scipy 1.16.2__cp313-cp313t-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp313t-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp313t-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp313t-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp313t-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp313t-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp313t-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp313t-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp313t-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp313t-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp313t-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp313t-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp313t-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp313t-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp313t-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp313t-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp313t-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp313t-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp313t-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp313t-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp313t-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp313t-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp313t-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp313t-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp313t-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp313t-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp313t-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp313t-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp313t-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp313t-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp313t-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp313t-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp313t-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp313t-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp313t-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp313t-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp313t-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp313t-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp313t-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp313t-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp313t-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp313t-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp313t-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp313t-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp313t-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp313t-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp313t-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp313t-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp313t-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp313t-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp313t-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp313t-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp313t-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp313t-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp313t-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp313t-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp313t-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp313t-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp313t-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp313t-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp313t-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp313t-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp313t-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp313t-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp313t-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp313t-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp313t-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp313t-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp313t-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp313t-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp313t-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp313t-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp313t-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp313t-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp313t-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp313t-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp313t-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp313t-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp313t-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp313t-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp313t-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp313t-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp313t-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp313t-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp313t-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp313t-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp313t-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp313t-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp313t-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp313t-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp313t-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp313t-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp313t-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp313t-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp313t-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp313t-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp313t-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp313t-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp313t-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp313t-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp313t-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp313t-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp313t-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp313t-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp313t-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp313t-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp313t-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp313t-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp313t-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp313t-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp313t-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp313t-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp313t-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp313t-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp313t-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp313t-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp313t-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp313t-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp313t-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp313t-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp313t-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp313t-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp313t-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp313t-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp313t-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp313t-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp313t-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp313t-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp313t-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp313t-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp313t-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp313t-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp313t-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp313t-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp313t-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp313t-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp313t-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp313t-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp313t-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp313t-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp313t-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp313t-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp313t-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp313t-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp313t-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp313t-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp313t-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp313t-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp313t-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp313t-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp313t-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp313t-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp313t-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp313t-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp313t-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp313t-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp313t-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp313t-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp313t-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp313t-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp313t-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp313t-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp313t-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp313t-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp313t-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp313t-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp313t-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp313t-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp313t-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp313t-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp313t-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp313t-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp313t-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp313t-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp313t-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp313t-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp313t-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp313t-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp313t-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp313t-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp313t-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp313t-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp313t-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp313t-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp313t-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp313t-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp313t-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp313t-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp313t-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp313t-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp313t-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp313t-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp313t-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp313t-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp313t-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp313t-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp313t-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp313t-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp313t-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp313t-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp313t-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp313t-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp313t-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp313t-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp313t-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp313t-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp313t-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp313t-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp313t-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp313t-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp313t-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp313t-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp313t-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp313t-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp313t-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp313t-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp313t-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp313t-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp313t-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp313t-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp313t-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp313t-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp313t-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp313t-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp313t-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp313t-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp313t-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp313t-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp313t-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,2352 @@
1
+ import warnings
2
+ import numpy as np
3
+ from itertools import combinations, permutations, product
4
+ from collections.abc import Sequence
5
+ from dataclasses import dataclass, field
6
+ import inspect
7
+
8
+ from scipy._lib._util import (check_random_state, _rename_parameter, rng_integers,
9
+ _transition_to_rng)
10
+ from scipy._lib._array_api import array_namespace, is_numpy, xp_result_type
11
+ from scipy.special import ndtr, ndtri, comb, factorial
12
+
13
+ from ._common import ConfidenceInterval
14
+ from ._axis_nan_policy import _broadcast_concatenate, _broadcast_arrays
15
+ from ._warnings_errors import DegenerateDataWarning
16
+
17
+ __all__ = ['bootstrap', 'monte_carlo_test', 'permutation_test']
18
+
19
+
20
+ def _vectorize_statistic(statistic):
21
+ """Vectorize an n-sample statistic"""
22
+ # This is a little cleaner than np.nditer at the expense of some data
23
+ # copying: concatenate samples together, then use np.apply_along_axis
24
+ def stat_nd(*data, axis=0):
25
+ lengths = [sample.shape[axis] for sample in data]
26
+ split_indices = np.cumsum(lengths)[:-1]
27
+ z = _broadcast_concatenate(data, axis)
28
+
29
+ # move working axis to position 0 so that new dimensions in the output
30
+ # of `statistic` are _prepended_. ("This axis is removed, and replaced
31
+ # with new dimensions...")
32
+ z = np.moveaxis(z, axis, 0)
33
+
34
+ def stat_1d(z):
35
+ data = np.split(z, split_indices)
36
+ return statistic(*data)
37
+
38
+ return np.apply_along_axis(stat_1d, 0, z)[()]
39
+ return stat_nd
40
+
41
+
42
+ def _jackknife_resample(sample, batch=None):
43
+ """Jackknife resample the sample. Only one-sample stats for now."""
44
+ n = sample.shape[-1]
45
+ batch_nominal = batch or n
46
+
47
+ for k in range(0, n, batch_nominal):
48
+ # col_start:col_end are the observations to remove
49
+ batch_actual = min(batch_nominal, n-k)
50
+
51
+ # jackknife - each row leaves out one observation
52
+ j = np.ones((batch_actual, n), dtype=bool)
53
+ np.fill_diagonal(j[:, k:k+batch_actual], False)
54
+ i = np.arange(n)
55
+ i = np.broadcast_to(i, (batch_actual, n))
56
+ i = i[j].reshape((batch_actual, n-1))
57
+
58
+ resamples = sample[..., i]
59
+ yield resamples
60
+
61
+
62
+ def _bootstrap_resample(sample, n_resamples=None, rng=None):
63
+ """Bootstrap resample the sample."""
64
+ n = sample.shape[-1]
65
+
66
+ # bootstrap - each row is a random resample of original observations
67
+ i = rng_integers(rng, 0, n, (n_resamples, n))
68
+
69
+ resamples = sample[..., i]
70
+ return resamples
71
+
72
+
73
+ def _percentile_of_score(a, score, axis):
74
+ """Vectorized, simplified `scipy.stats.percentileofscore`.
75
+ Uses logic of the 'mean' value of percentileofscore's kind parameter.
76
+
77
+ Unlike `stats.percentileofscore`, the percentile returned is a fraction
78
+ in [0, 1].
79
+ """
80
+ B = a.shape[axis]
81
+ return ((a < score).sum(axis=axis) + (a <= score).sum(axis=axis)) / (2 * B)
82
+
83
+
84
+ def _percentile_along_axis(theta_hat_b, alpha):
85
+ """`np.percentile` with different percentile for each slice."""
86
+ # the difference between _percentile_along_axis and np.percentile is that
87
+ # np.percentile gets _all_ the qs for each axis slice, whereas
88
+ # _percentile_along_axis gets the q corresponding with each axis slice
89
+ shape = theta_hat_b.shape[:-1]
90
+ alpha = np.broadcast_to(alpha, shape)
91
+ percentiles = np.zeros_like(alpha, dtype=np.float64)
92
+ for indices, alpha_i in np.ndenumerate(alpha):
93
+ if np.isnan(alpha_i):
94
+ # e.g. when bootstrap distribution has only one unique element
95
+ msg = (
96
+ "The BCa confidence interval cannot be calculated."
97
+ " This problem is known to occur when the distribution"
98
+ " is degenerate or the statistic is np.min."
99
+ )
100
+ warnings.warn(DegenerateDataWarning(msg), stacklevel=3)
101
+ percentiles[indices] = np.nan
102
+ else:
103
+ theta_hat_b_i = theta_hat_b[indices]
104
+ percentiles[indices] = np.percentile(theta_hat_b_i, alpha_i)
105
+ return percentiles[()] # return scalar instead of 0d array
106
+
107
+
108
+ def _bca_interval(data, statistic, axis, alpha, theta_hat_b, batch):
109
+ """Bias-corrected and accelerated interval."""
110
+ # closely follows [1] 14.3 and 15.4 (Eq. 15.36)
111
+
112
+ # calculate z0_hat
113
+ theta_hat = np.asarray(statistic(*data, axis=axis))[..., None]
114
+ percentile = _percentile_of_score(theta_hat_b, theta_hat, axis=-1)
115
+ z0_hat = ndtri(percentile)
116
+
117
+ # calculate a_hat
118
+ theta_hat_ji = [] # j is for sample of data, i is for jackknife resample
119
+ for j, sample in enumerate(data):
120
+ # _jackknife_resample will add an axis prior to the last axis that
121
+ # corresponds with the different jackknife resamples. Do the same for
122
+ # each sample of the data to ensure broadcastability. We need to
123
+ # create a copy of the list containing the samples anyway, so do this
124
+ # in the loop to simplify the code. This is not the bottleneck...
125
+ samples = [np.expand_dims(sample, -2) for sample in data]
126
+ theta_hat_i = []
127
+ for jackknife_sample in _jackknife_resample(sample, batch):
128
+ samples[j] = jackknife_sample
129
+ broadcasted = _broadcast_arrays(samples, axis=-1)
130
+ theta_hat_i.append(statistic(*broadcasted, axis=-1))
131
+ theta_hat_ji.append(theta_hat_i)
132
+
133
+ theta_hat_ji = [np.concatenate(theta_hat_i, axis=-1)
134
+ for theta_hat_i in theta_hat_ji]
135
+
136
+ n_j = [theta_hat_i.shape[-1] for theta_hat_i in theta_hat_ji]
137
+
138
+ theta_hat_j_dot = [theta_hat_i.mean(axis=-1, keepdims=True)
139
+ for theta_hat_i in theta_hat_ji]
140
+
141
+ U_ji = [(n - 1) * (theta_hat_dot - theta_hat_i)
142
+ for theta_hat_dot, theta_hat_i, n
143
+ in zip(theta_hat_j_dot, theta_hat_ji, n_j)]
144
+
145
+ nums = [(U_i**3).sum(axis=-1)/n**3 for U_i, n in zip(U_ji, n_j)]
146
+ dens = [(U_i**2).sum(axis=-1)/n**2 for U_i, n in zip(U_ji, n_j)]
147
+ a_hat = 1/6 * sum(nums) / sum(dens)**(3/2)
148
+
149
+ # calculate alpha_1, alpha_2
150
+ z_alpha = ndtri(alpha)
151
+ z_1alpha = -z_alpha
152
+ num1 = z0_hat + z_alpha
153
+ alpha_1 = ndtr(z0_hat + num1/(1 - a_hat*num1))
154
+ num2 = z0_hat + z_1alpha
155
+ alpha_2 = ndtr(z0_hat + num2/(1 - a_hat*num2))
156
+ return alpha_1, alpha_2, a_hat # return a_hat for testing
157
+
158
+
159
+ def _bootstrap_iv(data, statistic, vectorized, paired, axis, confidence_level,
160
+ alternative, n_resamples, batch, method, bootstrap_result,
161
+ rng):
162
+ """Input validation and standardization for `bootstrap`."""
163
+
164
+ if vectorized not in {True, False, None}:
165
+ raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
166
+
167
+ if vectorized is None:
168
+ vectorized = 'axis' in inspect.signature(statistic).parameters
169
+
170
+ if not vectorized:
171
+ statistic = _vectorize_statistic(statistic)
172
+
173
+ axis_int = int(axis)
174
+ if axis != axis_int:
175
+ raise ValueError("`axis` must be an integer.")
176
+
177
+ n_samples = 0
178
+ try:
179
+ n_samples = len(data)
180
+ except TypeError:
181
+ raise ValueError("`data` must be a sequence of samples.")
182
+
183
+ if n_samples == 0:
184
+ raise ValueError("`data` must contain at least one sample.")
185
+
186
+ data = _broadcast_arrays(data, axis_int)
187
+
188
+ data_iv = []
189
+ for sample in data:
190
+ if sample.shape[axis_int] <= 1:
191
+ raise ValueError("each sample in `data` must contain two or more "
192
+ "observations along `axis`.")
193
+ sample = np.moveaxis(sample, axis_int, -1)
194
+ data_iv.append(sample)
195
+
196
+ if paired not in {True, False}:
197
+ raise ValueError("`paired` must be `True` or `False`.")
198
+
199
+ if paired:
200
+ n = data_iv[0].shape[-1]
201
+ for sample in data_iv[1:]:
202
+ if sample.shape[-1] != n:
203
+ message = ("When `paired is True`, all samples must have the "
204
+ "same length along `axis`")
205
+ raise ValueError(message)
206
+
207
+ # to generate the bootstrap distribution for paired-sample statistics,
208
+ # resample the indices of the observations
209
+ def statistic(i, axis=-1, data=data_iv, unpaired_statistic=statistic):
210
+ data = [sample[..., i] for sample in data]
211
+ return unpaired_statistic(*data, axis=axis)
212
+
213
+ data_iv = [np.arange(n)]
214
+
215
+ confidence_level_float = float(confidence_level)
216
+
217
+ alternative = alternative.lower()
218
+ alternatives = {'two-sided', 'less', 'greater'}
219
+ if alternative not in alternatives:
220
+ raise ValueError(f"`alternative` must be one of {alternatives}")
221
+
222
+ n_resamples_int = int(n_resamples)
223
+ if n_resamples != n_resamples_int or n_resamples_int < 0:
224
+ raise ValueError("`n_resamples` must be a non-negative integer.")
225
+
226
+ if batch is None:
227
+ batch_iv = batch
228
+ else:
229
+ batch_iv = int(batch)
230
+ if batch != batch_iv or batch_iv <= 0:
231
+ raise ValueError("`batch` must be a positive integer or None.")
232
+
233
+ methods = {'percentile', 'basic', 'bca'}
234
+ method = method.lower()
235
+ if method not in methods:
236
+ raise ValueError(f"`method` must be in {methods}")
237
+
238
+ message = "`bootstrap_result` must have attribute `bootstrap_distribution'"
239
+ if (bootstrap_result is not None
240
+ and not hasattr(bootstrap_result, "bootstrap_distribution")):
241
+ raise ValueError(message)
242
+
243
+ message = ("Either `bootstrap_result.bootstrap_distribution.size` or "
244
+ "`n_resamples` must be positive.")
245
+ if ((not bootstrap_result or
246
+ not bootstrap_result.bootstrap_distribution.size)
247
+ and n_resamples_int == 0):
248
+ raise ValueError(message)
249
+
250
+ rng = check_random_state(rng)
251
+
252
+ return (data_iv, statistic, vectorized, paired, axis_int,
253
+ confidence_level_float, alternative, n_resamples_int, batch_iv,
254
+ method, bootstrap_result, rng)
255
+
256
+
257
+ @dataclass
258
+ class BootstrapResult:
259
+ """Result object returned by `scipy.stats.bootstrap`.
260
+
261
+ Attributes
262
+ ----------
263
+ confidence_interval : ConfidenceInterval
264
+ The bootstrap confidence interval as an instance of
265
+ `collections.namedtuple` with attributes `low` and `high`.
266
+ bootstrap_distribution : ndarray
267
+ The bootstrap distribution, that is, the value of `statistic` for
268
+ each resample. The last dimension corresponds with the resamples
269
+ (e.g. ``res.bootstrap_distribution.shape[-1] == n_resamples``).
270
+ standard_error : float or ndarray
271
+ The bootstrap standard error, that is, the sample standard
272
+ deviation of the bootstrap distribution.
273
+
274
+ """
275
+ confidence_interval: ConfidenceInterval
276
+ bootstrap_distribution: np.ndarray
277
+ standard_error: float | np.ndarray
278
+
279
+
280
+ @_transition_to_rng('random_state')
281
+ def bootstrap(data, statistic, *, n_resamples=9999, batch=None,
282
+ vectorized=None, paired=False, axis=0, confidence_level=0.95,
283
+ alternative='two-sided', method='BCa', bootstrap_result=None,
284
+ rng=None):
285
+ r"""
286
+ Compute a two-sided bootstrap confidence interval of a statistic.
287
+
288
+ When `method` is ``'percentile'`` and `alternative` is ``'two-sided'``,
289
+ a bootstrap confidence interval is computed according to the following
290
+ procedure.
291
+
292
+ 1. Resample the data: for each sample in `data` and for each of
293
+ `n_resamples`, take a random sample of the original sample
294
+ (with replacement) of the same size as the original sample.
295
+
296
+ 2. Compute the bootstrap distribution of the statistic: for each set of
297
+ resamples, compute the test statistic.
298
+
299
+ 3. Determine the confidence interval: find the interval of the bootstrap
300
+ distribution that is
301
+
302
+ - symmetric about the median and
303
+ - contains `confidence_level` of the resampled statistic values.
304
+
305
+ While the ``'percentile'`` method is the most intuitive, it is rarely
306
+ used in practice. Two more common methods are available, ``'basic'``
307
+ ('reverse percentile') and ``'BCa'`` ('bias-corrected and accelerated');
308
+ they differ in how step 3 is performed.
309
+
310
+ If the samples in `data` are taken at random from their respective
311
+ distributions :math:`n` times, the confidence interval returned by
312
+ `bootstrap` will contain the true value of the statistic for those
313
+ distributions approximately `confidence_level`:math:`\, \times \, n` times.
314
+
315
+ Parameters
316
+ ----------
317
+ data : sequence of array-like
318
+ Each element of `data` is a sample containing scalar observations from an
319
+ underlying distribution. Elements of `data` must be broadcastable to the
320
+ same shape (with the possible exception of the dimension specified by `axis`).
321
+ statistic : callable
322
+ Statistic for which the confidence interval is to be calculated.
323
+ `statistic` must be a callable that accepts ``len(data)`` samples
324
+ as separate arguments and returns the resulting statistic.
325
+ If `vectorized` is set ``True``,
326
+ `statistic` must also accept a keyword argument `axis` and be
327
+ vectorized to compute the statistic along the provided `axis`.
328
+ n_resamples : int, default: ``9999``
329
+ The number of resamples performed to form the bootstrap distribution
330
+ of the statistic.
331
+ batch : int, optional
332
+ The number of resamples to process in each vectorized call to
333
+ `statistic`. Memory usage is O( `batch` * ``n`` ), where ``n`` is the
334
+ sample size. Default is ``None``, in which case ``batch = n_resamples``
335
+ (or ``batch = max(n_resamples, n)`` for ``method='BCa'``).
336
+ vectorized : bool, optional
337
+ If `vectorized` is set ``False``, `statistic` will not be passed
338
+ keyword argument `axis` and is expected to calculate the statistic
339
+ only for 1D samples. If ``True``, `statistic` will be passed keyword
340
+ argument `axis` and is expected to calculate the statistic along `axis`
341
+ when passed an ND sample array. If ``None`` (default), `vectorized`
342
+ will be set ``True`` if ``axis`` is a parameter of `statistic`. Use of
343
+ a vectorized statistic typically reduces computation time.
344
+ paired : bool, default: ``False``
345
+ Whether the statistic treats corresponding elements of the samples
346
+ in `data` as paired. If True, `bootstrap` resamples an array of
347
+ *indices* and uses the same indices for all arrays in `data`; otherwise,
348
+ `bootstrap` independently resamples the elements of each array.
349
+ axis : int, default: ``0``
350
+ The axis of the samples in `data` along which the `statistic` is
351
+ calculated.
352
+ confidence_level : float, default: ``0.95``
353
+ The confidence level of the confidence interval.
354
+ alternative : {'two-sided', 'less', 'greater'}, default: ``'two-sided'``
355
+ Choose ``'two-sided'`` (default) for a two-sided confidence interval,
356
+ ``'less'`` for a one-sided confidence interval with the lower bound
357
+ at ``-np.inf``, and ``'greater'`` for a one-sided confidence interval
358
+ with the upper bound at ``np.inf``. The other bound of the one-sided
359
+ confidence intervals is the same as that of a two-sided confidence
360
+ interval with `confidence_level` twice as far from 1.0; e.g. the upper
361
+ bound of a 95% ``'less'`` confidence interval is the same as the upper
362
+ bound of a 90% ``'two-sided'`` confidence interval.
363
+ method : {'percentile', 'basic', 'bca'}, default: ``'BCa'``
364
+ Whether to return the 'percentile' bootstrap confidence interval
365
+ (``'percentile'``), the 'basic' (AKA 'reverse') bootstrap confidence
366
+ interval (``'basic'``), or the bias-corrected and accelerated bootstrap
367
+ confidence interval (``'BCa'``).
368
+ bootstrap_result : BootstrapResult, optional
369
+ Provide the result object returned by a previous call to `bootstrap`
370
+ to include the previous bootstrap distribution in the new bootstrap
371
+ distribution. This can be used, for example, to change
372
+ `confidence_level`, change `method`, or see the effect of performing
373
+ additional resampling without repeating computations.
374
+ rng : `numpy.random.Generator`, optional
375
+ Pseudorandom number generator state. When `rng` is None, a new
376
+ `numpy.random.Generator` is created using entropy from the
377
+ operating system. Types other than `numpy.random.Generator` are
378
+ passed to `numpy.random.default_rng` to instantiate a ``Generator``.
379
+
380
+ Returns
381
+ -------
382
+ res : BootstrapResult
383
+ An object with attributes:
384
+
385
+ confidence_interval : ConfidenceInterval
386
+ The bootstrap confidence interval as an instance of
387
+ `collections.namedtuple` with attributes `low` and `high`.
388
+ bootstrap_distribution : ndarray
389
+ The bootstrap distribution, that is, the value of `statistic` for
390
+ each resample. The last dimension corresponds with the resamples
391
+ (e.g. ``res.bootstrap_distribution.shape[-1] == n_resamples``).
392
+ standard_error : float or ndarray
393
+ The bootstrap standard error, that is, the sample standard
394
+ deviation of the bootstrap distribution.
395
+
396
+ Warns
397
+ -----
398
+ `~scipy.stats.DegenerateDataWarning`
399
+ Generated when ``method='BCa'`` and the bootstrap distribution is
400
+ degenerate (e.g. all elements are identical).
401
+
402
+ Notes
403
+ -----
404
+ Elements of the confidence interval may be NaN for ``method='BCa'`` if
405
+ the bootstrap distribution is degenerate (e.g. all elements are identical).
406
+ In this case, consider using another `method` or inspecting `data` for
407
+ indications that other analysis may be more appropriate (e.g. all
408
+ observations are identical).
409
+
410
+ References
411
+ ----------
412
+ .. [1] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap,
413
+ Chapman & Hall/CRC, Boca Raton, FL, USA (1993)
414
+ .. [2] Nathaniel E. Helwig, "Bootstrap Confidence Intervals",
415
+ http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf
416
+ .. [3] Bootstrapping (statistics), Wikipedia,
417
+ https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
418
+
419
+ Examples
420
+ --------
421
+ Suppose we have sampled data from an unknown distribution.
422
+
423
+ >>> import numpy as np
424
+ >>> rng = np.random.default_rng()
425
+ >>> from scipy.stats import norm
426
+ >>> dist = norm(loc=2, scale=4) # our "unknown" distribution
427
+ >>> data = dist.rvs(size=100, random_state=rng)
428
+
429
+ We are interested in the standard deviation of the distribution.
430
+
431
+ >>> std_true = dist.std() # the true value of the statistic
432
+ >>> print(std_true)
433
+ 4.0
434
+ >>> std_sample = np.std(data) # the sample statistic
435
+ >>> print(std_sample)
436
+ 3.9460644295563863
437
+
438
+ The bootstrap is used to approximate the variability we would expect if we
439
+ were to repeatedly sample from the unknown distribution and calculate the
440
+ statistic of the sample each time. It does this by repeatedly resampling
441
+ values *from the original sample* with replacement and calculating the
442
+ statistic of each resample. This results in a "bootstrap distribution" of
443
+ the statistic.
444
+
445
+ >>> import matplotlib.pyplot as plt
446
+ >>> from scipy.stats import bootstrap
447
+ >>> data = (data,) # samples must be in a sequence
448
+ >>> res = bootstrap(data, np.std, confidence_level=0.9, rng=rng)
449
+ >>> fig, ax = plt.subplots()
450
+ >>> ax.hist(res.bootstrap_distribution, bins=25)
451
+ >>> ax.set_title('Bootstrap Distribution')
452
+ >>> ax.set_xlabel('statistic value')
453
+ >>> ax.set_ylabel('frequency')
454
+ >>> plt.show()
455
+
456
+ The standard error quantifies this variability. It is calculated as the
457
+ standard deviation of the bootstrap distribution.
458
+
459
+ >>> res.standard_error
460
+ 0.24427002125829136
461
+ >>> res.standard_error == np.std(res.bootstrap_distribution, ddof=1)
462
+ True
463
+
464
+ The bootstrap distribution of the statistic is often approximately normal
465
+ with scale equal to the standard error.
466
+
467
+ >>> x = np.linspace(3, 5)
468
+ >>> pdf = norm.pdf(x, loc=std_sample, scale=res.standard_error)
469
+ >>> fig, ax = plt.subplots()
470
+ >>> ax.hist(res.bootstrap_distribution, bins=25, density=True)
471
+ >>> ax.plot(x, pdf)
472
+ >>> ax.set_title('Normal Approximation of the Bootstrap Distribution')
473
+ >>> ax.set_xlabel('statistic value')
474
+ >>> ax.set_ylabel('pdf')
475
+ >>> plt.show()
476
+
477
+ This suggests that we could construct a 90% confidence interval on the
478
+ statistic based on quantiles of this normal distribution.
479
+
480
+ >>> norm.interval(0.9, loc=std_sample, scale=res.standard_error)
481
+ (3.5442759991341726, 4.3478528599786)
482
+
483
+ Due to central limit theorem, this normal approximation is accurate for a
484
+ variety of statistics and distributions underlying the samples; however,
485
+ the approximation is not reliable in all cases. Because `bootstrap` is
486
+ designed to work with arbitrary underlying distributions and statistics,
487
+ it uses more advanced techniques to generate an accurate confidence
488
+ interval.
489
+
490
+ >>> print(res.confidence_interval)
491
+ ConfidenceInterval(low=3.57655333533867, high=4.382043696342881)
492
+
493
+ If we sample from the original distribution 100 times and form a bootstrap
494
+ confidence interval for each sample, the confidence interval
495
+ contains the true value of the statistic approximately 90% of the time.
496
+
497
+ >>> n_trials = 100
498
+ >>> ci_contains_true_std = 0
499
+ >>> for i in range(n_trials):
500
+ ... data = (dist.rvs(size=100, random_state=rng),)
501
+ ... res = bootstrap(data, np.std, confidence_level=0.9,
502
+ ... n_resamples=999, rng=rng)
503
+ ... ci = res.confidence_interval
504
+ ... if ci[0] < std_true < ci[1]:
505
+ ... ci_contains_true_std += 1
506
+ >>> print(ci_contains_true_std)
507
+ 88
508
+
509
+ Rather than writing a loop, we can also determine the confidence intervals
510
+ for all 100 samples at once.
511
+
512
+ >>> data = (dist.rvs(size=(n_trials, 100), random_state=rng),)
513
+ >>> res = bootstrap(data, np.std, axis=-1, confidence_level=0.9,
514
+ ... n_resamples=999, rng=rng)
515
+ >>> ci_l, ci_u = res.confidence_interval
516
+
517
+ Here, `ci_l` and `ci_u` contain the confidence interval for each of the
518
+ ``n_trials = 100`` samples.
519
+
520
+ >>> print(ci_l[:5])
521
+ [3.86401283 3.33304394 3.52474647 3.54160981 3.80569252]
522
+ >>> print(ci_u[:5])
523
+ [4.80217409 4.18143252 4.39734707 4.37549713 4.72843584]
524
+
525
+ And again, approximately 90% contain the true value, ``std_true = 4``.
526
+
527
+ >>> print(np.sum((ci_l < std_true) & (std_true < ci_u)))
528
+ 93
529
+
530
+ `bootstrap` can also be used to estimate confidence intervals of
531
+ multi-sample statistics. For example, to get a confidence interval
532
+ for the difference between means, we write a function that accepts
533
+ two sample arguments and returns only the statistic. The use of the
534
+ ``axis`` argument ensures that all mean calculations are perform in
535
+ a single vectorized call, which is faster than looping over pairs
536
+ of resamples in Python.
537
+
538
+ >>> def my_statistic(sample1, sample2, axis=-1):
539
+ ... mean1 = np.mean(sample1, axis=axis)
540
+ ... mean2 = np.mean(sample2, axis=axis)
541
+ ... return mean1 - mean2
542
+
543
+ Here, we use the 'percentile' method with the default 95% confidence level.
544
+
545
+ >>> sample1 = norm.rvs(scale=1, size=100, random_state=rng)
546
+ >>> sample2 = norm.rvs(scale=2, size=100, random_state=rng)
547
+ >>> data = (sample1, sample2)
548
+ >>> res = bootstrap(data, my_statistic, method='basic', rng=rng)
549
+ >>> print(my_statistic(sample1, sample2))
550
+ 0.16661030792089523
551
+ >>> print(res.confidence_interval)
552
+ ConfidenceInterval(low=-0.29087973240818693, high=0.6371338699912273)
553
+
554
+ The bootstrap estimate of the standard error is also available.
555
+
556
+ >>> print(res.standard_error)
557
+ 0.238323948262459
558
+
559
+ Paired-sample statistics work, too. For example, consider the Pearson
560
+ correlation coefficient.
561
+
562
+ >>> from scipy.stats import pearsonr
563
+ >>> n = 100
564
+ >>> x = np.linspace(0, 10, n)
565
+ >>> y = x + rng.uniform(size=n)
566
+ >>> print(pearsonr(x, y)[0]) # element 0 is the statistic
567
+ 0.9954306665125647
568
+
569
+ We wrap `pearsonr` so that it returns only the statistic, ensuring
570
+ that we use the `axis` argument because it is available.
571
+
572
+ >>> def my_statistic(x, y, axis=-1):
573
+ ... return pearsonr(x, y, axis=axis)[0]
574
+
575
+ We call `bootstrap` using ``paired=True``.
576
+
577
+ >>> res = bootstrap((x, y), my_statistic, paired=True, rng=rng)
578
+ >>> print(res.confidence_interval)
579
+ ConfidenceInterval(low=0.9941504301315878, high=0.996377412215445)
580
+
581
+ The result object can be passed back into `bootstrap` to perform additional
582
+ resampling:
583
+
584
+ >>> len(res.bootstrap_distribution)
585
+ 9999
586
+ >>> res = bootstrap((x, y), my_statistic, paired=True,
587
+ ... n_resamples=1000, rng=rng,
588
+ ... bootstrap_result=res)
589
+ >>> len(res.bootstrap_distribution)
590
+ 10999
591
+
592
+ or to change the confidence interval options:
593
+
594
+ >>> res2 = bootstrap((x, y), my_statistic, paired=True,
595
+ ... n_resamples=0, rng=rng, bootstrap_result=res,
596
+ ... method='percentile', confidence_level=0.9)
597
+ >>> np.testing.assert_equal(res2.bootstrap_distribution,
598
+ ... res.bootstrap_distribution)
599
+ >>> res.confidence_interval
600
+ ConfidenceInterval(low=0.9941574828235082, high=0.9963781698210212)
601
+
602
+ without repeating computation of the original bootstrap distribution.
603
+
604
+ """
605
+ # Input validation
606
+ args = _bootstrap_iv(data, statistic, vectorized, paired, axis,
607
+ confidence_level, alternative, n_resamples, batch,
608
+ method, bootstrap_result, rng)
609
+ (data, statistic, vectorized, paired, axis, confidence_level,
610
+ alternative, n_resamples, batch, method, bootstrap_result,
611
+ rng) = args
612
+
613
+ theta_hat_b = ([] if bootstrap_result is None
614
+ else [bootstrap_result.bootstrap_distribution])
615
+
616
+ batch_nominal = batch or n_resamples or 1
617
+
618
+ for k in range(0, n_resamples, batch_nominal):
619
+ batch_actual = min(batch_nominal, n_resamples-k)
620
+ # Generate resamples
621
+ resampled_data = []
622
+ for sample in data:
623
+ resample = _bootstrap_resample(sample, n_resamples=batch_actual,
624
+ rng=rng)
625
+ resampled_data.append(resample)
626
+
627
+ # Compute bootstrap distribution of statistic
628
+ theta_hat_b.append(statistic(*resampled_data, axis=-1))
629
+ theta_hat_b = np.concatenate(theta_hat_b, axis=-1)
630
+
631
+ # Calculate percentile interval
632
+ alpha = ((1 - confidence_level)/2 if alternative == 'two-sided'
633
+ else (1 - confidence_level))
634
+ if method == 'bca':
635
+ interval = _bca_interval(data, statistic, axis=-1, alpha=alpha,
636
+ theta_hat_b=theta_hat_b, batch=batch)[:2]
637
+ percentile_fun = _percentile_along_axis
638
+ else:
639
+ interval = alpha, 1-alpha
640
+
641
+ def percentile_fun(a, q):
642
+ return np.percentile(a=a, q=q, axis=-1)
643
+
644
+ # Calculate confidence interval of statistic
645
+ ci_l = percentile_fun(theta_hat_b, interval[0]*100)
646
+ ci_u = percentile_fun(theta_hat_b, interval[1]*100)
647
+ if method == 'basic': # see [3]
648
+ theta_hat = statistic(*data, axis=-1)
649
+ ci_l, ci_u = 2*theta_hat - ci_u, 2*theta_hat - ci_l
650
+
651
+ if alternative == 'less':
652
+ ci_l = np.full_like(ci_l, -np.inf)
653
+ elif alternative == 'greater':
654
+ ci_u = np.full_like(ci_u, np.inf)
655
+
656
+ return BootstrapResult(confidence_interval=ConfidenceInterval(ci_l, ci_u),
657
+ bootstrap_distribution=theta_hat_b,
658
+ standard_error=np.std(theta_hat_b, ddof=1, axis=-1))
659
+
660
+
661
+ def _monte_carlo_test_iv(data, rvs, statistic, vectorized, n_resamples,
662
+ batch, alternative, axis):
663
+ """Input validation for `monte_carlo_test`."""
664
+ axis_int = int(axis)
665
+ if axis != axis_int:
666
+ raise ValueError("`axis` must be an integer.")
667
+
668
+ if vectorized not in {True, False, None}:
669
+ raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
670
+
671
+ if not isinstance(rvs, Sequence):
672
+ rvs = (rvs,)
673
+ data = (data,)
674
+ for rvs_i in rvs:
675
+ if not callable(rvs_i):
676
+ raise TypeError("`rvs` must be callable or sequence of callables.")
677
+
678
+ # At this point, `data` should be a sequence
679
+ # If it isn't, the user passed a sequence for `rvs` but not `data`
680
+ message = "If `rvs` is a sequence, `len(rvs)` must equal `len(data)`."
681
+ try:
682
+ len(data)
683
+ except TypeError as e:
684
+ raise ValueError(message) from e
685
+ if not len(rvs) == len(data):
686
+ raise ValueError(message)
687
+
688
+ if not callable(statistic):
689
+ raise TypeError("`statistic` must be callable.")
690
+
691
+ if vectorized is None:
692
+ try:
693
+ signature = inspect.signature(statistic).parameters
694
+ except ValueError as e:
695
+ message = (f"Signature inspection of {statistic=} failed; "
696
+ "pass `vectorize` explicitly.")
697
+ raise ValueError(message) from e
698
+ vectorized = 'axis' in signature
699
+
700
+ xp = array_namespace(*data)
701
+ dtype = xp_result_type(*data, force_floating=True, xp=xp)
702
+
703
+ if not vectorized:
704
+ if is_numpy(xp):
705
+ statistic_vectorized = _vectorize_statistic(statistic)
706
+ else:
707
+ message = ("`statistic` must be vectorized (i.e. support an `axis` "
708
+ f"argument) when `data` contains {xp.__name__} arrays.")
709
+ raise ValueError(message)
710
+ else:
711
+ statistic_vectorized = statistic
712
+
713
+ data = _broadcast_arrays(data, axis, xp=xp)
714
+ data_iv = []
715
+ for sample in data:
716
+ sample = xp.broadcast_to(sample, (1,)) if sample.ndim == 0 else sample
717
+ sample = xp.moveaxis(sample, axis_int, -1)
718
+ data_iv.append(sample)
719
+
720
+ n_resamples_int = int(n_resamples)
721
+ if n_resamples != n_resamples_int or n_resamples_int <= 0:
722
+ raise ValueError("`n_resamples` must be a positive integer.")
723
+
724
+ if batch is None:
725
+ batch_iv = batch
726
+ else:
727
+ batch_iv = int(batch)
728
+ if batch != batch_iv or batch_iv <= 0:
729
+ raise ValueError("`batch` must be a positive integer or None.")
730
+
731
+ alternatives = {'two-sided', 'greater', 'less'}
732
+ alternative = alternative.lower()
733
+ if alternative not in alternatives:
734
+ raise ValueError(f"`alternative` must be in {alternatives}")
735
+
736
+ return (data_iv, rvs, statistic_vectorized, vectorized, n_resamples_int,
737
+ batch_iv, alternative, axis_int, dtype, xp)
738
+
739
+
740
+ @dataclass
741
+ class MonteCarloTestResult:
742
+ """Result object returned by `scipy.stats.monte_carlo_test`.
743
+
744
+ Attributes
745
+ ----------
746
+ statistic : float or ndarray
747
+ The observed test statistic of the sample.
748
+ pvalue : float or ndarray
749
+ The p-value for the given alternative.
750
+ null_distribution : ndarray
751
+ The values of the test statistic generated under the null
752
+ hypothesis.
753
+ """
754
+ statistic: float | np.ndarray
755
+ pvalue: float | np.ndarray
756
+ null_distribution: np.ndarray
757
+
758
+
759
+ @_rename_parameter('sample', 'data')
760
+ def monte_carlo_test(data, rvs, statistic, *, vectorized=None,
761
+ n_resamples=9999, batch=None, alternative="two-sided",
762
+ axis=0):
763
+ r"""Perform a Monte Carlo hypothesis test.
764
+
765
+ `data` contains a sample or a sequence of one or more samples. `rvs`
766
+ specifies the distribution(s) of the sample(s) in `data` under the null
767
+ hypothesis. The value of `statistic` for the given `data` is compared
768
+ against a Monte Carlo null distribution: the value of the statistic for
769
+ each of `n_resamples` sets of samples generated using `rvs`. This gives
770
+ the p-value, the probability of observing such an extreme value of the
771
+ test statistic under the null hypothesis.
772
+
773
+ Parameters
774
+ ----------
775
+ data : array-like or sequence of array-like
776
+ An array or sequence of arrays of observations.
777
+ rvs : callable or tuple of callables
778
+ A callable or sequence of callables that generates random variates
779
+ under the null hypothesis. Each element of `rvs` must be a callable
780
+ that accepts keyword argument ``size`` (e.g. ``rvs(size=(m, n))``) and
781
+ returns an N-d array sample of that shape. If `rvs` is a sequence, the
782
+ number of callables in `rvs` must match the number of samples in
783
+ `data`, i.e. ``len(rvs) == len(data)``. If `rvs` is a single callable,
784
+ `data` is treated as a single sample.
785
+ statistic : callable
786
+ Statistic for which the p-value of the hypothesis test is to be
787
+ calculated. `statistic` must be a callable that accepts a sample
788
+ (e.g. ``statistic(sample)``) or ``len(rvs)`` separate samples (e.g.
789
+ ``statistic(samples1, sample2)`` if `rvs` contains two callables and
790
+ `data` contains two samples) and returns the resulting statistic.
791
+ If `vectorized` is set ``True``, `statistic` must also accept a keyword
792
+ argument `axis` and be vectorized to compute the statistic along the
793
+ provided `axis` of the samples in `data`.
794
+ vectorized : bool, optional
795
+ If `vectorized` is set ``False``, `statistic` will not be passed
796
+ keyword argument `axis` and is expected to calculate the statistic
797
+ only for 1D samples. If ``True``, `statistic` will be passed keyword
798
+ argument `axis` and is expected to calculate the statistic along `axis`
799
+ when passed ND sample arrays. If ``None`` (default), `vectorized`
800
+ will be set ``True`` if ``axis`` is a parameter of `statistic`. Use of
801
+ a vectorized statistic typically reduces computation time.
802
+ n_resamples : int, default: 9999
803
+ Number of samples drawn from each of the callables of `rvs`.
804
+ Equivalently, the number statistic values under the null hypothesis
805
+ used as the Monte Carlo null distribution.
806
+ batch : int, optional
807
+ The number of Monte Carlo samples to process in each call to
808
+ `statistic`. Memory usage is O( `batch` * ``sample.size[axis]`` ). Default
809
+ is ``None``, in which case `batch` equals `n_resamples`.
810
+ alternative : {'two-sided', 'less', 'greater'}
811
+ The alternative hypothesis for which the p-value is calculated.
812
+ For each alternative, the p-value is defined as follows.
813
+
814
+ - ``'greater'`` : the percentage of the null distribution that is
815
+ greater than or equal to the observed value of the test statistic.
816
+ - ``'less'`` : the percentage of the null distribution that is
817
+ less than or equal to the observed value of the test statistic.
818
+ - ``'two-sided'`` : twice the smaller of the p-values above.
819
+
820
+ axis : int, default: 0
821
+ The axis of `data` (or each sample within `data`) over which to
822
+ calculate the statistic.
823
+
824
+ Returns
825
+ -------
826
+ res : MonteCarloTestResult
827
+ An object with attributes:
828
+
829
+ statistic : float or ndarray
830
+ The test statistic of the observed `data`.
831
+ pvalue : float or ndarray
832
+ The p-value for the given alternative.
833
+ null_distribution : ndarray
834
+ The values of the test statistic generated under the null
835
+ hypothesis.
836
+
837
+ .. warning::
838
+ The p-value is calculated by counting the elements of the null
839
+ distribution that are as extreme or more extreme than the observed
840
+ value of the statistic. Due to the use of finite precision arithmetic,
841
+ some statistic functions return numerically distinct values when the
842
+ theoretical values would be exactly equal. In some cases, this could
843
+ lead to a large error in the calculated p-value. `monte_carlo_test`
844
+ guards against this by considering elements in the null distribution
845
+ that are "close" (within a relative tolerance of 100 times the
846
+ floating point epsilon of inexact dtypes) to the observed
847
+ value of the test statistic as equal to the observed value of the
848
+ test statistic. However, the user is advised to inspect the null
849
+ distribution to assess whether this method of comparison is
850
+ appropriate, and if not, calculate the p-value manually.
851
+
852
+ References
853
+ ----------
854
+
855
+ .. [1] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
856
+ Zero: Calculating Exact P-values When Permutations Are Randomly Drawn."
857
+ Statistical Applications in Genetics and Molecular Biology 9.1 (2010).
858
+
859
+ Examples
860
+ --------
861
+
862
+ Suppose we wish to test whether a small sample has been drawn from a normal
863
+ distribution. We decide that we will use the skew of the sample as a
864
+ test statistic, and we will consider a p-value of 0.05 to be statistically
865
+ significant.
866
+
867
+ >>> import numpy as np
868
+ >>> from scipy import stats
869
+ >>> def statistic(x, axis):
870
+ ... return stats.skew(x, axis)
871
+
872
+ After collecting our data, we calculate the observed value of the test
873
+ statistic.
874
+
875
+ >>> rng = np.random.default_rng()
876
+ >>> x = stats.skewnorm.rvs(a=1, size=50, random_state=rng)
877
+ >>> statistic(x, axis=0)
878
+ 0.12457412450240658
879
+
880
+ To determine the probability of observing such an extreme value of the
881
+ skewness by chance if the sample were drawn from the normal distribution,
882
+ we can perform a Monte Carlo hypothesis test. The test will draw many
883
+ samples at random from their normal distribution, calculate the skewness
884
+ of each sample, and compare our original skewness against this
885
+ distribution to determine an approximate p-value.
886
+
887
+ >>> from scipy.stats import monte_carlo_test
888
+ >>> # because our statistic is vectorized, we pass `vectorized=True`
889
+ >>> rvs = lambda size: stats.norm.rvs(size=size, random_state=rng)
890
+ >>> res = monte_carlo_test(x, rvs, statistic, vectorized=True)
891
+ >>> print(res.statistic)
892
+ 0.12457412450240658
893
+ >>> print(res.pvalue)
894
+ 0.7012
895
+
896
+ The probability of obtaining a test statistic less than or equal to the
897
+ observed value under the null hypothesis is ~70%. This is greater than
898
+ our chosen threshold of 5%, so we cannot consider this to be significant
899
+ evidence against the null hypothesis.
900
+
901
+ Note that this p-value essentially matches that of
902
+ `scipy.stats.skewtest`, which relies on an asymptotic distribution of a
903
+ test statistic based on the sample skewness.
904
+
905
+ >>> stats.skewtest(x).pvalue
906
+ 0.6892046027110614
907
+
908
+ This asymptotic approximation is not valid for small sample sizes, but
909
+ `monte_carlo_test` can be used with samples of any size.
910
+
911
+ >>> x = stats.skewnorm.rvs(a=1, size=7, random_state=rng)
912
+ >>> # stats.skewtest(x) would produce an error due to small sample
913
+ >>> res = monte_carlo_test(x, rvs, statistic, vectorized=True)
914
+
915
+ The Monte Carlo distribution of the test statistic is provided for
916
+ further investigation.
917
+
918
+ >>> import matplotlib.pyplot as plt
919
+ >>> fig, ax = plt.subplots()
920
+ >>> ax.hist(res.null_distribution, bins=50)
921
+ >>> ax.set_title("Monte Carlo distribution of test statistic")
922
+ >>> ax.set_xlabel("Value of Statistic")
923
+ >>> ax.set_ylabel("Frequency")
924
+ >>> plt.show()
925
+
926
+ """
927
+ args = _monte_carlo_test_iv(data, rvs, statistic, vectorized,
928
+ n_resamples, batch, alternative, axis)
929
+ (data, rvs, statistic, vectorized, n_resamples,
930
+ batch, alternative, axis, dtype, xp) = args
931
+
932
+ # Some statistics return plain floats; ensure they're at least a NumPy float
933
+ observed = xp.asarray(statistic(*data, axis=-1))
934
+ observed = observed[()] if observed.ndim == 0 else observed
935
+
936
+ n_observations = [sample.shape[-1] for sample in data]
937
+ batch_nominal = batch or n_resamples
938
+ null_distribution = []
939
+ for k in range(0, n_resamples, batch_nominal):
940
+ batch_actual = min(batch_nominal, n_resamples - k)
941
+ resamples = [rvs_i(size=(batch_actual, n_observations_i))
942
+ for rvs_i, n_observations_i in zip(rvs, n_observations)]
943
+ null_distribution.append(statistic(*resamples, axis=-1))
944
+ null_distribution = xp.concat(null_distribution)
945
+ null_distribution = xp.reshape(null_distribution, (-1,) + (1,)*observed.ndim)
946
+
947
+ # relative tolerance for detecting numerically distinct but
948
+ # theoretically equal values in the null distribution
949
+ eps = (0 if not xp.isdtype(observed.dtype, ('real floating'))
950
+ else xp.finfo(observed.dtype).eps*100)
951
+ gamma = xp.abs(eps * observed)
952
+
953
+ def less(null_distribution, observed):
954
+ cmps = null_distribution <= observed + gamma
955
+ cmps = xp.asarray(cmps, dtype=dtype)
956
+ pvalues = (xp.sum(cmps, axis=0, dtype=dtype) + 1.) / (n_resamples + 1.)
957
+ return pvalues
958
+
959
+ def greater(null_distribution, observed):
960
+ cmps = null_distribution >= observed - gamma
961
+ cmps = xp.asarray(cmps, dtype=dtype)
962
+ pvalues = (xp.sum(cmps, axis=0, dtype=dtype) + 1.) / (n_resamples + 1.)
963
+ return pvalues
964
+
965
+ def two_sided(null_distribution, observed):
966
+ pvalues_less = less(null_distribution, observed)
967
+ pvalues_greater = greater(null_distribution, observed)
968
+ pvalues = xp.minimum(pvalues_less, pvalues_greater) * 2
969
+ return pvalues
970
+
971
+ compare = {"less": less,
972
+ "greater": greater,
973
+ "two-sided": two_sided}
974
+
975
+ pvalues = compare[alternative](null_distribution, observed)
976
+ pvalues = xp.clip(pvalues, 0., 1.)
977
+
978
+ return MonteCarloTestResult(observed, pvalues, null_distribution)
979
+
980
+
981
+ @dataclass
982
+ class PowerResult:
983
+ """Result object returned by `scipy.stats.power`.
984
+
985
+ Attributes
986
+ ----------
987
+ power : float or ndarray
988
+ The estimated power.
989
+ pvalues : float or ndarray
990
+ The simulated p-values.
991
+ """
992
+ power: float | np.ndarray
993
+ pvalues: float | np.ndarray
994
+
995
+
996
+ def _wrap_kwargs(fun):
997
+ """Wrap callable to accept arbitrary kwargs and ignore unused ones"""
998
+
999
+ try:
1000
+ keys = set(inspect.signature(fun).parameters.keys())
1001
+ except ValueError:
1002
+ # NumPy Generator methods can't be inspected
1003
+ keys = {'size'}
1004
+
1005
+ # Set keys=keys/fun=fun to avoid late binding gotcha
1006
+ def wrapped_rvs_i(*args, keys=keys, fun=fun, **all_kwargs):
1007
+ kwargs = {key: val for key, val in all_kwargs.items()
1008
+ if key in keys}
1009
+ return fun(*args, **kwargs)
1010
+ return wrapped_rvs_i
1011
+
1012
+
1013
+ def _power_iv(rvs, test, n_observations, significance, vectorized,
1014
+ n_resamples, batch, kwargs):
1015
+ """Input validation for `monte_carlo_test`."""
1016
+
1017
+ if vectorized not in {True, False, None}:
1018
+ raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
1019
+
1020
+ if not isinstance(rvs, Sequence):
1021
+ rvs = (rvs,)
1022
+ n_observations = (n_observations,)
1023
+ for rvs_i in rvs:
1024
+ if not callable(rvs_i):
1025
+ raise TypeError("`rvs` must be callable or sequence of callables.")
1026
+
1027
+ if not len(rvs) == len(n_observations):
1028
+ message = ("If `rvs` is a sequence, `len(rvs)` "
1029
+ "must equal `len(n_observations)`.")
1030
+ raise ValueError(message)
1031
+
1032
+ significance = np.asarray(significance)[()]
1033
+ if (not np.issubdtype(significance.dtype, np.floating)
1034
+ or np.min(significance) < 0 or np.max(significance) > 1):
1035
+ raise ValueError("`significance` must contain floats between 0 and 1.")
1036
+
1037
+ kwargs = dict() if kwargs is None else kwargs
1038
+ if not isinstance(kwargs, dict):
1039
+ raise TypeError("`kwargs` must be a dictionary that maps keywords to arrays.")
1040
+
1041
+ vals = kwargs.values()
1042
+ keys = kwargs.keys()
1043
+
1044
+ # Wrap callables to ignore unused keyword arguments
1045
+ wrapped_rvs = [_wrap_kwargs(rvs_i) for rvs_i in rvs]
1046
+
1047
+ # Broadcast, then ravel nobs/kwarg combinations. In the end,
1048
+ # `nobs` and `vals` have shape (# of combinations, number of variables)
1049
+ tmp = np.asarray(np.broadcast_arrays(*n_observations, *vals))
1050
+ shape = tmp.shape
1051
+ if tmp.ndim == 1:
1052
+ tmp = tmp[np.newaxis, :]
1053
+ else:
1054
+ tmp = tmp.reshape((shape[0], -1)).T
1055
+ nobs, vals = tmp[:, :len(rvs)], tmp[:, len(rvs):]
1056
+ nobs = nobs.astype(int)
1057
+
1058
+ if not callable(test):
1059
+ raise TypeError("`test` must be callable.")
1060
+
1061
+ if vectorized is None:
1062
+ vectorized = 'axis' in inspect.signature(test).parameters
1063
+
1064
+ if not vectorized:
1065
+ test_vectorized = _vectorize_statistic(test)
1066
+ else:
1067
+ test_vectorized = test
1068
+ # Wrap `test` function to ignore unused kwargs
1069
+ test_vectorized = _wrap_kwargs(test_vectorized)
1070
+
1071
+ n_resamples_int = int(n_resamples)
1072
+ if n_resamples != n_resamples_int or n_resamples_int <= 0:
1073
+ raise ValueError("`n_resamples` must be a positive integer.")
1074
+
1075
+ if batch is None:
1076
+ batch_iv = batch
1077
+ else:
1078
+ batch_iv = int(batch)
1079
+ if batch != batch_iv or batch_iv <= 0:
1080
+ raise ValueError("`batch` must be a positive integer or None.")
1081
+
1082
+ return (wrapped_rvs, test_vectorized, nobs, significance, vectorized,
1083
+ n_resamples_int, batch_iv, vals, keys, shape[1:])
1084
+
1085
+
1086
+ def power(test, rvs, n_observations, *, significance=0.01, vectorized=None,
1087
+ n_resamples=10000, batch=None, kwargs=None):
1088
+ r"""Simulate the power of a hypothesis test under an alternative hypothesis.
1089
+
1090
+ Parameters
1091
+ ----------
1092
+ test : callable
1093
+ Hypothesis test for which the power is to be simulated.
1094
+ `test` must be a callable that accepts a sample (e.g. ``test(sample)``)
1095
+ or ``len(rvs)`` separate samples (e.g. ``test(samples1, sample2)`` if
1096
+ `rvs` contains two callables and `n_observations` contains two values)
1097
+ and returns the p-value of the test.
1098
+ If `vectorized` is set to ``True``, `test` must also accept a keyword
1099
+ argument `axis` and be vectorized to perform the test along the
1100
+ provided `axis` of the samples.
1101
+ Any callable from `scipy.stats` with an `axis` argument that returns an
1102
+ object with a `pvalue` attribute is also acceptable.
1103
+ rvs : callable or tuple of callables
1104
+ A callable or sequence of callables that generate(s) random variates
1105
+ under the alternative hypothesis. Each element of `rvs` must accept
1106
+ keyword argument ``size`` (e.g. ``rvs(size=(m, n))``) and return an
1107
+ N-d array of that shape. If `rvs` is a sequence, the number of callables
1108
+ in `rvs` must match the number of elements of `n_observations`, i.e.
1109
+ ``len(rvs) == len(n_observations)``. If `rvs` is a single callable,
1110
+ `n_observations` is treated as a single element.
1111
+ n_observations : tuple of ints or tuple of integer arrays
1112
+ If a sequence of ints, each is the sizes of a sample to be passed to `test`.
1113
+ If a sequence of integer arrays, the power is simulated for each
1114
+ set of corresponding sample sizes. See Examples.
1115
+ significance : float or array_like of floats, default: 0.01
1116
+ The threshold for significance; i.e., the p-value below which the
1117
+ hypothesis test results will be considered as evidence against the null
1118
+ hypothesis. Equivalently, the acceptable rate of Type I error under
1119
+ the null hypothesis. If an array, the power is simulated for each
1120
+ significance threshold.
1121
+ kwargs : dict, optional
1122
+ Keyword arguments to be passed to `rvs` and/or `test` callables.
1123
+ Introspection is used to determine which keyword arguments may be
1124
+ passed to each callable.
1125
+ The value corresponding with each keyword must be an array.
1126
+ Arrays must be broadcastable with one another and with each array in
1127
+ `n_observations`. The power is simulated for each set of corresponding
1128
+ sample sizes and arguments. See Examples.
1129
+ vectorized : bool, optional
1130
+ If `vectorized` is set to ``False``, `test` will not be passed keyword
1131
+ argument `axis` and is expected to perform the test only for 1D samples.
1132
+ If ``True``, `test` will be passed keyword argument `axis` and is
1133
+ expected to perform the test along `axis` when passed N-D sample arrays.
1134
+ If ``None`` (default), `vectorized` will be set ``True`` if ``axis`` is
1135
+ a parameter of `test`. Use of a vectorized test typically reduces
1136
+ computation time.
1137
+ n_resamples : int, default: 10000
1138
+ Number of samples drawn from each of the callables of `rvs`.
1139
+ Equivalently, the number tests performed under the alternative
1140
+ hypothesis to approximate the power.
1141
+ batch : int, optional
1142
+ The number of samples to process in each call to `test`. Memory usage is
1143
+ proportional to the product of `batch` and the largest sample size. Default
1144
+ is ``None``, in which case `batch` equals `n_resamples`.
1145
+
1146
+ Returns
1147
+ -------
1148
+ res : PowerResult
1149
+ An object with attributes:
1150
+
1151
+ power : float or ndarray
1152
+ The estimated power against the alternative.
1153
+ pvalues : ndarray
1154
+ The p-values observed under the alternative hypothesis.
1155
+
1156
+ Notes
1157
+ -----
1158
+ The power is simulated as follows:
1159
+
1160
+ - Draw many random samples (or sets of samples), each of the size(s)
1161
+ specified by `n_observations`, under the alternative specified by
1162
+ `rvs`.
1163
+ - For each sample (or set of samples), compute the p-value according to
1164
+ `test`. These p-values are recorded in the ``pvalues`` attribute of
1165
+ the result object.
1166
+ - Compute the proportion of p-values that are less than the `significance`
1167
+ level. This is the power recorded in the ``power`` attribute of the
1168
+ result object.
1169
+
1170
+ Suppose that `significance` is an array with shape ``shape1``, the elements
1171
+ of `kwargs` and `n_observations` are mutually broadcastable to shape ``shape2``,
1172
+ and `test` returns an array of p-values of shape ``shape3``. Then the result
1173
+ object ``power`` attribute will be of shape ``shape1 + shape2 + shape3``, and
1174
+ the ``pvalues`` attribute will be of shape ``shape2 + shape3 + (n_resamples,)``.
1175
+
1176
+ Examples
1177
+ --------
1178
+ Suppose we wish to simulate the power of the independent sample t-test
1179
+ under the following conditions:
1180
+
1181
+ - The first sample has 10 observations drawn from a normal distribution
1182
+ with mean 0.
1183
+ - The second sample has 12 observations drawn from a normal distribution
1184
+ with mean 1.0.
1185
+ - The threshold on p-values for significance is 0.05.
1186
+
1187
+ >>> import numpy as np
1188
+ >>> from scipy import stats
1189
+ >>> rng = np.random.default_rng(2549598345528)
1190
+ >>>
1191
+ >>> test = stats.ttest_ind
1192
+ >>> n_observations = (10, 12)
1193
+ >>> rvs1 = rng.normal
1194
+ >>> rvs2 = lambda size: rng.normal(loc=1, size=size)
1195
+ >>> rvs = (rvs1, rvs2)
1196
+ >>> res = stats.power(test, rvs, n_observations, significance=0.05)
1197
+ >>> res.power
1198
+ 0.6116
1199
+
1200
+ With samples of size 10 and 12, respectively, the power of the t-test
1201
+ with a significance threshold of 0.05 is approximately 60% under the chosen
1202
+ alternative. We can investigate the effect of sample size on the power
1203
+ by passing sample size arrays.
1204
+
1205
+ >>> import matplotlib.pyplot as plt
1206
+ >>> nobs_x = np.arange(5, 21)
1207
+ >>> nobs_y = nobs_x
1208
+ >>> n_observations = (nobs_x, nobs_y)
1209
+ >>> res = stats.power(test, rvs, n_observations, significance=0.05)
1210
+ >>> ax = plt.subplot()
1211
+ >>> ax.plot(nobs_x, res.power)
1212
+ >>> ax.set_xlabel('Sample Size')
1213
+ >>> ax.set_ylabel('Simulated Power')
1214
+ >>> ax.set_title('Simulated Power of `ttest_ind` with Equal Sample Sizes')
1215
+ >>> plt.show()
1216
+
1217
+ Alternatively, we can investigate the impact that effect size has on the power.
1218
+ In this case, the effect size is the location of the distribution underlying
1219
+ the second sample.
1220
+
1221
+ >>> n_observations = (10, 12)
1222
+ >>> loc = np.linspace(0, 1, 20)
1223
+ >>> rvs2 = lambda size, loc: rng.normal(loc=loc, size=size)
1224
+ >>> rvs = (rvs1, rvs2)
1225
+ >>> res = stats.power(test, rvs, n_observations, significance=0.05,
1226
+ ... kwargs={'loc': loc})
1227
+ >>> ax = plt.subplot()
1228
+ >>> ax.plot(loc, res.power)
1229
+ >>> ax.set_xlabel('Effect Size')
1230
+ >>> ax.set_ylabel('Simulated Power')
1231
+ >>> ax.set_title('Simulated Power of `ttest_ind`, Varying Effect Size')
1232
+ >>> plt.show()
1233
+
1234
+ We can also use `power` to estimate the Type I error rate (also referred to by the
1235
+ ambiguous term "size") of a test and assess whether it matches the nominal level.
1236
+ For example, the null hypothesis of `jarque_bera` is that the sample was drawn from
1237
+ a distribution with the same skewness and kurtosis as the normal distribution. To
1238
+ estimate the Type I error rate, we can consider the null hypothesis to be a true
1239
+ *alternative* hypothesis and calculate the power.
1240
+
1241
+ >>> test = stats.jarque_bera
1242
+ >>> n_observations = 10
1243
+ >>> rvs = rng.normal
1244
+ >>> significance = np.linspace(0.0001, 0.1, 1000)
1245
+ >>> res = stats.power(test, rvs, n_observations, significance=significance)
1246
+ >>> size = res.power
1247
+
1248
+ As shown below, the Type I error rate of the test is far below the nominal level
1249
+ for such a small sample, as mentioned in its documentation.
1250
+
1251
+ >>> ax = plt.subplot()
1252
+ >>> ax.plot(significance, size)
1253
+ >>> ax.plot([0, 0.1], [0, 0.1], '--')
1254
+ >>> ax.set_xlabel('nominal significance level')
1255
+ >>> ax.set_ylabel('estimated test size (Type I error rate)')
1256
+ >>> ax.set_title('Estimated test size vs nominal significance level')
1257
+ >>> ax.set_aspect('equal', 'box')
1258
+ >>> ax.legend(('`ttest_1samp`', 'ideal test'))
1259
+ >>> plt.show()
1260
+
1261
+ As one might expect from such a conservative test, the power is quite low with
1262
+ respect to some alternatives. For example, the power of the test under the
1263
+ alternative that the sample was drawn from the Laplace distribution may not
1264
+ be much greater than the Type I error rate.
1265
+
1266
+ >>> rvs = rng.laplace
1267
+ >>> significance = np.linspace(0.0001, 0.1, 1000)
1268
+ >>> res = stats.power(test, rvs, n_observations, significance=0.05)
1269
+ >>> print(res.power)
1270
+ 0.0587
1271
+
1272
+ This is not a mistake in SciPy's implementation; it is simply due to the fact
1273
+ that the null distribution of the test statistic is derived under the assumption
1274
+ that the sample size is large (i.e. approaches infinity), and this asymptotic
1275
+ approximation is not accurate for small samples. In such cases, resampling
1276
+ and Monte Carlo methods (e.g. `permutation_test`, `goodness_of_fit`,
1277
+ `monte_carlo_test`) may be more appropriate.
1278
+
1279
+ """
1280
+ tmp = _power_iv(rvs, test, n_observations, significance,
1281
+ vectorized, n_resamples, batch, kwargs)
1282
+ (rvs, test, nobs, significance,
1283
+ vectorized, n_resamples, batch, args, kwds, shape)= tmp
1284
+
1285
+ batch_nominal = batch or n_resamples
1286
+ pvalues = [] # results of various nobs/kwargs combinations
1287
+ for nobs_i, args_i in zip(nobs, args):
1288
+ kwargs_i = dict(zip(kwds, args_i))
1289
+ pvalues_i = [] # results of batches; fixed nobs/kwargs combination
1290
+ for k in range(0, n_resamples, batch_nominal):
1291
+ batch_actual = min(batch_nominal, n_resamples - k)
1292
+ resamples = [rvs_j(size=(batch_actual, nobs_ij), **kwargs_i)
1293
+ for rvs_j, nobs_ij in zip(rvs, nobs_i)]
1294
+ res = test(*resamples, **kwargs_i, axis=-1)
1295
+ p = getattr(res, 'pvalue', res)
1296
+ pvalues_i.append(p)
1297
+ # Concatenate results from batches
1298
+ pvalues_i = np.concatenate(pvalues_i, axis=-1)
1299
+ pvalues.append(pvalues_i)
1300
+ # `test` can return result with array of p-values
1301
+ shape += pvalues_i.shape[:-1]
1302
+ # Concatenate results from various nobs/kwargs combinations
1303
+ pvalues = np.concatenate(pvalues, axis=0)
1304
+ # nobs/kwargs arrays were raveled to single axis; unravel
1305
+ pvalues = pvalues.reshape(shape + (-1,))
1306
+ if significance.ndim > 0:
1307
+ newdims = tuple(range(significance.ndim, pvalues.ndim + significance.ndim))
1308
+ significance = np.expand_dims(significance, newdims)
1309
+ powers = np.mean(pvalues < significance, axis=-1)
1310
+
1311
+ return PowerResult(power=powers, pvalues=pvalues)
1312
+
1313
+
1314
+ @dataclass
1315
+ class PermutationTestResult:
1316
+ """Result object returned by `scipy.stats.permutation_test`.
1317
+
1318
+ Attributes
1319
+ ----------
1320
+ statistic : float or ndarray
1321
+ The observed test statistic of the data.
1322
+ pvalue : float or ndarray
1323
+ The p-value for the given alternative.
1324
+ null_distribution : ndarray
1325
+ The values of the test statistic generated under the null
1326
+ hypothesis.
1327
+ """
1328
+ statistic: float | np.ndarray
1329
+ pvalue: float | np.ndarray
1330
+ null_distribution: np.ndarray
1331
+
1332
+
1333
+ def _all_partitions_concatenated(ns):
1334
+ """
1335
+ Generate all partitions of indices of groups of given sizes, concatenated
1336
+
1337
+ `ns` is an iterable of ints.
1338
+ """
1339
+ def all_partitions(z, n):
1340
+ for c in combinations(z, n):
1341
+ x0 = set(c)
1342
+ x1 = z - x0
1343
+ yield [x0, x1]
1344
+
1345
+ def all_partitions_n(z, ns):
1346
+ if len(ns) == 0:
1347
+ yield [z]
1348
+ return
1349
+ for c in all_partitions(z, ns[0]):
1350
+ for d in all_partitions_n(c[1], ns[1:]):
1351
+ yield c[0:1] + d
1352
+
1353
+ z = set(range(np.sum(ns)))
1354
+ for partitioning in all_partitions_n(z, ns[:]):
1355
+ x = np.concatenate([list(partition)
1356
+ for partition in partitioning]).astype(int)
1357
+ yield x
1358
+
1359
+
1360
+ def _batch_generator(iterable, batch):
1361
+ """A generator that yields batches of elements from an iterable"""
1362
+ iterator = iter(iterable)
1363
+ if batch <= 0:
1364
+ raise ValueError("`batch` must be positive.")
1365
+ z = [item for i, item in zip(range(batch), iterator)]
1366
+ while z: # we don't want StopIteration without yielding an empty list
1367
+ yield z
1368
+ z = [item for i, item in zip(range(batch), iterator)]
1369
+
1370
+
1371
+ def _pairings_permutations_gen(n_permutations, n_samples, n_obs_sample, batch,
1372
+ rng):
1373
+ # Returns a generator that yields arrays of size
1374
+ # `(batch, n_samples, n_obs_sample)`.
1375
+ # Each row is an independent permutation of indices 0 to `n_obs_sample`.
1376
+ batch = min(batch, n_permutations)
1377
+
1378
+ if hasattr(rng, 'permuted'):
1379
+ def batched_perm_generator():
1380
+ indices = np.arange(n_obs_sample)
1381
+ indices = np.tile(indices, (batch, n_samples, 1))
1382
+ for k in range(0, n_permutations, batch):
1383
+ batch_actual = min(batch, n_permutations-k)
1384
+ # Don't permute in place, otherwise results depend on `batch`
1385
+ permuted_indices = rng.permuted(indices, axis=-1)
1386
+ yield permuted_indices[:batch_actual]
1387
+ else: # RandomState and early Generators don't have `permuted`
1388
+ def batched_perm_generator():
1389
+ for k in range(0, n_permutations, batch):
1390
+ batch_actual = min(batch, n_permutations-k)
1391
+ size = (batch_actual, n_samples, n_obs_sample)
1392
+ x = rng.random(size=size)
1393
+ yield np.argsort(x, axis=-1)[:batch_actual]
1394
+
1395
+ return batched_perm_generator()
1396
+
1397
+
1398
+ def _calculate_null_both(data, statistic, n_permutations, batch,
1399
+ rng=None):
1400
+ """
1401
+ Calculate null distribution for independent sample tests.
1402
+ """
1403
+ n_samples = len(data)
1404
+
1405
+ # compute number of permutations
1406
+ # (distinct partitions of data into samples of these sizes)
1407
+ n_obs_i = [sample.shape[-1] for sample in data] # observations per sample
1408
+ n_obs_ic = np.cumsum(n_obs_i)
1409
+ n_obs = n_obs_ic[-1] # total number of observations
1410
+ n_max = np.prod([comb(n_obs_ic[i], n_obs_ic[i-1])
1411
+ for i in range(n_samples-1, 0, -1)])
1412
+
1413
+ # perm_generator is an iterator that produces permutations of indices
1414
+ # from 0 to n_obs. We'll concatenate the samples, use these indices to
1415
+ # permute the data, then split the samples apart again.
1416
+ if n_permutations >= n_max:
1417
+ exact_test = True
1418
+ n_permutations = n_max
1419
+ perm_generator = _all_partitions_concatenated(n_obs_i)
1420
+ else:
1421
+ exact_test = False
1422
+ # Neither RandomState.permutation nor Generator.permutation
1423
+ # can permute axis-slices independently. If this feature is
1424
+ # added in the future, batches of the desired size should be
1425
+ # generated in a single call.
1426
+ perm_generator = (rng.permutation(n_obs)
1427
+ for i in range(n_permutations))
1428
+
1429
+ batch = batch or int(n_permutations)
1430
+ null_distribution = []
1431
+
1432
+ # First, concatenate all the samples. In batches, permute samples with
1433
+ # indices produced by the `perm_generator`, split them into new samples of
1434
+ # the original sizes, compute the statistic for each batch, and add these
1435
+ # statistic values to the null distribution.
1436
+ data = np.concatenate(data, axis=-1)
1437
+ for indices in _batch_generator(perm_generator, batch=batch):
1438
+ indices = np.array(indices)
1439
+
1440
+ # `indices` is 2D: each row is a permutation of the indices.
1441
+ # We use it to index `data` along its last axis, which corresponds
1442
+ # with observations.
1443
+ # After indexing, the second to last axis of `data_batch` corresponds
1444
+ # with permutations, and the last axis corresponds with observations.
1445
+ data_batch = data[..., indices]
1446
+
1447
+ # Move the permutation axis to the front: we'll concatenate a list
1448
+ # of batched statistic values along this zeroth axis to form the
1449
+ # null distribution.
1450
+ data_batch = np.moveaxis(data_batch, -2, 0)
1451
+ data_batch = np.split(data_batch, n_obs_ic[:-1], axis=-1)
1452
+ null_distribution.append(statistic(*data_batch, axis=-1))
1453
+ null_distribution = np.concatenate(null_distribution, axis=0)
1454
+
1455
+ return null_distribution, n_permutations, exact_test
1456
+
1457
+
1458
+ def _calculate_null_pairings(data, statistic, n_permutations, batch,
1459
+ rng=None):
1460
+ """
1461
+ Calculate null distribution for association tests.
1462
+ """
1463
+ n_samples = len(data)
1464
+
1465
+ # compute number of permutations (factorial(n) permutations of each sample)
1466
+ n_obs_sample = data[0].shape[-1] # observations per sample; same for each
1467
+ n_max = factorial(n_obs_sample)**n_samples
1468
+
1469
+ # `perm_generator` is an iterator that produces a list of permutations of
1470
+ # indices from 0 to n_obs_sample, one for each sample.
1471
+ if n_permutations >= n_max:
1472
+ exact_test = True
1473
+ n_permutations = n_max
1474
+ batch = batch or int(n_permutations)
1475
+ # Cartesian product of the sets of all permutations of indices
1476
+ perm_generator = product(*(permutations(range(n_obs_sample))
1477
+ for i in range(n_samples)))
1478
+ batched_perm_generator = _batch_generator(perm_generator, batch=batch)
1479
+ else:
1480
+ exact_test = False
1481
+ batch = batch or int(n_permutations)
1482
+ # Separate random permutations of indices for each sample.
1483
+ # Again, it would be nice if RandomState/Generator.permutation
1484
+ # could permute each axis-slice separately.
1485
+ args = n_permutations, n_samples, n_obs_sample, batch, rng
1486
+ batched_perm_generator = _pairings_permutations_gen(*args)
1487
+
1488
+ null_distribution = []
1489
+
1490
+ for indices in batched_perm_generator:
1491
+ indices = np.array(indices)
1492
+
1493
+ # `indices` is 3D: the zeroth axis is for permutations, the next is
1494
+ # for samples, and the last is for observations. Swap the first two
1495
+ # to make the zeroth axis correspond with samples, as it does for
1496
+ # `data`.
1497
+ indices = np.swapaxes(indices, 0, 1)
1498
+
1499
+ # When we're done, `data_batch` will be a list of length `n_samples`.
1500
+ # Each element will be a batch of random permutations of one sample.
1501
+ # The zeroth axis of each batch will correspond with permutations,
1502
+ # and the last will correspond with observations. (This makes it
1503
+ # easy to pass into `statistic`.)
1504
+ data_batch = [None]*n_samples
1505
+ for i in range(n_samples):
1506
+ data_batch[i] = data[i][..., indices[i]]
1507
+ data_batch[i] = np.moveaxis(data_batch[i], -2, 0)
1508
+
1509
+ null_distribution.append(statistic(*data_batch, axis=-1))
1510
+ null_distribution = np.concatenate(null_distribution, axis=0)
1511
+
1512
+ return null_distribution, n_permutations, exact_test
1513
+
1514
+
1515
+ def _calculate_null_samples(data, statistic, n_permutations, batch,
1516
+ rng=None):
1517
+ """
1518
+ Calculate null distribution for paired-sample tests.
1519
+ """
1520
+ n_samples = len(data)
1521
+
1522
+ # By convention, the meaning of the "samples" permutations type for
1523
+ # data with only one sample is to flip the sign of the observations.
1524
+ # Achieve this by adding a second sample - the negative of the original.
1525
+ if n_samples == 1:
1526
+ data = [data[0], -data[0]]
1527
+
1528
+ # The "samples" permutation strategy is the same as the "pairings"
1529
+ # strategy except the roles of samples and observations are flipped.
1530
+ # So swap these axes, then we'll use the function for the "pairings"
1531
+ # strategy to do all the work!
1532
+ data = np.swapaxes(data, 0, -1)
1533
+
1534
+ # (Of course, the user's statistic doesn't know what we've done here,
1535
+ # so we need to pass it what it's expecting.)
1536
+ def statistic_wrapped(*data, axis):
1537
+ data = np.swapaxes(data, 0, -1)
1538
+ if n_samples == 1:
1539
+ data = data[0:1]
1540
+ return statistic(*data, axis=axis)
1541
+
1542
+ return _calculate_null_pairings(data, statistic_wrapped, n_permutations,
1543
+ batch, rng)
1544
+
1545
+
1546
+ def _permutation_test_iv(data, statistic, permutation_type, vectorized,
1547
+ n_resamples, batch, alternative, axis, rng):
1548
+ """Input validation for `permutation_test`."""
1549
+
1550
+ axis_int = int(axis)
1551
+ if axis != axis_int:
1552
+ raise ValueError("`axis` must be an integer.")
1553
+
1554
+ permutation_types = {'samples', 'pairings', 'independent'}
1555
+ permutation_type = permutation_type.lower()
1556
+ if permutation_type not in permutation_types:
1557
+ raise ValueError(f"`permutation_type` must be in {permutation_types}.")
1558
+
1559
+ if vectorized not in {True, False, None}:
1560
+ raise ValueError("`vectorized` must be `True`, `False`, or `None`.")
1561
+
1562
+ if vectorized is None:
1563
+ vectorized = 'axis' in inspect.signature(statistic).parameters
1564
+
1565
+ if not vectorized:
1566
+ statistic = _vectorize_statistic(statistic)
1567
+
1568
+ message = "`data` must be a tuple containing at least two samples"
1569
+ try:
1570
+ if len(data) < 2 and permutation_type == 'independent':
1571
+ raise ValueError(message)
1572
+ except TypeError:
1573
+ raise TypeError(message)
1574
+
1575
+ data = _broadcast_arrays(data, axis)
1576
+ data_iv = []
1577
+ for sample in data:
1578
+ sample = np.atleast_1d(sample)
1579
+ if sample.shape[axis] <= 1:
1580
+ raise ValueError("each sample in `data` must contain two or more "
1581
+ "observations along `axis`.")
1582
+ sample = np.moveaxis(sample, axis_int, -1)
1583
+ data_iv.append(sample)
1584
+
1585
+ n_resamples_int = (int(n_resamples) if not np.isinf(n_resamples)
1586
+ else np.inf)
1587
+ if n_resamples != n_resamples_int or n_resamples_int <= 0:
1588
+ raise ValueError("`n_resamples` must be a positive integer.")
1589
+
1590
+ if batch is None:
1591
+ batch_iv = batch
1592
+ else:
1593
+ batch_iv = int(batch)
1594
+ if batch != batch_iv or batch_iv <= 0:
1595
+ raise ValueError("`batch` must be a positive integer or None.")
1596
+
1597
+ alternatives = {'two-sided', 'greater', 'less'}
1598
+ alternative = alternative.lower()
1599
+ if alternative not in alternatives:
1600
+ raise ValueError(f"`alternative` must be in {alternatives}")
1601
+
1602
+ rng = check_random_state(rng)
1603
+
1604
+ return (data_iv, statistic, permutation_type, vectorized, n_resamples_int,
1605
+ batch_iv, alternative, axis_int, rng)
1606
+
1607
+
1608
+ @_transition_to_rng('random_state')
1609
+ def permutation_test(data, statistic, *, permutation_type='independent',
1610
+ vectorized=None, n_resamples=9999, batch=None,
1611
+ alternative="two-sided", axis=0, rng=None):
1612
+ r"""
1613
+ Performs a permutation test of a given statistic on provided data.
1614
+
1615
+ For independent sample statistics, the null hypothesis is that the data are
1616
+ randomly sampled from the same distribution.
1617
+ For paired sample statistics, two null hypothesis can be tested:
1618
+ that the data are paired at random or that the data are assigned to samples
1619
+ at random.
1620
+
1621
+ Parameters
1622
+ ----------
1623
+ data : iterable of array-like
1624
+ Contains the samples, each of which is an array of observations.
1625
+ Dimensions of sample arrays must be compatible for broadcasting except
1626
+ along `axis`.
1627
+ statistic : callable
1628
+ Statistic for which the p-value of the hypothesis test is to be
1629
+ calculated. `statistic` must be a callable that accepts samples
1630
+ as separate arguments (e.g. ``statistic(*data)``) and returns the
1631
+ resulting statistic.
1632
+ If `vectorized` is set ``True``, `statistic` must also accept a keyword
1633
+ argument `axis` and be vectorized to compute the statistic along the
1634
+ provided `axis` of the sample arrays.
1635
+ permutation_type : {'independent', 'samples', 'pairings'}, optional
1636
+ The type of permutations to be performed, in accordance with the
1637
+ null hypothesis. The first two permutation types are for paired sample
1638
+ statistics, in which all samples contain the same number of
1639
+ observations and observations with corresponding indices along `axis`
1640
+ are considered to be paired; the third is for independent sample
1641
+ statistics.
1642
+
1643
+ - ``'samples'`` : observations are assigned to different samples
1644
+ but remain paired with the same observations from other samples.
1645
+ This permutation type is appropriate for paired sample hypothesis
1646
+ tests such as the Wilcoxon signed-rank test and the paired t-test.
1647
+ - ``'pairings'`` : observations are paired with different observations,
1648
+ but they remain within the same sample. This permutation type is
1649
+ appropriate for association/correlation tests with statistics such
1650
+ as Spearman's :math:`\rho`, Kendall's :math:`\tau`, and Pearson's
1651
+ :math:`r`.
1652
+ - ``'independent'`` (default) : observations are assigned to different
1653
+ samples. Samples may contain different numbers of observations. This
1654
+ permutation type is appropriate for independent sample hypothesis
1655
+ tests such as the Mann-Whitney :math:`U` test and the independent
1656
+ sample t-test.
1657
+
1658
+ Please see the Notes section below for more detailed descriptions
1659
+ of the permutation types.
1660
+
1661
+ vectorized : bool, optional
1662
+ If `vectorized` is set ``False``, `statistic` will not be passed
1663
+ keyword argument `axis` and is expected to calculate the statistic
1664
+ only for 1D samples. If ``True``, `statistic` will be passed keyword
1665
+ argument `axis` and is expected to calculate the statistic along `axis`
1666
+ when passed an ND sample array. If ``None`` (default), `vectorized`
1667
+ will be set ``True`` if ``axis`` is a parameter of `statistic`. Use
1668
+ of a vectorized statistic typically reduces computation time.
1669
+ n_resamples : int or np.inf, default: 9999
1670
+ Number of random permutations (resamples) used to approximate the null
1671
+ distribution. If greater than or equal to the number of distinct
1672
+ permutations, the exact null distribution will be computed.
1673
+ Note that the number of distinct permutations grows very rapidly with
1674
+ the sizes of samples, so exact tests are feasible only for very small
1675
+ data sets.
1676
+ batch : int, optional
1677
+ The number of permutations to process in each call to `statistic`.
1678
+ Memory usage is O( `batch` * ``n`` ), where ``n`` is the total size
1679
+ of all samples, regardless of the value of `vectorized`. Default is
1680
+ ``None``, in which case ``batch`` is the number of permutations.
1681
+ alternative : {'two-sided', 'less', 'greater'}, optional
1682
+ The alternative hypothesis for which the p-value is calculated.
1683
+ For each alternative, the p-value is defined for exact tests as
1684
+ follows.
1685
+
1686
+ - ``'greater'`` : the percentage of the null distribution that is
1687
+ greater than or equal to the observed value of the test statistic.
1688
+ - ``'less'`` : the percentage of the null distribution that is
1689
+ less than or equal to the observed value of the test statistic.
1690
+ - ``'two-sided'`` (default) : twice the smaller of the p-values above.
1691
+
1692
+ Note that p-values for randomized tests are calculated according to the
1693
+ conservative (over-estimated) approximation suggested in [2]_ and [3]_
1694
+ rather than the unbiased estimator suggested in [4]_. That is, when
1695
+ calculating the proportion of the randomized null distribution that is
1696
+ as extreme as the observed value of the test statistic, the values in
1697
+ the numerator and denominator are both increased by one. An
1698
+ interpretation of this adjustment is that the observed value of the
1699
+ test statistic is always included as an element of the randomized
1700
+ null distribution.
1701
+ The convention used for two-sided p-values is not universal;
1702
+ the observed test statistic and null distribution are returned in
1703
+ case a different definition is preferred.
1704
+
1705
+ axis : int, default: 0
1706
+ The axis of the (broadcasted) samples over which to calculate the
1707
+ statistic. If samples have a different number of dimensions,
1708
+ singleton dimensions are prepended to samples with fewer dimensions
1709
+ before `axis` is considered.
1710
+ rng : `numpy.random.Generator`, optional
1711
+ Pseudorandom number generator state. When `rng` is None, a new
1712
+ `numpy.random.Generator` is created using entropy from the
1713
+ operating system. Types other than `numpy.random.Generator` are
1714
+ passed to `numpy.random.default_rng` to instantiate a ``Generator``.
1715
+
1716
+ Returns
1717
+ -------
1718
+ res : PermutationTestResult
1719
+ An object with attributes:
1720
+
1721
+ statistic : float or ndarray
1722
+ The observed test statistic of the data.
1723
+ pvalue : float or ndarray
1724
+ The p-value for the given alternative.
1725
+ null_distribution : ndarray
1726
+ The values of the test statistic generated under the null
1727
+ hypothesis.
1728
+
1729
+ Notes
1730
+ -----
1731
+
1732
+ The three types of permutation tests supported by this function are
1733
+ described below.
1734
+
1735
+ **Unpaired statistics** (``permutation_type='independent'``):
1736
+
1737
+ The null hypothesis associated with this permutation type is that all
1738
+ observations are sampled from the same underlying distribution and that
1739
+ they have been assigned to one of the samples at random.
1740
+
1741
+ Suppose ``data`` contains two samples; e.g. ``a, b = data``.
1742
+ When ``1 < n_resamples < binom(n, k)``, where
1743
+
1744
+ * ``k`` is the number of observations in ``a``,
1745
+ * ``n`` is the total number of observations in ``a`` and ``b``, and
1746
+ * ``binom(n, k)`` is the binomial coefficient (``n`` choose ``k``),
1747
+
1748
+ the data are pooled (concatenated), randomly assigned to either the first
1749
+ or second sample, and the statistic is calculated. This process is
1750
+ performed repeatedly, `permutation` times, generating a distribution of the
1751
+ statistic under the null hypothesis. The statistic of the original
1752
+ data is compared to this distribution to determine the p-value.
1753
+
1754
+ When ``n_resamples >= binom(n, k)``, an exact test is performed: the data
1755
+ are *partitioned* between the samples in each distinct way exactly once,
1756
+ and the exact null distribution is formed.
1757
+ Note that for a given partitioning of the data between the samples,
1758
+ only one ordering/permutation of the data *within* each sample is
1759
+ considered. For statistics that do not depend on the order of the data
1760
+ within samples, this dramatically reduces computational cost without
1761
+ affecting the shape of the null distribution (because the frequency/count
1762
+ of each value is affected by the same factor).
1763
+
1764
+ For ``a = [a1, a2, a3, a4]`` and ``b = [b1, b2, b3]``, an example of this
1765
+ permutation type is ``x = [b3, a1, a2, b2]`` and ``y = [a4, b1, a3]``.
1766
+ Because only one ordering/permutation of the data *within* each sample
1767
+ is considered in an exact test, a resampling like ``x = [b3, a1, b2, a2]``
1768
+ and ``y = [a4, a3, b1]`` would *not* be considered distinct from the
1769
+ example above.
1770
+
1771
+ ``permutation_type='independent'`` does not support one-sample statistics,
1772
+ but it can be applied to statistics with more than two samples. In this
1773
+ case, if ``n`` is an array of the number of observations within each
1774
+ sample, the number of distinct partitions is::
1775
+
1776
+ np.prod([binom(sum(n[i:]), sum(n[i+1:])) for i in range(len(n)-1)])
1777
+
1778
+ **Paired statistics, permute pairings** (``permutation_type='pairings'``):
1779
+
1780
+ The null hypothesis associated with this permutation type is that
1781
+ observations within each sample are drawn from the same underlying
1782
+ distribution and that pairings with elements of other samples are
1783
+ assigned at random.
1784
+
1785
+ Suppose ``data`` contains only one sample; e.g. ``a, = data``, and we
1786
+ wish to consider all possible pairings of elements of ``a`` with elements
1787
+ of a second sample, ``b``. Let ``n`` be the number of observations in
1788
+ ``a``, which must also equal the number of observations in ``b``.
1789
+
1790
+ When ``1 < n_resamples < factorial(n)``, the elements of ``a`` are
1791
+ randomly permuted. The user-supplied statistic accepts one data argument,
1792
+ say ``a_perm``, and calculates the statistic considering ``a_perm`` and
1793
+ ``b``. This process is performed repeatedly, `permutation` times,
1794
+ generating a distribution of the statistic under the null hypothesis.
1795
+ The statistic of the original data is compared to this distribution to
1796
+ determine the p-value.
1797
+
1798
+ When ``n_resamples >= factorial(n)``, an exact test is performed:
1799
+ ``a`` is permuted in each distinct way exactly once. Therefore, the
1800
+ `statistic` is computed for each unique pairing of samples between ``a``
1801
+ and ``b`` exactly once.
1802
+
1803
+ For ``a = [a1, a2, a3]`` and ``b = [b1, b2, b3]``, an example of this
1804
+ permutation type is ``a_perm = [a3, a1, a2]`` while ``b`` is left
1805
+ in its original order.
1806
+
1807
+ ``permutation_type='pairings'`` supports ``data`` containing any number
1808
+ of samples, each of which must contain the same number of observations.
1809
+ All samples provided in ``data`` are permuted *independently*. Therefore,
1810
+ if ``m`` is the number of samples and ``n`` is the number of observations
1811
+ within each sample, then the number of permutations in an exact test is::
1812
+
1813
+ factorial(n)**m
1814
+
1815
+ Note that if a two-sample statistic, for example, does not inherently
1816
+ depend on the order in which observations are provided - only on the
1817
+ *pairings* of observations - then only one of the two samples should be
1818
+ provided in ``data``. This dramatically reduces computational cost without
1819
+ affecting the shape of the null distribution (because the frequency/count
1820
+ of each value is affected by the same factor).
1821
+
1822
+ **Paired statistics, permute samples** (``permutation_type='samples'``):
1823
+
1824
+ The null hypothesis associated with this permutation type is that
1825
+ observations within each pair are drawn from the same underlying
1826
+ distribution and that the sample to which they are assigned is random.
1827
+
1828
+ Suppose ``data`` contains two samples; e.g. ``a, b = data``.
1829
+ Let ``n`` be the number of observations in ``a``, which must also equal
1830
+ the number of observations in ``b``.
1831
+
1832
+ When ``1 < n_resamples < 2**n``, the elements of ``a`` are ``b`` are
1833
+ randomly swapped between samples (maintaining their pairings) and the
1834
+ statistic is calculated. This process is performed repeatedly,
1835
+ `permutation` times, generating a distribution of the statistic under the
1836
+ null hypothesis. The statistic of the original data is compared to this
1837
+ distribution to determine the p-value.
1838
+
1839
+ When ``n_resamples >= 2**n``, an exact test is performed: the observations
1840
+ are assigned to the two samples in each distinct way (while maintaining
1841
+ pairings) exactly once.
1842
+
1843
+ For ``a = [a1, a2, a3]`` and ``b = [b1, b2, b3]``, an example of this
1844
+ permutation type is ``x = [b1, a2, b3]`` and ``y = [a1, b2, a3]``.
1845
+
1846
+ ``permutation_type='samples'`` supports ``data`` containing any number
1847
+ of samples, each of which must contain the same number of observations.
1848
+ If ``data`` contains more than one sample, paired observations within
1849
+ ``data`` are exchanged between samples *independently*. Therefore, if ``m``
1850
+ is the number of samples and ``n`` is the number of observations within
1851
+ each sample, then the number of permutations in an exact test is::
1852
+
1853
+ factorial(m)**n
1854
+
1855
+ Several paired-sample statistical tests, such as the Wilcoxon signed rank
1856
+ test and paired-sample t-test, can be performed considering only the
1857
+ *difference* between two paired elements. Accordingly, if ``data`` contains
1858
+ only one sample, then the null distribution is formed by independently
1859
+ changing the *sign* of each observation.
1860
+
1861
+ .. warning::
1862
+ The p-value is calculated by counting the elements of the null
1863
+ distribution that are as extreme or more extreme than the observed
1864
+ value of the statistic. Due to the use of finite precision arithmetic,
1865
+ some statistic functions return numerically distinct values when the
1866
+ theoretical values would be exactly equal. In some cases, this could
1867
+ lead to a large error in the calculated p-value. `permutation_test`
1868
+ guards against this by considering elements in the null distribution
1869
+ that are "close" (within a relative tolerance of 100 times the
1870
+ floating point epsilon of inexact dtypes) to the observed
1871
+ value of the test statistic as equal to the observed value of the
1872
+ test statistic. However, the user is advised to inspect the null
1873
+ distribution to assess whether this method of comparison is
1874
+ appropriate, and if not, calculate the p-value manually. See example
1875
+ below.
1876
+
1877
+ References
1878
+ ----------
1879
+
1880
+ .. [1] R. A. Fisher. The Design of Experiments, 6th Ed (1951).
1881
+ .. [2] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
1882
+ Zero: Calculating Exact P-values When Permutations Are Randomly Drawn."
1883
+ Statistical Applications in Genetics and Molecular Biology 9.1 (2010).
1884
+ .. [3] M. D. Ernst. "Permutation Methods: A Basis for Exact Inference".
1885
+ Statistical Science (2004).
1886
+ .. [4] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap
1887
+ (1993).
1888
+
1889
+ Examples
1890
+ --------
1891
+
1892
+ Suppose we wish to test whether two samples are drawn from the same
1893
+ distribution. Assume that the underlying distributions are unknown to us,
1894
+ and that before observing the data, we hypothesized that the mean of the
1895
+ first sample would be less than that of the second sample. We decide that
1896
+ we will use the difference between the sample means as a test statistic,
1897
+ and we will consider a p-value of 0.05 to be statistically significant.
1898
+
1899
+ For efficiency, we write the function defining the test statistic in a
1900
+ vectorized fashion: the samples ``x`` and ``y`` can be ND arrays, and the
1901
+ statistic will be calculated for each axis-slice along `axis`.
1902
+
1903
+ >>> import numpy as np
1904
+ >>> def statistic(x, y, axis):
1905
+ ... return np.mean(x, axis=axis) - np.mean(y, axis=axis)
1906
+
1907
+ After collecting our data, we calculate the observed value of the test
1908
+ statistic.
1909
+
1910
+ >>> from scipy.stats import norm
1911
+ >>> rng = np.random.default_rng()
1912
+ >>> x = norm.rvs(size=5, random_state=rng)
1913
+ >>> y = norm.rvs(size=6, loc = 3, random_state=rng)
1914
+ >>> statistic(x, y, 0)
1915
+ -3.5411688580987266
1916
+
1917
+ Indeed, the test statistic is negative, suggesting that the true mean of
1918
+ the distribution underlying ``x`` is less than that of the distribution
1919
+ underlying ``y``. To determine the probability of this occurring by chance
1920
+ if the two samples were drawn from the same distribution, we perform
1921
+ a permutation test.
1922
+
1923
+ >>> from scipy.stats import permutation_test
1924
+ >>> # because our statistic is vectorized, we pass `vectorized=True`
1925
+ >>> # `n_resamples=np.inf` indicates that an exact test is to be performed
1926
+ >>> res = permutation_test((x, y), statistic, vectorized=True,
1927
+ ... n_resamples=np.inf, alternative='less')
1928
+ >>> print(res.statistic)
1929
+ -3.5411688580987266
1930
+ >>> print(res.pvalue)
1931
+ 0.004329004329004329
1932
+
1933
+ The probability of obtaining a test statistic less than or equal to the
1934
+ observed value under the null hypothesis is 0.4329%. This is less than our
1935
+ chosen threshold of 5%, so we consider this to be significant evidence
1936
+ against the null hypothesis in favor of the alternative.
1937
+
1938
+ Because the size of the samples above was small, `permutation_test` could
1939
+ perform an exact test. For larger samples, we resort to a randomized
1940
+ permutation test.
1941
+
1942
+ >>> x = norm.rvs(size=100, random_state=rng)
1943
+ >>> y = norm.rvs(size=120, loc=0.2, random_state=rng)
1944
+ >>> res = permutation_test((x, y), statistic, n_resamples=9999,
1945
+ ... vectorized=True, alternative='less',
1946
+ ... rng=rng)
1947
+ >>> print(res.statistic)
1948
+ -0.4230459671240913
1949
+ >>> print(res.pvalue)
1950
+ 0.0015
1951
+
1952
+ The approximate probability of obtaining a test statistic less than or
1953
+ equal to the observed value under the null hypothesis is 0.0225%. This is
1954
+ again less than our chosen threshold of 5%, so again we have significant
1955
+ evidence to reject the null hypothesis in favor of the alternative.
1956
+
1957
+ For large samples and number of permutations, the result is comparable to
1958
+ that of the corresponding asymptotic test, the independent sample t-test.
1959
+
1960
+ >>> from scipy.stats import ttest_ind
1961
+ >>> res_asymptotic = ttest_ind(x, y, alternative='less')
1962
+ >>> print(res_asymptotic.pvalue)
1963
+ 0.0014669545224902675
1964
+
1965
+ The permutation distribution of the test statistic is provided for
1966
+ further investigation.
1967
+
1968
+ >>> import matplotlib.pyplot as plt
1969
+ >>> plt.hist(res.null_distribution, bins=50)
1970
+ >>> plt.title("Permutation distribution of test statistic")
1971
+ >>> plt.xlabel("Value of Statistic")
1972
+ >>> plt.ylabel("Frequency")
1973
+ >>> plt.show()
1974
+
1975
+ Inspection of the null distribution is essential if the statistic suffers
1976
+ from inaccuracy due to limited machine precision. Consider the following
1977
+ case:
1978
+
1979
+ >>> from scipy.stats import pearsonr
1980
+ >>> x = [1, 2, 4, 3]
1981
+ >>> y = [2, 4, 6, 8]
1982
+ >>> def statistic(x, y, axis=-1):
1983
+ ... return pearsonr(x, y, axis=axis).statistic
1984
+ >>> res = permutation_test((x, y), statistic, vectorized=True,
1985
+ ... permutation_type='pairings',
1986
+ ... alternative='greater')
1987
+ >>> r, pvalue, null = res.statistic, res.pvalue, res.null_distribution
1988
+
1989
+ In this case, some elements of the null distribution differ from the
1990
+ observed value of the correlation coefficient ``r`` due to numerical noise.
1991
+ We manually inspect the elements of the null distribution that are nearly
1992
+ the same as the observed value of the test statistic.
1993
+
1994
+ >>> r
1995
+ 0.7999999999999999
1996
+ >>> unique = np.unique(null)
1997
+ >>> unique
1998
+ array([-1. , -1. , -0.8, -0.8, -0.8, -0.6, -0.4, -0.4, -0.2, -0.2, -0.2,
1999
+ 0. , 0.2, 0.2, 0.2, 0.4, 0.4, 0.6, 0.8, 0.8, 0.8, 1. ,
2000
+ 1. ]) # may vary
2001
+ >>> unique[np.isclose(r, unique)].tolist()
2002
+ [0.7999999999999998, 0.7999999999999999, 0.8] # may vary
2003
+
2004
+ If `permutation_test` were to perform the comparison naively, the
2005
+ elements of the null distribution with value ``0.7999999999999998`` would
2006
+ not be considered as extreme or more extreme as the observed value of the
2007
+ statistic, so the calculated p-value would be too small.
2008
+
2009
+ >>> incorrect_pvalue = np.count_nonzero(null >= r) / len(null)
2010
+ >>> incorrect_pvalue
2011
+ 0.14583333333333334 # may vary
2012
+
2013
+ Instead, `permutation_test` treats elements of the null distribution that
2014
+ are within ``max(1e-14, abs(r)*1e-14)`` of the observed value of the
2015
+ statistic ``r`` to be equal to ``r``.
2016
+
2017
+ >>> correct_pvalue = np.count_nonzero(null >= r - 1e-14) / len(null)
2018
+ >>> correct_pvalue
2019
+ 0.16666666666666666
2020
+ >>> res.pvalue == correct_pvalue
2021
+ True
2022
+
2023
+ This method of comparison is expected to be accurate in most practical
2024
+ situations, but the user is advised to assess this by inspecting the
2025
+ elements of the null distribution that are close to the observed value
2026
+ of the statistic. Also, consider the use of statistics that can be
2027
+ calculated using exact arithmetic (e.g. integer statistics).
2028
+
2029
+ """
2030
+ args = _permutation_test_iv(data, statistic, permutation_type, vectorized,
2031
+ n_resamples, batch, alternative, axis,
2032
+ rng)
2033
+ (data, statistic, permutation_type, vectorized, n_resamples, batch,
2034
+ alternative, axis, rng) = args
2035
+
2036
+ observed = statistic(*data, axis=-1)
2037
+
2038
+ null_calculators = {"pairings": _calculate_null_pairings,
2039
+ "samples": _calculate_null_samples,
2040
+ "independent": _calculate_null_both}
2041
+ null_calculator_args = (data, statistic, n_resamples,
2042
+ batch, rng)
2043
+ calculate_null = null_calculators[permutation_type]
2044
+ null_distribution, n_resamples, exact_test = (
2045
+ calculate_null(*null_calculator_args))
2046
+
2047
+ # See References [2] and [3]
2048
+ adjustment = 0 if exact_test else 1
2049
+
2050
+ # relative tolerance for detecting numerically distinct but
2051
+ # theoretically equal values in the null distribution
2052
+ eps = (0 if not np.issubdtype(observed.dtype, np.inexact)
2053
+ else np.finfo(observed.dtype).eps*100)
2054
+ gamma = np.abs(eps * observed)
2055
+
2056
+ def less(null_distribution, observed):
2057
+ cmps = null_distribution <= observed + gamma
2058
+ pvalues = (cmps.sum(axis=0) + adjustment) / (n_resamples + adjustment)
2059
+ return pvalues
2060
+
2061
+ def greater(null_distribution, observed):
2062
+ cmps = null_distribution >= observed - gamma
2063
+ pvalues = (cmps.sum(axis=0) + adjustment) / (n_resamples + adjustment)
2064
+ return pvalues
2065
+
2066
+ def two_sided(null_distribution, observed):
2067
+ pvalues_less = less(null_distribution, observed)
2068
+ pvalues_greater = greater(null_distribution, observed)
2069
+ pvalues = np.minimum(pvalues_less, pvalues_greater) * 2
2070
+ return pvalues
2071
+
2072
+ compare = {"less": less,
2073
+ "greater": greater,
2074
+ "two-sided": two_sided}
2075
+
2076
+ pvalues = compare[alternative](null_distribution, observed)
2077
+ pvalues = np.clip(pvalues, 0, 1)
2078
+
2079
+ return PermutationTestResult(observed, pvalues, null_distribution)
2080
+
2081
+
2082
+ @dataclass
2083
+ class ResamplingMethod:
2084
+ """Configuration information for a statistical resampling method.
2085
+
2086
+ Instances of this class can be passed into the `method` parameter of some
2087
+ hypothesis test functions to perform a resampling or Monte Carlo version
2088
+ of the hypothesis test.
2089
+
2090
+ Attributes
2091
+ ----------
2092
+ n_resamples : int
2093
+ The number of resamples to perform or Monte Carlo samples to draw.
2094
+ batch : int, optional
2095
+ The number of resamples to process in each vectorized call to
2096
+ the statistic. Batch sizes >>1 tend to be faster when the statistic
2097
+ is vectorized, but memory usage scales linearly with the batch size.
2098
+ Default is ``None``, which processes all resamples in a single batch.
2099
+
2100
+ """
2101
+ n_resamples: int = 9999
2102
+ batch: int = None # type: ignore[assignment]
2103
+
2104
+
2105
+ @dataclass
2106
+ class MonteCarloMethod(ResamplingMethod):
2107
+ """Configuration information for a Monte Carlo hypothesis test.
2108
+
2109
+ Instances of this class can be passed into the `method` parameter of some
2110
+ hypothesis test functions to perform a Monte Carlo version of the
2111
+ hypothesis tests.
2112
+
2113
+ Attributes
2114
+ ----------
2115
+ n_resamples : int, optional
2116
+ The number of Monte Carlo samples to draw. Default is 9999.
2117
+ batch : int, optional
2118
+ The number of Monte Carlo samples to process in each vectorized call to
2119
+ the statistic. Batch sizes >>1 tend to be faster when the statistic
2120
+ is vectorized, but memory usage scales linearly with the batch size.
2121
+ Default is ``None``, which processes all samples in a single batch.
2122
+ rvs : callable or tuple of callables, optional
2123
+ A callable or sequence of callables that generates random variates
2124
+ under the null hypothesis. Each element of `rvs` must be a callable
2125
+ that accepts keyword argument ``size`` (e.g. ``rvs(size=(m, n))``) and
2126
+ returns an N-d array sample of that shape. If `rvs` is a sequence, the
2127
+ number of callables in `rvs` must match the number of samples passed
2128
+ to the hypothesis test in which the `MonteCarloMethod` is used. Default
2129
+ is ``None``, in which case the hypothesis test function chooses values
2130
+ to match the standard version of the hypothesis test. For example,
2131
+ the null hypothesis of `scipy.stats.pearsonr` is typically that the
2132
+ samples are drawn from the standard normal distribution, so
2133
+ ``rvs = (rng.normal, rng.normal)`` where
2134
+ ``rng = np.random.default_rng()``.
2135
+ rng : `numpy.random.Generator`, optional
2136
+ Pseudorandom number generator state. When `rng` is None, a new
2137
+ `numpy.random.Generator` is created using entropy from the
2138
+ operating system. Types other than `numpy.random.Generator` are
2139
+ passed to `numpy.random.default_rng` to instantiate a ``Generator``.
2140
+
2141
+ """
2142
+ rvs: object = None
2143
+ rng: object = None
2144
+
2145
+ def __init__(self, n_resamples=9999, batch=None, rvs=None, rng=None):
2146
+ if (rvs is not None) and (rng is not None):
2147
+ message = 'Use of `rvs` and `rng` are mutually exclusive.'
2148
+ raise ValueError(message)
2149
+
2150
+ self.n_resamples = n_resamples
2151
+ self.batch = batch
2152
+ self.rvs = rvs
2153
+ self.rng = rng
2154
+
2155
+ def _asdict(self):
2156
+ # `dataclasses.asdict` deepcopies; we don't want that.
2157
+ return dict(n_resamples=self.n_resamples, batch=self.batch,
2158
+ rvs=self.rvs, rng=self.rng)
2159
+
2160
+
2161
+ _rs_deprecation = ("Use of attribute `random_state` is deprecated and replaced by "
2162
+ "`rng`. Support for `random_state` will be removed in SciPy 1.19.0. "
2163
+ "To silence this warning and ensure consistent behavior in SciPy "
2164
+ "1.19.0, control the RNG using attribute `rng`. Values set using "
2165
+ "attribute `rng` will be validated by `np.random.default_rng`, so "
2166
+ "the behavior corresponding with a given value may change compared "
2167
+ "to use of `random_state`. For example, 1) `None` will result in "
2168
+ "unpredictable random numbers, 2) an integer will result in a "
2169
+ "different stream of random numbers, (with the same distribution), "
2170
+ "and 3) `np.random` or `RandomState` instances will result in an "
2171
+ "error. See the documentation of `default_rng` for more "
2172
+ "information.")
2173
+
2174
+
2175
+ @dataclass
2176
+ class PermutationMethod(ResamplingMethod):
2177
+ """Configuration information for a permutation hypothesis test.
2178
+
2179
+ Instances of this class can be passed into the `method` parameter of some
2180
+ hypothesis test functions to perform a permutation version of the
2181
+ hypothesis tests.
2182
+
2183
+ Attributes
2184
+ ----------
2185
+ n_resamples : int, optional
2186
+ The number of resamples to perform. Default is 9999.
2187
+ batch : int, optional
2188
+ The number of resamples to process in each vectorized call to
2189
+ the statistic. Batch sizes >>1 tend to be faster when the statistic
2190
+ is vectorized, but memory usage scales linearly with the batch size.
2191
+ Default is ``None``, which processes all resamples in a single batch.
2192
+ rng : `numpy.random.Generator`, optional
2193
+ Pseudorandom number generator used to perform resampling.
2194
+
2195
+ If `rng` is passed by keyword to the initializer or the `rng` attribute is used
2196
+ directly, types other than `numpy.random.Generator` are passed to
2197
+ `numpy.random.default_rng` to instantiate a ``Generator`` before use.
2198
+ If `rng` is already a ``Generator`` instance, then the provided instance is
2199
+ used. Specify `rng` for repeatable behavior.
2200
+
2201
+ If this argument is passed by position, if `random_state` is passed by keyword
2202
+ into the initializer, or if the `random_state` attribute is used directly,
2203
+ legacy behavior for `random_state` applies:
2204
+
2205
+ - If `random_state` is None (or `numpy.random`), the `numpy.random.RandomState`
2206
+ singleton is used.
2207
+ - If `random_state` is an int, a new ``RandomState`` instance is used,
2208
+ seeded with `random_state`.
2209
+ - If `random_state` is already a ``Generator`` or ``RandomState`` instance then
2210
+ that instance is used.
2211
+
2212
+ .. versionchanged:: 1.15.0
2213
+
2214
+ As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
2215
+ transition from use of `numpy.random.RandomState` to
2216
+ `numpy.random.Generator`, this attribute name was changed from
2217
+ `random_state` to `rng`. For an interim period, both names will continue to
2218
+ work, although only one may be specified at a time. After the interim
2219
+ period, uses of `random_state` will emit warnings. The behavior of both
2220
+ `random_state` and `rng` are outlined above, but only `rng` should be used
2221
+ in new code.
2222
+
2223
+ """
2224
+ rng: object # type: ignore[misc]
2225
+ _rng: object = field(init=False, repr=False, default=None) # type: ignore[assignment]
2226
+
2227
+ @property
2228
+ def random_state(self):
2229
+ # Uncomment in SciPy 1.17.0
2230
+ # warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
2231
+ return self._random_state
2232
+
2233
+ @random_state.setter
2234
+ def random_state(self, val):
2235
+ # Uncomment in SciPy 1.17.0
2236
+ # warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
2237
+ self._random_state = val
2238
+
2239
+ @property # type: ignore[no-redef]
2240
+ def rng(self): # noqa: F811
2241
+ return self._rng
2242
+
2243
+ def __init__(self, n_resamples=9999, batch=None, random_state=None, *, rng=None):
2244
+ # Uncomment in SciPy 1.17.0
2245
+ # warnings.warn(_rs_deprecation.replace('attribute', 'argument'),
2246
+ # DeprecationWarning, stacklevel=2)
2247
+ self._rng = rng
2248
+ self._random_state = random_state
2249
+ super().__init__(n_resamples=n_resamples, batch=batch)
2250
+
2251
+ def _asdict(self):
2252
+ # `dataclasses.asdict` deepcopies; we don't want that.
2253
+ d = dict(n_resamples=self.n_resamples, batch=self.batch)
2254
+ if self.rng is not None:
2255
+ d['rng'] = self.rng
2256
+ if self.random_state is not None:
2257
+ d['random_state'] = self.random_state
2258
+ return d
2259
+
2260
+
2261
+ @dataclass
2262
+ class BootstrapMethod(ResamplingMethod):
2263
+ """Configuration information for a bootstrap confidence interval.
2264
+
2265
+ Instances of this class can be passed into the `method` parameter of some
2266
+ confidence interval methods to generate a bootstrap confidence interval.
2267
+
2268
+ Attributes
2269
+ ----------
2270
+ n_resamples : int, optional
2271
+ The number of resamples to perform. Default is 9999.
2272
+ batch : int, optional
2273
+ The number of resamples to process in each vectorized call to
2274
+ the statistic. Batch sizes >>1 tend to be faster when the statistic
2275
+ is vectorized, but memory usage scales linearly with the batch size.
2276
+ Default is ``None``, which processes all resamples in a single batch.
2277
+ rng : `numpy.random.Generator`, optional
2278
+ Pseudorandom number generator used to perform resampling.
2279
+
2280
+ If `rng` is passed by keyword to the initializer or the `rng` attribute is used
2281
+ directly, types other than `numpy.random.Generator` are passed to
2282
+ `numpy.random.default_rng` to instantiate a ``Generator`` before use.
2283
+ If `rng` is already a ``Generator`` instance, then the provided instance is
2284
+ used. Specify `rng` for repeatable behavior.
2285
+
2286
+ If this argument is passed by position, if `random_state` is passed by keyword
2287
+ into the initializer, or if the `random_state` attribute is used directly,
2288
+ legacy behavior for `random_state` applies:
2289
+
2290
+ - If `random_state` is None (or `numpy.random`), the `numpy.random.RandomState`
2291
+ singleton is used.
2292
+ - If `random_state` is an int, a new ``RandomState`` instance is used,
2293
+ seeded with `random_state`.
2294
+ - If `random_state` is already a ``Generator`` or ``RandomState`` instance then
2295
+ that instance is used.
2296
+
2297
+ .. versionchanged:: 1.15.0
2298
+
2299
+ As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
2300
+ transition from use of `numpy.random.RandomState` to
2301
+ `numpy.random.Generator`, this attribute name was changed from
2302
+ `random_state` to `rng`. For an interim period, both names will continue to
2303
+ work, although only one may be specified at a time. After the interim
2304
+ period, uses of `random_state` will emit warnings. The behavior of both
2305
+ `random_state` and `rng` are outlined above, but only `rng` should be used
2306
+ in new code.
2307
+
2308
+ method : {'BCa', 'percentile', 'basic'}
2309
+ Whether to use the 'percentile' bootstrap ('percentile'), the 'basic'
2310
+ (AKA 'reverse') bootstrap ('basic'), or the bias-corrected and
2311
+ accelerated bootstrap ('BCa', default).
2312
+
2313
+ """
2314
+ rng: object # type: ignore[misc]
2315
+ _rng: object = field(init=False, repr=False, default=None) # type: ignore[assignment]
2316
+ method: str = 'BCa'
2317
+
2318
+ @property
2319
+ def random_state(self):
2320
+ # Uncomment in SciPy 1.17.0
2321
+ # warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
2322
+ return self._random_state
2323
+
2324
+ @random_state.setter
2325
+ def random_state(self, val):
2326
+ # Uncomment in SciPy 1.17.0
2327
+ # warnings.warn(_rs_deprecation, DeprecationWarning, stacklevel=2)
2328
+ self._random_state = val
2329
+
2330
+ @property # type: ignore[no-redef]
2331
+ def rng(self): # noqa: F811
2332
+ return self._rng
2333
+
2334
+ def __init__(self, n_resamples=9999, batch=None, random_state=None,
2335
+ method='BCa', *, rng=None):
2336
+ # Uncomment in SciPy 1.17.0
2337
+ # warnings.warn(_rs_deprecation.replace('attribute', 'argument'),
2338
+ # DeprecationWarning, stacklevel=2)
2339
+ self._rng = rng # don't validate with `default_rng`
2340
+ self._random_state = random_state
2341
+ self.method = method
2342
+ super().__init__(n_resamples=n_resamples, batch=batch)
2343
+
2344
+ def _asdict(self):
2345
+ # `dataclasses.asdict` deepcopies; we don't want that.
2346
+ d = dict(n_resamples=self.n_resamples, batch=self.batch,
2347
+ method=self.method)
2348
+ if self.rng is not None:
2349
+ d['rng'] = self.rng
2350
+ if self.random_state is not None:
2351
+ d['random_state'] = self.random_state
2352
+ return d