation, but a dict would work
432
+ diff_state=_RichResult(central=[], right=[], fac=None))
433
+
434
+ # This is the correspondence between terms in the `work` object and the
435
+ # final result. In this case, the mapping is trivial. Note that `success`
436
+ # is prepended automatically.
437
+ res_work_pairs = [('status', 'status'), ('df', 'df'), ('error', 'error'),
438
+ ('nit', 'nit'), ('nfev', 'nfev'), ('x', 'x')]
439
+
440
+ def pre_func_eval(work):
441
+ """Determine the abscissae at which the function needs to be evaluated.
442
+
443
+ See `_derivative_weights` for a description of the stencil (pattern
444
+ of the abscissae).
445
+
446
+ In the first iteration, there is only one stored function value in
447
+ `work.fs`, `f(x)`, so we need to evaluate at `order` new points. In
448
+ subsequent iterations, we evaluate at two new points. Note that
449
+ `work.x` is always flattened into a 1D array after broadcasting with
450
+ all `args`, so we add a new axis at the end and evaluate all point
451
+ in one call to the function.
452
+
453
+ For improvement:
454
+ - Consider measuring the step size actually taken, since ``(x + h) - x``
455
+ is not identically equal to `h` with floating point arithmetic.
456
+ - Adjust the step size automatically if `x` is too big to resolve the
457
+ step.
458
+ - We could probably save some work if there are no central difference
459
+ steps or no one-sided steps.
460
+ """
461
+ n = work.terms # half the order
462
+ h = work.h[:, xp.newaxis] # step size
463
+ c = work.fac # step reduction factor
464
+ d = c**0.5 # square root of step reduction factor (one-sided stencil)
465
+ # Note - no need to be careful about dtypes until we allocate `x_eval`
466
+
467
+ if work.nit == 0:
468
+ hc = h / c**xp.arange(n, dtype=work.dtype)
469
+ hc = xp.concat((-xp.flip(hc, axis=-1), hc), axis=-1)
470
+ else:
471
+ hc = xp.concat((-h, h), axis=-1) / c**(n-1)
472
+
473
+ if work.nit == 0:
474
+ hr = h / d**xp.arange(2*n, dtype=work.dtype)
475
+ else:
476
+ hr = xp.concat((h, h/d), axis=-1) / c**(n-1)
477
+
478
+ n_new = 2*n if work.nit == 0 else 2 # number of new abscissae
479
+ x_eval = xp.zeros((work.hdir.shape[0], n_new), dtype=work.dtype)
480
+ il, ic, ir = work.il, work.ic, work.ir
481
+ x_eval = xpx.at(x_eval)[ir].set(work.x[ir][:, xp.newaxis] + hr[ir])
482
+ x_eval = xpx.at(x_eval)[ic].set(work.x[ic][:, xp.newaxis] + hc[ic])
483
+ x_eval = xpx.at(x_eval)[il].set(work.x[il][:, xp.newaxis] - hr[il])
484
+ return x_eval
485
+
486
+ def post_func_eval(x, f, work):
487
+ """ Estimate the derivative and error from the function evaluations
488
+
489
+ As in `pre_func_eval`: in the first iteration, there is only one stored
490
+ function value in `work.fs`, `f(x)`, so we need to add the `order` new
491
+ points. In subsequent iterations, we add two new points. The tricky
492
+ part is getting the order to match that of the weights, which is
493
+ described in `_derivative_weights`.
494
+
495
+ For improvement:
496
+ - Change the order of the weights (and steps in `pre_func_eval`) to
497
+ simplify `work_fc` concatenation and eliminate `fc` concatenation.
498
+ - It would be simple to do one-step Richardson extrapolation with `df`
499
+ and `df_last` to increase the order of the estimate and/or improve
500
+ the error estimate.
501
+ - Process the function evaluations in a more numerically favorable
502
+ way. For instance, combining the pairs of central difference evals
503
+ into a second-order approximation and using Richardson extrapolation
504
+ to produce a higher order approximation seemed to retain accuracy up
505
+ to very high order.
506
+ - Alternatively, we could use `polyfit` like Jacobi. An advantage of
507
+ fitting polynomial to more points than necessary is improved noise
508
+ tolerance.
509
+ """
510
+ n = work.terms
511
+ n_new = n if work.nit == 0 else 1
512
+ il, ic, io = work.il, work.ic, work.io
513
+
514
+ # Central difference
515
+ # `work_fc` is *all* the points at which the function has been evaluated
516
+ # `fc` is the points we're using *this iteration* to produce the estimate
517
+ work_fc = (f[ic][:, :n_new], work.fs[ic], f[ic][:, -n_new:])
518
+ work_fc = xp.concat(work_fc, axis=-1)
519
+ if work.nit == 0:
520
+ fc = work_fc
521
+ else:
522
+ fc = (work_fc[:, :n], work_fc[:, n:n+1], work_fc[:, -n:])
523
+ fc = xp.concat(fc, axis=-1)
524
+
525
+ # One-sided difference
526
+ work_fo = xp.concat((work.fs[io], f[io]), axis=-1)
527
+ if work.nit == 0:
528
+ fo = work_fo
529
+ else:
530
+ fo = xp.concat((work_fo[:, 0:1], work_fo[:, -2*n:]), axis=-1)
531
+
532
+ work.fs = xp.zeros((ic.shape[0], work.fs.shape[-1] + 2*n_new), dtype=work.dtype)
533
+ work.fs = xpx.at(work.fs)[ic].set(work_fc)
534
+ work.fs = xpx.at(work.fs)[io].set(work_fo)
535
+
536
+ wc, wo = _derivative_weights(work, n, xp)
537
+ work.df_last = xp.asarray(work.df, copy=True)
538
+ work.df = xpx.at(work.df)[ic].set(fc @ wc / work.h[ic])
539
+ work.df = xpx.at(work.df)[io].set(fo @ wo / work.h[io])
540
+ work.df = xpx.at(work.df)[il].multiply(-1)
541
+
542
+ work.h /= work.fac
543
+ work.error_last = work.error
544
+ # Simple error estimate - the difference in derivative estimates between
545
+ # this iteration and the last. This is typically conservative because if
546
+ # convergence has begin, the true error is much closer to the difference
547
+ # between the current estimate and the *next* error estimate. However,
548
+ # we could use Richarson extrapolation to produce an error estimate that
549
+ # is one order higher, and take the difference between that and
550
+ # `work.df` (which would just be constant factor that depends on `fac`.)
551
+ work.error = xp.abs(work.df - work.df_last)
552
+
553
+ def check_termination(work):
554
+ """Terminate due to convergence, non-finite values, or error increase"""
555
+ stop = xp.astype(xp.zeros_like(work.df), xp.bool)
556
+
557
+ i = work.error < work.atol + work.rtol*abs(work.df)
558
+ work.status = xpx.at(work.status)[i].set(eim._ECONVERGED)
559
+ stop = xpx.at(stop)[i].set(True)
560
+
561
+ if work.nit > 0:
562
+ i = ~((xp.isfinite(work.x) & xp.isfinite(work.df)) | stop)
563
+ work.df = xpx.at(work.df)[i].set(xp.nan)
564
+ work.status = xpx.at(work.status)[i].set(eim._EVALUEERR)
565
+ stop = xpx.at(stop)[i].set(True)
566
+
567
+ # With infinite precision, there is a step size below which
568
+ # all smaller step sizes will reduce the error. But in floating point
569
+ # arithmetic, catastrophic cancellation will begin to cause the error
570
+ # to increase again. This heuristic tries to avoid step sizes that are
571
+ # too small. There may be more theoretically sound approaches for
572
+ # detecting a step size that minimizes the total error, but this
573
+ # heuristic seems simple and effective.
574
+ i = (work.error > work.error_last*10) & ~stop
575
+ work.status = xpx.at(work.status)[i].set(_EERRORINCREASE)
576
+ stop = xpx.at(stop)[i].set(True)
577
+
578
+ return stop
579
+
580
+ def post_termination_check(work):
581
+ return
582
+
583
+ def customize_result(res, shape):
584
+ return shape
585
+
586
+ return eim._loop(work, callback, shape, maxiter, func, args, dtype,
587
+ pre_func_eval, post_func_eval, check_termination,
588
+ post_termination_check, customize_result, res_work_pairs,
589
+ xp, preserve_shape)
590
+
591
+
592
+ def _derivative_weights(work, n, xp):
593
+ # This produces the weights of the finite difference formula for a given
594
+ # stencil. In experiments, use of a second-order central difference formula
595
+ # with Richardson extrapolation was more accurate numerically, but it was
596
+ # more complicated, and it would have become even more complicated when
597
+ # adding support for one-sided differences. However, now that all the
598
+ # function evaluation values are stored, they can be processed in whatever
599
+ # way is desired to produce the derivative estimate. We leave alternative
600
+ # approaches to future work. To be more self-contained, here is the theory
601
+ # for deriving the weights below.
602
+ #
603
+ # Recall that the Taylor expansion of a univariate, scalar-values function
604
+ # about a point `x` may be expressed as:
605
+ # f(x + h) = f(x) + f'(x)*h + f''(x)/2!*h**2 + O(h**3)
606
+ # Suppose we evaluate f(x), f(x+h), and f(x-h). We have:
607
+ # f(x) = f(x)
608
+ # f(x + h) = f(x) + f'(x)*h + f''(x)/2!*h**2 + O(h**3)
609
+ # f(x - h) = f(x) - f'(x)*h + f''(x)/2!*h**2 + O(h**3)
610
+ # We can solve for weights `wi` such that:
611
+ # w1*f(x) = w1*(f(x))
612
+ # + w2*f(x + h) = w2*(f(x) + f'(x)*h + f''(x)/2!*h**2) + O(h**3)
613
+ # + w3*f(x - h) = w3*(f(x) - f'(x)*h + f''(x)/2!*h**2) + O(h**3)
614
+ # = 0 + f'(x)*h + 0 + O(h**3)
615
+ # Then
616
+ # f'(x) ~ (w1*f(x) + w2*f(x+h) + w3*f(x-h))/h
617
+ # is a finite difference derivative approximation with error O(h**2),
618
+ # and so it is said to be a "second-order" approximation. Under certain
619
+ # conditions (e.g. well-behaved function, `h` sufficiently small), the
620
+ # error in the approximation will decrease with h**2; that is, if `h` is
621
+ # reduced by a factor of 2, the error is reduced by a factor of 4.
622
+ #
623
+ # By default, we use eighth-order formulae. Our central-difference formula
624
+ # uses abscissae:
625
+ # x-h/c**3, x-h/c**2, x-h/c, x-h, x, x+h, x+h/c, x+h/c**2, x+h/c**3
626
+ # where `c` is the step factor. (Typically, the step factor is greater than
627
+ # one, so the outermost points - as written above - are actually closest to
628
+ # `x`.) This "stencil" is chosen so that each iteration, the step can be
629
+ # reduced by the factor `c`, and most of the function evaluations can be
630
+ # reused with the new step size. For example, in the next iteration, we
631
+ # will have:
632
+ # x-h/c**4, x-h/c**3, x-h/c**2, x-h/c, x, x+h/c, x+h/c**2, x+h/c**3, x+h/c**4
633
+ # We do not reuse `x-h` and `x+h` for the new derivative estimate.
634
+ # While this would increase the order of the formula and thus the
635
+ # theoretical convergence rate, it is also less stable numerically.
636
+ # (As noted above, there are other ways of processing the values that are
637
+ # more stable. Thus, even now we store `f(x-h)` and `f(x+h)` in `work.fs`
638
+ # to simplify future development of this sort of improvement.)
639
+ #
640
+ # The (right) one-sided formula is produced similarly using abscissae
641
+ # x, x+h, x+h/d, x+h/d**2, ..., x+h/d**6, x+h/d**7, x+h/d**7
642
+ # where `d` is the square root of `c`. (The left one-sided formula simply
643
+ # uses -h.) When the step size is reduced by factor `c = d**2`, we have
644
+ # abscissae:
645
+ # x, x+h/d**2, x+h/d**3..., x+h/d**8, x+h/d**9, x+h/d**9
646
+ # `d` is chosen as the square root of `c` so that the rate of the step-size
647
+ # reduction is the same per iteration as in the central difference case.
648
+ # Note that because the central difference formulas are inherently of even
649
+ # order, for simplicity, we use only even-order formulas for one-sided
650
+ # differences, too.
651
+
652
+ # It's possible for the user to specify `fac` in, say, double precision but
653
+ # `x` and `args` in single precision. `fac` gets converted to single
654
+ # precision, but we should always use double precision for the intermediate
655
+ # calculations here to avoid additional error in the weights.
656
+ fac = float(work.fac)
657
+
658
+ # Note that if the user switches back to floating point precision with
659
+ # `x` and `args`, then `fac` will not necessarily equal the (lower
660
+ # precision) cached `_derivative_weights.fac`, and the weights will
661
+ # need to be recalculated. This could be fixed, but it's late, and of
662
+ # low consequence.
663
+
664
+ diff_state = work.diff_state
665
+ if fac != diff_state.fac:
666
+ diff_state.central = []
667
+ diff_state.right = []
668
+ diff_state.fac = fac
669
+
670
+ if len(diff_state.central) != 2*n + 1:
671
+ # Central difference weights. Consider refactoring this; it could
672
+ # probably be more compact.
673
+ # Note: Using NumPy here is OK; we convert to xp-type at the end
674
+ i = np.arange(-n, n + 1)
675
+ p = np.abs(i) - 1. # center point has power `p` -1, but sign `s` is 0
676
+ s = np.sign(i)
677
+
678
+ h = s / fac ** p
679
+ A = np.vander(h, increasing=True).T
680
+ b = np.zeros(2*n + 1)
681
+ b[1] = 1
682
+ weights = np.linalg.solve(A, b)
683
+
684
+ # Enforce identities to improve accuracy
685
+ weights[n] = 0
686
+ for i in range(n):
687
+ weights[-i-1] = -weights[i]
688
+
689
+ # Cache the weights. We only need to calculate them once unless
690
+ # the step factor changes.
691
+ diff_state.central = weights
692
+
693
+ # One-sided difference weights. The left one-sided weights (with
694
+ # negative steps) are simply the negative of the right one-sided
695
+ # weights, so no need to compute them separately.
696
+ i = np.arange(2*n + 1)
697
+ p = i - 1.
698
+ s = np.sign(i)
699
+
700
+ h = s / np.sqrt(fac) ** p
701
+ A = np.vander(h, increasing=True).T
702
+ b = np.zeros(2 * n + 1)
703
+ b[1] = 1
704
+ weights = np.linalg.solve(A, b)
705
+
706
+ diff_state.right = weights
707
+
708
+ return (xp.asarray(diff_state.central, dtype=work.dtype),
709
+ xp.asarray(diff_state.right, dtype=work.dtype))
710
+
711
+
712
+ def jacobian(f, x, *, tolerances=None, maxiter=10, order=8, initial_step=0.5,
713
+ step_factor=2.0, step_direction=0):
714
+ r"""Evaluate the Jacobian of a function numerically.
715
+
716
+ Parameters
717
+ ----------
718
+ f : callable
719
+ The function whose Jacobian is desired. The signature must be::
720
+
721
+ f(xi: ndarray) -> ndarray
722
+
723
+ where each element of ``xi`` is a finite real. If the function to be
724
+ differentiated accepts additional arguments, wrap it (e.g. using
725
+ `functools.partial` or ``lambda``) and pass the wrapped callable
726
+ into `jacobian`. `f` must not mutate the array ``xi``. See Notes
727
+ regarding vectorization and the dimensionality of the input and output.
728
+ x : float array_like
729
+ Points at which to evaluate the Jacobian. Must have at least one dimension.
730
+ See Notes regarding the dimensionality and vectorization.
731
+ tolerances : dictionary of floats, optional
732
+ Absolute and relative tolerances. Valid keys of the dictionary are:
733
+
734
+ - ``atol`` - absolute tolerance on the derivative
735
+ - ``rtol`` - relative tolerance on the derivative
736
+
737
+ Iteration will stop when ``res.error < atol + rtol * abs(res.df)``. The default
738
+ `atol` is the smallest normal number of the appropriate dtype, and
739
+ the default `rtol` is the square root of the precision of the
740
+ appropriate dtype.
741
+ maxiter : int, default: 10
742
+ The maximum number of iterations of the algorithm to perform. See
743
+ Notes.
744
+ order : int, default: 8
745
+ The (positive integer) order of the finite difference formula to be
746
+ used. Odd integers will be rounded up to the next even integer.
747
+ initial_step : float array_like, default: 0.5
748
+ The (absolute) initial step size for the finite difference derivative
749
+ approximation. Must be broadcastable with `x` and `step_direction`.
750
+ step_factor : float, default: 2.0
751
+ The factor by which the step size is *reduced* in each iteration; i.e.
752
+ the step size in iteration 1 is ``initial_step/step_factor``. If
753
+ ``step_factor < 1``, subsequent steps will be greater than the initial
754
+ step; this may be useful if steps smaller than some threshold are
755
+ undesirable (e.g. due to subtractive cancellation error).
756
+ step_direction : integer array_like
757
+ An array representing the direction of the finite difference steps (e.g.
758
+ for use when `x` lies near to the boundary of the domain of the function.)
759
+ Must be broadcastable with `x` and `initial_step`.
760
+ Where 0 (default), central differences are used; where negative (e.g.
761
+ -1), steps are non-positive; and where positive (e.g. 1), all steps are
762
+ non-negative.
763
+
764
+ Returns
765
+ -------
766
+ res : _RichResult
767
+ An object similar to an instance of `scipy.optimize.OptimizeResult` with the
768
+ following attributes. The descriptions are written as though the values will
769
+ be scalars; however, if `f` returns an array, the outputs will be
770
+ arrays of the same shape.
771
+
772
+ success : bool array
773
+ ``True`` where the algorithm terminated successfully (status ``0``);
774
+ ``False`` otherwise.
775
+ status : int array
776
+ An integer representing the exit status of the algorithm.
777
+
778
+ - ``0`` : The algorithm converged to the specified tolerances.
779
+ - ``-1`` : The error estimate increased, so iteration was terminated.
780
+ - ``-2`` : The maximum number of iterations was reached.
781
+ - ``-3`` : A non-finite value was encountered.
782
+
783
+ df : float array
784
+ The Jacobian of `f` at `x`, if the algorithm terminated
785
+ successfully.
786
+ error : float array
787
+ An estimate of the error: the magnitude of the difference between
788
+ the current estimate of the Jacobian and the estimate in the
789
+ previous iteration.
790
+ nit : int array
791
+ The number of iterations of the algorithm that were performed.
792
+ nfev : int array
793
+ The number of points at which `f` was evaluated.
794
+
795
+ Each element of an attribute is associated with the corresponding
796
+ element of `df`. For instance, element ``i`` of `nfev` is the
797
+ number of points at which `f` was evaluated for the sake of
798
+ computing element ``i`` of `df`.
799
+
800
+ See Also
801
+ --------
802
+ derivative, hessian
803
+
804
+ Notes
805
+ -----
806
+ Suppose we wish to evaluate the Jacobian of a function
807
+ :math:`f: \mathbf{R}^m \rightarrow \mathbf{R}^n`. Assign to variables
808
+ ``m`` and ``n`` the positive integer values of :math:`m` and :math:`n`,
809
+ respectively, and let ``...`` represent an arbitrary tuple of integers.
810
+ If we wish to evaluate the Jacobian at a single point, then:
811
+
812
+ - argument `x` must be an array of shape ``(m,)``
813
+ - argument `f` must be vectorized to accept an array of shape ``(m, ...)``.
814
+ The first axis represents the :math:`m` inputs of :math:`f`; the remainder
815
+ are for evaluating the function at multiple points in a single call.
816
+ - argument `f` must return an array of shape ``(n, ...)``. The first
817
+ axis represents the :math:`n` outputs of :math:`f`; the remainder
818
+ are for the result of evaluating the function at multiple points.
819
+ - attribute ``df`` of the result object will be an array of shape ``(n, m)``,
820
+ the Jacobian.
821
+
822
+ This function is also vectorized in the sense that the Jacobian can be
823
+ evaluated at ``k`` points in a single call. In this case, `x` would be an
824
+ array of shape ``(m, k)``, `f` would accept an array of shape
825
+ ``(m, k, ...)`` and return an array of shape ``(n, k, ...)``, and the ``df``
826
+ attribute of the result would have shape ``(n, m, k)``.
827
+
828
+ Suppose the desired callable ``f_not_vectorized`` is not vectorized; it can
829
+ only accept an array of shape ``(m,)``. A simple solution to satisfy the required
830
+ interface is to wrap ``f_not_vectorized`` as follows::
831
+
832
+ def f(x):
833
+ return np.apply_along_axis(f_not_vectorized, axis=0, arr=x)
834
+
835
+ Alternatively, suppose the desired callable ``f_vec_q`` is vectorized, but
836
+ only for 2-D arrays of shape ``(m, q)``. To satisfy the required interface,
837
+ consider::
838
+
839
+ def f(x):
840
+ m, batch = x.shape[0], x.shape[1:] # x.shape is (m, ...)
841
+ x = np.reshape(x, (m, -1)) # `-1` is short for q = prod(batch)
842
+ res = f_vec_q(x) # pass shape (m, q) to function
843
+ n = res.shape[0]
844
+ return np.reshape(res, (n,) + batch) # return shape (n, ...)
845
+
846
+ Then pass the wrapped callable ``f`` as the first argument of `jacobian`.
847
+
848
+ References
849
+ ----------
850
+ .. [1] Jacobian matrix and determinant, *Wikipedia*,
851
+ https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
852
+
853
+ Examples
854
+ --------
855
+ The Rosenbrock function maps from :math:`\mathbf{R}^m \rightarrow \mathbf{R}`;
856
+ the SciPy implementation `scipy.optimize.rosen` is vectorized to accept an
857
+ array of shape ``(m, p)`` and return an array of shape ``p``. Suppose we wish
858
+ to evaluate the Jacobian (AKA the gradient because the function returns a scalar)
859
+ at ``[0.5, 0.5, 0.5]``.
860
+
861
+ >>> import numpy as np
862
+ >>> from scipy.differentiate import jacobian
863
+ >>> from scipy.optimize import rosen, rosen_der
864
+ >>> m = 3
865
+ >>> x = np.full(m, 0.5)
866
+ >>> res = jacobian(rosen, x)
867
+ >>> ref = rosen_der(x) # reference value of the gradient
868
+ >>> res.df, ref
869
+ (array([-51., -1., 50.]), array([-51., -1., 50.]))
870
+
871
+ As an example of a function with multiple outputs, consider Example 4
872
+ from [1]_.
873
+
874
+ >>> def f(x):
875
+ ... x1, x2, x3 = x
876
+ ... return [x1, 5*x3, 4*x2**2 - 2*x3, x3*np.sin(x1)]
877
+
878
+ The true Jacobian is given by:
879
+
880
+ >>> def df(x):
881
+ ... x1, x2, x3 = x
882
+ ... one = np.ones_like(x1)
883
+ ... return [[one, 0*one, 0*one],
884
+ ... [0*one, 0*one, 5*one],
885
+ ... [0*one, 8*x2, -2*one],
886
+ ... [x3*np.cos(x1), 0*one, np.sin(x1)]]
887
+
888
+ Evaluate the Jacobian at an arbitrary point.
889
+
890
+ >>> rng = np.random.default_rng(389252938452)
891
+ >>> x = rng.random(size=3)
892
+ >>> res = jacobian(f, x)
893
+ >>> ref = df(x)
894
+ >>> res.df.shape == (4, 3)
895
+ True
896
+ >>> np.allclose(res.df, ref)
897
+ True
898
+
899
+ Evaluate the Jacobian at 10 arbitrary points in a single call.
900
+
901
+ >>> x = rng.random(size=(3, 10))
902
+ >>> res = jacobian(f, x)
903
+ >>> ref = df(x)
904
+ >>> res.df.shape == (4, 3, 10)
905
+ True
906
+ >>> np.allclose(res.df, ref)
907
+ True
908
+
909
+ """
910
+ xp = array_namespace(x)
911
+ x0 = xp_promote(x, force_floating=True, xp=xp)
912
+
913
+ if x0.ndim < 1:
914
+ message = "Argument `x` must be at least 1-D."
915
+ raise ValueError(message)
916
+
917
+ m = x0.shape[0]
918
+ i = xp.arange(m)
919
+
920
+ def wrapped(x):
921
+ p = () if x.ndim == x0.ndim else (x.shape[-1],) # number of abscissae
922
+
923
+ new_shape = (m, m) + x0.shape[1:] + p
924
+ xph = xp.expand_dims(x0, axis=1)
925
+ if x.ndim != x0.ndim:
926
+ xph = xp.expand_dims(xph, axis=-1)
927
+ xph = xp_copy(xp.broadcast_to(xph, new_shape), xp=xp)
928
+ xph = xpx.at(xph)[i, i].set(x)
929
+ return f(xph)
930
+
931
+ res = derivative(wrapped, x, tolerances=tolerances,
932
+ maxiter=maxiter, order=order, initial_step=initial_step,
933
+ step_factor=step_factor, preserve_shape=True,
934
+ step_direction=step_direction)
935
+
936
+ del res.x # the user knows `x`, and the way it gets broadcasted is meaningless here
937
+ return res
938
+
939
+
940
+ def hessian(f, x, *, tolerances=None, maxiter=10,
941
+ order=8, initial_step=0.5, step_factor=2.0):
942
+ r"""Evaluate the Hessian of a function numerically.
943
+
944
+ Parameters
945
+ ----------
946
+ f : callable
947
+ The function whose Hessian is desired. The signature must be::
948
+
949
+ f(xi: ndarray) -> ndarray
950
+
951
+ where each element of ``xi`` is a finite real. If the function to be
952
+ differentiated accepts additional arguments, wrap it (e.g. using
953
+ `functools.partial` or ``lambda``) and pass the wrapped callable
954
+ into `hessian`. `f` must not mutate the array ``xi``. See Notes
955
+ regarding vectorization and the dimensionality of the input and output.
956
+ x : float array_like
957
+ Points at which to evaluate the Hessian. Must have at least one dimension.
958
+ See Notes regarding the dimensionality and vectorization.
959
+ tolerances : dictionary of floats, optional
960
+ Absolute and relative tolerances. Valid keys of the dictionary are:
961
+
962
+ - ``atol`` - absolute tolerance on the derivative
963
+ - ``rtol`` - relative tolerance on the derivative
964
+
965
+ Iteration will stop when ``res.error < atol + rtol * abs(res.df)``. The default
966
+ `atol` is the smallest normal number of the appropriate dtype, and
967
+ the default `rtol` is the square root of the precision of the
968
+ appropriate dtype.
969
+ order : int, default: 8
970
+ The (positive integer) order of the finite difference formula to be
971
+ used. Odd integers will be rounded up to the next even integer.
972
+ initial_step : float, default: 0.5
973
+ The (absolute) initial step size for the finite difference derivative
974
+ approximation.
975
+ step_factor : float, default: 2.0
976
+ The factor by which the step size is *reduced* in each iteration; i.e.
977
+ the step size in iteration 1 is ``initial_step/step_factor``. If
978
+ ``step_factor < 1``, subsequent steps will be greater than the initial
979
+ step; this may be useful if steps smaller than some threshold are
980
+ undesirable (e.g. due to subtractive cancellation error).
981
+ maxiter : int, default: 10
982
+ The maximum number of iterations of the algorithm to perform. See
983
+ Notes.
984
+
985
+ Returns
986
+ -------
987
+ res : _RichResult
988
+ An object similar to an instance of `scipy.optimize.OptimizeResult` with the
989
+ following attributes. The descriptions are written as though the values will
990
+ be scalars; however, if `f` returns an array, the outputs will be
991
+ arrays of the same shape.
992
+
993
+ success : bool array
994
+ ``True`` where the algorithm terminated successfully (status ``0``);
995
+ ``False`` otherwise.
996
+ status : int array
997
+ An integer representing the exit status of the algorithm.
998
+
999
+ - ``0`` : The algorithm converged to the specified tolerances.
1000
+ - ``-1`` : The error estimate increased, so iteration was terminated.
1001
+ - ``-2`` : The maximum number of iterations was reached.
1002
+ - ``-3`` : A non-finite value was encountered.
1003
+
1004
+ ddf : float array
1005
+ The Hessian of `f` at `x`, if the algorithm terminated
1006
+ successfully.
1007
+ error : float array
1008
+ An estimate of the error: the magnitude of the difference between
1009
+ the current estimate of the Hessian and the estimate in the
1010
+ previous iteration.
1011
+ nfev : int array
1012
+ The number of points at which `f` was evaluated.
1013
+
1014
+ Each element of an attribute is associated with the corresponding
1015
+ element of `ddf`. For instance, element ``[i, j]`` of `nfev` is the
1016
+ number of points at which `f` was evaluated for the sake of
1017
+ computing element ``[i, j]`` of `ddf`.
1018
+
1019
+ See Also
1020
+ --------
1021
+ derivative, jacobian
1022
+
1023
+ Notes
1024
+ -----
1025
+ Suppose we wish to evaluate the Hessian of a function
1026
+ :math:`f: \mathbf{R}^m \rightarrow \mathbf{R}`, and we assign to variable
1027
+ ``m`` the positive integer value of :math:`m`. If we wish to evaluate
1028
+ the Hessian at a single point, then:
1029
+
1030
+ - argument `x` must be an array of shape ``(m,)``
1031
+ - argument `f` must be vectorized to accept an array of shape
1032
+ ``(m, ...)``. The first axis represents the :math:`m` inputs of
1033
+ :math:`f`; the remaining axes indicated by ellipses are for evaluating
1034
+ the function at several abscissae in a single call.
1035
+ - argument `f` must return an array of shape ``(...)``.
1036
+ - attribute ``dff`` of the result object will be an array of shape ``(m, m)``,
1037
+ the Hessian.
1038
+
1039
+ This function is also vectorized in the sense that the Hessian can be
1040
+ evaluated at ``k`` points in a single call. In this case, `x` would be an
1041
+ array of shape ``(m, k)``, `f` would accept an array of shape
1042
+ ``(m, ...)`` and return an array of shape ``(...)``, and the ``ddf``
1043
+ attribute of the result would have shape ``(m, m, k)``. Note that the
1044
+ axis associated with the ``k`` points is included within the axes
1045
+ denoted by ``(...)``.
1046
+
1047
+ Currently, `hessian` is implemented by nesting calls to `jacobian`.
1048
+ All options passed to `hessian` are used for both the inner and outer
1049
+ calls with one exception: the `rtol` used in the inner `jacobian` call
1050
+ is tightened by a factor of 100 with the expectation that the inner
1051
+ error can be ignored. A consequence is that `rtol` should not be set
1052
+ less than 100 times the precision of the dtype of `x`; a warning is
1053
+ emitted otherwise.
1054
+
1055
+ References
1056
+ ----------
1057
+ .. [1] Hessian matrix, *Wikipedia*,
1058
+ https://en.wikipedia.org/wiki/Hessian_matrix
1059
+
1060
+ Examples
1061
+ --------
1062
+ The Rosenbrock function maps from :math:`\mathbf{R}^m \rightarrow \mathbf{R}`;
1063
+ the SciPy implementation `scipy.optimize.rosen` is vectorized to accept an
1064
+ array of shape ``(m, ...)`` and return an array of shape ``...``. Suppose we
1065
+ wish to evaluate the Hessian at ``[0.5, 0.5, 0.5]``.
1066
+
1067
+ >>> import numpy as np
1068
+ >>> from scipy.differentiate import hessian
1069
+ >>> from scipy.optimize import rosen, rosen_hess
1070
+ >>> m = 3
1071
+ >>> x = np.full(m, 0.5)
1072
+ >>> res = hessian(rosen, x)
1073
+ >>> ref = rosen_hess(x) # reference value of the Hessian
1074
+ >>> np.allclose(res.ddf, ref)
1075
+ True
1076
+
1077
+ `hessian` is vectorized to evaluate the Hessian at multiple points
1078
+ in a single call.
1079
+
1080
+ >>> rng = np.random.default_rng(4589245925010)
1081
+ >>> x = rng.random((m, 10))
1082
+ >>> res = hessian(rosen, x)
1083
+ >>> ref = [rosen_hess(xi) for xi in x.T]
1084
+ >>> ref = np.moveaxis(ref, 0, -1)
1085
+ >>> np.allclose(res.ddf, ref)
1086
+ True
1087
+
1088
+ """
1089
+ # todo:
1090
+ # - add ability to vectorize over additional parameters (*args?)
1091
+ # - error estimate stack with inner jacobian (or use legit 2D stencil)
1092
+
1093
+ kwargs = dict(maxiter=maxiter, order=order, initial_step=initial_step,
1094
+ step_factor=step_factor)
1095
+ tolerances = {} if tolerances is None else tolerances
1096
+ atol = tolerances.get('atol', None)
1097
+ rtol = tolerances.get('rtol', None)
1098
+
1099
+ xp = array_namespace(x)
1100
+ x0 = xp_promote(x, force_floating=True, xp=xp)
1101
+
1102
+ finfo = xp.finfo(x0.dtype)
1103
+ rtol = finfo.eps**0.5 if rtol is None else rtol # keep same as `derivative`
1104
+
1105
+ # tighten the inner tolerance to make the inner error negligible
1106
+ rtol_min = finfo.eps * 100
1107
+ message = (f"The specified `{rtol=}`, but error estimates are likely to be "
1108
+ f"unreliable when `rtol < {rtol_min}`.")
1109
+ if 0 < rtol < rtol_min: # rtol <= 0 is an error
1110
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
1111
+ rtol = rtol_min
1112
+
1113
+ def df(x):
1114
+ tolerances = dict(rtol=rtol/100, atol=atol)
1115
+ temp = jacobian(f, x, tolerances=tolerances, **kwargs)
1116
+ nfev.append(temp.nfev if len(nfev) == 0 else temp.nfev.sum(axis=-1))
1117
+ return temp.df
1118
+
1119
+ nfev = [] # track inner function evaluations
1120
+ res = jacobian(df, x, tolerances=tolerances, **kwargs) # jacobian of jacobian
1121
+
1122
+ nfev = xp.cumulative_sum(xp.stack(nfev), axis=0)
1123
+ res_nit = xp.astype(res.nit[xp.newaxis, ...], xp.int64) # appease torch
1124
+ res.nfev = xp.take_along_axis(nfev, res_nit, axis=0)[0]
1125
+ res.ddf = res.df
1126
+ del res.df # this is renamed to ddf
1127
+ del res.nit # this is only the outer-jacobian nit
1128
+
1129
+ return res